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Abstract

Let E/Q be a number field of degree n. We show that if Reg(E) ≪n |Disc(E)|1/4 then
the fraction of class group characters for which the Hecke L-function does not vanish at
the central point is ≫n,ε |Disc(E)|−1/4−ε.

The proof is an interplay between almost equidistribution of Eisenstein periods over
the toral packet in PGLn(Z)\PGLn(R) associated to the maximal order of E, and the
escape of mass of the torus orbit associated to the trivial ideal class.

1. Introduction

Our main result is the following theorem.

Theorem 1.1. Let E/Q be a number field of degree n. Denote by D its discriminant, by R
the regulator of its ring of integers and by h the class number. For every class group character
χ ∈ ̂︄Cl(E) let L(s, χ) be the associated Hecke L-function.

Fix a real number 1/2 ⩽ s < 1. There are effectively computable constants A,B > 0 that
depends only on s,n such that for every 1/2 > ε > 0

h−1#
{︂
χ ∈ ̂︄Cl(E) | L(s, χ) ≠ 0

}︂
⩾ |D |−(1−s+ε)/2

(︃
A − B

R
|D |s/2

)︃
εn .

The most interesting point is of course s = 1/2 as GRH would imply non-vanishing of L(s, χ) at
1/2 < s < 1 for all χ. Fröhlich [Fro72] has demonstrated that the Dedekind zeta function actually
vanishes at the central point for infinitely many number fields. Duke [Duk04] has constructed for
each n an infinite family of degree n totally real Sn number fields such that R ≪ (log |D |)(n−1).

There is a very rich literature about non-vanishing of L-functions at the central point for several
families of L-functions. In this exposition we restrict our discussion to class group L-functions and
closely related families. Blomer [Blo04] has established a very strong result for the family of class
group L-functions of imaginary quadratic fields. He is able to demonstrate non-vanishing for a
large fraction of the class group characters, ≫ φ(|D|)/|D |, whenever |D | ≫ 1. Theorem 1.1 provides
significantly weaker results for imaginary quadratic fields but it covers class group L-functions
of any degree. In the conductor aspect, Balasubramanian and Murty [BM92] established that
a positive proportion of Dirichlet L-function of prime conductor q ≫ 1 do not vanish at the
central point. Soundararajan [Sou00] has established that a positive proportion of Dedekind zeta
functions of real quadratic fields do not vanish at the central point. Methodologically, the work of
Michel and Venkatesh [MV07] about non-vanishing of twists of automorphic GL2 L-functions by
quadratic class group characters is the closest to ours.
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We remark that predictions about the behavior of L-functions at the central point can often
be deduced from random matrix theory heuristics [KS99, SST16, SST19]. Moreover, the non-
vanishing phenomena is related to deep questions in analytic number theory, such as the existence
of Landau-Siegel zeros [IS00] and spectral gap for automorphic representations [LRS95, LRS99].

Three aspects of Theorem 1.1 stand out. The first is that the result is valid for number fields
of any degree. The second is that we allow relatively large regulators. In particular, whenever
R = o(|D |1/4) Theorem 1.1 provides new non-vanishing results at the central point s = 1/2. Finally,
the non-vanishing fraction depends only on the discriminant and the regulator, and does not
depend on the shape of the unit lattice. Specifically, we do not need to assume that the number
field E has no non-trivial subfields of a small regulator. The latter assumption is needed in the
course of the proof of [ELMV09, Theorem 1.10] which is conceptually related to our method.
Finally, it is worth mentioning that the constants A,B are completely effective, and do not depend
on Siegel’s bound, cf. [Blo04] where the lower bound for |D | is ineffective.

1.1 Subconvexity

Some improvements of the lower bound in Theorem 1.1 for s = 1/2 are easily achievable.

(i) Using the weak subconvexity bound of Soundararajan [Sou10] we can deduce a lower bound
with a logarithmic improvement for all number fields

h−1#
{︂
χ ∈ ̂︄Cl(E) | L(1/2, χ) ≠ 0

}︂
≫n,ε |D |−1/4(log |D |)1−ε

(︃
A − B

R
|D |1/4

)︃
.

(ii) Whenever there is δ > 0 such that a subconvex bound in the discriminant aspect

|L(1/2, χ)| ≪n,ε |D |(1/2−δ+ε)/2

is known, we can improve the lower bound to

h−1#
{︂
χ ∈ ̂︄Cl(E) | L(1/2, χ) ≠ 0

}︂
≫n,ε |D |−(1/2−δ+ε)/2

(︃
A − B

R
|D |1/4

)︃
.

