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ABSTRACT. In this article, we develop a new mixed immersed finite element
discretization for two-dimensional unsteady Stokes interface problems with un-
fitted meshes. The proposed IFE spaces use conforming linear elements for one
velocity component and non-conforming linear elements for the other velocity
component. The pressure is approximated by piecewise constant. Unisolvency,
among other fundamental properties of the new vector-valued IFE functions, is
analyzed. Based on the new IFE spaces, semi-discrete and full-discrete schemes
are developed for solving the unsteady Stokes equations with a stationary or
a moving interface. Re-meshing is not required in our numerical scheme for
solving the moving-interface problem. Numerical experiments are carried out
to demonstrate the performance of this new IFE method.

1. Introduction. Let Q C R? be an open bounded domain separated by a time-
dependent smooth interface I'(t). The evolving interface I'(¢) divides the domain 2
into two open subdomains Q7 (¢) and Q7 (¢) such that Q = Q" (¢) UQ~(¢) UT(¢),
see Figure 1. Consider the following initial-boundary-value problems of the Stokes
equation

@fv-(uVupr):f in Q x [0,7T7,

ot
V.ou=0 inQx [0,7],
u=0 on dN x[0,T],
u(x,0) = ug, p(x,0) =pg on £,

1

(1)
(2)
(3)
(4)
where u and p denote the flow velocity and the pressure, respectively. Functions f,
ug, and pg are the given body force, the initial velocity, and the initial pressure, re-
spectively. I denotes the identity tensor. The movement of the interface is assumed
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to be guided by a given velocity field v(x,t) as follows
dx
i v(x,t), on I'(¢) x [0,T]. (5)
The viscosity function u(x) is assumed to have a finite jump across the interface
I'(t). For simplicity, we assume that u(x) is a piecewise constant function

u={ 1 ey ©)

where p* > 0 and x = (z,y). At any time ¢, the velocity and the stress tensors
satisfy the following homogeneous interface jump conditions

[u]. =0, (7)
[(4Vu —phn]. =0, (®)
where the jump [v(x)] = vT(x)|r — v (x)|r, and n denotes the unit normal

vector to the interface I' pointing from Q7 (t) to Q*(¢).

Q* (1)
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of global degree of freedoms. In particular, this limitation makes popular methods such as the
method of lines [33, 35, 42], which semi-discretizes the original PDE into a system of ODEs and
then solves them by any desired ODE solver, inapplicable due to the lack of “lines”.

On the other hand, the advantage of a Cartesian mesh is clearer when the simulations or physical models
require structured meshes for interface problems, such as Particle-In-Cell method for plasma particle
simulations [28, 29, 38, 39]. It is therefore desirable to develop numerical methods for moving interface
problems that can be carried out on a mesh independent of the interface and allow the interface to cut



MIXED IMMERSED FINITE ELEMENT FOR STOKES INTERFACE PROBLEMS 3

FIGURE 2. From left: an interface-fitted mesh and an unfitted mesh.

(ALE)-based finite element is a popular numerical method [7, 22, 37]. Recently,
there has been a growing interest in developing unfitted-mesh numerical methods
for solving a variety of interface problems, see Figure 2. Comparing with conven-
tional fitted-mesh methods, such as classical FE and DG methods, the unfitted-mesh
methods do not require the alignment of the mesh with a prescribed nontrivial inter-
face; hence it is more desirable for time-dependent problems with moving interfaces.
In the past decades, several unfitted-mesh methods have been developed for solving
Stokes interface problems, such as CwtFEM [15], Nitsche’s FEM [36], XFEM]9],
fictitious domain FEM [31, 34], to name only a few. The immersed finite element
method (IFEM) [24, 26, 18, 11, 14, 30] is a class of unfitted-mesh finite element
methods for solving interface problems. The main idea of IFEM is to incorporate
the interface jump conditions in the construction of IFE basis functions. Unlike
other aforementioned unfitted-mesh methods, the IFE space is isomorphic to the
standard FE space with no interface. Consequently, not only is the mesh indepen-
dent of the interface in an IFEM, but also the number and the location of the degrees
of freedom are interface-independent. For time-dependent interface problems with
a moving interface, the linear system has the same size at each time level and the
nonzero entries remain at the same locations [10, 12, 13, 16, 17]. Moreover, the
method-of-lines technique can be utilized together with IFEM for solving moving
interface problems [25].

There have been some IFE methods developed for steady-state Stokes interface
problems. In [1, 3] the @1-Qo immersed DG method was introduced. The velocity is
approximated by the broken ()1 functions while the pressure is approximated by the
piecewise constant functions. The computational framework is based on the interior
penalty DG method [33]. Based on the nonconforming finite element framework
[6, 32], a class of nonconforming IFE approximations was developed [20]. Recently,
a Py-P; Taylor-Hood IFE space was introduced in [5]. The partially penalized IFE
scheme is used with ghost penalty for enhancing the stability of numerical scheme
especially for the pressure approximation.

The goal of this paper is two-fold. First, we develop a lowest-order conforming-
nonconforming mixed IFE space for the Stokes equation based on [21]. Comparing
with the IDG method [1] and the Taylor-Hood IFE method [5], our new IFE method
has no additional consistency and stability terms, so the numerical formulation is
much simpler to implement. Comparing with the CR-Py IFE space [20], there are
significantly less degrees of freedom due to the conformity of one velocity compo-
nent. In fact, on the same triangular mesh, only two-thirds of degrees of freedom
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are required for velocity in this new mixed IFEM. Besides, the mixed conforming-
nonconforming finite element is robust for handling both Dirichlet and Neumann
boundary conditions, while the CR finite element space is only stable for Dirichlet
boundary conditions [21].

The second goal is to apply this mixed IFE method for solving unsteady Stokes
equations with a moving interface. We will use the new vector-valued IFE spaces for
semi-discretization, and use the prototypical backward-Euler and Crank-Nicolson
scheme for full-discretization. Our method does not require re-meshing at any time
level. Since the degrees of freedom are also independent of the interface, there is
no need to overhaul the global matrices at each time level. Instead, only local
modification is carried out on elements where the interface configuration changed
during two consecutive time steps.

The rest of the paper is organized as follows. In Section 2, we construct the new
mixed IFE spaces for Stokes equations. In Section 3, we report some fundamental
properties of the new IFE spaces. In section 4, we present the semi-discrete and
the full-discrete IFE method for solving unsteady Stokes interface problems with
a moving interface. Some numerical examples are reported in Section 5. A brief
conclusion is given in Section 6.

