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Abstract

We give a polynomial-time algorithm that, with input a graph G and two vertices u, v of G, decides
whether there is an induced uv-path that is longer than the shortest uv-path.



1 Introduction

All graphs in this paper are finite and simple. For a graph G and u, v ∈ V (G), the G-distance
dG(u, v) (d(u, v) when there is no danger of confusion) is the number of edges in a shortest uv-path
in G; let d(u, v) = ∞ if there is no such path. Let P be an induced uv-path. The length of P is the
number of edges of P . We call P a non-shortest uv-path (uv-NSP) if the length of P is more than
d(u, v).

Given a graph G and u, v ∈ V (G) we consider the question of whether there are two induced
uv-paths of different lengths, or equivalently, whether there is a uv-NSP. Deciding this in polynomial
time is surprisingly non-trivial. (It is important that we want induced paths; if we just want paths
of different lengths, the question is much easier.) Our main result is the following:

1.1. There is an algorithm that, given a graph G and u, v ∈ V (G), decides whether there is a uv-NSP
in time O(|G|16).

A step in the proof has the following consequence which may also be of interest:

1.2. For fixed k, there is a polynomial-time algorithm that, given a graph G and u, v ∈ V (G), decides
whether there is an induced path between u and v in G of length exactly d(u, v) + k.

We prove 1.2 in section 2, and 1.1 in section 3. Many variants of finding pairs of induced paths
have been considered previously; for instance

1.3 (Bienstock [1]). The following problems are NP -hard:

• Given u, v ∈ V (G), decide whether there is an induced uv-path of odd (even) length.

• Given u, v ∈ V (G), decide whether there are two induced uv-paths P1 and P2 with no edges
between V (P1) \ {u, v} and V (P2) \ {u, v}.

Here are two more NP-hardness results, that are new as far as we know, but for reasons of space
we omit the proofs:

1.4. The following problem is NP-hard:

• Input: A graph G and u, v ∈ V (G).

• Output: “Yes” if there exist two induced uv-paths P and Q such that there are no edges between
V (P ) \ {u, v} and V (Q) \ {u, v}, and P is a shortest uv-path; and “No” otherwise.

This is in contrast with 2.4, which implies that the problem is polynomial-time solvable if both
P and Q are both required to be shortest paths (or at most a fixed constant amount longer than a
shortest path). In view of 1.1, it is natural to ask:

1.5. For fixed k > 1, is there a polynomial-time algorithm that, given a graph G and u, v ∈ V (G),
decides whether there is an induced uv-path P in G of length at least d(u, v) + k?

This remains open, even for k = 3 (the algorithm of this paper does the case k = 1, and can be
adjusted to do the case k = 2). It is necessary to fix k, because of the following:

1.6. The following problem is NP-hard:

• Input: A graph G and u, v ∈ V (G).

• Output: “Yes” if there exists a uv-NSP of length at least 2dG(u, v) and “No” if there is no
such path.
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2 Dynamic programming

A path forest means a graph in which every component is a path (possibly of length zero); and a
path forest in G means an induced subgraph of G that is a path forest. (Thus it consists of a set of
induced paths of G, pairwise vertex-disjoint and with no edges of G joining them.)

Let V1, . . . , Vn be pairwise disjoint subsets of V (G), with union V (G), such that for all i, j ∈
{1, . . . , n}, if j ≥ i+ 2 then there are no edges between Vi and Vj. We call (V1, . . . , Vn) an altitude.
We are given a graph G and an altitude (V1, . . . , Vn) in G, and we need to test whether there is a
path forest in G with certain properties, that contains only a bounded number of vertices from each
Vi. We shall see that this can easily be solved with dynamic programming.

Let X ⊆ V (G), and let H,H ′ be path forests in G. We say they are X-equivalent if

• V (H) ∩X = V (H ′) ∩X;

• H, H ′ have the same number of components; and

• for each component P of H, there is a component P ′ of H ′ with the same ends and same length
as P .

This is an equivalence relation.
Again, let X ⊆ V (G). A path forest H is h-restricted in G relative to X if |V (H) ∩X| ≤ h, and

there are at most h components of H that have no end in X. Now let (V1, . . . , Vn) be an altitude in
G. A path forest H is h-narrow (with respect to (V1, . . . , Vn)) if for 1 ≤ i ≤ n, H[Vi ∪ · · · ∪ Vn] is
h-restricted in G[Vi ∪ · · · ∪ Vn] with respect to Vi.

