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Abstract. We provide several metric universality results. For certain classes C of
metric spaces we exhibit families of metric spaces (Mi, di)i∈I which have the property that
a metric space (X, dX) in C is coarsely, resp. Lipschitzly, universal for all spaces in C if
(Mi, di)i∈I equi-coarsely, respectively equi-Lipschitzly, embeds into (X, dX). Such families
are built as certain Schreier-type metric subsets of c0. We deduce a metric analogue of
Bourgain’s theorem, which generalized Szlenk’s theorem, and prove that a space which
is coarsely universal for all separable reflexive asymptotic-c0 Banach spaces is coarsely
universal for all separable metric spaces. One of our coarse universality results is valid
under Martin’s Axiom and the negation of the Continuum Hypothesis. We discuss the
strength of the universality statements that can be obtained without these additional set-
theoretic assumptions. In the second part of the paper, we study universality properties of
Kalton’s interlacing graphs. In particular, we prove that every finite metric space embeds
almost isometrically into some interlacing graph of large enough diameter.
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1. Introduction. A metric space Ycu is said to be coarsely universal
for a classM of metric spaces if every metric space inM coarsely embeds
into Ycu. By modifying the definition accordingly we can obviously consider
universality in various categories: [Banach spaces ∼ isomorphic embeddings],
[metric spaces ∼ bi-Lipschitz embeddings], etc. A natural question is thus
the following: Given a class of metric spaces can we find a metric space that
is universal for this class with respect to a given type of metric embedding?

There are numerous embedding results that provide satisfactory answers
to this broad question. That `∞ is isometrically universal for the class of
separable metric spaces is a reformulation of the (elementary but fundamen-
tal) Fréchet–Kuratowski embedding theorem [Fré10, Kur35]. Note that `∞
is not separable and thus does not belong to the class it is a universal space
for. This leads us to refine the question to, say: is there a member of the
class that is universal for the class itself? Urysohn’s space [Ury25] answers
positively this question for the class of separable metric spaces and isometric
embeddings.

However, it is not always possible to find a universal space within the
class considered. A (relatively) simple example is the class of separable super-
reflexive Banach spaces when universality refers to isomorphic embeddings.
A much more difficult result of Szlenk [Szl68] states that there is no separable
reflexive Banach space that is isomorphically universal for the class of sepa-
rable reflexive Banach spaces. Szlenk’s theorem was improved by Bourgain
[Bou80] who showed that a separable Banach space that is isomorphically
universal for the class of separable reflexive spaces is also isomorphically
universal for all separable Banach spaces. So if we want to show that a sep-
arable Banach space contains an isomorphic copy of every separable Banach
space we only need to show that it contains an isomorphic copy of every
separable reflexive Banach space. To prove this remarkable rigidity result
in the context of isomorphic universality, Bourgain ingeniously incorporated
techniques from descriptive set theory. Bourgain’s descriptive set-theoretic
approach for universality problems was further extended by Bossard [Bos02]
to show that a class of Banach spaces which is analytic, in the Effros–Borel
structure of subspaces of C[0, 1], and contains all separable reflexive Banach
spaces, must contain a universal space.

We will not discuss the numerous variants of the universality problem but
instead we will focus on the following rigidity phenomenon in the context
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of universality. We voluntarily refrain from specifying a particular type of
embeddings.

Problem 1.1. For what classes C and D of metric spaces such that C⊂D,
a universal space for C is also a universal space for D?

The first part of the article revolves around Problem 1.1 in the Lipschitz
and coarse categories. Our first theorem says that a metric space is Lip-
schitzly universal for the class of all separable metric spaces, if it is universal
for the uncountable collection C := {(Sα(Q), d∞) : α < ω1}, which we will
refer to as the collection of rational-valued smooth Schreier metric spaces.
Each metric space (Sα(Q), d∞), in a certain sense developed in Section 3,
exhibits c0 behavior of complexity ωα. Consequently, the entire hierarchy
captures enough structure of c0, and thus confers its good universality prop-
erties. None of the metric spaces in C is coarsely universal. The most natural
Banach space analogue of a metric space (Sα(Q), d∞) is S∗α, the dual of the
classical Schreier Banach space, into which (Sα(Q), d∞) Lipschitz embeds.
It it worth pointing out that S∗α is a (non-reflexive) separable dual space,
thus it fails to contain c0 and it has the RNP (respectively by the classi-
cal theorems of Bessaga–Pełczyński from [BP58] and Uhl from [Uhl72]). By
another classical theorem of Heinrich–Mankiewicz from [HM82], no S∗α (and
thus also (Sα(Q), d∞)) contains a Lipschitz copy of c0 (or of a dense subset
of it).

Theorem A. If a complete separable metric space contains bi-Lipschitz
copies of (Sα(Q), d∞) for every countable ordinal α, then it is Lipschiztly
universal for the class of all separable metric spaces.

Theorem A should be thought of as a purely Lipschitz analogue of the
linear universality result that states that if a Banach space X is isomor-
phically universal for the class of separable reflexive asymptotic-c0 Banach
spaces then X contains an isomorphic copy of c0. This linear universality
can be found in [OSZ07], as it is explained at the end of Section 1. Similarly
to the linear setting we use an ordinal index à la Bourgain.

In the context of coarse universality, technical difficulties arise and we
need some additional set-theoretic axioms (Martin’s Axiom and the negation
of the Continuum Hypothesis) to prove a coarse analogue of Theorem A.
Note that here we consider integer-valued Schreier metric spaces (Sα(Z), d∞),
α < ω1. Each space (Sα(Z), d∞) is a subset of (Sα(Q), d∞) and therefore it
Lipschitz (i.e., also coarsely) embeds into the Banach space S∗α. To deduce
that each (Sα(Z), d∞) fails to be coarsely universal we need to argue slightly
differently since we do not know if S∗α has this property or not. The space
(Sα(Z), d∞) Lipschitz (and thus coarsely) embeds into the dual Tsirelson
space T ∗α, a reflexive Banach space. By Kalton’s result from [Kal07], c0 does
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not coarsely embed in a reflexive space and therefore (Sα(Z), d∞) cannot be
coarsely universal.

Theorem B. (MA + ¬CH) If a separable metric space contains coarse
copies of (Sα(Z), d∞) for every countable ordinal α, then it is coarsely uni-
versal for the class of all separable metric spaces.

We end the first part with several results which have statements some-
what weaker than Theorem B, but can be shown without any further axioms.
In particular, we show the following.

Theorem C. If a separable metric space (M,d) contains coarse copies
of (Sα(Z), d∞) for every countable ordinal α, then the class of all separable
bounded metric spaces equi-coarsely embeds into (M,d).

With the help of a deep result of Dodos [Dod09], we prove Theorem D
below. Note that the assumption is formally stronger than that of Theorem B
or Theorem C.

Theorem D. If a separable metric space is coarsely universal for the
class of all reflexive asymptotic-c0 Banach spaces then it is coarsely universal
for the class of all separable metric spaces.

The second part of the article discusses some universality properties of
the sequence of interlacing graphs ([N]k, dI)k and their applications to uni-
versality problems. The geometry of these graphs is intimately connected
with the geometry of c0 via the summing norm, and we prove the following
universality property.

Theorem E. For every finite metric space X and every ε > 0, there
exists k := k(X, ε) ∈ N such that X admits a bi-Lipschitz embedding into
([N]k, dI) with distortion at most 1 + ε.

Note that it follows from this almost isometric universality property of
the interlacing graphs and the work of Eskenazis, Mendel and Naor [EMN19]
that the sequence of interlacing graphs ([N]k, dI)k does not equi-coarsely
embed into any Alexandrov space of non-positive curvature.

Then, we discuss the connection between metric universality, the geom-
etry of the interlacing graphs, and a non-linear version of Johnson–Odell
elasticity.

In [Kal07], Kalton showed that a separable Banach space X that is
coarsely universal for all separable metric spaces cannot have all its iter-
ated duals separable. The argument is based on the existence of uncountably
many well separated copies of the interlacing graphs in c0. We conclude the
paper by showing that it can be generalized to prove the following.