2. Mixed conforming-nonconforming immersed finite element spaces. In
this section, we introduce the mixed conforming-nonconforming IFE spaces for
Stokes equations. Let 7, = {T'} be an interface-unfitted triangulation of a polygo-
nal domain Q. Let NV}, and &), denote the collections of nodes and edges of the mesh
Th, respectively. Elements in 7;, are divided into two categories: an interface ele-
ment if T" is cut through by the interface I', and a non-interface element otherwise.
The collections of interface elements and non-interface elements are denoted by 7'hZ
and 7", respectively. Similarly, for each edge e € &, if e intersects the interface, it
is called an interface edge; otherwise it is a non-interface edge. The collections of
interface edges and non-interface edges are denoted by &} and &7, respectively. Ad-
ditionally, we let &y and € > be the collections of internal edges and boundary edges,
respectively. Let N, and N? be the collections of internal nodes and boundary
nodes, respectively. We also assume that the triangulation 7j, satisfies the following
hypotheses [28]:

e (H1) The interface I' cannot intersect an edge of any element at more than
two points unless the edge is part of T

e (H2) If T intersects the boundary of an element at two points, these intersec-
tion points must be on different edges of this element.

e (H3) The interface I is a piecewise C?-continuous function, and the mesh 7j,
is formed such that the subset of I' in every interface element is C?-continuous.

2.1. Conforming-nonconforming FE spaces. Let 7" € 7," be a non-interface
element with vertices Ay, As, A3 oriented counterclockwise. We label the edges of
T by e1 = A1 Ag, eg = Ay A3, and e3 = A3A;. Let \j 7 € Py be the Lagrange linear
nodal basis functions such that

)\j,T(A'L) = 6ij7 Z?J = 17273a (9)
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where §;; is the Kronecker function. Define ¢; r = 1 — 2X\g; 1 with k1 = 3, kg = 1,
and k3 = 2. It can be verified that ;1 satisfies the mean-value conditions, namely,

1 . .
E/ %,T(x,y)ds = 5ij, 1,7 =1,2,3. (10)

Thus 9; 7, j = 1,2,3 are nonconforming-P; (CR) basis functions on T'. The pres-
sure is approximated by the piecewise constant function space denoted by Py. On
each non-interface triangle 7' € 7,", the vector-valued CR-P;-F, finite element space
can be written as S; (1) = P1 x P1 X Py, or quivalently, S7(T") = span{y; v : 1 <
1 < 7} where the vector-valued basis functions are given below

VT 0 0
1/)j,T = 0 ) .7 = 1; 2737 1pj7T = )‘j—3,T ’ .7 = 47 57 6a 1/)7,T = 0
0 0 1

(11)

Similarly, we can also form the P;-CR-Py finite element space using conforming-

P1 bases for the first component, and the nonconforming-P; in the second compo-
nent, then the basis functions are

_ AT _ 0 _ 0
,lzbj,T = 0 ) ] = ]-7 27 37 ,l/}j,T = ¢j—3,T ) ] = 47 57 67 1/)7,T = 0
0 0 1

(12)

The P,-CR-P, finite element space is S7(T) = span{t; 7 : 1 < i < 7}. Note that
these two spaces S}/ (T") and SZ(T) are identical, both equal P; x Py x Py. However,
the degrees of freedom of SP(T) and SP(T) are different, as indicated in (9) and
(10). For more details of the conforming-nonconforming finite elements, we refer
readers to [21].

2.2. Mixed conforming-nonconforming IFE spaces. In this subsection, we
extend these conforming-nonconforming finite elements to the IFE spaces on each
interface triangle 7' € T;'. Let A; = (w,v:), i = 1,2,3 be the vertices of 7. Without
loss of generality, we consider the reference triangle whose vertices are given by

Ay =(0,0), Ay = (1,0), A3 =(0,1).

Note that an arbitrary triangle with vertices A; = (x;,¥;), ¢ = 1,2, 3 can be mapped
to this reference triangle by the following mapping

-1
< )Z(Ig—ml Ig—ZE1> (1‘—$1> (13)
Y2—Y1 Ys—WUn Yy—un

To simplify the notation, we still use x, y, rather than &, § on the reference
triangle. According to the hypotheses (H1)-(H3), there are two distinct intersection
points on each interface triangle, denoted by D = (z4,y4) and E = (Z¢, y.), on two
different edges. There are generally three types of interface triangles as depicted
in Figure 3. The line segment DE is used to approximate the actual interface
curve I' N T, and it divides the element 7' into two subelements, denoted by T
and T~. For example, on a Type I interface element, D = A; + d(4z — A1) and
E=A;+e(A; — Ay) where 0 < d,e < 1.

< B
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D

FIGURE 3. Types of interface elements. From left: Type I, Type
II, Type III.

We construct the vector-valued IFE shape functions in terms of the FE functions
ap;r in (11). To be more precise, we have

7
> clir(z,y), if (x,y) € T,
i=1 )
¢j,T(x,y) = 7 J = 132a"' 77' (14)
> epbir(xy), if (zy) €T,
i=1
It can be observed that each vector-valued IFE shape function ¢;r has 14 un-

known coefficients c¢i., with 1 < ¢ < 7 and s = +,—. These coefficients are de-

179
termined by seven local degrees of freedom (prescribed nodal values, edge values,
and the mean pressure value), six interface jump conditions, and a divergence free
condition stated below.

e Three edge-value conditions:

0jk

1
—/ ¢jrds = 0 , k=1,2,3. (15)
|€k| €l O
e Three nodal-value conditions:
0
¢;r(Ar—3) = | 9, , k=4,5,6. (16)
0
e One mean-pressure-value condition:
1 0
7/ ¢j7Td$dy = 0 5 k=T. (17)
7] Jy 5
J
e Four continuity conditions of the velocity to incorporate (7):
[¢1,;(D)] = [¢2,;(D)] = [¢1,;(E)] = [¢2,;(E)] = 0. (18)
e Two stress continuity conditions to incorporate (8):
[ (0r 01,511 + Oy1,jn2) — ¢pina]5E =0, (19)

[ (Op 2 jni1 + Oya jn2) — dp in2]pg = 0. (20)
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e One continuity of the divergence condition to incorporate (2):

[0:61,5 + Oyb2,l5E = 0- (21)