The Grand Lindelöf Hypothesis would provide the optimal δ = 1/2. A non-trivial δ > 0 is
known unconditionally for abelian fields E using the Burgess bound [Bur63] and for cubic
fields using the convexity breaking results of Duke, Friedlander and Iwaniec [DFI02] and
Blomer, Harcos, Michel [BHM07].

1.2 Method of Proof

To study the Hecke L-function at the critical strip we follow Hecke’s original method [Hec20].
That is, we represent the L-function as an integral of a spherical degenerate Eisenstein se-
ries E(•, s) : PGLn(Z)\PGLn(R) → C along a collection of periodic torus orbits. This spherical
Eisenstein series coincides with the Epstein zeta function of the associated quadratic form. The
definition and properties of the Epstein zeta function are reviewed in §2.

Our strategy is most closely related to the methods of Michel and Venkatesh [MV07] who
study non-vanishing at the central point for twists of GL2 automorphic L-functions by quadratic
class group characters. They provide two tools to establish non-vanishing in a family, either using
effective equidistribution of a packet of Heegner points on the modular curve, or using the escape
of mass of a portion of the packet that contains the trivial ideal class. Unfortunately, in higher
rank we do not know unconditionally an effective equidistribution result of the analogues toral
packets nor do we know that a large enough portion of the mass escapes to infinity, even for small
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regulators. Instead, we observe that combining very weak versions of both statement together is
sufficient to establishing the non-vanishing theorem. The equidistribution statement is weakened
to the convexity bound of Hecke L-functions. It is supplemented with a good control on the mass
that the single orbit of the trivial ideal class element spends high in the cusp.

In section §3 we construct a maximal torus H < PGLn(R) from a fixed degree n number field
E and an algebra isomorphism ι : E ⊗ R → Rr1 × Cr2 = Rn. Every fractional ideal Λ ⊂ E gives
rise to a periodic H-orbit which we denote by Λι H ⊂ PGLn(Z)\PGLn(R), cf. [ELMV09]. This
periodic orbit depends only on the ideal class of Λ. We recall these classical definitions as well in
§3. Fix 1/2 ⩽ s < 1 and define the function Z : Cl(E) → C

Z(Λ) ≔
∫
[H]

E∗( Λι h,ns)d×h ,

E∗(g, s) ≔ π−s/2Γ
(︂ s
2

)︂
E(g, s) ,

E (g, s) ≔
1

2
| det g |s/n

∑︂
0≠v∈Zn

∥vg∥−s2 .

The function E (g, s) is the Epstein zeta function associated to the lattice Zng and E∗(g, ρ) is the
completed Epstein zeta function. The integration is with respect to the H-periodic measure of
volume 1. Hecke’s period formula, cf. Theorem 3.4, expresses this integral in terms of a completed
partial Dedekind zeta function

Z(Λ) =
w

2r1nR
ζ∗
Λ
(s)

whose definition we recall in 3.3. The Fourier coefficient of this function coincides with the
completed L-function of the class group character

Ẑ(χ) =
w

2r1nhR
L∗(s, χ)

for any χ ∈ ̂︄Cl(E).

In Theorem 2.6 we establish a good lower bound on the Epstein zeta function high in the
cusp using an approximate functional equation. This lower bound and the fact that the lattice
ι(OE ) ⊂ Rn contains the short vector (1, . . . ,1) are used in the proof of the key statement of
this manuscript – Proposition 4.1. This proposition states that there are effectively computable
constants A1,B0 > 0 such that

Z(OE ) ⩾
A1 |D |s/2 − B0R

R
.

The proof of this result also uses a trick where the unit lattice is approximated by the lattice
spanned by vectors realizing its successive minima. This allows us to remove the dependence
on the shape of the unit lattice. V. Blomer has later suggested to the author a briefer proof of
Proposition 4.1 by applying the approximate functional equation directly to the partial Dedekind
zeta function. The proof presented here emphasizes the role of the crucial concept of escape of
mass.

Without further ado we establish Theorem (1.1) assuming this result and using the following
elementary lemma.

Lemma 1.2. Let C be a finite abelian group. For every function f : C → C define

NV( f ) ≔
{︂
χ ∈ ˆ︁C | f̂ (χ) ≠ 0

}︂
.
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Then

#NV( f ) ⩾
∥ f ∥∞
∥ f̂ ∥∞

.