Theorem F. Let X be a separable Banach space with non-separable bi-
dual X∗∗ and such that no spreading model generated by a normalized weakly
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null sequence in X is equivalent to the `1-unit vector basis. Assume that X
coarsely embeds into a Banach space Y . Then there exists k ∈ N such that
Y (2k) is non-separable.

In connection with this last result, it is important to note that `1 is known
to coarsely embed into `2.

2. Preliminaries

2.1. Coarse and Lipschitz geometry. If X and Y are two metric
spaces, the Y -distortion of X, denoted cY (X), is defined as the infimum of
those D ∈ [1,∞) such that there exist s ∈ (0,∞) and a map f : X → Y
such that for all x, y ∈ X we have

(2.1) s · dX(x, y) ≤ dY (f(x), f(y)) ≤ s ·D · dX(x, y).

When (2.1) holds, we say that X bi-Lipschitzly embeds into Y with dis-
tortion D. We introduce some convenient terminology and notation that will
allow us to treat all at once various embedding notions.

Definition 2.1. Let X and Y be metric spaces. Let ρ, ω : [0,∞) →
[0,∞). We say that X (ρ, ω)-embeds into Y if there exists f : X → Y such
that for all x, y ∈ X we have

(2.2) ρ(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ω(dX(x, y)).

If {Xi}i∈I is a collection of metric spaces, then we say that {Xi}i∈I (ρ, ω)-
embeds into Y if for every i ∈ I, Xi (ρ, ω)-embeds into Y .

We say that {Xi}i∈I equi-coarsely embeds into Y if there exist non-
decreasing functions ρ, ω : [0,∞) → [0,∞) such that limt→∞ ρ(t) = ∞ and
{Xi}i∈I (ρ, ω)-embeds into Y . We say that {Xi}i∈I equi-bi-Lipschitzly em-
beds into Y if {Xi}i∈I (ρ, ω)-embeds into Y , where ρ and ω are increasing
and linear on [0,∞).

Note that equi-bi-Lipschitz embeddability is a stronger condition than
merely assuming that supi∈I cY (Xi) < ∞ since it does not allow for arbi-
trarily large or arbitrarily small scaling factors in (2.1). However if Y is a
Banach space, rescaling is possible, and the two notions coincide.

Aharoni’s embedding theorem [Aha74] states that there exists a universal
constant K ∈ [1,∞) such that every separable metric space bi-Lipschitzly
embeds into c0 with distortion at most K. The optimal distortion in Aha-
roni’s embedding theorem is K = 2 as shown in [KL08]. A consequence of
Aharoni’s embedding theorem, which will be used repeatedly, is that a met-
ric space is Lipschitzly (resp. coarsely) universal for the class of separable
metric spaces if and only if it contains a bi-Lipschitz (resp. coarse) copy
of c0.



6 F. Baudier et al.

2.2. Trees, derivations, and Bourgain’s index theory. A tree T over
a set X is a collection of finite sequences (x1, . . . , xn) of elements of a set X
with the property that whenever (x1, . . . , xn) is in T then (x1, . . . , xn−1) is
in T as well. A tree is well founded if it has no infinite branch, i.e., there is no
sequence (xk)

∞
k=1 in X such that for all n ∈ N, (x1, . . . , xn) ∈ T . There is a

classical ordinal derivation on trees which is defined transfinitely as follows:

• T 0 = T ,
• Tα+1 = {(x1, . . . , xn) : (x1, . . . , xn, xn+1) ∈ Tα} for any ordinal α,
• T β =

⋂
α<β T

α for any limit ordinal β.

We define o(T ), the order of a tree T , to be the least ordinal number such
that T o(T ) = ∅, and by convention we set o(T ) = ∞ if such an ordinal
does not exist. Note that if T is well founded then the derivation produces a
strictly decreasing sequence of trees and thus o(T ) <∞. For every ordinal α
it is easy to construct a tree Tα such that o(Tα) = α.

In Section 2 we will need to strengthen a crucial result about trees on
Polish spaces, which are complete, separable and metrizable spaces. A tree T
on a topological space X is closed if for every n ∈ N, T∩Xn is closed in Xn

equipped with the product topology. The following result, which follows from
[Kec95, Theorem 31.1], was observed by Bourgain [Bou80, Proposition 3].

Proposition 2.2. If T is a closed and well founded tree on a Polish
space, then o(T ) < ω1, where ω1 denotes the first uncountable ordinal.

In order to facilitate the reading of Section 2, we recall Bourgain’s ordinal
index “measuring” the presence of a given basic sequence in a Banach space.
This idea was introduced in [Bou80] for a basis of C[0, 1], but can be (and
has been extensively) applied for other basic sequences (see for instance
[AJO05, Definitions 3.1 and 3.6] or [Ode04]). In this article we will be mostly
interested in the canonical basis of c0.

Let (ei)i be a normalized basic sequence, X be a Banach space, and
K ≥ 1. Denote by T (X, (ei)i,K) the set of finite sequences (x1, . . . , xn) of
elements in X such that

(2.3)
1

K

∥∥∥ n∑
k=1

akxk

∥∥∥ ≤ ∥∥∥ n∑
k=1

akek

∥∥∥ ≤ K∥∥∥ n∑
k=1

akxk

∥∥∥.
It is clear that T (X, (ei)i,K) is a closed tree on X. It is also straight-
forward that X contains a K2-isomorphic copy of Y = span(ei) if and
only if T (X, (ei)i,K) is not well founded (or in other words, has an infi-
nite branch). Moreover, if X is separable (and thus Polish), it follows from
Proposition 2.2 thatX contains aK2-isomorphic copy of Y = span(ei) if and
only if o(T (X, (ei)i,K)) = ω1. At the technical level, Bourgain constructed,
for every ordinal α, a separable reflexive Banach space Xα such that for
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some universal constant K > 0, T (Xα, (ei)i,K) ≥ α, where (ei)i is a basis
of C[0, 1].

If a separable Banach space Z is isomorphically universal for all separable
reflexive Banach spaces, it is easy to see that it must be C-isomorphically
universal for all separable reflexive Banach spaces for some C ≥ 1. In-
deed, if there exists a sequence (Xn) of reflexive separable Banach spaces
such that their embedding constants escape to infinity, then the reflexive
separable space (

∑
nXn)2 will not embed into Z. Thus Z will contain a

C-isomorphic copy of all the Xα’s and thus T (Z, (ei)i, D) = ω1 for some
D ≥ 1, and based on the above discussion it follows that Z contains an
isomorphic copy of C[0, 1] (which is well known to be linearly isometrically
universal for all separable Banach spaces thanks to Banach’s embedding
theorem [Ban32]).

Bourgain’s (ei)-index of X is defined as follows:

I(X, (ei)) = sup{o(T (X, (ei)i,K)) : K ≥ 1}.

We collect the key properties of Bourgain’s index of the canonical basis
of c0, simply denoted by Ic0 , that we will need later on.

Proposition 2.3. Let X,Y be separable Banach spaces.

(1) If X is a subspace of Y then Ic0(X) ≤ Ic0(Y ).
(2) If X is isomorphically equivalent to Y then Ic0(X) = Ic0(Y ).
(3) c0 isomorphically embeds into X if and only if Ic0(X) ≥ ω1.

2.3. Schreier sets and higher order Tsirelson spaces. Schreier sets
proved to be very useful to measure indices as well as to construct Banach
spaces having certain indices. We will also use them in the more general
metric context. We denote by [N]<ω the set of finite subsets of N. An element
n̄ = {n1, . . . , nk} ∈ [N]<ω will always be written in strictly increasing order,
i.e., n1 < · · · < nk. If A and B are finite subsets of N, we write n ≤ A < B
if n ≤ min(A) ≤ max(A) < min(B).

For a countable ordinal α we denote by Sα ⊂ [N]<ω the Schreier family
of order α, which is defined recursively as follows:

• S0 = {{n} : n ∈ N},
• Sα+1 = {

⋃n
j=1Ej : Ej ∈ Sα for j = 1, . . . , n and n ≤ E1 < · · · < En},

• Sβ = {A ∈ [N]<ω : ∃n ∈ N such that n ≤ A and A ∈ Sαn} if β is a limit
ordinal and (αn) ⊂ [0, α) is a (fixed) sequence which increases to β.

