arX1v:2005.12861v1 [math.CO] 26 May 2020

Finding an induced path that is not a shortest path

Eli Berger!
University of Haifa
Paul Seymour?
Princeton University, Princeton, NJ 08544

Sophie Spirkl?
Rutgers University, Piscataway, NJ 08854

July 18, 2019; revised May 27, 2020

'Supported by Israel Science Foundation Grant 100004639 and Binational Science Foundation USA-Israel
Grant 100005728.

2Supported by AFOSR grant A9550-19-1-0187 and NSF grant DMS-1800053.

3Current address: Princeton University, Princeton, NJ08544. This material is based upon work supported
by the National Science Foundation under Award No. DMS-1802201.

http://arxiv.org/abs/2005.12861v1

Abstract

We give a polynomial-time algorithm that, with input a graph G and two vertices u, v of GG, decides
whether there is an induced uv-path that is longer than the shortest uv-path.

1 Introduction

All graphs in this paper are finite and simple. For a graph G and u,v € V(G), the G-distance
de(u,v) (d(u,v) when there is no danger of confusion) is the number of edges in a shortest uv-path
in G; let d(u,v) = oo if there is no such path. Let P be an induced wv-path. The length of P is the
number of edges of P. We call P a non-shortest uv-path (uv-NSP) if the length of P is more than
d(u,v).

Given a graph G and u,v € V(G) we consider the question of whether there are two induced
uv-paths of different lengths, or equivalently, whether there is a uv-NSP. Deciding this in polynomial
time is surprisingly non-trivial. (It is important that we want induced paths; if we just want paths
of different lengths, the question is much easier.) Our main result is the following:

1.1. There is an algorithm that, given a graph G and u,v € V(G), decides whether there is a uv-NSP
in time O(|G|'6).

A step in the proof has the following consequence which may also be of interest:

1.2. For fized k, there is a polynomial-time algorithm that, given a graph G and u,v € V(G), decides
whether there is an induced path between u and v in G of length exactly d(u,v) + k.

We prove in section 2, and [T in section Bl Many variants of finding pairs of induced paths
have been considered previously; for instance

1.3 (Bienstock [1]). The following problems are N P-hard:
e Given u,v € V(G), decide whether there is an induced uv-path of odd (even) length.

e Given u,v € V(Q), decide whether there are two induced uv-paths P; and Py with no edges
between V (Py) \ {u,v} and V(Py) \ {u,v}.

Here are two more NP-hardness results, that are new as far as we know, but for reasons of space
we omit the proofs:

1.4. The following problem is NP-hard:
e Input: A graph G and u,v € V(G).
o Qutput: “Yes” if there exist two induced uv-paths P and @ such that there are no edges between
V(P)\ {u,v} and V(Q) \ {u,v}, and P is a shortest uwv-path; and “No” otherwise.

This is in contrast with 2.4] which implies that the problem is polynomial-time solvable if both
P and @ are both required to be shortest paths (or at most a fixed constant amount longer than a
shortest path). In view of [[T] it is natural to ask:

1.5. For fized k > 1, is there a polynomial-time algorithm that, given a graph G and u,v € V(G),
decides whether there is an induced uv-path P in G of length at least d(u,v) + k?

This remains open, even for k£ = 3 (the algorithm of this paper does the case k = 1, and can be
adjusted to do the case k = 2). It is necessary to fix k, because of the following:

1.6. The following problem is NP-hard:
o Input: A graph G and u,v € V(G).

o Output: “Yes” if there exists a uv-NSP of length at least 2dg(u,v) and “No” if there is no
such path.

2 Dynamic programming

A path forest means a graph in which every component is a path (possibly of length zero); and a
path forest in G means an induced subgraph of G that is a path forest. (Thus it consists of a set of
induced paths of G, pairwise vertex-disjoint and with no edges of G joining them.)

Let V4,...,V, be pairwise disjoint subsets of V(G), with union V(G), such that for all 7,5 €
{1,...,n}, if j > i+ 2 then there are no edges between V; and V;. We call (Vi,...,V},) an altitude.
We are given a graph G and an altitude (Vi,...,V,) in G, and we need to test whether there is a
path forest in G with certain properties, that contains only a bounded number of vertices from each
V;. We shall see that this can easily be solved with dynamic programming.