Proof. Fix c ∈ C where | f | attains its maximum. Then

∥ f ∥∞ =

|︁|︁|︁|︁|︁|︁ ∑︂
χ∈NV( f )

f̂ (χ)χ(c)

|︁|︁|︁|︁|︁|︁ ⩽ ∥ f̂ ∥∞ |NV( f )|

□

Proof of Theorem 1.1. We apply Lemma 1.2 above to the function Z : Cl(E) → C. Proposition
4.1 provides the necessary lower bound on ∥Z ∥∞. We need only an appropriate upper-bound on
| Ẑ(χ)| for any class-group character χ. Recall the convexity bound for Hecke L-functions of class
group characters, cf. [Rad60]. For every 0 < ε < 1/2 and 1/2 ⩽ s < 1

|L(s, χ)| ≪s,n |D |(1−s+ε)/2ζ(1 + ε)n =⇒ | Ẑ(χ)| ≪s,n
|D |(1+ε)/2

hR
ζ(1 + ε)n ≪n

|D |(1+ε)/2

hR
ε−n

Dividing the lower bound from Proposition 4.1 by the convexity upper bound implies the claimed
theorem. □

The convexity bound should be understood as an almost-equidistribution statement for periods
of degenerate Eisenstein series over toral packets. Indeed, any subconvex improvement in the
discriminant aspect over the convexity bound would imply the equidistribution of any degenerate
pseudo-Eisenstein series. If n is a prime then such a subconvexity bound can be bootstrapped using
the method of Einsiedler, Lindenstrauss, Michel and Venkatesh [ELMV11] to equidistribution of
any compactly supported continuous function.
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2. The growth of the Epstein zeta function in the cusp

Definition 2.1. Define the degenerate spherical Eisenstein series with complex parameter s and
g ∈ GLn(R)

E (g, s) =
1

2
| det g |s/n

∑︂
0≠v∈Zn

∥vg∥−s2 .

This function coincides with the Epstein zeta function1 of the quadratic form with Gram
matrix g · gt . The series converges absolutely for ℜs > n and can be analytically continued to a
meromorphic function of s ∈ C. The unique pole of E (g, s) is at s = n. This pole is simple with

1Our normalization for the Epstein zeta function is different from [Ter80] where Z(g · gt , ρ) = | det g |−2ρ/nE(g,2ρ).
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residue2

Ress=n E (g, s) =
πn/2

Γ(n/2)
.

The constant on the right is half the surface area of the (n − 1)-dimensional unit sphere. Notice
that it does not depend on g.

We have normalized E(g, s) using the determinant to make it a well-defined function on
PGLn(Z)\PGLn(R).

Definition 2.2. We will also make use of a completed version of E(g, s) defined as

E∗(g, s) = π−s/2Γ
(︂ s
2

)︂
E(g, s) .

The functional equation [Eps06], cf. [ELMV11, Proposition 10.2], is especially simple for the
completed Eisenstein series

E∗(g,n − s) = E∗( gt −1, s)

It follows that E∗(g, s) is holomorphic in s except for two simple poles at s = 0,n with residues
−1,1 respectively.

Our first goal is to understand the behavior of this function high in the cusp. The following
theorem due to Riemann for n = 1 and Terras [Ter80] for n > 1 is a variant of the approximate
functional equation for the Epstein zeta function. We provide a proof using Mellin inversion.

Theorem 2.3. For any 0,n ≠ s ∈ C and g ∈ GLn(R)

E∗(g, s) = −
1

s
−

1

n − s
+
1

2

∑︂
0≠v∈Zn

f
(︃
s,

∥vg∥2

| det g |1/n

)︃
+
1

2

∑︂
0≠v∈Zn

f
(︃
n − s,

∥v gt −1∥2

| det gt −1 |−1/n

)︃
where

f (s,a) ≔ (πa2)−s/2Γ
(︂ s
2
, πa2

)︂
=

∫∞

1
ts/2 exp(−πta2)d×t .

Proof. The Mellin transform in the a variable of f (s,a) is exactly π−σ/2Γ
(︁
σ
2

)︁
(σ− s)−1. Because of

the exponential decay of the Gamma function in the vertical direction we can use Mellin inversion
to write

1

2

∑︂
0≠v∈Zn

f
(︃
s,

∥vg∥2

| det g |1/n

)︃
=

1

2πi

∫
ℜσ=n+δ

E∗(g, σ)

σ − s
dσ

for any 1 > δ > 0. We shift the contour of integration to the line ℜσ = −δ collecting residues
at the σ = 0, s,n. To justify the contour shift we claim that E∗(g, s) decays exponentially in the
vertical direction uniformly in any interval a ⩽ ℜs ⩽ b. To the right of the critical strip this
follows from the definition using lattice summation and the exponential decay in the vertical
direction of the Gamma function. To the left of the critical strip this can be deduced using the
functional equation and inside the critical strip using the Phragmén-Lindelöf principle.