The above definition of Sβ , for β a limit ordinal, is dependent on the choice
of the sequence (αn), but for our purposes the specific choice of (αn) will
be irrelevant. The Schreier sets (Sα)α<ω1 are collections of finite subsets
of N with increasing complexity which naturally generate trees T (Sα) :=
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{(n1, . . . , nk) : {ni}ki=1 ∈ Sα} on N. It is not difficult to prove by transfinite
induction that o(T (Sα)) = ωα + 1.

We now describe a procedure to generate metric spaces using Schreier
sets. Let G be a family of finite subsets of N and let E be a non-empty (finite
or infinite) countable subset of R. We define the following subset of c00(N):

XG,E =
{∑
i∈G

ciei : G ∈ G, ci ∈ E for i ∈ G
}

where (ei) is the canonical basis of c00. We will endow XG,E with the met-
ric d∞ induced by the standard c0-norm ‖·‖∞. When G = Sα, we will simply
denote by (Sα(E), d∞) the metric space obtained. These metric spaces nat-
urally embed into the higher order Tsirelson spaces T ∗α, which are reflexive
Banach spaces whose duals Tα have norms which are implicitly defined based
on an admissibility condition that involves the Schreier sets. Although the
original space constructed by Tsirelson [Tsi74] was T ∗α for α = 1, nowadays
their duals Tα are usually referred to as Tsirelson spaces, and it is easier to
define T ∗α by first defining Tα.

We recall the crucial properties of the Banach space T ∗α (cf. [OSZ07])
that are needed in this article. The separable reflexive Banach space T ∗α is
asymptotic-c0 and has a 1-unconditional basis (ui)i with the property that
for any G ∈ Sα the sequence (ui)i∈G is 2-equivalent to the unit vector basis
of `|G|∞ . From the latter property it follows that the natural embedding of
(Sα(E), d∞) into T ∗α (mapping

∑
i∈G ciei to

∑
i∈G ciui, for G ∈ Sα) is a

4-Lipschitz isomorphism. Moreover, it follows from [OSZ07] that Bourgain’s
c0-index of T ∗α tends to ω1 as α tends to ω1.

3. Metric universality via descriptive set theory. This section is
deeply inspired by the profound ideas introduced by Bourgain and Bossard
in connection with isomorphic universality, and the unification of these ap-
proaches initiated by Argyros and Dodos [AD07]. The most natural approach
to prove Theorem A (resp. Theorem B), is to mimic Bourgain’s strategy and
construct an ordinal index that will detect the presence of a bi-Lipschitz
(resp. coarse) copy of c0, and which behaves similarly to Bourgain c0-index.
We can indeed (though non-trivially) adjust Bourgain’s approach to prove
the Lipschitz universality result in Section 3.1.

Unfortunately some difficulties arise in the coarse setting. On the one
hand, in Section 3.2, we use additional set-theoretic axioms to prove Theo-
rem B. On the other hand, we need to resort to the delicate theory of strongly
bounded classes of Banach spaces to prove Theorem D. This is carried out
in Section 3.3 where we will use a deep theorem of Dodos. With this organi-
zation, we hope it will be clear what is the scope of application of Bourgain’s
strategy and why it partially fails to work in the coarse framework.
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3.1. Lipschitz universality via a Lipschitz c0-index. To detect the
presence of a linear isomorphic copy of C[0, 1] Bourgain used a tree ordinal
index where the trees are defined by a fixed basis of C[0, 1]. By completeness,
we only need to find a dense subset of c0 in order to detect a Lipschitz copy
of c0, while to detect a coarse copy of c0 we only need to find a 1-net of c0.
Note that X[N]<ω ,Q is a dense subset of c0 and that X[N]<ω ,Z is a 1-net in c0.
It will be very useful to understand XG,E as the collection of all f : N → E
for which there is G ∈ G such that supp(f) ⊂ G.

To handle the non-linearity of our universality problem we will introduce
combinatorial objects called vines which will be a substitute for trees. The
elements of a vine V will also be collections of elements of X, but they will
be indexed over collections of finitely supported functions f : N→ E, where
E is a fixed countable subset of R, with 0 ∈ E. Such elements will be called
bunches. For a collection V of bunches to be called a vine it must also be
closed under a certain restriction operation.

Formally, for a (finite or infinite) countable subset E of R, with 0 ∈ E,
and finite subset G of N we call the set

[E, G] = {f : N→ E with supp(f) ⊂ G}
an E-bunch. Note that if G = ∅, then [E, G] = {0}, where 0: N → E is the
constant zero map. We put

cE00 =
⋃

G∈[N]<ω

[G,E] = {(ξj) ⊂ E : {j ∈ N : ξj 6= 0} is finite}

which is dense in c0 if E is dense in R. Given a set X and a countable subset
E of R, every element of the form χ = (xf )f∈[E,G] in X [E,G] will be called an
E-bunch over X. We define a partial order on the set of E-bunches over X
as follows. If χ = (xf )f∈[E,F ], ψ = (yf )f∈[E,G], we will write χ � ψ if F is an
initial segment of G and for every f ∈ [E, F ] we have yf = xf . This makes
sense because [E, F ] ⊂ [E, G]. If G = ∅ then X [E,G] will be in an obvious
way identified with X, and we note that for G ∈ [N]<ω and (xf )f∈[E,G],
x0 ≡ (xf )f∈[E,∅] � (xf )f∈[E,G], or more generally (xf )f∈[E,F ] � (xf )f∈[E,G]

for all initial segments F of G.
A set V of E-bunches over X is called an E-vine over X if for all χ ∈ V

the set [ψ � χ] is a subset of V. Note that [ψ � χ] is finite and totally
ordered and hence (V,�) is a tree in the abstract classical sense. We will
say that the E-vine V is well founded if the tree (V,�) is well founded, i.e.,
it contains no infinite totally ordered subsets. We define the derivatives of
vines: for a vine V we put

V(1) = V \ {χ ∈ V : χ is �-maximal},
and recursively for any ordinal α,

V(α+1) = (V(α))(1),
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and for a limit ordinal α,

V(α) =
⋂
β<α

V(β).

Then the ordinal index of V is o(V) = min{α : V(α) = ∅}. This is well defined
if V is well founded. As for trees, under appropriate assumptions, being well
founded is equivalent to having countable ordinal index. This will be proven
in Proposition 3.2.

For n ∈ N ∪ {0} we define

V(n) = {χ = (xf )f∈[E,G] : |G| = n} = V ∩
⋃

G∈[N]n

X [E,G].

If X is a topological space then for each G ∈ [N]n the set X [E,G] can be
equipped with the product topology. Then the disjoint union

⋃
G∈[N]n X

[E,G]

can be endowed with the induced topology. In particular, V(n) is a topo-
logical space. We will call V a closed E-vine if V(n) is a closed subset of⋃
G∈[N]n X

[E,G] for all n ∈ N. This is equivalent to saying that for all G ∈
[N]<ω the set V ∩X [E,G] is closed. Note that V being closed does not imply
that the set

⋃
χ=(xf )f∈[E,G]∈V{xf : f ∈ [E, G]} is a closed subset of X.

We can define πn : V(n+1) → V(n) as follows. If G ∈ [N]n+1, we set G′ =
G\{max(G)}. Given χ = (xf )f∈[E,G] in V(n+1) we define πn(χ) = (xf )f∈[E,G′],
which is in V(n). Note that a collection V of E-bunches over X is an E-vine if
and only if for all n ∈ N we have πn[V(n+1)] ⊂ V(n). Also, if X is a topological
space then πn is a continuous function.

The following is an analogue for vines of [Bou80, Lemma 2] and the proof
is nearly identical.

Lemma 3.1. Let E be a countable subset of R and V be a closed E-vine
over a complete metric space (X, d). Assume that for all n ∈ N we have
V(n) = πn[V(n+1)]. Then either V = ∅ or V is not well founded.