Let X C V(G), and let H, H' be path forests in G. We say they are X -equivalent if

e V(HINX =V(H') N X;
e H, H' have the same number of components; and

e for each component P of H, there is a component P’ of H' with the same ends and same length
as P.

This is an equivalence relation.

Again, let X C V(G). A path forest H is h-restricted in G relative to X if |V (H) N X| < h, and
there are at most A components of H that have no end in X. Now let (Vi,...,V,) be an altitude in
G. A path forest H is h-narrow (with respect to (V1,...,V,)) if for 1 <i <n, H[V;U---UV,] is
h-restricted in G[V; U --- U V,,] with respect to V.

Let 1 < ¢ < n. Let C; be the set of all equivalence classes, under V;-equivalence, that contain a
path forest in G[V; U---UV,] that is h-narrow with respect to (V;,...,V,). Algorithmically, we may
describe C; by explicitly storing such a path forest.

We observe:

2.1. If h is fized, with G, Vi,...,V, as above, for 1 < i < mn we can compute C; from a knowledge of
Cit1 in polynomial time.

Proof. There are only polynomially many equivalence classes in C;y;. (This is where we use the
condition that at most A components of H have no end in X, in the definition of “h-restricted”.) For
each one, take a representive member H’ say. There are only polynomially many induced subgraphs
J of the graph G[V; UV, 1] such that V(J)NV;41 = V(H')NV;41 and |V (J)NV;| < h. For each such
J, check whether H' U J is h-narrow in G[V; U---UV,,] with respect to (V1,...,V},), and if so record
its equivalence class under V;-equivalence. To see that every member of C; is recorded, observe that
if H is a path forest in G[V; U--- UV,] that is h-narrow with respect to (V;,...,V,,), then H\V; is a
path forest in G[V;11 U---UV,] that is h-narrow with respect to (Vi11,...,V,); and if H' is another
member of the equivalence class in C;y; that contains H \ V;, then its union with J = H[V; U V;]
is h-narrow with respect to (V1,...,V,,) and Vj-equivalent to H. This proves 211 |

We deduce:

2.2. For all fited h > k > 0, there is a polynomial-time algorithm that, given pairs (s1,t1), ..., (Sy,tr)
of a graph G, and integers ny,...,n, >0, and an altitude (V1,...,V,) in G, computes whether there
is a path forest in G, h-restricted with respect to (Vi,...,Vy,), with r components, where the ith
component has ends s;,t; and has length n;.

Proof. First compute C,; then n — 1 applications of 2.1] allow us to compute Cq, and from C; we
can read off the answer. |

This implies 2.3l which we restate:

2.3. For fized k, there is a polynomial time algorithm that, given a graph G and u,v € V(QG), decides
whether there is an induced path between u and v in G of length exactly d(u,v) + k.

We may assume that G is connected. For each ¢ > 0, let V; be the set of vertices with distance
exactly ¢ from u. Then (V,...,V,) is an altitude, where n is the largest ¢ with V; # (. Let P be an
induced wv-path of length d(u,v) + k. Then, for all ¢ € {1,...,d(u,v)}, P contains a vertex x with
d(xz,v) = i. Consequently, for all i € Ny, P contains at most k + 1 vertices with distance exactly 4
from v. So P is (k + 1)-narrow with respect to (V1,...,V},,), where n is the largest i with V; # 0.
Hence 221 with » =1 and ny = d(u,v) + k, will detect a path in the same Vj-equivalence class. |

Similarly, by trying all possibilities for nq,...,n,, we obtain

2.4. For fixed h and r, there is a polynomial-time algorithm with the following specifications, where
V; is the set of vertices with distance exactly i from v:

o Input: A graph G, v € V(G) and r pairs (s1,t1),..., (s, t,) € V(G).

e Qutput: A path forest H of G with r components Py,..., P, such that for each i, P; has ends
si,t; and [V(H)NV;| < h for all j € N, or a determination that no such path forest exists.

3 Finding an induced non-shortest path

In this section, we prove [LII We start with some definitions. A vertex z € V(G) is uv-straight if
d(u,z) + d(z,v) = d(u,v). Let G be a graph, and u,v € V(G). Let F be the set of uv-straight
vertices. For i € {0,...,d(u,v)}, let V; = {x € F : d(u,z) = i}; we call V; the wv-layer of height 1,

and we say its elements have height i; and we call the sequence Vp, ..., Vg, the uv-layering of G.
It follows that for i,j € {0,...,d(u,v)} with |i — j| > 2, there are no edges between V; and Vj}, and
moreover, for i € {1,...,d(u,v) — 1}, every vertex in V; has a neighbour in V;_; and in V;;.