The residue at σ = s coincides with E∗(g, s) and the other two residues produce the terms
−1

s and − 1
n−s in the claim. The proof is concluded by applying the functional equation and the

change of variable σ ↦→ n − σ:

−
1

2πi

∫
ℜσ=−δ

E∗(g, σ)

σ − s
dσ = −

1

2πi

∫
ℜσ=−δ

E∗( gt −1,n − σ)

σ − s
dσ =

1

2πi

∫
ℜσ=n+δ

E∗( gt −1, σ)

σ − (n − s)
dσ .

2This can be deduced from the fact that the number of lattice points in a sphere of radius R is asymptotic to the
volume of the sphere as R → ∞ for any unimodular lattice.
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The latter integral is equal to the dual sum because of Mellin inversion. □

Corollary 2.4. For any real s ≠ 0,n the function E∗(g, s) is real and satisfies

E∗(g, s) ⩾ −
1

s
−

1

n − s
.

Definition 2.5. For any g ∈ GLn(R) set

λ1(g) ≔ | det g |−1/n min
0≠v∈Zn

∥vg∥2

to be the length of the shortest non-trivial vector in the unimodular lattice homothetic to Zng.

Recall that Mahler’s compactness criterion implies that λ1 : PGLn(Z)\PGLn(R) → R>0 is a
proper continuous function.

Theorem 2.6. Denote by Vn−1 = π(n−1)/2
/Γ((n+1)/2) the volume of the (n − 1)-dimensional unit ball.

For any real 0 < s < n if

λ1(g) ⩽

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2−1/(s−1) s > 1

1 s = 1

Vn−12
−

(n−s)(n−1)
n−s−1 s < 1

then

E∗(g, s) +
1

s
+

1

n − s
≫

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ1(g)

−s s > 1

−λ1(g)
−1 log λ1(g) s = 1(︂

λ1(g)
2n−1

Vn−1

)︂−(n−s)/(n−1)
s < 1

The implied constant above is independent of all parameters.

Remark 2.7. The lower bound above is optimal up to a constant. This can be seen by applying
iteratively the Fourier expansion of E∗(g, s) due to Terras [Ter73] to compute the constant term of
E∗(g, s). Write the Iwasawa decomposition of g = u · a · k where a = diag(y1, . . . , yn) with positive
entries, u ∈ N(R) is lower triangular unipotent and k ∈ On(R). The constant term of E∗(g, s) is
equal to3

n−1∑︂
k=0

ζ∗(s − k)
n−k−1∏︂
i=1

(︃
yi+1

yi

)︃ i(1−s/n)
·

n−1∏︂
i=n−k

(︃
yi+1

yi

)︃ (n−i)s/n
.

While λ1(g) ≍n
∏︁n−1

i=1

(︂
yi+1
yi

)︂−(n−i)/n
. Combining these two expressions we deduce that at least

the constant term is asymptotic to the lower bound in the theorem above. The difficulty in
establishing the theorem using the Fourier expansion is that it is hard to analyze for n > 2 the
contribution of the non-constant terms in the Fourier expansion when diag(y1, . . . , yn) is near the
walls of the positive Weyl chamber. Instead we study the behavior in the critical strip using an
approximate functional equation.

Proof. Assume first s ⩾ 1 then λ1(g) ⩽ 1 by assumption. Because the sums over the lattices Zng

and Zn gt −1 in Theorem 2.3 are positive, we can compute a lower bound by restricting the sum to
a line going through a vector of minimal length in Zng. This implies

E∗(g, s) +
1

s
+

1

n − s
⩾

1

2

∑︂
0≠b∈Z

f (s, |b|λ1(g)) .

3The original expansion in [Ter73] is in terms of the Iwasawa decomposition of gt −1. To pass to an expression in
terms of the decomposition of g we apply first the functional equation.
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The integral representation of f (s,a) implies that it is a monotonic decreasing function of a for
a > 0. Hence the right hand side above can be bounded below by

1

λ1(g)

∫∞

λ1(g)
f (s,a)da =

λ1(g)
−s

2

∫∞

λ1(g)2
t(s−1)/2 erfc(

√
πt)d×t ⩾

λ1(g)
−s

2

∫ 1

λ1(g)2
t(s−1)/2 erfc(

√
πt)d×t .