Proof. We fix an enumeration {εi : i ∈ N} of E and for all n ∈ N we
set En = {ε1, . . . , εn}. Assuming V 6= ∅, we can find an x0 ≡ (xf )f∈[E,∅] ∈
V ∩ X = V(0). Since V(0) = π0(V(1)), we find χ1 = (x

(1)
f )f∈[E,{k1}] ∈ V(1)

such that ‖π0(χ1) − x0‖ < 1. By assumption there exists k2 > k1 and
χ2 = (x

(2)
f )f∈[E,{k1,k2}] ∈ V(2) such that for f ∈ [E1, {k1}] we have d(x

(1)
f , x

(2)
f )

≤ 1/2. Proceed inductively to find an increasing sequence of integers (km)∞m=1

and a sequence (χm)∞m=1 such that χm = (x
(m)
f )f∈[E,{k1,...,km}] ∈ V(m) and

for all m ∈ N and f ∈ [Em, {k1, . . . , km}] we have d(x
(m)
f , x

(m+1)
f ) ≤ 1/2m.

We conclude that for any m0 ∈ N and f ∈ [Em0 , {k1, . . . , km0}] the sequence
(x

(m)
f )m≥m0 is Cauchy and we denote its limit by yf . Because V is an E-
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vine, it is closed under taking projections πn, and because V is assumed to
be closed, we deduce that ψm = (yf )f∈[E,{k1,...,km}] is in V for all m ∈ N.
Because (ψm)m is an infinite chain, the E-vine V must be ill founded.

The following is the analogue of Proposition 2.2 for vines.

Proposition 3.2. Let E be a countable subset of R and V be a closed
E-vine on a Polish space. If V is well founded then o(V) < ω1.

Proof. We will show that there is η < ω1 such that V(η) = ∅. It is easily
observed that for any n ∈ N and ordinal α we have

(3.1) (V(α+1))(n) = πn[(V(α))(n+1)],

i.e., a χ of length n is in V(α+1) if an only if it is the direct predecessor of
a ψ of length n+ 1 in V(α). For n ∈ N, consider the decreasing hierarchy of
closed sets (V(α))(n), α < ω1, of

⋃
G∈[N]n X

[E,G]. Because X is Polish, so is⋃
G∈[N]n X

[E,G] and therefore there must exist an αn < ω1 such that for all

β > αn we have (V(αn))(n) = (V(β))(n). This is because in a Polish space there
can be no strictly increasing transfinite hierarchy of open sets of length ω1.
Take η = supn αn and define W =

⋃∞
n=1 (V(η))(n). We observe that W is

an E-vine over X. We show that W satisfies the assumption of Lemma 3.1.
Indeed, for n ∈ N we have

W(n) = (V(η))(n) = (V(η+1))(n) (by the choice of η)

= πn[(V(η))(n+1)] (by (3.1))

= πn

[
(V(η))(n+1)

]
(by continuity of πn)

= πn[W(n+1)].

This means that either W = ∅ or W is ill founded. Because V is closed,
W ⊂ V, and because V is well founded, so is W and hence W = ∅. It follows
that V(η) =

⋃
n∈N(V(η))(n) ⊂ W = ∅. Therefore, o(V) ≤ η.

We can now introduce an ordinal index that will capture the presence
of a bi-Lipschitz copy of c0 in a metric space. For any C > 0, any metric
space (M,d), and any countable subset E of R, it is easy to verify that the
set (think of [E, G] being a subset of c0)

V(M,E, C) =

(xf )f∈[E,G] :

G ∈ [N]<ω, xf ∈M for f ∈ [E, G],

and ∀f, g ∈ [E, G]
1
C ‖f − g‖∞ ≤ d(xf , xg) ≤ C‖f − g‖∞


is a closed E-vine on M . We define the Lipschitz c0-index of M as

ILip
c0 (M) = sup{o(V(M,Q, C)) : C > 0}.



12 F. Baudier et al.

Proposition 3.3. Let M be a Polish space. Then

c0 bi-Lipschitzly embeds into M if and only if ILip
c0 (M) ≥ ω1.

Proof. The necessary implication is easy. Indeed, if ψ is a Lipschitz em-
bedding from c0 into M , then for G ∈ [N]<ω and f ∈ [Q, G] define xf =
ψ(
∑

i∈G f(i)ei). Thus, for some C ≥ 1, the set {(xf )f∈[Q,G] : G ∈ [N]<ω} is
included in V(M,Q, C), which is therefore ill founded.

Assume now that ILip
c0 (M) = ω1. Then for every countable ordinal α there

exists Cα > 0 such that o(V(M,Q, Cα)) ≥ α. Using a simple pigeonhole
argument we can find C ≥ 1 and an uncountable subcollection U of [1, ω1),
such that for all α ∈ U we have Cα ≤ C. Since obviously o(V(M,Q, C)) ≥
o(V(M,Q, Cα)) ≥ α for every α ∈ U , it follows from Proposition 3.2 that
V(M,Q, C) is not well founded, i.e., there exists a strictly increasing sequence
(km)m of integers and for m ∈ N ∪ {0} an M -bunch χm = (x

(m)
f : f ∈

[{k1, . . . , km},E]) ∈ V(M,Q, C) such that χ0 � χ1 � χ2. But this means
that for every finitely supported f : {k1, k2, . . .} → Q there is an xf ∈ M
such that χm = (xf : f ∈ [{k1, . . . , km},E]) for m ∈ N. We define

ψ : cQ00 →M by ψ((qj)j) = xf

where
f : {k1, k2, . . .} → Q is defined by f(kj) = qj .

It follows that ψ is a bi-Lipschitz embedding from cQ00 (with the c0-norm)
into M . Since cQ00 is dense in c0 and M is complete, ψ can be extended to a
bi-Lipschitz embedding from c0 into M .

To complete the proof of Theorem A it remains to show that if a com-
plete separable metric space M is Lipschitzly universal for the collection of
rational, valued Schreier metrics then ILip

c0 (M) ≥ ω1.

Proof of Theorem A. Assume that for every ordinal α, (M,d) admits
bi-Lipschitz embeddings of (Sα(Q), d∞). Thus, after a possible extraction
argument, there exist a constant C > 0, an uncountable A ⊂ [0, ω1), and
maps Fα : (Sα(Q), d∞) → (M,d), α ∈ A, such that for all f, g ∈ Sα(Q) and
α ∈ A,

(3.2)
1

C
‖f − g‖∞ ≤ d(Fα(f), Fα(g)) ≤ C‖f − g‖∞.

It follows that V(M,Q, C) has ordinal index at least o(Sα) = ωα + 1 for
all α ∈ A. To see this, define for every f in Sα(Q) the vector xf = Fα(f)
and let W = {(xf )f∈[Q,G] : G ∈ Sα}, which is thanks to (3.2) a subvine of
V(M,Q, C) that has the same tree index as Sα.

3.2. Coarse universality via a coarse c0-index in MA + ¬CH.
The technique from Section 3.1 does not seem to be robust enough to prove
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the statement of Theorem B without any further set-theoretic assumptions.
The main roadblock is that the simple extraction argument that provides
equi-bi-Lipschitz embeddings from an uncountable collection of bi-Lipschitz
embeddings does not hold in the coarse setting. Under some additional set-
theoretic axioms, MA + ¬CH, we can prove Theorem B. The advantage of
assuming that Martin’s Axiom holds, but the Continuum Hypothesis fails,
lies in the fact that the following diagonalization property of infinite subsets
of N (cf. [Fre84, pp. 3 ff]) will be valid.

Lemma 3.4. (MA + ¬CH) Let (Nα)α<ω1 ⊂ [N]ω have the property that
Nβ \ Nα is finite whenever α < β (in which case we say that Nβ is almost
contained in Nα and write Nβ ⊂a Nα). Then there exists N in [N]ω such
that N ⊂a Nα for all α < ω1.

This diagonalization property will now be used to prove a principle of
“equi-regularization” for expansion and compression moduli. Let us detail the
case of the compression modulus. We first need some preparation. Denote by
I the class of all non-decreasing maps f : N → N ∪ {0} satisfying f(1) = 0,
limn→∞ f(n) =∞ and f(n+ 1) ≤ f(n) + 1 for all n ∈ N. It will be useful to
note that the map j : I → [N]ω, defined by j(f) = {n ∈ N : f(n+1) > f(n)}
is a bijection, and that its inverse is given by j−1(A)(n) =

∑
i<n 1A(i) for

A ∈ [N]ω and n ∈ N. We will also use the following easy fact. If j(f) =
{m1 < m2 < · · · } and j(g) = {n1 < n2 < · · · } with ni ≤ mi for all i ∈ N,
then f ≤ g. In particular, if j(f) ⊂ j(g), then f ≤ g. We start with an easy
lemma.