We call a path @ with V(Q) C F monotone (leaving the dependence on u,v to be understood)
if V(@) NV <1 forallie{0,...,d(u,v)} (and therefore @ is induced); and it follows that
the vertices of @ are in |V (Q)| uv-layers of consecutive heights. For every vertex x € F', there is a
monotone ru-path intersecting precisely Vo, ..., Vg, ») and a monotone xv-path intersecting precisely
Vitu,e)s - - +» Vd(u,w), and from the definition of uv-monotonicity, it follows that both of these paths are
shortest paths. If K C V(G), N(K) or Ng(K) denotes the set of all vertices in V(G) \ K that have
a neighbour in K.

Conveniently, in order to solve[L.I]it is enough to handle the case when all vertices are uv-straight,
because of the next result.

3.1. There is a polynomial-time algorithm with the following specifications:

o Input: A graph G and u,v € V(G).

e Output: Either a wv-NSP, or a graph G' with u,v € V(G') C V(G) such that G’ has a uv-NSP
if and only if G has a wv-NSP, and such that every vertex of G’ is uv-straight in G'.

Proof. Let G be a graph, and u,v € V(G). We compute the set F' of uv-straight vertices, and
the uv-layering Vo, ..., Vg, of G. We may assume that V(G) \ F # 0, for otherwise G, u,v is the
desired output.

Compute the vertex set K of a connected component of G\ F'. Suppose first that N (K) contains
non-adjacent vertices z,y with d(u,x) < d(u,y), and choose x,y such that d(u,y) — d(u,x) is maxi-
mum. Let ¢ = d(u,x) and j = d(u,y). It follows that no vertex in Vj, ..., V;_; has a neighbour in K
(for otherwise such a vertex contradicts the choice of); and similarly, no vertex in Vjyq,..., Via(u,v)
has a neighbour in K. Now let P; be a monotone xu-path, let P, be a monotone ywv-path, and
let @ be an induced xy-path with interior in K. It follows that the concatenation P;-Q-P; is an
induced wv-path; and since V(Q) N K # (, it follows from the definition of K and F' that P;-Q-P»
is a uv-NSP, and we can find such a path in polynomial time.

Thus we may assume that N(K) is contained in V; U V41 for some i € {0,...,d(u,v) — 1}, and
N(K)NV;is complete to N(K)NVjii. Let H be obtained from G by deleting K and adding edges
to make N(K) a clique. We claim that H has a uv-NSP if and only if G does.

Suppose first that P is a uv-NSP of G. Since N(K) is a clique of H, there is a uv-path of H with
vertex set a subset of V(P); let @ be the shortest such path. We claim that @ is a uv-NSP of H. If
V(P) = V(Q), this follows from the choice of P. Otherwise, @ contains an edge e in E(H) \ E(G).
Since e connects two vertices at the same distance from wu, it follows that every induced wv-path
containing e is a uv-NSP of H, as claimed, and so H has a uv-NSP.

Now suppose that @ is a uv-NSP of H. If) does not contain an edge in F(H)\ E(G), then @Q is
a uv-NSP of G, so we assume that () contains such an edge. Since N(K) is a clique of H, it follows
that @ contains exactly two vertices z,y € N(K), and xy ¢ E(G). Let P be obtained from @ by
replacing xy by an induced zy-path with interior in K. Then P is a uv-NSP of G, since P contains
a vertex of K. This proves that H has a uv-NSP if and only if G does.

By repeating this procedure for all components of G'\ F, we either find a uv-NSP, or the desired
graph G'. |

3.2. There is a polynomial-time algorithm with the following specifications:
e Input: A graph G and u,v € V(G) such that every vertex of G is uv-straight.
e QOutput: A uv-NSP in G, or a determination that none exists.
e Running time: O(|G|°).

Proof. Fori e {0,...,d(u,v)}, let V; = {x € V(G) : d(z,u) =i}, and for each vertex x, let h(x) be
its height. Let P be a shortest uv-NSP in G (if one exists). We will prove some properties of P that
will make it easier to find P.