The equality above follows by applying Fubini to the integral representation of f (s,a) and the
change of variables t ↦→ λ1(g)2t. We bound the latter integral using the monotonicity inequality
erfc(x) ⩾ erfc(

√
π) for 0 ⩽ x ⩽

√
π:

λ1(g)
−s

2

∫ 1

λ1(g)2
t(s−1)/2 erfc(

√
πt)d×t ≫

λ1(g)
−s

2

∫ 1

λ1(g)2
t(s−1)/2 d×t =

{︄
λ1(g)

−s−λ1(g)
−1

s−1 s ≠ 1

−λ1(g)
−1 log λ1(g) s = 1

(1)

This establishes the claim in case s = 1. In case s > 1 the assumption λ1(g)
s−1 < 1/2 implies

that λ1(g)
−1 ⩽ 1/2λ1(g)

−s and the claim follows again from (1).

The lower bound for s < 1 will follow from applying the s > 1 case to the dual lattice which
also contributes to E∗(g, s) with s replaced by n − s. We need only to establish

λ1

(︂
gt −1

)︂n−1
⩽

2n−1

Vn−1
λ1(g) . (2)

To prove inequality (2) fix v1, . . . , vn a basis of the lattice Λ ≔ Zng, where v1 is a vector of minimal
length. Denote by v∗1, . . . ,v

∗
n the dual basis of Λ∗ ≔ Zn gt −1. Then v∗2, . . . ,v

∗
n span a lattice Λ∗

1 in
the n − 1-dimensional hyperplane v⊥1 and

| det g |−1 = covol (Λ∗) = covol
(︁
v∗1Z + Λ

∗
1

)︁
=

|︁|︁|︁|︁⟨︃v∗1, v1
∥v1∥

⟩︃|︁|︁|︁|︁ covol (︁Λ∗
1

)︁
= ∥v1∥

−1 covol
(︁
Λ
∗
1

)︁
.

Hence covol
(︁
Λ∗
1

)︁
= λ1(g)| det g |

1/n−1 and Minkowski’s first theorem implies that there is a vector
v∗ ∈ Λ∗

1 ⊂ Λ∗ satisfying Vn−1∥v∗∥
n−1
2 ⩽ 2n−1λ1(g)| det g |

1/n−1. This implies (2) and the second
claimed inequality. □

Corollary 2.8. Assume 1/n ⩽ s < 1. There are effectively computable constants A0,B0 > 0,
depending only on n and s, such that for all g ∈ GLn(R)

E∗(g,ns) ⩾ A0λ1(g)
−ns − B0 .

In fact,

A0 = erfc(
√
π)

{︄
1

2(ns−1) s > 1/n

log 2 s = 1/n
, B0 =

1

n

(︃
1

s
+

1

1 − s

)︃
+ A0

{︄
2ns/(ns−1) s > 1/n
2 s = 1/n

are admissible.

Proof. This follows immediately with B0 =
1
n

(︁
1
s +

1
1−s

)︁
from Theorem 2.6 above if λ1(g) < 2−1/(ns−1)

and s > 1/n or if s = 1/n and λ1(g) < 1/2. The specific value of A0 is a direct consequence of the
proof.

Otherwise, assume first that s > 1/n. If λ1(g) ⩾ 2−1/(ns−1) then λ1(g)
−ns ⩽ 2ns/(ns−1). Moreover,

we know from Corollary 2.4 that E∗(g,ns) ⩾ − 1
n

(︁
1
s +

1
1−s

)︁
. Hence the claim holds for any g with

B0 =
1
n

(︁
1
s +

1
1−s

)︁
+ 2ns/(ns−1)A0. The argument for s = 1/n is analogous. □
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3. Toral periods of the Epstein zeta function

We recall a formula originally due to Hecke that relates Hecke L-functions of number field to toral
periods of the Epstein zeta function. The proofs are straightforward using the unfolding method
and can be extended to any Grossencharakter L-function in the adèlic setting, cf. [ELMV11,
Lemma 10.4] and [Wie85].

Let E/Q be a degree n number field with r1 real places and r2 inequivalent complex places.
Denote by D ≔ Disc(OE ) the discriminant of its ring integers and let R ≔ Reg(OE ) be its regulator.
Set h ≔ #Cl(E). Let E∞ be the étale-algebra E ⊗ R over R.