Lemma 3.5. Let (gα)α<ω1 ⊂ I. Then there exists (fα)α<ω1 ⊂ I such that

(1) for all α < ω1 and all n ∈ N, fα(n) ≤ gα(n);
(2) for all α < β < ω1, j(fβ) ⊂a j(fα).

Proof. We will build (fα)α<ω1 by transfinite induction. So, set f1 = g1

and assume that β0 < ω1 is such that we have found (fα)α<β0 satisfying
(1) and (2). Since {α < β0} is countable, a classical diagonal argument
yields the existence of M ∈ [N]ω such that M ⊂a j(fα) for all α < β0. Let
j(gβ0) = {n1 < n2 < · · · }. Then pick m1 < m2 < · · · ∈ M so that ni ≤ mi

for all i ∈ N and set fβ0 = j−1({m1,m2, . . .}). We see that fβ0 ≤ gβ0 and
j(fβ0) ⊂M ⊂a j(fα) for all α < β0. This concludes our induction.

Armed with Lemma 3.4 we can now prove our “equi-regularization” prin-
ciple below for compression moduli.

Proposition 3.6. (MA+¬CH) Let (ρα)α<ω1 be a family of non-decreas-
ing maps from [0,∞) to [0,∞) and such that limt→∞ ρα(t) = ∞ for all
α < ω1. Then there exist an uncountable subset C of ω1 and ρ : [0,∞) →
[0,∞) such that ρ ≤ ρα for all α ∈ C and limt→∞ ρ(t) =∞.
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Proof. First, note that for all α < ω1, we can find gα ∈ I such that
gα(n) ≤ ρα(n) for all n ∈ N. Then we consider the family (fα)α<ω1 associated
to (gα)α<ω1 through Lemma 3.5. Next, we apply Lemma 3.4 to getM ∈ [N]ω

such that M ⊂a j(fα) for all α < ω1. For n ∈ N, define
Cn = {α < ω1 : M ∩ {n, n+ 1, . . .} ⊂ j(fα)}.

Clearly, there exists n0 ∈ N such that Cn0 is uncountable. We set C = Cn0

and define f = j−1(M ∩ {n0, n0 + 1, . . .}) ∈ I. Then, for all α ∈ C, we have
j(f) ⊂ j(fα) and therefore f ≤ fα. Finally, ρ defined by ρ = 0 on [0, 1) and
ρ = f(n) on [n, n+ 1), for n ∈ N, is the desired map.

Similarly, for expansion moduli, we have:

Proposition 3.7. (MA+¬CH) Let (ωα)α<ω1 be a family of non-decreas-
ing maps from [0,∞) to [0,∞) and such that ωα(0) = 0. Then there exist an
uncountable subset C of ω1 and ω : [0,∞)→ [0,∞) such that ω ≥ ωα for all
α ∈ C.

Proof. The argument is very similar. Let us just describe the few adjust-
ments. We now consider the class J of all functions f : N∪{0} → N∪{0} such
that f(0) = 0 and f(n+ 1) ≥ f(n) + 1 for all n ≥ 0. The map k : J → [N]ω

defined by k(f) = k(N) is a bijection. Then, for every α < ω1, there exists
gα ∈ J such that gα(n) ≥ ωα(n) for all n ∈ N. Playing the same game as be-
fore, but with the sets k(gα) instead of j(gα), we obtain (under MA+¬CH)
the existence of an uncountable subset C of ω1 and of g ∈ J such that
g ≥ gα for all α ∈ C. The proof is then concluded by setting ω(0) = 0 and
ω = g(n) on (n− 1, n] for n ∈ N.

From Propositions 3.6 and 3.7, we deduce immediately:

Proposition 3.8. (MA+¬CH) If (Xα, dα)α<ω1 is a collection of metric
spaces such that for all α < ω1, Xα coarsely embeds into a metric space
(M,d), then there exists an uncountable subset C of ω1 such that (Xα, dα)α∈C
equi-coarsely embeds into (M,d).

Proof of Theorem B. The argument goes along essentially the same lines
as the proof of Theorem A, modulo the fact that we have to work with vines
defined in terms of the compression and expansion moduli. Let us outline
the main steps and the place where MA + ¬CH is used.

Let ρ, ω be two elements of the class F of all non-decreasing functions
from [0,∞) to [0,∞) that are vanishing at 0 and tending to ∞ at ∞. Let
also (M,d) be a complete separable metric space. Then we define

V(M,Z, ρ, ω) =

(xf )f∈[Z,G] :

G ∈ [N]<ω, xf ∈M for f ∈ [E, G],

and for f, g ∈ [E, G] we have
ρ(‖f − g‖∞) ≤ d(xf , xg) ≤ ω(‖f − g‖∞)

 ,
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and the coarse c0-index of M as

Icoarse
c0 (M) = sup{o(V(M,Z, ρ, ω)) : ρ, ω ∈ F}.

The next step is to prove the analogue of Proposition 3.3: c0 coarsely
embeds into M if and only if Icoarse

c0 (M) ≥ ω1. For the non-trivial impli-
cation, the pigeonhole argument yielding a uniform constant C is replaced
by Propositions 3.6 and 3.7 to prove the existence of ρ, ω ∈ F such that
V(M,Z, ρ, ω) is not well founded (this is where (MA+¬CH) is used). Then
it implies the existence of a coarse embedding of the integer grid of c0 (and
therefore of c0) into M .

Finally, assume that a separable metric space (M,d), that we may assume
to be complete, contains a coarse copy of all spaces (Sα(Z), d∞) for α < ω1.
As in the proof of Theorem A, this implies that Icoarse

c0 (M) ≥ ω1.

Remark 3.9. We recall that a metric space X coarse-Lipschitz embeds
into a metric space Y if X (ρ, ω)-embeds into Y where, for all t ≥ 0, ρ(t) =
At−B and ω(t) = Ct+D for some constants A,B,C,D > 0. It follows clearly
from the tools and arguments developed in the last two subsections that
we have, without assuming any further set-theoretic axioms, the following
statement: a separable metric space containing coarse-Lipschitz all the spaces
(Sα(Z), d∞), for α < ω1, must contain a coarse-Lipschitz copy of c0.

It is natural to wonder if Theorem B holds without MA + ¬CH.

Problem 3.10. If a separable metric space contains a coarse copy of
the metric space (Sα(Z), d∞) for every countable ordinal α, is it coarsely
universal for the class of all separable metric spaces?

We discuss some positive partial results in Section 4.

3.3. Coarse universality via strong boundedness. While we do
not know how to prove Theorem B without further set axioms, we can prove
Theorem D. Recall that the canonical embedding of (Sα(Z), d∞) in T ∗α is a
4-Lipschitz isomorphism onto its image, and thus the stronger assumption
that the metric space contains every separable reflexive asymptotic-c0 space,
rather than merely the collection (Sα(Z))α<ω1 of metric spaces, allows us to
take advantage of the deep theory of strongly bounded classes of Banach
spaces introduced by Argyros and Dodos [AD07]. A class C of separable
Banach spaces is said to be strongly bounded if for every analytic subset A
of C, there exists Y ∈ C that contains isomorphic copies of every X ∈ A.
Recall also that an infinite-dimensional Banach spaceX is said to beminimal
if X isomorphically embeds into every infinite-dimensional subspace of itself
(e.g. the classical sequence space c0 is minimal). We will need the following
deep result of Dodos [Dod09, Theorem 7].
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Theorem 3.11. For any infinite-dimensional minimal Banach space Z
not containing `1, the class

NCZ := {Y ∈ SB : Z does not linearly embed into Y }

is strongly bounded.