Let 1 ≤ i ≤ n. Let Ci be the set of all equivalence classes, under Vi-equivalence, that contain a
path forest in G[Vi ∪ · · · ∪Vn] that is h-narrow with respect to (Vi, . . . , Vn). Algorithmically, we may
describe Ci by explicitly storing such a path forest.

We observe:

2.1. If h is fixed, with G, V1, . . . , Vn as above, for 1 ≤ i < n we can compute Ci from a knowledge of
Ci+1 in polynomial time.

Proof. There are only polynomially many equivalence classes in Ci+1. (This is where we use the
condition that at most h components of H have no end in X, in the definition of “h-restricted”.) For
each one, take a representive member H ′ say. There are only polynomially many induced subgraphs
J of the graph G[Vi∪Vi+1] such that V (J)∩Vi+1 = V (H ′)∩Vi+1 and |V (J)∩Vi| ≤ h. For each such
J , check whether H ′ ∪ J is h-narrow in G[Vi ∪ · · · ∪ Vn] with respect to (V1, . . . , Vn), and if so record
its equivalence class under Vi-equivalence. To see that every member of Ci is recorded, observe that
if H is a path forest in G[Vi ∪ · · · ∪ Vn] that is h-narrow with respect to (Vi, . . . , Vn), then H \ Vi is a
path forest in G[Vi+1 ∪ · · · ∪ Vn] that is h-narrow with respect to (Vi+1, . . . , Vn); and if H ′ is another
member of the equivalence class in Ci+1 that contains H \ Vi, then its union with J = H[Vi ∪ Vi+1]
is h-narrow with respect to (V1, . . . , Vn) and Vi-equivalent to H. This proves 2.1.

We deduce:

2.2. For all fixed h ≥ k ≥ 0, there is a polynomial-time algorithm that, given pairs (s1, t1), . . . , (sr, tr)
of a graph G, and integers n1, . . . , nr ≥ 0, and an altitude (V1, . . . , Vn) in G, computes whether there
is a path forest in G, h-restricted with respect to (V1, . . . , Vn), with r components, where the ith
component has ends si, ti and has length ni.
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Proof. First compute Cn; then n − 1 applications of 2.1 allow us to compute C1, and from C1 we
can read off the answer.

This implies 2.3, which we restate:

2.3. For fixed k, there is a polynomial time algorithm that, given a graph G and u, v ∈ V (G), decides
whether there is an induced path between u and v in G of length exactly d(u, v) + k.

We may assume that G is connected. For each i ≥ 0, let Vi be the set of vertices with distance
exactly i from u. Then (V1, . . . , Vn) is an altitude, where n is the largest i with Vi 6= ∅. Let P be an
induced uv-path of length d(u, v) + k. Then, for all i ∈ {1, . . . , d(u, v)}, P contains a vertex x with
d(x, v) = i. Consequently, for all i ∈ N0, P contains at most k + 1 vertices with distance exactly i

from v. So P is (k + 1)-narrow with respect to (V1, . . . , Vn), where n is the largest i with Vi 6= ∅.
Hence 2.2, with r = 1 and n1 = d(u, v) + k, will detect a path in the same V1-equivalence class.

Similarly, by trying all possibilities for n1, . . . , nr, we obtain

2.4. For fixed h and r, there is a polynomial-time algorithm with the following specifications, where
Vi is the set of vertices with distance exactly i from v:

• Input: A graph G, v ∈ V (G) and r pairs (s1, t1), . . . , (sr, tr) ∈ V (G).

• Output: A path forest H of G with r components P1, . . . , Pr, such that for each i, Pi has ends
si, ti and |V (H) ∩ Vj| ≤ h for all j ∈ N, or a determination that no such path forest exists.

3 Finding an induced non-shortest path

In this section, we prove 1.1. We start with some definitions. A vertex x ∈ V (G) is uv-straight if
d(u, x) + d(x, v) = d(u, v). Let G be a graph, and u, v ∈ V (G). Let F be the set of uv-straight
vertices. For i ∈ {0, . . . , d(u, v)}, let Vi = {x ∈ F : d(u, x) = i}; we call Vi the uv-layer of height i,
and we say its elements have height i; and we call the sequence V0, . . . , Vd(u,v) the uv-layering of G.
It follows that for i, j ∈ {0, . . . , d(u, v)} with |i − j| ≥ 2, there are no edges between Vi and Vj , and
moreover, for i ∈ {1, . . . , d(u, v) − 1}, every vertex in Vi has a neighbour in Vi−1 and in Vi+1.