Here, in (18)-(21), the scalar function ¢; ; denotes the i-th component of ¢; . More

precisely, we have ¢; 1 = (b1,5, $2,j, ¢pj) such that ¢;r|rs = ¢35 = (65,95

5.i) € P1 X P1 x Pg, with s = +, —. Combining the conditions (15)-(21) yields a
linear system of fourteen unknowns. On Type I interface element, we have

MICj =€y (22)

where the coefficient matrix My is written as the first seven columns and the next
seven seven columns due to width limit of the page:

d ?—-d d-d? 0 0O 0 O
0 0 0 0 0 0 0
e—e?2 e*—e e 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 de
MGUD = 0 1 29g 2a=1 0 0 0 0
0 0 0 d—1 —d 0 0
2e—1 1-—2e -1 0 0 0 0
0 0 0 e—1 0 —e O
—2d  2d+4e —4e —d d 0 —e
—2e 2e 0 —2d—e e 2d —d
0 -2 2 1 0 -1 0
and
1-d d-& d&—d 0 0 0 0
0 1 0 0 0 0 0
ez —e e —e? 1—e 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 —de
MG 8: 1) = 2d—1 1-2d 0 0 0 0
0 0 0 1—-d d 0 0
1-—2e 2e —1 1 0 0 0 0
0 0 1—e 0 e 0
2dp  —2(d+2e)p 4dep dp —dp 0 e
2ep —2ep 0 (2d+e)p —ep —2dp d
0 2 -2 -1 0 1 0

with p = p* /™ being the jump ratio. The unknown vector c¢; and the right-hand-
side vector e; take the form

t
I A S
¢ = (Clj’C2j763j7C4j’CSjvC6j’C7j7clj’62j763j’c4j765j’06j767j) )
t
€e; = (5j175j275j316j4a5j5a5j676j7a050707070a050) .

We can obtain the vector-valued IFE shape functions ¢, by solving for c; with
each vector e;, j = 1,2,---,7. Note that the matrices for Type 1I and Type III
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interface elements, denoted by Mj; and My, can be derived in a similar fashion;
hence, we omit the details in this paper.

As an illustration, we plot the three components of the CR-P;-FPy IFE shape
function ¢4 r in Figure 4. As a comparison, we plot the standard CR-P;-Fy FE
shape function 104 7. We note that both FE and IFE shape functions are such that
their second velocity components have the value one at the node A;. However,
due to the coupled stress jump condition (8), the first velocity component and the
pressure component of the IFE shape function ¢4 1 are not completely zero, as
the FE shape function. This is a similar phenomenon that also occurs in other
vector-valued IFE functions [1, 20, 27, 29].

CRP1-P0 IFE Basis: ul CRP1-P0 IFE Basis: u2 CRP1-P0 IFE Basis: p

CRP1-P0 FE Basis: u1 CRP1-P0 FE Basis: u2 CRP1-P0 FE Basis: p

FIGURE 4. A comparison of the vector-valued IFE shape function
¢ar with = =1, ut =5 (top), and the corresponding FE shape
function 44 1 (bottom) on the reference triangle.

The local CR-P;-P, IFE space is formed by S} (T) = span{¢;r : 1 < j < 7},
and the global CR-P;-P, IFE space is defined to be

Sn(Tr) :{v = (v1,v9,vp)" € [L*(Q)]? : v satisfies conditions C1-C3}. (23)

C1: : v|r € SY(T), VT € T;*, and v|r € S§(T) VT € T};.

C2: : [ [ni]ds =0, Ve € &,.

C3: : vy is continuous at every internal point (z,y) € J\O/'h.

We can construct the P;-CR-Py IFE space in a similar manner. In this case
the edge-value conditions (15) are imposed on the second velocity component, and
the nodal-value conditions (16) will apply to the first velocity component. The
remaining conditions (17)-(21) are the same. Let Si (T)) be the local P;-CR-P, IFE
space, then the corresponding global IFE space sh(ﬂl) is defined as follows

Sh(Th) = {v = [v1,v2,v,]" € [L*(Q)]? : satisfies conditions C4-CG}. (24)
C4: : v|p € SYT), VT € T;*, and v|r € Si(T) VT € T;..

C5: : v is continuous at every internal point (z,y) € J\O/'h.
Cé6: : [ [v2]ds =0, Ve € &
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Remark 1. In many cases, the momentum equation (1) of the Stokes system is

written as 9
a—ltl — V- (2ue(u) —pl) = £ (25)

where the stress is expressed using the strain tensor e(u) = (Vu+(Vu)*)/2. In this
setup, the stress jump condition (8) should also be changed to

[(2pse(u) — plyn]y. = 0. (26)
Since the viscosity coefficient u(x) is a (piecewise) constant, the incompressibility
condition (2) yields
2uV - e(u) = pAu.
Hence, these two equations are equivalent in this case. In construction of IFE shape
functions, only (19)-(20) need to be replaced by the following two conditions

[1 (20:¢1.5m1 + (8y @15 + Oxd2,5)n2) — Gp 1] 5E =0, (27)

[k ((Oatbaj + Oyd1.5)m1 + 20yd2,5n2) — Gp 2] 5E = 0. (28)
The local CR-P1-P IFE functions, denoted by ¢5 1, and local P1-CR-F IFE func-
tions, denoted by @5 p can be constructed accordingly. The corresponding global
IFE spaces are denoted by S (75) and S5, (7).

3. Properties of the mixed conforming-nonconforming IFE spaces. In this
section, we present some basic properties of the mixed conforming-nonconforming
IFE spaces.

Theorem 3.1 (Unisolvency). The CR-P;-Py IFFE shape functions ¢; 7,1 < j <7
can be uniquely determined by the prescribed edge values, the nodal values, and the
mean pressure value, regardless of the interface locations and the jumps of viscosity
coefficients pu* > 0.

Proof. We show the unisolvency by considering the invertibility of the coefficient
matrices My, My, and Myp. For the Type I interface triangle, by direct calculation
we have

det(M;) = 74(d4(17d€)+d262(27d7€)+64(17d)+pd6(d4+d€2+d262+63)) <0.
For the Type II interface element, we have
det(MH) = D1 + pDQ

where
D, = e( —14+d)*+4(-1+44d) 6+7(—1+d)262+(—5+6d)€3+2€4)
= e( 3 _ 4 1fd)3e+7(1fd)26276(17d)e3+e3+264)
< e( A1 — d)’e+7(1 — d)%e — 6(1 fd)63+3e4)

- 41— d)e((l —d)’(1 —d - 2¢)> +3¢>(1 —d — 6)2) <o,
and with s =1 — d, we have
D, = —4(462(6 —5)% + 5%(2e — 3)2) — des (264 +e3(1 — 65) + Te?s® — des® + 84)
< —4(462(6 —5)% + 5%(2e — s)2> — 4des (364 — 6e3s + Te?s? — des® + 84)

—4(462(6 —5)% +5%(2e — s)2> — des (362(6 —5)% + 5%(2e — s)2> < 0.