Proof of Theorem D. Denote by R the set of all reflexive elements of SB
and by Asc0 the set of all elements of SB that are asymptotic-c0. Let now
M be a separable metric space such that every space in R ∩ Asc0 coarsely
embeds into M . If we denote CEM = {Y ∈ SB : Y coarsely embeds into M},
we have R ∩ Asc0 ⊂ CEM . It is easily checked that CEM is analytic (see
[Bra19, proof of Theorem 1.7 in Section 7.1]). Recall that we denoted by
NCc0 the set of all Y ∈ SB such that c0 does not linearly embed into Y . If
we assume, aiming for a contradiction, that CEM ⊂ NCc0 , then since CEM
is an analytic subset of NCc0 , which is strongly bounded by Theorem 3.11,
there would exist X ∈ NCc0 such that any element of CEM , and therefore
any element of R∩Asc0 , linearly embeds into X. This is actually impossible
since Bourgain’s c0-index of the separable, reflexive and asymptotic-c0 space
T ∗α tends to ω1 as α tends to ω1 (see [OSZ07]). Therefore Bourgain’s c0-index
of X would be uncountable and X would contain an isomorphic copy of c0;
a contradiction with X ∈ NCc0 . So we can now deduce the existence of
Y ∈ CEM such that c0 linearly embeds into Y , and hence by composition
c0 coarsely embeds into M . Since by a theorem of Aharoni [Aha74], every
separable metric space bi-Lipschitzly embeds into c0, every separable metric
space coarsely embeds into M .

Remarks 3.12. The same technique was used by B. de Mendonça Braga
[Bra19] to prove that a Banach space which is coarsely universal for all
reflexive separable Banach spaces is coarsely universal for all separable metric
spaces.

The reader will easily adapt the above proof to show that a Banach space
that is Lipschitz universal for R∩Asc0 is Lipschitz universal for all separable
metric spaces. But this was also a consequence of Theorem A.

4. Coarse universality and barycentric gluing. The motivation for
this section is to provide a somewhat weaker statement than Theorem B, that
does not require MA+¬CH. We will show that containing coarse copies of the
Schreier metric spaces (Sα(Z), d∞) for every α < ω1 is a sufficient condition
to equi-coarsely contain every separable bounded metric space. The reason
for the boundedness restriction is because without MA+¬CH we only have
the following equi-regularization principle (which is weaker than the equi-
regularization principle obtained under MA + ¬CH).
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Lemma 4.1. Let C0 be an uncountable subset of ω1. Assume that for
each α ∈ C0, we have increasing functions ρα, ωα : [0,∞)→ [0,∞) such that
ρα(t) ≤ ωα(t) for all t ∈ [0,∞) and limt→∞ ρα(t) = ∞. Then there exist
increasing functions ρ, ω : [0,∞) → [0,∞) and a decreasing nested sequence
(Ck)k∈N of uncountable subsets of ω1 such that

(i) ρ(t) ≤ ω(t) for all t ∈ [0,∞), and limt→∞ ρ(t) =∞;
(ii) for all k ∈ N, α ∈ Ck, 0 ≤ t ≤ k we have ρ(t) ≤ ρα(t) and ωα(t) ≤ ω(t).

Proof. For all k ∈ N and α ∈ C0 define

s(α, k) = min{t ∈ N : ρα(t) ≥ k}, t(α, k) = max{t ∈ N : ωα(t) ≤ k}
and also define

M(α, k) = min{n ∈ N : s(α, k) < s(α, n)},
N(α, k) = min{n ∈ N : t(α, k) < t(α, n)}.

As, for each fixed k ∈ N, the sets {s(α, k) : α ∈ C0}, {t(α, k) : α ∈ C0},
{M(α, k) : α ∈ C0}, {N(α, k) : α ∈ C0} are all countable we may find un-
countable sets C0 ⊃ C1 ⊃ C2 ⊃ · · · such that for each k ∈ N and α, β ∈ Ck
we have s(α, k) = s(β, k) = sk, t(α, k) = t(β, k) = tk, M(α, k) = M(β, k) =
Mk, and N(α, k) = N(βk) = Nk. Clearly, sk ≤ sk+1 and tk ≤ tk+1 for all
k ∈ N. We also observe that limk sk = limk tk =∞. Indeed, it is easy to see
that sk < sMk

and tk < tNk . Pick k1 < k2 < · · · so that (skj )j and (tkj )j are
both strictly increasing.

We now define ρ, ω̃ : [0,∞)→ [0,∞) as follows:

ρ(t) =

{
0 if 0 ≤ t < sk1 ,

kj if skj ≤ t < skj+1
, j ∈ N,

ω̃(t) =

{
k1 if 0 ≤ t ≤ tk1 ,
kj if tkj−1

< t ≤ tkj , j ≥ 2

and ω(t) = ρ(t) ∨ ω̃(t). The conclusion follows straightforwardly after ob-
serving that skj , tkj ≥ j for all j ∈ N.

Using the concept of vines introduced in Section 3.2 in the coarse context
we now deduce the following.

Theorem 4.2. Let (M,d) be a separable metric space and assume that
for every α < ω1 the metric space (Sα(Z), d∞) coarsely embeds into (M,d).
Then the class of all separable bounded metric spaces equi-coarsely embeds
into (M,d). More precisely, there exist m0 ∈M and equi-coarse embeddings
Fn : Bn = {x ∈ c0 : ‖x‖∞ ≤ n} → (M,d) such that for all n ∈ N we have
Fn(0) = m0.

Proof. Let M̃ be a countable dense subset of M . Since each (Sα(Z), d∞)
is a uniformly discrete metric space, it follows from a straightforward per-
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turbation argument that every (Sα(Z), d∞) coarsely embeds into (M̃, d) via
a map fα with compression and expansion moduli ρα, ωα. By passing to an
uncountable set C0 ⊂ ω1 we can assume that there exists m0 ∈ M̃ such that
for all α ∈ C0 we have fα(0) = m0. For each α ∈ C0 and n ∈ N denote
Bα,n = {x ∈ Sα(Z) : ‖x‖∞ ≤ n} and Fα,n = fα|Bα,n : (Bα,n, d∞)→ M̃ .

Take the functions ρ, ω and the sets C0 ⊃ C1 ⊃ C2 ⊃ · · · given by Lem-
ma 4.1. By the conclusion of that lemma, it follows that for every β ∈ C2n the
function fβ : (Sβ(Z), d∞)→ M̃ is a (ρ, ω)-coarse embedding on every subset
of (Sβ(Z), d∞) with diameter at most 2n, and also because β ∈ C0 we have
fβ(0) = m0. In particular, for all n ∈ N and α ∈ C2n, Fα,n : (Bα,n, d∞)→ M̃
is a (ρ, ω)-embedding with Fα,n(0) = m0.

Next, we will use Proposition 3.2 to show that for all N ∈ N there
exists a function FN : BN → M that is a (ρ, ω)-coarse embedding with the
additional property that FN (0) = m0. More precisely, we will define this FN
on the subset B(N,Z) of BN consisting of all integer-valued sequences in
the set BN . Because this is a 1-net of BN and N is arbitrary, we may then
deduce the desired conclusion. We denote IN = [−N,N ] ∩ Z and consider
the closed IN -vine defined by

V :=

(xf )f∈[IN ,G] :

G ∈ [N]<ω, xf ∈M for f ∈ [IN , G],

x0 = m0, and for f, g ∈ [IN , G] we have
ρ(‖f − g‖∞) ≤ d(xf , xg) ≤ ω(‖f − g‖∞)

 .

Because for each α ∈ C2N the space (Bα,N , d∞) (ρ, ω)-embeds into (M,d)
via Fα,N , which maps 0 to m0, it follows that o(V) ≥ ω1. Because we are
only considering coarse embeddings, we may assume that (M,d) is complete.
By Proposition 3.2 the IN -vine V must be ill founded, i.e., there exists a
strictly increasing sequence (km)m of integers and for every finitely supported
f : {ki : i ∈ N} → IN there exists xf ∈M such that χm = (xf )f∈[IN ,{k1,...,km}]
is in V for all m ∈ N. By the definition of V it follows that the map from
B(N,Z) to (M,d) given by

∑∞
i=1miei 7→ xf , where f : {ki : i ∈ N} → In is

the function with f(ki) = mi, is a (ρ, ω)-embedding.