Let P, be the longest monotone subpath of P containing u, and let P, be the longest monotone
subpath of P containing v. Let s denote the endpoint of P, that is not u, and let ¢ denote the
endpoint of P, that is not v. It follows that P, and P, are disjoint, for otherwise P is monotone,
contrary to the choice of P.

(1) V(P)\ V(P,) does not contain a vertex x with h(x) > h(s), and V(P)\ V(P,) does not contain
a vertex x with h(x) < h(t).

Let z € V(P) \ V(P,) be chosen with h(z) maximum, breaking ties by choosing the vertex clos-
est to u along P. Let @ be a monotone zv-path, and let P’ be the subpath of P from u to z. Let
Q' denote the concatenation of P’ and Q). We claim that @’ is shorter than P. This follows since
the subpath of P from x to v is not monotone (because z ¢ V(P,)), and the subpath of @’ from z
to v is monotone. Since P is a shortest uv-NSP, it follows that @’ is not a uv-NSP, and hence Q'
is monotone. In particular, P’ is monotone. Thus V(P’) C V(P,). From the choice of z, it follows
that P’ = P,; and so u = s. From the choice of x, and from the symmetry between u and v, this
proves (1).

Since P is not monotone, (1) immediately implies that h(s) > h(t).

(2) For fized k, if h(s) — h(t) < k, then we can find a wv-NSP in polynomial time (depending
on k).

It suffices to prove (2) when h(s) — h(t) = k; then we obtain the desired algorithm by applying
the statement for &' =0, ..., k.

Let zy € E(G) with h(y) = h(z) + 1, and let vy----- Vg2 be a (k + 2)-vertex path with h(v;) =
h(y) +i—1for 1 <i < k+ 2, such that v; is nonadjacent to =, and v; is nonadjacent to x,y for
2 <14 <k +2. For all such choices of x,y,v1,...,v;t2, we proceed as follows:

e Let Q, be a monotone path from x to u, and let @), be a monotone path from vg o to v.

e We delete all vertices and neighbours of V(Q,) UV (Q,)U{z}U{vs,...,vp42} except for y and
v1 from G. Let H denote the graph we obtain by these deletions.

e We check if H contains an induced path @ from v; to y. If so, we return the concatenated path
Q' = u-Qu-2-y-Q-v1-v- - - - - Vg+2-Qu-v.

First, we claim that if this returns a path @Q’, then @’ is a uv-NSP. From the construction of H,
it follows that @' is an induced path. Moreover, since Q' contains v; and y, and since h(v1) = h(y),
it follows that @’ is a uv-NSP.

Now we need to show that if h(t) = h(s) — k, then the algorithm above always returns a path. We
consider the iteration of the algorithm in which z,y € V(P,), and t = vy, and vy, ..., vg42 € V(P,).
We claim that the subpath P’ of P from v; to y is contained in H. Since every vertex z in V(Qy)\{z}
satisfies h(z) < h(t) — 2, it follows from (1) that z has no neighbours in P’. Similarly, no vertex in
V(Q,) has a neighbour in P’. Since z,y € V(P,), it follows that the only neighbour of z in P’ is
y. Since vy, ..., vk € V(P,), it follows that the only possible neighbour of vy, ..., vgio in P is vy.
This proves our claim. Since P’ is a path from vy to y in H, it follows that the algorithm returns a
path @'. This proves (2).

By (2), we may assume that h(s) — h(t) > 6. Let sq, s1,...,86,t1,--.,t6,t7 € V(G) be distinct,
such that:

® 5)-S1-S9-S3, S4-S5-Sg, t1-to-t3, and ty4-t5-tg-t7 are paths;

h(s;) = h(t;) for 1 <i < 6;

h(so) +3=h(t1) +2 = h(ta) + 1 = h(ts) < h(ts) = h(ts) — 1 = h(tg) — 2 = h(ty) — 3;
e s; is non-adjacent to t; for all i € {0,...,6} and j € {1,...,7}.

For each such 14-tuple sg, s1,..., s¢, t1,...,ts,t7, we do the following:
e We pick a monotone path @, from sg to u, and a monotone path @, from t7 to v.

e We check using [2.4] whether there are monotone paths R,, R, such that R, is an s3ss-path,
R, is a tgt4-path, and there are no edges between R, and R,; if not, we move on to the next
14-tuple.

e Let P! and P! be respectively the concatenations
U-Qu-50-51-52-53-Ry=54-55-56

t1-to-t3-Ry-ty-ts-tg-t7-Qyp-v.