Fix once and for all a ring isomorphism

ι : E∞ → Rr1 × Cr2

This map is unique up to post-composition with permutation of the real and complex places
respectively and complex conjugation at each complex places. We henceforth identify the right
hand side with Rn = Rr1+2r2 in the standard manner. For any Z-lattice Λ ⊂ E we denote by Λι

the element of PGLn(Z)\PGLn(Z) corresponding to the lattice ι(Λ). Specifically, the raw matrix
of every Z-basis of the lattice ι(Λ) is a representative of the coset Λι .

Definition 3.1. We denote by (R×)
∆ the diagonal embedding of R× in E×

∞. Set

H ≔
(R×)

∆\
E×
∞ =

(R×)
∆\
(R×)

r1 × (C×)
r2
.

We identify H with a maximal torus subgroup in PGLn(R) using the map ι. The Haar measure
on H is normalized to be consistent with the standard Haar measures on E×

∞ and R×.

Dirichlet’s unit theorem implies that O×
E/Z

× is a lattice in H of covolume

2r1πr2nR
w

,

where w is the number of roots of unity in E.

Definition 3.2. Define [H] = O×
E\H and normalize the Haar measure on [H] so it has volume 1.

If d×h is the Haar measure on H, then the measure on [H] descents from the Haar measure

w d×h
2r1πr2nR

.

If Λ ⊂ E is a fractional OE -ideal then the stabilizer in H of Λι is the lattice O×
E/Z

×. Hence
Λι H is a periodic H-orbit isomorphic to [H]. This orbit depends only on the ideal class of Λ.
The ideal classes of OE give rise to a finite collection of periodic H-orbits, c.f. [ELMV09]. This
collection is called a packet of periodic H-orbits.

Definition 3.3. Let Λ ⊂ E be a fractional OE -ideal. The partial Dedekind zeta-function of Λ is
defined by the Dirichlet series

ζΛ(s) ≔ Nr(Λ)s
∑︂

0≠v∈Λ

|Nr v|−s

that converges for ℜs > 1. The zeta function depends only the class of Λ modulo the principal
ideals. For every class group character χ : Cl(E) → C× the class group L-function satisfies

L(s, χ) =
∑︂

[Λ]∈Cl(E)

ζΛ(s) χ̄(Λ) .
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We also define the completed partial zeta function as

ζ∗
Λ
(s) ≔

(︂
π−s/2Γ

(︂ s
2

)︂)︂r1 (︁
(2π)−sΓ (s)

)︁r2 |D |s/2ζΛ(s) .

The completed L-function L∗(s, χ) of a class group character χ is defined similarly. These satisfy
a functional equation due to Hecke. The functional equation for these L-functions is a direct
consequence of the functional equation for the completed Epstein zeta function and Theorem 3.4
below.

Theorem 3.4. [Hecke] Let Λ ⊂ E be a fractional OE -ideal. Then Λ
ι is a periodic H-orbit and for

any s ≠ 0,1 and ∫
[H]

E∗( Λι h,ns)d×h =
w

2r1nR
ζ∗
Λ
(s) ,

We reproduce the proof for completeness sake using the following important lemma, also due
to Hecke. The crux of the proof is that the ring of E×

∞-invariant polynomials on E∞ is generated
by the norm function.

Lemma 3.5. [Hecke’s Trick] Equip E∞ with an Euclidean inner-product by summing the standard
inner-products on each copy of R and C. Then for all v ∈ E×

∞∫
H

∥vh∥−ns2 |Nr h|s d×h =
πr2Γ (s/2)r1 Γ (s)r2

Γ (ns/2)
|Nr v|−s .

Proof. Using the change of variables h ↦→ vh we see that∫
H

∥vh∥−ns2 |Nr h|s d×h = |Nr v|−s
∫
H

∥h∥−ns2 |Nr h|s d×h = |Nr v|−s I(s) .

To evaluate the integral on the right-hand side, I(s), we calculate the integral
∫
E×
∞

e−∥y ∥
2
2 |Nr y |s d×y

in two different ways. On one hand we use the compatibility of Haar measures on quotients and
the change of variables t ↦→ t∥y∥2∫
E×
∞

e−∥y ∥
2
2 |Nr y |s d×y =

∫
H=(R×)∆\E×

∞

∫
R×

e−(|t | ∥y ∥2)
2
|t |ns |Nr y |s d×t d×

(︁
R×y

)︁
=

∫
H

∥y∥−ns2 |Nr y |s
∫
R×

e−(|t | ∥y ∥2)
2
(|t |∥y∥2)ns d×t d×

(︁
R×y

)︁
= I(s) ·

∫∞

0
e−t

2
tns

2 dt
t

= I(s)Γ(ns/2) .