10 DERRICK JONES AND XU ZHANG

For the Type III interface element, we have
det(MHI) = D3+ pD,
where

Ds —4(—1+d)2(1 — (=1 +d)2d+ d(—4 + d(—1 + 2d))e

(=24 d)(1 + 2d)e* + (=2 + d)eS)
= —4s° (s(l — )2t 4 s3(1 —t) + (28> + 2 — 25275))
< 482 (3(1 )2t 4 (1 — ) +ts® + t(s — t)"’) <0
and withs=1—-dandt=1—c¢,
Dy=—4 (354f953t+s4t7255t+852t2+253t2+254t2 74st3752t3753t3+t4) < 0.

The determinants of coefficient matrices are uniformly nonzero for all 0 < d < 1,
0 <e<1 p>0and for all three types of interface elements. This ensures the
unisolvency of the IFE functions. O

The following theorems provide basic properties of the new IFE functions. The
proofs of these results can be verified by direct calculation, hence we omit the proof
in this paper. For more details, we refer the readers to some earlier references [1, 20].
Theorem 3.2 (Consistency). Let T € T;' be an interface triangle.

o If ut = u~, the IFE shape functions ¢;r become the FE shape functions
Yir, 1< <7
e [f the interface moves out of a triangle T, i.e.,
min{|7|, [T}
T
the IFE shape functions ¢; v become the FE shape functions ;7,1 < j < 7.

-0, (29)

Remark 2. The consistency (29) enables us to use IFE functions for solving Stokes
moving interface problem efficiently. In fact, as the interface moves out of an ele-
ment, the IFE functions smoothly convert to the FE functions. No extra condition
is needed to enforce this transition.

Theorem 3.3 (Continuity of Velocity). Let T € T;' be an interface element
and ¢; 1 be the vector-valued shape functions. Then the velocity components ¢; ; €
C(T), fori=1,2, and j =1,2,---,7.

Theorem 3.4 (Partition of Unity). Let T € T;' be an interface element. The
vector-valued IFE shape functions ¢, j = 1,2,---,7, satisfy the partition of unity
property, namely: for any (x,y) € T.

3 1 6 0 0
Z ¢j,T(gj7 y) = 0 ) (bj,T (Iv y) = 1 ) ¢7,T(I7 y) = 0]. (30)
j=1 0 j=4 0 1

4. Semi-discrete and full-discrete schemes. In this section, we first derive the
weak form of the unsteady Stokes interface problem (1)-(8), and then develop the
semi-discrete and full-discrete IFE schemes. We use (-, -),, to denote the L? inner
product on a subset w C Q. We will omit the subscript w if w = Q.



MIXED IMMERSED FINITE ELEMENT FOR STOKES INTERFACE PROBLEMS 11

4.1. Weak formulation. Taking the inner product with v € [H}(Q)]? on the
equation (1) and integrating by parts over Q~ yields,
(ug, v)a- + (BVu —pL, Vv)o- — ((#Vu — plngo-, v)sa- = (f,v)o-.

Here the second term is the inner product of two tensors A = [4;;] and B = [B;;],
which is defined by (A,B) := 3, ;(A;j, Bij). Note that nr is pointing from Q7 to
Q" and v vanishes on the outer boundary 92. We have

(ug, v)o- + (pVu —pl, Vv)o- — ((pVu — phnr, v)r = (£, v)o-.
Similar argument applying to the subdomain Q7 yields

(ue, v)o+ + (uVu = pl, Vv)o+ + ((1Vu — phnr, v)r = (£, v)a+.

Adding the above two equations together, and applying the interface jump condition
(8), we have

(ug, v) + (pVu,Vv) — (p, V- v) = (f,v).
Multiplying ¢ € L2(2) to (2), and integrating by parts we have

(¢, V-u)=0. (31)

Define the bilinear form and the linear form
a(w,v) = (uVw,Vv), Y w,v e [HF (D)7, (32)
b(v.q)=—(¢,V-v),  Vve[Hi(Q), Vqe Li(Q). (33)

Here, L§(Q) = {q € L*(Q) : [, qdx = 0}. The weak form of the unsteady Stokes
interface problem (1)-(8) is given as follows.
Weak Form: Find u € H(0,7;[H}(Q)]?) and p € L*(0,T; LE(2)) such that for
each ¢t € [0,T]

(g, v) +a(u,v) +b(v,p) = (£,v), Vve[H Q)P (34)

b(u,q) = 0,V qeLj(Q), (35)

and subject to the initial conditions u(x, 0) = ug(x), p(x,0) = po(x).
4.2. Semi-discrete scheme. For semi-discretization in space, we use the CR-P;-
Py IFE space S, (75) to approximate to approximate [H¢(Q)]2 x L?(Q). We write

the vector-valued IFE space Sp(7,) = Uip X Uap X Wy, Then we propose the
semi-discrete scheme as follows.

Semi-discrete IFE Scheme: Find (up,pn) := (uin, uon,pr) € HY(0,T;Urn) x
H'Y(0,T; Usp,) x L2(0, T; Wy,) such that

(Ovan, vi) +a(up, vi) +b(vi,pn) = (fh,va), ¥vi € Uy X U2, (36)
b(up,qn) = 0, Ygn € Wh, (37)

and subject to the initial conditions
Uh(X, 0) = U.O)h(X), p(X, 0) = p07h(x)a (38)

where ug ;, and po j, are some approximations (e.g. the interpolation) of ug and pg
in Uyp, X Usp, and Wj,. We rewrite the semi-discrete scheme in the following matrix
form.

Matrix Form: Find the vector function U(¢) such that
Mt)U'(t) + A(t)U(t) = F(t), (39)
U = U (40)
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where M(t) and A(t) denote the IFE mass and stiffness matrices, and F(t) is the
vector corresponding to the right-hand side of (36)-(37). The initial vector U takes
the values of the coefficients of the interpolation Ij(ug,po). More details will be
given in Section 5.