Let H be obtained from G by deleting all vertices of P, \ {s¢} and all their neighbours except
s¢, and deleting all vertices of P \ {t1} and all their neighbours except t;. We check if
there is an induced path @) from t; to s¢ in H, and if so, we return the concatenated path
u-P)-s6-Q-t1-P)-v.

If this returns a path @Q’, then the construction implies that @’ is an induced path; and since Q’
contains s1,t; with h(s1) = h(t1), it follows that @' is a uv-NSP. It remains to show that if a shortest
uv-NSP P exists with h(s) — h(t) > 6, then this algorithm returns a path. We consider the 14-tuple
such that sg = s, and t; = ¢, {sg,...,s6} C V(Fy,), and {t1,...,t7} C V(P,). This 14-tuple exists
since h(s) — h(t) > 6, and so there are at least six vertices in P, that each have the same height as
some vertex in P,.

Now we need to show that the last bullet above returns a path. Let P’ be the subpath of P from s
to t. It follows from (1) that there are no edges from V(Q,,) or V(Q,) to V/(P’). Since {s,...,s6} C
V(P,) and {t1,...,t7} C V(P,), it follows that the only edges from {so,...,s¢,t1,...,t7} to V(P')
are the edge from s = s¢ to its neighbour in V(P’), and the edge from ¢ = t; to its neighbour in
V(P'). If neither V(R,,) nor V(R,) intersects or has edges to V(P’), then P’ is present in H, and a
path is returned. By symmetry, we may assume (for a contradiction) that V(R,) intersects or has
edges to V(P'). Let z be the vertex closest to s3 in R,, such that z has a neighbour in V(P’).

Let € V(P’) be the neighbour of z closest to t = ¢; in P’. Let R be the induced uv-path that
begins with a subpath of P, from u to z and the edge zx, and whose remaining vertices are contained
in the vertex set of the subpath of P’ from z to t, and P). Then R is shorter than P, since the
subpath of R from u to x has length h(z) + 1, but in P, the subpath from u to = contains s, and
thus it has length at least h(s) + 1 > h(z) + 1. Since R is induced, it follows that R is monotone,
and therefore h(x) > h(z) (and 2 has a neighbour in V(P)), but we will not need this).

The concatenation Q" of the subpath of P!, from u to z, the edge zx, and the subpath of P from
x to v is not monotone, since it contains s; and t1; and as before, it is shorter than P. Therefore

Q" is not an induced path. This implies that some vertex y of P, has a neighbour in the subpath of
R, between s3 and z; choose y with h(y) maximum, and let 2z’ be a neighbour of y in the subpath
of R, between s3 and z, chosen with h(z’) maximum (possibly 2z’ = z). It follows that y lies in the
subpath of P, between t3,ty.

Let t' be a vertex of the subpath of P’ between x and ¢, such that h(t') = h(t), and subject to
that, the subpath of P’ between x,t' is minimal. Now let R’ be the concatenation of a monotone
path from u to t/, the subpath of P’ from t' to x, the edge zz, the subpath of R, between z and 2/,
the edge z'y, and the subpath of P, from y to v. Then R’ is an induced path because of (1); and
its length is at most the length of P’ plus d(u,t) + 2 + d(y, v); but the length of P is at least the
length of P’ plus d(u,t) + 6 + d(t,v), and d(t,v) > d(y,v) since y € V(P,). This implies that R’ is
monotone. Since z is closer to v than z in R/, it follows that h(z) < h(z), a contradiction. Hence
the last bullet above does indeed return a path. (We omit the analysis of running time, which is
straightforward.) This proves |

Now [I.1] follows from B.1] and

4 Acknowledgments

The first author was supported by Israel Science Foundation Grant 100004639 and Binational Science
Foundation USA-Israel Grant 100005728. The second author was supported by AFOSR grant A9550-
19-1-0187 and NSF grant DMS-1800053. This material is based upon work supported by the National
Science Foundation under Award No. DMS-1802201 (Spirkl).

References

[1] Bienstock, Daniel. On the complezity of testing for odd holes and induced odd paths. Discrete
Mathematics 90 (1991) 85-92. (Corrigendum, Discrete Mathematics 102 (1992) 109.)

	1 Introduction
	2 Dynamic programming
	3 Finding an induced non-shortest path
	4 Acknowledgments