On the other hand, using polar coordinates for each complex coordinate, the integral over E×
∞

decomposes as a product∫
E×
∞

e−∥y ∥
2
2 |Nr y |s d×y =

r1∏︂
i=1

∫
R×

e−t
2
i |ti |s d×ti ·

r1+r2∏︂
i=r1+1

2π

∫
R>0

e−r
2
i r2si d×ri = Γ(s/2)r1 · πr2Γ(s)r2 .

The proof concludes by comparing the two expressions for
∫
E×
∞

e−∥y ∥
2
2 |y |s d×y. □

Proof of Theorem 3.4. We consider h ∈ E×
∞ as an element of GLn(R) using the map ι, then

| det h| = |Nr h|. Rewrite the period of the Epstein zeta-function using the standard unwinding

9
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transformation∫
[H]

E( Λι h,ns)d×h =
1

2
covol(Λ)s

∑︂
0≠v∈Λ/O×

E

∑︂
u∈O×

E

∫
[H]

∥vuh∥−sn2 |Nr h|s d×h

= covol(Λ)s
∑︂

0≠v∈Λ/O×
E

∫
H

∥vh∥−sn2 |Nr h|s
w d×h

2r1πr2nR
.

The factor 1/2 is absorbed in the difference between O×
E and the group O×

E/Z
×. The proof concludes

by applying Lemma 3.5 and using the formula covol(Λ) = 2−r2
√︁
|D |Nr(Λ). □

4. The top period

We continue to fix a degree n number field E/Q and carry all the notations from the previous
sections. Henceforth we fix 1/2 ⩽ s < 1 and define the function Z : Cl(E) → C as in the
introduction

Z(Λ) ≔
w

2r1nR
ζ∗
Λ
(s) =

∫
[H]

E∗( Λι h,ns)d×h .

Notice that the Fourier coefficients of the function Z satisfy

Ẑ(χ) =
1

h

∑︂
[Λ]∈Cl(E)

Z(Λ) χ̄(Λ) =
w

2r1nhR
L∗(s, χ) .

In this section we prove the following lower bound on the value of Z at the identity class. This
is a key part of our argument.

Proposition 4.1. Let 1/2 ⩽ s < 1. There are effectively computable constants A1,B0 > 0
depending only on s and n such that

Z(OE ) ⩾
A1 |D |s/2 − B0R

R
In particular, Z(OE ) is positive if |D |s/2/R ≫s,n 1.

We observe that the lower bound depends only on the regulator and not on the shape of
the lattice of roots of unity. This is possible because the exponential map converts a linear
combination of trace-less vectors in the logarithmic space to a product of units in E∞. Hence
the average length in E∞, over a fundamental domain of units in the logarithmic space, almost
decomposes as a product of averages. This reduces the proposition to a question of bounding
a product of lengths of vectors forming a basis for the unit lattice. To control the latter we
approximate the unit lattice by the sub-lattice spanned by vectors realizing the successive minima
and use Minkowski’s second theorem.

Proof. Consider as usual the logarithmic group homomorphism logE : E×
∞ → Rr1+r2

logE (u1, . . . ,ur1+r2) ≔
(︁
log |u1 |R, . . . , log |ur1 |R,2 log |ur1+1 |C, . . . ,2 log |ur1+r2 |C

)︁
.

We will need the right-inverse

expE (x1, . . . , xr1+r2) ≔ (exp(x1), . . . ,exp(xr1),exp(xr1+1/2), . . . ,exp(xr1+r2/2)) .

The kernel of logE is the group of elements whose coordinate-wise absolute values are all 1. It
is a compact subgroup that acts on E∞ by orthogonal transformation. In particular, E∗(g, s) is
invariant under right multiplication by ker(logE ).