The last result of this section is a variation of the barycentric gluing
technique, which has an interest on its own. With this gluing technique we
can show that if we can equi-coarsely embed the bounded subsets of c0 (or
equivalently every separable bounded metric spaces) into a metric space M
then M4 is coarsely universal. In particular, an immediate consequence of
Theorem 4.2 and of Theorem 4.4, below, is

Corollary 4.3. Let (M,d) be a separable metric space. If for every
α < ω1 the metric space (Sα(Z), d∞) coarsely embeds into (M,d), then c0

coarsely embeds into M4.
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The original barycentric gluing technique (see [Bau07]) creates a coherent
embedding of a metric space into a Banach space, by pasting embeddings
of balls of growing radii together. Here, the process is reversed in the sense
that we will paste balls of Banach spaces into metric spaces, but our proof
has the caveat that it requires the gluing into M4, rather than into M . Our
general result is the following.

Theorem 4.4. Let (X, ‖ · ‖) be a Banach space and (M,d) be a metric
space. Assume that there exist increasing functions ρ, ω : [0,∞)→ [0,∞) that
are tending to ∞ at ∞, m0 ∈ M , and for all n ∈ N, maps hn : nBX → M
such that hn(0) = m0, and for all x, y ∈ nBX ,
(4.1) ρ(‖x− y‖) ≤ d(hn(x), hn(y)) ≤ ω(‖x− y‖).
We equip M4 with the `∞-metric associated with d, which we still denote d.
Then there is a (ρ̃, ω̃)-embedding of X into M4 where ρ̃(t) = 1

2ρ(t/2) and
ω̃(t) = 8ω(3t) for all 0 < t <∞.

Proof. We choose inductively r0 = 0 < r1 < r2 < · · · in N so that

(4.2) ρ(rn+1) > 2ω(rn) and rn+1 ≥ 2rn.

For n ∈ N we define the following map αn : [0,∞) → [0, 1] (set r−4 =
r−3 = r−2 = r−1 = r0 = 0):

αn(t) =



0 if t < rn−4 or t > rn,
t− rn−4

rn−3 − rn−4
if rn−4 ≤ t < rn−3,

1 if rn−3 ≤ t ≤ rn−1,
rn − t

rn − rn−1
if rn−1 < t ≤ rn.

The support of αn is (rn−4, rn), and {t : αn(t) = 1} = [rn−3, rn−1].
For i ∈ {0, 1, 2, 3} we define F (i) : X → M as follows: For x ∈ X we

choose l ∈ Z+ so that r4(l−1)+i ≤ ‖x‖ < r4l+i, and put

F (i)(x) = hr4l+i(αr4l+i(‖x‖)x).

Then we define the map

F : X →M4, x 7→ (F (0)(x), F (1)(x), F (2)(x), F (3)(x)).

We will show that F satisfies

(4.3)
1

2
ρ

(
‖x− y‖

2

)
≤ d(F (x), F (y)) ≤ 3ω(3‖x− y‖).

Firstly, we estimate the compression function. Let x, y ∈ X, and as-
sume without loss of generality that ‖x‖ ≤ ‖y‖. Choose l ∈ N0 and i ∈
{0, 1, 2, 3} so that r4l+i−2 ≤ ‖y‖ ≤ r4l+i−1. It is sufficient to show that
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d(F (i)(y), F (i)(x)) ≥ ρ̃(‖x − y‖). We first note that α4l+i(y) = 1 and thus
F (i)(y) = hr4l+i(y). We consider two cases.

Case 1: r4l+i−3 ≤ ‖x‖, thus α4l+i(x) = 1 and F (i)(x) = hr4l+i(x). It
follows that

d(F (i)(x), F (i)(y)) = d((hr4l+i(x), hr4l+i(y)) ≥ ρ(‖x− y‖).

Case 2: ‖x‖ < r4l+i−3. Thus, for some m ≤ l,

d(F (i)(x), F (i)(y)) ≥ d(F (i)(y),m0)− d(F (i)(x),m0)

= d(hr4l+i(y), hr4l+i(0))

− d
(
hr4m+i(α4m+i(‖x‖)x), hr4m+i(0)

)
≥ ρ(‖y‖)− ω(‖x‖)

≥ 1

2
ρ(‖y‖) +

1

2
ρ(r4l+i−2)− ω(r4l+i−3)

≥ 1

2
ρ(‖y‖) ≥ 1

2
ρ

(
‖x− y‖

2

)
.

Secondly, we estimate the expansion function. We fix i ∈ {0, 1, 2, 3} and
consider three cases.

Case 1: For some n ∈ N we have rn−1 ≤ ‖x‖ ≤ ‖y‖ ≤ rn.
If n = 4l+ i− 1 or n = 4l+ i− 2, then α4l+i(‖y‖) = α4l+i(‖x‖) = 1, and

therefore

d(F (i)(x), F (i)(y)) = d(hr4l+i(x), hr4l+i(y)) ≤ ω(‖x− y‖).

If n = 4l + i− 3 or n = 4l + i, then

|α4l+i(‖x‖)− α4l+i(‖y‖)| =
∣∣∣∣‖x‖ − ‖y‖rn − rn−1

∣∣∣∣ ≤ 2

rn
‖x− y‖,

and therefore

‖α4l+i(‖x‖)x− α4l+i(‖y‖)y‖ ≤ α4l+i(‖x‖)‖x− y‖
+ ‖y‖ |α4l+i(‖x‖)− α4l+i(‖y‖)|

≤ 3‖x− y‖,
which implies that

d(F (i)(x), F (i)(y)) = d(hr4l+i(α4l+i(‖x‖)x), hr4l+i(α4l+i(‖y‖)y))

≤ ω(3‖x− y‖).

From now on we assume that there are m,n ∈ N, m < n, such that
rm ≤ ‖x‖ ≤ rm+1 ≤ rn ≤ ‖y‖ ≤ rn+1. For j = 1, . . . , n − m, let zj be
the element on the segment [x, y] (i.e., points of the form x+ t(y − x) with
0 ≤ t ≤ 1) such that ‖zj‖ = rm+j , and put z0 = x and zn−m+1 = y.
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Case 2: n−m ≤ 3. We have

d(F (i)(x), F (i)(y)) ≤
n−m+1∑
i=1

d(F (i)(zi−1), F (i)(zi))

≤
n−m+1∑
i=1

ω(3‖zi−1 − zi‖) ≤ 4ω(3‖x− y‖).

Case 3: n−m ≥ 4. It then follows from Case 2 that

d(F (i)(x), F (i)(y)) ≤ d(F (i)(x),m0) + d(F (i)(y),m0)

= d(F (i)(x), F (i)(zj1)) + d(F (i)(y), F (i)(zj2))

≤ 4ω(3‖x− z1‖) + 4ω(3‖y − z2‖) ≤ 8ω(3‖x− y‖).

5. Universality properties of interlacing graphs. In [Kal07], Kal-
ton showed that a Banach space X that is coarsely universal for the class of
all separable metric spaces, or equivalently that coarsely contains c0, cannot
have separable iterated duals, i.e., X(r) is non-separable from some r ≥ 2
on. Kalton’s argument is based on the metric properties of the interlacing
graphs. As we will see in the next section, these graphs introduced by Kalton
have some remarkable universality properties.