Remark 3. Since the interface I'(¢) is a function of time ¢, the IFE spaces S (75) =
Uy x Usp, x Wy, depend on the interface location; hence they are time-dependent.
Although the background mesh 7, is time-independent, the collections of interface

elements 77: ) and non-interface elements 7;”(” vary by time. That is why the mass
matrix M (t) and stiffness matrix A(t) are both time-dependent.

4.3. Full-discrete scheme. Let 0 =ty <ty < -- <tny_1 <ty =T be apartition
of the time interval [0, 7] with the uniform step size 7, i.e., 7 = T/N, and t,, = nr.
Evaluating (39) at t = t,4¢ := t,, + 0AL, we have

M(tn+0)U/(tn+9) + A(tn+9)U(tn+9) = F<tn+6’)~ (41)

Using the following finite-difference approximations in (41)

Mtaso)U (tays) ~ M(tyyg) 20nt1) = Ulln)

~ (M) Ultu) - ME)UG)), (42
A(tn+0)U(tn+9) ~ (1 - H)A(tn)U(tn) + 9A(tn+1)U(tn+1), (43)
F(tnio) =~ (1—0)F(tn)+ 0F(tyy1), (44)

we can obtain the following full-discrete IFE scheme.

Full-discrete IFE Scheme: Given initial vector U°, find U"*! for each n =
0,1,---,N—1in

<1M”+1 + 9A”+1) Ut = <1M” —(1- 9)A”> U+ (1-0)F" +0F"t. (45)
T T

Note that when 6 = 1, the method becomes the Backward-Euler method:

1 1
<M’n.+1 + An-‘rl) Un—‘rl _ 7MnUn + Fn+1. (46)
T T
When 0 = %7 the method is the Crank-Nicolson method:
an-ﬁ-l + lAn-i-l Un+1 _ an _ lAn u” + E(Fn =+ Fn-‘rl) (47)
T 2 T 2 2 '

Remark 4. For the time-dependent Stokes interface problem with a stationary
interface, i.e. I' is time-independent, the matrices M and A in the full-discrete
scheme (45) will remain unchanged as time evolves. As a result, at each time level,
only the vector F™ needs to be updated.

Remark 5. For the time-dependent Stokes interface problem with a moving inter-
face, although the matrices M™ and A™ depend on the location of interface, which
further depends on time, these matrices can be efficiently generated by locally mod-
ifying the matrices from the previous time step. A unique feature of IFEM is that
not only is the computational mesh interface independent, but the number as well as
the location of the unknowns also remain unchanged. In two consecutive time steps,
only a small portion of elements change their interface configurations, as shown in
Figure 5 marked in dark yellow color. Consequently, we only need to modify local
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stiffness and mass matrices on those elements. The majority of the global matri-
ces remain unchanged. This feature is also important in the error analysis of IFE
methods for moving interface problems, see [10].

FIGURE 5. An illustration of a moving interface in two consecu-
tive steps. Elements in dark yellow indicate interface configuration
changes, and elements in dark blue remain unchanged.

5. Numerical examples. In this section, we report some numerical experiments
for the mixed conforming-nonconforming IFE methods for the Stokes interface prob-
lems. We test both the interpolation and the IFE solution with various configu-
rations of the interface and coefficient jumps. All of our numerical experiments
are performed on a family of Cartesian triangular meshes which are obtained by
first partitioning the domain into Ny X N, congruent rectangles, and then further
dividing each rectangle into two triangles by its diagonal with the positive slope.

We investigate the approximation property of IFE space by the interpolation.
Define the CR-P;-Py IFE interpolation operator is defined to be Ij, : H() x
C(Q) x L?(2) — Su(Tx) such that

S b, T ET
iy e, T T,

where ¢; 7 and ;1 are the local IFE/FE shape functions given in (14) and (11),
respectively. For a fixed ¢, the coefficients ¢; take the values

In(w,p)|r =Inr(u,p) = { (48)

1
Cj = m/ ul(xay)dsa 1 S] < 37 Cj = u2(Aj*3)7 4 S] < 67
J e;

and )
cr = [ plz,y)dxdy,
1= g7 Py

where A; and e;, j = 1,2,3 are the vertices and edges of the the triangle T,
respectively. The P;-CR-Py interpolation can be defined similarly. The errors of
the IFE interpolations are measured in L? and semi-H' norms as follows

e (urr) = w1 —uirllr2), €(ua,r) = |lue — uarllr2), €(r) = llp — prllr2@),

el (ur,r) = lur — wi 1| m o), €' (u2,r) = Jus — w2 1|m (),
where wuy s, ua,1, pr are components of the vector-valued function Ij,(u,p). In the
tables below, we report the convergence rate based on two consecutive meshes T,
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and 7T}, /2, as well as the overall convergence rate among all meshes using the linear
regression.

Example 5.1 (Interpolation Accuracy). In this example, we test the approxi-
mation capability of the new vector valued IFE space using interpolation. Since the
interpolation is a time-independent procedure, we use a steady-state solution given
in [1, 20] for this experiment. Let the domain be Q = [—1,1]? and the interface be
I' = {(z,y) : 22 +y? = 0.3}. The circular interface separates the domain € into two
subdomains Q= = {(z,y) : 22 + 3% < 0.3} and QF = {(z,y) : 22 + y* > 0.3}. The
exact solutions u1, us and p are defined as follows:

2, 2 .
o yl@"+y —0.3) +;il+ 0'3)7 if (z,y) € QF,
P we?ty’-03) if (x,y) € Q~

— a d _ 1 3_,3
u(z,y) = L and p(z,y) = 752" = 7).
o | T i@y et
—z(a 4y —0.3) :‘l_/ =03) ¢ (z,y) € Q7
(49)

We first test a moderate coefficient contrast with u~ = 1 and p* = 10. Tables
1-2 report the interpolation errors using CR-P;-P, and P;-CR-P, IFE functions,
respectively. We can see from these tables that the accuracy of these two IFE spaces
are similar. Both of these interpolation errors obey

eo(uu) ~ O(h?), el(u“) ~ O(h), €’ (p1) ~ O(h), (50)

where i = 1, 2.

TABLE 1. CR-P;-Py IFE Interpolation errors for Example 5.1 with
u~ =1and p* = 10.