10
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The map logE furnishes a homomorphism from H onto the trace 0 subspace Rr1+r2
0 . Dirichlet’s

units theorem states that the image of O×
E is a lattice in R

r1+r2
0 of covolume R, where the covolume

is computed with respect to the usual inner product on Rr1+r2 . Hence we can compute the integral
of the spherical Epstein zeta function over the periodic H-orbit Oι E H using a normalized Lebesgue
measure on R

r1+r2
0 .∫

[H]

E∗( Oι E h,ns)d×h =
1

R

∫
F

E∗( Oι E expE (x1, . . . , xr1+r2−1),ns)d0(x1, . . . xr1+r2) ,

where F is any fundamental domain for logE (O
×
E ) in R

r1+r2
0 and d0(x1, . . . , xr1+r2) is the standard

Lebesgue measure on the trace-less subspace R
r1+r2
0 . Corollary 2.8 and the formula above imply

that

Z(OE ) ⩾ A0
1

R

∫
F

λ1( O
ι

E expE (x))
−ns d0x − B0 = A0Iλ(s) − B0 . (3)

Our aim now is to provide a proper lower bound for the normalized integral Iλ(s). Denote by
∥x∥∞ = max(|x1 |, . . . , |xr1 |, |xr1+1 |/2, . . . , |xr1+r2 |/2) the supremum norm on Rr1+r2 . This restricts to
a norm on R

r1+r2
0 . Denote by Ṽr1,r2 the Lebesgue measure of the unit ball of the latter norm. Let

θ1, . . . , θr1+r2−1 ∈ logE (O
×
E ) be vectors realizing the successive minima of the lattice logE (O

×
E ) with

respect to the ∥ • ∥∞ norm. By Minkowski’s second theorem

∥θ1∥∞ · · · ∥θr1+r2−1∥∞ · Ṽr1,r2 ⩽ 2r1+r2−1R (4)

Denote by Θ ⊂ logE (O
×
E ) ⊂ R

r1+r2
0 the lattice spanned by θ1, . . . , θr1+r2−1. Define

FΘ ≔

{︄
r1+r2−1∑︂

j=1

εjθ j | 0 ⩽ εj < 1

}︄
.

It is a fundamental domain for Θ. This domain can be covered by exactly
[︁
logE (O

×
E ) : Θ

]︁
funda-

mental domains of logE (O
×
E ). We can now evaluate (3) over each of these domains to deduce

Iλ(s) =
1

covolΘ

∫
FΘ

λ1( O
ι

E expE (x))
−ns d0x

≫s,n
|D |s/2

covolΘ

∫
FΘ

∥ expE (x)∥
−ns
2 d0x ,

where in the last inequality we have used the fact the the covolume of OE is 2−r2
√︁
|D | and that it

contains the short vector (1, . . . ,1).

Define the norm ∥y∥E∞
= max(|y1 |R, . . . , |yr1 |R, |yr1+1 |C, . . . , |yr1+r2 |C). We apply the inequality

∥ • ∥2 ⩽
√

r1 + r2∥ • ∥E∞
in E∞ and then rewrite the last integral using the basis θ1, . . . θr1+r2−1.

1

covolΘ

∫
FΘ

∥ expE (x)∥
−ns
2 d0x ≫n,s

1

covolΘ

∫
FΘ

∥ expE (x)∥
−ns
E∞

d0x ⩾
1

covolΘ

∫
FΘ

exp(−ns∥x∥∞)d0x

⩾
∫ 1

0
· · ·

∫ 1

0
exp(−ns

r1+r2−1∑︂
j+1

εj ∥θ j ∥∞)dε1 · · · dεr1+r2−1 =
r1+r2−1∏︂

j=1

∫ 1

0
exp(−nsεj ∥θ j ∥∞)dεj

=

r1+r2−1∏︂
j=1

1 − exp(−ns∥θ j ∥∞)
ns∥θ j ∥∞

, (5)

where in the second line we have used the triangle inequality for the norm ∥ • ∥∞ on R
r1+r2
0 .

We bound the denominator using Minkowski’s second theorem (4). To bound the numerator
we use the inequality ∥ logE (y)∥∞ ≫n 1 for every y ∈ O×

E \ µE , where µE < E× is the group of
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roots of unity. This inequality with an effective constant follows from the Northcott property,
cf. [BG06, §1.6.15]. The best possible bound (up to a multiplicative constant) follows from the
recent breakthrough of V. Dimitrov [Dim19] resolving the Schinzel-Zassenhaus conjecture:

∥ logE (y)∥∞ ⩾
log 2

4n
.

Worse bounds follow from the result of Dobrowolski [Dob79] towards the Lehmer conjecture. See
also Blanskby-Montgomery [BM71] and Stewart [Ste78]. The claim finally follows by applying
these bounds for the numerator and denominator in (5) and substituting into (3). □
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