We call a path Q with V (Q) ⊆ F monotone (leaving the dependence on u, v to be understood)
if |V (Q) ∩ Vi| ≤ 1 for all i ∈ {0, . . . , d(u, v)} (and therefore Q is induced); and it follows that
the vertices of Q are in |V (Q)| uv-layers of consecutive heights. For every vertex x ∈ F , there is a
monotone xu-path intersecting precisely V0, . . . , Vd(u,x) and a monotone xv-path intersecting precisely
Vd(u,x), . . . , Vd(u,v), and from the definition of uv-monotonicity, it follows that both of these paths are
shortest paths. If K ⊆ V (G), N(K) or NG(K) denotes the set of all vertices in V (G) \K that have
a neighbour in K.

Conveniently, in order to solve 1.1 it is enough to handle the case when all vertices are uv-straight,
because of the next result.

3.1. There is a polynomial-time algorithm with the following specifications:

• Input: A graph G and u, v ∈ V (G).
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• Output: Either a uv-NSP, or a graph G′ with u, v ∈ V (G′) ⊆ V (G) such that G′ has a uv-NSP
if and only if G has a uv-NSP, and such that every vertex of G′ is uv-straight in G′.

Proof. Let G be a graph, and u, v ∈ V (G). We compute the set F of uv-straight vertices, and
the uv-layering V0, . . . , Vd(u,v) of G. We may assume that V (G) \ F 6= ∅, for otherwise G,u, v is the
desired output.

Compute the vertex set K of a connected component of G\F . Suppose first that N(K) contains
non-adjacent vertices x, y with d(u, x) < d(u, y), and choose x, y such that d(u, y)− d(u, x) is maxi-
mum. Let i = d(u, x) and j = d(u, y). It follows that no vertex in V0, . . . , Vi−1 has a neighbour in K

(for otherwise such a vertex contradicts the choice of x); and similarly, no vertex in Vj+1, . . . , Vd(u,v)

has a neighbour in K. Now let P1 be a monotone xu-path, let P2 be a monotone yv-path, and
let Q be an induced xy-path with interior in K. It follows that the concatenation P1-Q-P2 is an
induced uv-path; and since V (Q) ∩K 6= ∅, it follows from the definition of K and F that P1-Q-P2

is a uv-NSP, and we can find such a path in polynomial time.
Thus we may assume that N(K) is contained in Vi ∪ Vi+1 for some i ∈ {0, . . . , d(u, v) − 1}, and

N(K) ∩ Vi is complete to N(K) ∩ Vi+1. Let H be obtained from G by deleting K and adding edges
to make N(K) a clique. We claim that H has a uv-NSP if and only if G does.

Suppose first that P is a uv-NSP of G. Since N(K) is a clique of H, there is a uv-path of H with
vertex set a subset of V (P ); let Q be the shortest such path. We claim that Q is a uv-NSP of H. If
V (P ) = V (Q), this follows from the choice of P . Otherwise, Q contains an edge e in E(H) \ E(G).
Since e connects two vertices at the same distance from u, it follows that every induced uv-path
containing e is a uv-NSP of H, as claimed, and so H has a uv-NSP.

Now suppose that Q is a uv-NSP of H. If Q does not contain an edge in E(H) \E(G), then Q is
a uv-NSP of G, so we assume that Q contains such an edge. Since N(K) is a clique of H, it follows
that Q contains exactly two vertices x, y ∈ N(K), and xy 6∈ E(G). Let P be obtained from Q by
replacing xy by an induced xy-path with interior in K. Then P is a uv-NSP of G, since P contains
a vertex of K. This proves that H has a uv-NSP if and only if G does.

By repeating this procedure for all components of G \F , we either find a uv-NSP, or the desired
graph G′.

3.2. There is a polynomial-time algorithm with the following specifications:

• Input: A graph G and u, v ∈ V (G) such that every vertex of G is uv-straight.

• Output: A uv-NSP in G, or a determination that none exists.

• Running time: O(|G|16).

Proof. For i ∈ {0, . . . , d(u, v)}, let Vi = {x ∈ V (G) : d(x, u) = i}, and for each vertex x, let h(x) be
its height. Let P be a shortest uv-NSP in G (if one exists). We will prove some properties of P that
will make it easier to find P .