N [ e%uis) rate] e®(uz ) rate| e¥(p;) rate| el(us ;) rate| el(us ) rate
8 5.36e-3 n/a| 1.15e-2 n/a| 7.02e-2 n/a| 1l.2le-1 n/a| 1.54e-1 n/a
16 | 1.39e-3 1.95| 3.03e-3 1.92| 3.14e-2 1.16| 5.80e-2 1.06| 7.32e-2 1.06
32 | 3.59e-4 1.95| 7.84e-4 1.95| 1.46e-2 1.10| 2.85e-2 1.02| 3.73e-2 0.96
64 | 9.20e-5 1.96| 2.03e-4 1.95| 5.28e-3 1.47| 1.45e-2 0.98| 1.91e-2 0.97
128 | 2.33e-5 1.98] 5.14e-5 1.98| 2.10e-3 1.33| 7.34e-3 0.98| 9.66e-3 0.98
256 | 5.85e-6 1.99| 1.29¢-5 1.99| 8.47e-4 1.31| 3.68e-3 1.00| 4.85e-3 0.99
rate 1.98 1.96 1.29 1.00 0.99

Next, we test a larger coefficient jump (p~ = 1 and g™ = 200) and a flipped
coefficients case (1~ = 10 and p™ = 1). We only report the P;-CR-Py IFE interpo-
lation, since the CR~P;-Py IFE results are close. Errors for large jump and flipped
jump cases are listed in Tables 3 - 4, respectively. The convergence rates are again
consistent with (50).

Example 5.2 (Unsteady Stokes Equation with Fixed Interface). In this
example, we consider a time-dependent Stokes equation with a fixed interface. The
domain €2 and interface I' is the same as in Example 5.1. The time domain is set to
be [0, 1], and it is partitioned uniformly to N; subintervals. We use both backward-
Euler and Crank-Nicolson schemes with the time step size 7 = 2h. The errors are
measured at the final time ¢ = 1. The initial data ug, pg, the boundary condition,
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TABLE 2. P;-CR-P, IFE Interpolation errors for Example 5.1 with
p~ =1and p+ = 10.

N | e%uys) rate| e%(ugs) rate| e(p;) rate| e'(ui ;) rate| e'(ug ;) rate
8 1.16e-2 n/a| 5.44e-3 n/a| 1l.44e-1 n/a| 1.49e-1 n/a| 1.30e-1 n/a
16 | 3.08e-3 1.92] 1.42e-3 1.94| 5.93e-2 1.29| 7.47e-2 1.00| 5.80e-2 1.16
32 | 5.15e-4 1.95| 2.36e-4 1.96| 2.14e-2 1.18| 3.08e-2 0.96| 2.37e-2 0.98
64 | 7.94e-4 1.96| 3.65e-4 1.97| 2.70e-2 1.14| 3.76e-2 0.99| 2.88e-2 1.00
128 | 5.15e-5 1.99] 2.34e-5 1.99| 3.56e-3 1.43| 9.69e-3 0.98| 7.35e-3 0.99
256 | 1.29e-5 1.99| 5.86e-6 2.00| 1.32e-3 1.43| 4.86e-3 0.99| 3.68e-3 1.00
rate 1.89 1.90 1.31 0.95 0.98

TABLE 3. P;-CR-P, IFE Interpolation errors for Example 5.1 with
u~ =1and pt = 200.

N [ €e%u1s) rate] €®(uz ) rate| e®(p;) rate| el(ui ;) rate| el(uz ) rate
8 1.0le-2 n/a| 4.86e-2 n/a|2.8le-0 n/a| 1.35e-1 n/a| 1.26e-1 n/a
16 | 2.73e-3 1.88| 1.28e-3 1.92| 1.21e-0 1.21] 6.77e-2 1.00| 5.31e-2 1.24
32 | 7.19e-4 1.93] 3.33e-4 1.95| 5.75e-1 1.08| 3.43e-2 0.98] 2.66e-2 1.00
64 | 1.86e-4 1.95| 8.59e-5 1.97| 1.98e-2 1.54| 1.75e-2 0.97| 1.34e-2 0.99
128 | 4.73e-5 1.98| 2.15e-5 1.98] 7.26e-2 1.45| 8.91e-3 0.98| 6.79¢-3 0.98
256 | 1.19e-5 1.99| 5.40e-6 1.99| 2.59e-2 1.49| 4.49¢-3 0.99| 3.41e-3 0.99
rate 1.95 1.90 1.45 0.98 1.03

TABLE 4. P;-CR-P, IFE Interpolation errors for Example 5.1 with
pu~ =10 and pt = 1.

Ny | €%(upr) rate] e®(uqzs) rate] e®(p;) rate| el(us ;) rate] el(uz ) rate
8 5.11e-2 n/a| 2.32e-2 n/a| 3.38¢e-1 n/a| 6.04e-1 n/a| 4.6le-1 n/a
16 | 1.29e-2 1.99| 5.82e-3 1.99] 9.59¢e-2 1.82] 3.02e-1 1.00| 2.29e-1 1.01
32 | 3.23e-3 1.99| 1.46e-3 2.00| 2.36e-2 2.03| 1.51e-1 1.00| 1.15e-1 1.00
64 | 8.09¢-4 2.00| 3.66e-4 2.00| 1.07e-2 1.14| 7.58e-2 1.00| 5.73e-2 1.00
128 | 2.02e-4 2.00| 9.14e-5 2.00| 3.41e-3 1.65| 3.79e-2 1.00| 2.87e-2 1.00
256 | 5.06e-5 2.00| 2.29e-5 2.00| 1.37e-3 1.32| 1.90e-2 1.00| 1.43e-2 1.00
rate 2.00 2.00 1.58 1.00 1.00

and the source term f are chosen so that the exact solutions of this problem are as
follows
2 2
. Us L O3Bt if (2,y) € QF,
T u@l=03) s gp (z,y) € QO
u— ) ) 9 1 3 3
u(mayat): s o p(x7y>zﬁ(x ) )
. { —HERA G (2,y) € QF,
2 =

797(17213;270.3) 3t - _
— e, if (z,y) € Q™

(51)

Table 5 and Table 6 report the backward-Fuler and the Crank-Nicolson IFE
solutions at the final time ¢ = 1, respectively. The numerical results indicate that
the errors of Crank-Nicolson are a little smaller than those of backward-Euler. They
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obey the expected convergence rates

(uin) = O(W? + 1), e (uin) = O(h+ ), (pn) = O(h +7%),  (52)
where i = 1,2, and k = 1 for backward-Euler, and & = 2 for Crank-Nicolson. As

before, we report only the P;-CR-F, IFE solutions, and the results for the CR-P;-Py
IFE solution are similar.

TABLE 5. P;-CR-Py backward-Euler IFE solutions for Example
52att=1with g~ =1 and pu* = 10.

N [ e%urs) rate| e®(ua ) rate| e®(pr) rate| el(ui ;) rate] el(uzs) rate
8 [249e-1 n/a|1.72e-1 n/a|9.46e-0 n/a|295e-0 n/a|2.83e-0 n/a
16 | 6.86e-2 1.86| 4.70e-2 1.87| 4.70e-0 1.01| 1.51e-0 0.97| 1.38¢-0 1.03
32 | 1.69e-2  2.02| 1.18e-2 1.99| 2.44e-0 0.95| 7.65e-1 0.98| 7.14e-1 0.96
64 | 3.87e-3 2.13| 3.54e-3 1.74] 1.15e-0 1.08| 3.94e-1 0.96| 3.69e-1 0.95
128 | 1.57e-3 1.31] 1.65e-3 1.10| 6.23e-1 0.88| 2.04e-1 0.95| 1.91e-1 0.95
256 | 8.69e-4 0.85| 9.07e-4 0.86| 3.35e-1 0.90| 1.07e-1 0.93| 1.02e-1 0.91
rate 1.69 1.54 0.97 0.96 0.96

TABLE 6. P;-CR-Py Crank-Nicolson IFE solutions for Example 5.2
at t =1 with 4~ =1 and p* = 10.

N [ e%urs) rate| e®(ua ) rate| e®(pr) rate| el(ui ;) rate] el(uzs) rate
8 2.5le-1 n/a| 1.72e-1 n/a|9.02e-0 n/a| 2.94e-0 n/a| 2.79e-0 n/a
16 | 7.25e-2  1.79] 5.02e-2 1.77| 4.51e-0 1.00| 1.50e-0 0.97| 1.36e-0 1.04
32 1 1.92e-2 1.92| 1.39e-2 1.85] 2.34e-0 0.94| 7.62e-1 0.98| 6.98e-1 0.96
64 | 4.33e-3 2.15| 3.27e-3 2.09| 1.11e-0 1.08| 3.92e-1 0.96| 3.61e-1 0.95
128 | 9.96e-4 2.12| 7.94e-4 2.04| 5.97e-1 0.89| 2.03e-1 0.95| 1.87e-1 0.95
256 | 2.39e-4  2.06| 2.33e-4 1.76] 3.20e-1 0.90| 1.06e-1 0.93| 1.02e-1 0.91
rate 2.03 1.93 0.97 0.96 0.96

Example 5.3 (Unsteady Stokes Equation: Circular Moving Interface). In
this example we test our mixed IFE method on a Stokes moving interface problem.
The interface curve is a circle centered at origin with a varying radius. The function
for the interface curve is given as

1
[(z,y,t) =22 +y*—0.3 (2 sin(2nt) + 1) .

It can be seen that at time ¢ = 0, the interface is the same as Example 5.2 with a
radius of r = 0.54772. As the time ¢ increases, the radius will first increase, then
decrease, and finally return to the original one. The maximum and minimum radius
Tmaz = 0.67082 and 7,,;, = 0.3873 occur at ¢ = 0.25 and ¢ = 0.75, as shown in
Figure 6. The exact solution u is written in terms of the level-set interface function
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w :{ Loyl (,y,1), if (z,y) € QF (1),
Lyl (z,y,1), if (z,y) € Q7 (1),

_f —aFal(z,y,), if (z,y) € (1), 10
27 el ), i () € 070
(53)

In this experiment, we set the time step size 7 = h. We first test the moderate
jump case for this moving interface problem. Table 7 reports the errors at the final
time level of the backward-Euler IFE solutions. The error decay is observed to
converge in an optimal order, as stated in (52). Figure 6 shows the IFE solution u;
and ug at time ¢t = 0.25, ¢t = 0.75, and ¢ = 1, respectively, on the 64 x 64 mesh. For
a larger jump case, the errors are reported in Table 8.

Interface Radius = 0.67082 Time =0.25 | Interface Radius =0.3873 Time =0.75 s 54772 Time =1

‘GR-P1-PO Solution ut: Call = 8192 Time = 025 ‘GR-P1-PO Solution ut: #Cell = 8192 Time = 075 ‘GR-P1-PO Solution ut: #Cell = 8192 Time = 1

‘GR-P1-PO Solution u2: #Cell = 8192 Time = 025 ‘GR-P1-PO Solution u2: #Cell = 8192 Time = 075 ‘GR-P1-PO Solution u2: #Cell =192 Time = 1

FiGure 6. CR-P;-F, IFE Solution of Example 5.3 with = =1
and 4t = 10 on the 64 x 64 mesh at times t = 0.25, 0.75, and
1. Top plots: Interfaces, middle: IFE solutions uyp, bottom: IFE
solutions wuay,.

The condition numbers of the IFE systems are reported in Tables 9 and 10. We
monitor the condition numbers at ¢t = 0.25, ¢ = 0.75, and ¢t = 1 which correspond
to the interface circle listed in Figure 6. We test different contrast ratios by fixing
the coefficient 4~ = 1 and varying the other coefficient ™ = 0.01, 0.1, 1, 10, and
100. Note that when u™ = 1, there is no jump in coefficient, hence the IFE scheme
becomes the standard FE scheme. Even in this no-jump case, we observe that the
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TABLE 7. CR-P,-Py Backward-Euler IFE solution for Example 5.3
at t =1 with g~ =1 and p* = 10.

N | e%uys) rate| e%(ugs) rate| e(p;) rate| e'(ui ;) rate| e'(ug ;) rate
8 7.85¢-3 mn/a| 1.14e-2 n/a|4.83e-1 n/a| 1.36e-1 n/a| 1.5le-1 n/a
16 | 2.05e-3 1.94] 2.95e-3 1.95| 2.41e-1 1.00| 7.02e-2 0.95| 7.45e-2 1.02
32 | 5.13e-4 2.00| 6.54e-4 2.17| 1.24e-1 0.96| 3.57e-2 0.98| 3.82e-2 0.96
64 | 1.68e-4 1.61| 1.32e-4 2.30| 5.78e-2 1.10| 1.84e-2 0.96| 1.96e-2 0.96
128 | 8.54e-5 0.98] 6.68e-5 0.99| 3.12e-2 0.89| 9.52¢-3 0.95| 1.01e-2 0.95
rate 1.67 1.93 1.00 0.96 0.97

TABLE 8. CR-P;-Py Backward-Euler IFE solution for Example 5.3
at t =1 with p= =1 and p* = 200.