Let Pu be the longest monotone subpath of P containing u, and let Pv be the longest monotone
subpath of P containing v. Let s denote the endpoint of Pu that is not u, and let t denote the
endpoint of Pv that is not v. It follows that Pu and Pv are disjoint, for otherwise P is monotone,
contrary to the choice of P .
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(1) V (P ) \ V (Pv) does not contain a vertex x with h(x) > h(s), and V (P ) \ V (Pu) does not contain
a vertex x with h(x) < h(t).

Let x ∈ V (P ) \ V (Pv) be chosen with h(x) maximum, breaking ties by choosing the vertex clos-
est to u along P . Let Q be a monotone xv-path, and let P ′ be the subpath of P from u to x. Let
Q′ denote the concatenation of P ′ and Q. We claim that Q′ is shorter than P . This follows since
the subpath of P from x to v is not monotone (because x 6∈ V (Pv)), and the subpath of Q′ from x

to v is monotone. Since P is a shortest uv-NSP, it follows that Q′ is not a uv-NSP, and hence Q′

is monotone. In particular, P ′ is monotone. Thus V (P ′) ⊆ V (Pu). From the choice of x, it follows
that P ′ = Pu; and so u = s. From the choice of x, and from the symmetry between u and v, this
proves (1).

Since P is not monotone, (1) immediately implies that h(s) ≥ h(t).

(2) For fixed k, if h(s) − h(t) ≤ k, then we can find a uv-NSP in polynomial time (depending
on k).

It suffices to prove (2) when h(s) − h(t) = k; then we obtain the desired algorithm by applying
the statement for k′ = 0, . . . , k.

Let xy ∈ E(G) with h(y) = h(x) + 1, and let v1- · · · -vk+2 be a (k + 2)-vertex path with h(vi) =
h(y) + i − 1 for 1 ≤ i ≤ k + 2, such that v1 is nonadjacent to x, and vi is nonadjacent to x, y for
2 ≤ i ≤ k + 2. For all such choices of x, y, v1, . . . , vk+2, we proceed as follows:

• Let Qu be a monotone path from x to u, and let Qv be a monotone path from vk+2 to v.

• We delete all vertices and neighbours of V (Qu)∪V (Qv)∪{x}∪{v2, . . . , vk+2} except for y and
v1 from G. Let H denote the graph we obtain by these deletions.

• We check if H contains an induced path Q from v1 to y. If so, we return the concatenated path

Q′ = u-Qu-x-y-Q-v1-v2- · · · -vk+2-Qv-v.

First, we claim that if this returns a path Q′, then Q′ is a uv-NSP. From the construction of H,
it follows that Q′ is an induced path. Moreover, since Q′ contains v1 and y, and since h(v1) = h(y),
it follows that Q′ is a uv-NSP.

Now we need to show that if h(t) = h(s)−k, then the algorithm above always returns a path. We
consider the iteration of the algorithm in which x, y ∈ V (Pu), and t = v1, and v1, . . . , vk+2 ∈ V (Pv).
We claim that the subpath P ′ of P from v1 to y is contained in H. Since every vertex z in V (Qu)\{x}
satisfies h(z) ≤ h(t) − 2, it follows from (1) that z has no neighbours in P ′. Similarly, no vertex in
V (Qv) has a neighbour in P ′. Since x, y ∈ V (Pu), it follows that the only neighbour of x in P ′ is
y. Since v1, . . . , vk+2 ∈ V (Pv), it follows that the only possible neighbour of v2, . . . , vk+2 in P ′ is v1.
This proves our claim. Since P ′ is a path from v1 to y in H, it follows that the algorithm returns a
path Q′. This proves (2).

By (2), we may assume that h(s) − h(t) ≥ 6. Let s0, s1, . . . , s6, t1, . . . , t6, t7 ∈ V (G) be distinct,
such that:
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• s0-s1-s2-s3, s4-s5-s6, t1-t2-t3, and t4-t5-t6-t7 are paths;

• h(si) = h(ti) for 1 ≤ i ≤ 6;

• h(s0) + 3 = h(t1) + 2 = h(t2) + 1 = h(t3) ≤ h(t4) = h(t5)− 1 = h(t6)− 2 = h(t7)− 3;

• si is non-adjacent to tj for all i ∈ {0, . . . , 6} and j ∈ {1, . . . , 7}.

For each such 14-tuple s0, s1, . . . , s6, t1, . . . , t6, t7, we do the following:

• We pick a monotone path Qu from s0 to u, and a monotone path Qv from t7 to v.

• We check using 2.4 whether there are monotone paths Ru, Rv such that Ru is an s3s4-path,
Rv is a t3t4-path, and there are no edges between Ru and Rv; if not, we move on to the next
14-tuple.

• Let P ′

u and P ′

v be respectively the concatenations

u-Qu-s0-s1-s2-s3-Ru-s4-s5-s6

t1-t2-t3-Rv-t4-t5-t6-t7-Qv-v.

Let H be obtained from G by deleting all vertices of P ′

u \ {s6} and all their neighbours except
s6, and deleting all vertices of P ′

v \ {t1} and all their neighbours except t1. We check if
there is an induced path Q from t1 to s6 in H, and if so, we return the concatenated path
u-P ′

u-s6-Q-t1-P
′

v-v.

If this returns a path Q′, then the construction implies that Q′ is an induced path; and since Q′

contains s1, t1 with h(s1) = h(t1), it follows that Q
′ is a uv-NSP. It remains to show that if a shortest

uv-NSP P exists with h(s)− h(t) ≥ 6, then this algorithm returns a path. We consider the 14-tuple
such that s6 = s, and t1 = t, {s0, . . . , s6} ⊆ V (Pu), and {t1, . . . , t7} ⊆ V (Pv). This 14-tuple exists
since h(s)− h(t) ≥ 6, and so there are at least six vertices in Pu that each have the same height as
some vertex in Pv .

Now we need to show that the last bullet above returns a path. Let P ′ be the subpath of P from s

to t. It follows from (1) that there are no edges from V (Qu) or V (Qv) to V (P ′). Since {s0, . . . , s6} ⊆
V (Pu) and {t1, . . . , t7} ⊆ V (Pv), it follows that the only edges from {s0, . . . , s6, t1, . . . , t7} to V (P ′)
are the edge from s = s6 to its neighbour in V (P ′), and the edge from t = t1 to its neighbour in
V (P ′). If neither V (Ru) nor V (Rv) intersects or has edges to V (P ′), then P ′ is present in H, and a
path is returned. By symmetry, we may assume (for a contradiction) that V (Ru) intersects or has
edges to V (P ′). Let z be the vertex closest to s3 in Ru such that z has a neighbour in V (P ′).

Let x ∈ V (P ′) be the neighbour of z closest to t = t1 in P ′. Let R be the induced uv-path that
begins with a subpath of P ′

u from u to z and the edge zx, and whose remaining vertices are contained
in the vertex set of the subpath of P ′ from x to t, and P ′

v. Then R is shorter than P , since the
subpath of R from u to x has length h(z) + 1, but in P , the subpath from u to x contains s, and
thus it has length at least h(s) + 1 > h(z) + 1. Since R is induced, it follows that R is monotone,
and therefore h(x) > h(z) (and x has a neighbour in V (P ′

v), but we will not need this).
The concatenation Q′′ of the subpath of P ′

u from u to z, the edge zx, and the subpath of P from
x to v is not monotone, since it contains s1 and t1; and as before, it is shorter than P . Therefore
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Q′′ is not an induced path. This implies that some vertex y of Pv has a neighbour in the subpath of
Ru between s3 and z; choose y with h(y) maximum, and let z′ be a neighbour of y in the subpath
of Ru between s3 and z, chosen with h(z′) maximum (possibly z′ = z). It follows that y lies in the
subpath of Pv between t3, t4.

Let t′ be a vertex of the subpath of P ′ between x and t, such that h(t′) = h(t), and subject to
that, the subpath of P ′ between x, t′ is minimal. Now let R′ be the concatenation of a monotone
path from u to t′, the subpath of P ′ from t′ to x, the edge xz, the subpath of Ru between z and z′,
the edge z′y, and the subpath of Pv from y to v. Then R′ is an induced path because of (1); and
its length is at most the length of P ′ plus d(u, t) + 2 + d(y, v); but the length of P is at least the
length of P ′ plus d(u, t) + 6 + d(t, v), and d(t, v) ≥ d(y, v) since y ∈ V (Pv). This implies that R′ is
monotone. Since z is closer to v than x in R′, it follows that h(x) < h(z), a contradiction. Hence
the last bullet above does indeed return a path. (We omit the analysis of running time, which is
straightforward.) This proves 3.2.

Now 1.1 follows from 3.1 and 3.2.
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