N [ €%uy ) rate] e®(uz) rate] e®(p;) rate| el(us ;) rate] el(ug ) rate
8 1.17e-2 n/a| 1.29e-2 n/a| 1.25e-0 n/a| 1.44e-1 n/a| 1l.4le-1 n/a
16 | 3.86e-3 1.60| 4.56e-3 1.50| 8.16e-1 0.61| 7.99e-2 0.85| 7.01le-1 1.01
32 | 1.20e-3 1.69| 1.42¢-3 1.69| 5.10e-1 0.68| 3.80e-2 1.07| 3.56e-2 0.98
64 | 2.02e-4 2.57| 2.50e-4 2.50| 2.00e-1 1.35| 1.74e-2 1.12| 1.78e-2 1.00
128 | 3.48e-5 2.54| 4.21e-5 2.57| 8.70e-2 1.20| 8.43e-3 1.05] 9.01e-3 0.98
rate 2.10 2.07 0.97 1.04 1.04

condition number is of order O(h~%4). We also observe that the condition number
increases as the jump ratio enlarges. No significant differences have been noticed
for backward-Euler and Crank-Nicolson in terms of the conditions numbers.

TABLE 9. Condition Number for Backward-Euler CR-P;-FPy Ex-
ample 5.3 with = = 1.

N, [pT =001 [pF =01 T =1 | pF =10 | uF =100
8 | 3.03¢+05 | 5.94e+04 | 2.80e+05 | 1.38¢+07 | 1.31e-+09
16 | 1.04e+06 | 7.82e+05 | 4.36e+06 | 1.11e+08 | 1.40e+10
£=0.25 | 32 | 2.69e+08 | 6.06e+06 | 6.87e+07 | 9.06e+08 | 4.64e+11
64 | 6.51e+10 | 7.07e+07 | 1.09e+09 | 8.46e+09 | 8.48¢+12
128 | 1.30e+12 | 7.27e+08 | 1.74e+10 | 8.15e+10 | 6.26e+14
8 | 2.07e+04 | 4.246+04 | 2.80e+05 | 1.22¢+07 | 1.78¢+09
16 | 1.04e+06 | 7.82e+05 | 4.36e+06 | 1.64e+08 | 2.22e+10
t=0.75 | 32 | 1.15e+08 | 9.36e+06 | 6.87e+07 | 1.67e+09 | 1.79%+11
64 | 2.44e+09 | 1.11e+08 | 1.09e+09 | 1.62e+10 | 7.07e+13
128 | 1.22e4+10 | 9.29¢+08 | 1.74e+10 | 1.16e+11 | 2.66e+15
8 | 2.34e+06 | 3.68e+04 | 2.80e+05 | 1.26e+07 | 1.10e+09
16 | 7.76e+06 | 5.65e+05 | 4.36e-+06 | 1.08¢+08 | 1.94e+10
t=1 | 32 | 4.30e+07 | 8.53¢+06 | 6.87e+07 | 1.41e+09 | 1.59e+13
64 | 2.99e+08 | 9.10e+07 | 1.09e+09 | 1.05e+10 | 3.93e+13
128 | 7.30e+11 | 8.24e+08 | 1.74e+10 | 9.94e+10 | 2.72e+15
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TABLE 10. Condition Number for Crank-Nicolson CR-P;-FPy Ex-
ample 5.3 with = = 1.

Ny | pt=001|pT=01| pt=1 | pt =10 | u™ =100
8 | 4.92e+05 | 7.56e+04 | 2.88e+05 | 1.39e+07 | 1.32e+09
16 | 1.43e+06 | 9.20e+05 | 4.42e+06 | 1.12e+08 | 1.40e+10
t=0.25 | 32 | 3.29¢+08 | 6.58¢+06 | 6.92e+07 | 9.08¢+08 | 4.65e+11
64 | 7.54e+10 | 7.37e+07 | 1.10e+09 | 8.48¢+09 | 8.48e+12
128 | 1.43e+12 | 7.42e+08 | 1.74e+10 | 8.16e+10 | 6.26e+14
8 | 3.52e+04 | 5.61e+04 | 2.88e+05 | 1.22e+07 | 1.78e+09
16 | 7.29e4+05 | 8.50e4+05 | 4.42e+06 | 1.64e+08 | 2.22e+10
t=0.75 | 32 | 1.51e+08 | 1.04e+07 | 6.92e+07 | 1.67e+09 | 1.79e+11
64 | 3.00e+09 | 1.17e+08 | 1.10e+09 | 1.62e+10 | 7.08¢+13
128 | 1.39e+10 | 9.50e+08 | 1.74e+10 | 1.16e+11 | 2.66e+15
8 | 3.29¢+06 | 4.49e+04 | 2.88¢+05 | 1.26e+07 | 1.10e+09
16 | 1.02e+07 | 6.54e+05 | 4.42e+06 | 1.08e+08 | 1.95¢+10
t=1 | 32 | 5.58e+07 | 9.37e+06 | 6.92e+07 | 1.41e+09 | 1.59¢+13
64 | 3.71e+08 | 9.56e+07 | 1.10e+09 | 1.06e+10 | 3.93e+13
128 | 8.04e+11 | 8.42e+08 | 1.74e+10 | 9.95e+10 | 2.73e+15

6. Conclusion. In this paper, we developed a mixed conforming-nonconforming
immersed finite element method for unsteady Stokes interface problems. The pro-
posed vector-valued IFE spaces use conforming P; approximation for one velocity
component and nonconforming P, approximation for the other. The pressure is ap-
proximated by piecewise constant. Unisolvency of the vector-valued IFE functions
is proved. Interpolation errors are observed to be optimal which indicates these
new IFE spaces have sufficient approximation capabilities. This new IFE function
space can be used to solve steady-state, and unsteady Stokes interface problems.
In addition, we have extended the application to a moving interface problem, and
our numerical results show the optimal convergence in some benchmark tests. The
proposed IFE method can be extended to some more general fluid flow interface
problems such as Navier-Stokes equations, which will be an interesting future topic
to explore.
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