5.1. Almost isometric universality of the interlacing graphs. We
define a slightly larger class of interlacing graphs than the ones introduced
by Kalton. The set of vertices is [N]<ω, the set of finite subsets of N, and we
declare that two vertices A = {a1, . . . , an} and B = {b1, . . . , bm} in [N]<ω

are adjacent if and only if a 6= b and one of the following interlacing relations
holds:

(i) n = m+ 1 and ai ≤ bi ≤ ai+1 for 1 ≤ i ≤ m,
(ii) m = n+ 1 and bi ≤ ai ≤ bi+1 for 1 ≤ i ≤ n,
(iii) n = m, ai ≤ bi ≤ ai+1 for 1 ≤ i < n, and an ≤ bn, or
(iv) n = m, bi ≤ ai ≤ bi+1 for 1 ≤ i < n, and bn ≤ an.
We also connect the empty set with all singletons. We refer to this graph as
the universal interlacing graph, and we denote by ([N]<ω, dI) the universal
interlacing graph equipped with its canonical graph metric. Kalton’s inter-
lacing graphs are defined in the same way except that only vertices with the
same length were considered. More precisely, Kalton’s interlacing graph of
diameter k is the space ([N]k, d

(k)
I ), where the graph metric only refers to the

interlacing relations (iii) or (iv) in this case. For A,B ∈ [N]k, although it is
obvious that d(k)

I (A,B) = 1 if and only if dI(A,B) = 1, it is not immediately
clear that on [N]k the metrics d(k)

I and dI coincide. As we will see later, this
is indeed the case.
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The universality properties of the interlacing graphs stem from the fact
that the interlacing metric admits an interpretation in terms of the summing
norm on c0. For A,B in [N]<ω define the summing distance

dsum(A,B) =
∥∥∥∑
i∈A

si −
∑
i∈B

si

∥∥∥
sum

where (si)i denotes the summing basis of c0, endowed with the usual bi-
monotone version of the summing norm, i.e.

(5.1)
∥∥∥∑

i

aisi

∥∥∥
sum

= sup
{∣∣∣ m∑

i=k

ai

∣∣∣ : k,m ∈ N, k ≤ m
}
.

In (5.1) one only needs to consider intervals at whose boundaries there are
sign-changes of the ai’s. More precisely for a sequence (ai) in c00 let 0 =
m0 < m1 < · · · < ms be chosen in N so that for all i ≤ s the signs of aj on
j ∈ [mi−1 + 1,mi] are the same (i.e., all non-negative or all non-positive).
Then

(5.2)
∥∥∥∑

i

aisi

∥∥∥
sum

= sup
{∣∣∣ l∑

i=k

mi∑
mi−1+1

aj

∣∣∣ : 1 ≤ k ≤ l ≤ s
}
.

Thus for A,B ⊂ [N]<ω we write A 4 B in increasing order as A 4 B =
{x1, . . . , xn} and note that

(5.3) dsum(A,B) = max{|#(A ∩ E)−#(B ∩ E)| : E is an interval of N}
= max{|#(A ∩ [xi, xj ])−#(B ∩ [xi, xj ])| : 1 ≤ i ≤ j ≤ n}.

The above forms of the metric dsum will be used more often. We first show
that the interlacing metric and the summing distance coincide. For fixed k,
the coincidence of d(k)

I (A,B) with

max{|#(A ∩ E)−#(B ∩ E)| : E is an interval of N}
was already shown in [LPP20], where it was afterwards used in connection
with the canonical norm of c0 instead of ‖ · ‖sum.

For n ∈ N, A = {a1, . . . , an} ∈ N<ω1 , with a1 < · · · < an, we call
A′ = {a′1, . . . , a′n}, with a′1 < . . . < a′n a shift to the left of A if A′ 6= A and
a1 ≤ a′1 ≤ a2 ≤ a′2 ≤ · · · ≤ an ≤ a′n. We note that in this case

(5.4) dI(A,A
′) = dI(A,A

′ \ {a′n}) = dsum(A,A′) = dsum(A,A′ \ {a′n}).
For another set B ∈ [N]<ω we say that a left shift A′ of A is a shift

towards B if A′ \A ⊂ B \A.
Theorem 5.1. For A,B ∈ [N]<ω we have dsum(A,B) = dI(A,B). More-

over if k = #A = #B then there is a path of length dI(A,B) from A to B in
the interlacing graph which stays in [N]k. Thus the restriction of dI to [N]k

is d(k)
I .
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Proof. We prove our statement by induction for all m ∈ N∪{0}, and all
A,B ∈ [N]<ω with m = dsum(A,B).

If m = 0 and dsum(A,B) = 0 and thus A = B, our claim is trivial.
If m = 1 and dsum(A,B) = 1, we will show that dI(A,B) = 1. Write
A = {a1, . . . , an}, B = {b1, . . . , bm} and assume, without loss of general-
ity, that min(A 4 B) = ai0 ∈ A. Note that |n − m| = |#A − #B| ≤
dsum(A,B) = 1 and by the assumption min(A 4 B) = ai0 ∈ A we have
1 ≤ #A∩ [ai0 ,max(A∪B)]−#B∩ [ai0 ,max(A∪B)] = (n−i0 +1)−(m−i0),
i.e., m ≤ n ≤ m + 1. Next, observe that for 1 ≤ i ≤ min(m,n) we
have ai ≤ bi. Otherwise, set j0 = min{1 ≤ i ≤ min(m,n) : ai > bi}
and note that ai0 < bi0 and thus i0 < j0. If we set E = [bi0 , bj0 ] then
dsum(A,B) = 1 ≥ #B ∩E −#A∩E = (j0 − i0 + 1)− (j0 − i0 − 1) = 2. We
also observe that for 1 ≤ i ≤ min(m,n− 1) we have bi ≤ ai+1. If this is not
the case, set s0 = min{1 ≤ i ≤ min(m,n − 1) : bi > ai+1} and observe that
if E = [a1, as0+1] then #A ∩ E = s0 + 1 whereas #B ∩ E = s0 − 1, which
is absurd. Finally we distinguish the cases n = m and n = m+ 1. If n = m
then we have demonstrated that (iii) of the definition of adjacency holds. If
n = m+ 1 then we have demonstrated that (i) holds.

Assume now that for some m ≥ 2 ∈ N and all A,B ∈ [N]<ω with
dsum(A,B) < m it follows that dsum(A,B) = dI(A,B), and that dI(A,B) =

d
(k)
I (A,B) if k = #A = #B.
Let A,B ∈ [N]<ω with dsum(A,B) = m. If A ⊂ B, or B ⊂ A, and we

assume without loss of generality that B ( A, we put A′ = A \ {a}, where
a ∈ A \B. Then dsum(A,A′) = dI(A,A

′) = 1 and dsum(A′, B) = m− 1, and
we deduce our claim from the induction hypothesis.

Assuming that A 6⊂ B and B 6⊂ A we write A4B in increasing order as
A4B = {x1, . . . , xl}. It follows that

m = dsum(A,B) = max
i≤j
|#(A ∩ [xi, xj ])−#(B ∩ [xi, xj ])|.

Without loss of generality we can assume that x1 ∈ A \B. There is a t ∈ N
and numbers 1 ≤ i1 < i2 < · · · < it < l such that

{is : s = 1, . . . , t} =
{
i ∈ {1, . . . , l − 1} : xi ∈ A and xi+1 ∈ B

}
.

We now define A′ ∈ [N]ω for which dI(A,A
′) = dsum(A,A′) = 1 and

dsum(A′, B) ≤ m− 1, and consider the following two cases:

Case 1: For all 1 ≤ j ≤ l we have

#(A ∩ [xj , xl])−#(B ∩ [xj , xl]) < m.

Then we put
A′ = (A \ {xis : s ≤ t}) ∪ {xis+1 : s ≤ t},

which is a left shift of A towards B.
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Case 2: There is a j ≤ l such that #(A∩ [xj , xl])−#(B ∩ [xj , xl]) = m.
It follows that xl ∈ A and we put

A′ = ((A \ {xis : s ≤ t}) ∪ {xis+1 : s ≤ t}) \ {xl}.

We observe that if #A = #B, the second case cannot happen. Indeed,
assume that there is a j ≤ l such that #(A∩ [xj , xl])−#(B ∩ [xj , xl]) = m;
then j > 1 and it follows that

#(B ∩ [x2, xj−1])−#(A ∩ [x2, xj−1])

= #(B \A)−#(B ∩ ({x1} ∪ [xj , xl]))−#(A \B)

−#(A ∩ ({x1} ∪ [xj , xl]))

= #(A ∩ ({x1} ∪ [xj , xl]))−#(B ∩ ({x1} ∪ [xj , xl])) = m+ 1,

which is a contradiction.
Thus, #A′ = #A if #A = #B.
From (5.4) it follows that dI(A,A

′) = dsum(A,A′) = 1. We need to show
that dsum(A′, B) ≤ m − 1, and thus, by the triangle inequality, dsum(A′, B)
= m− 1.

First let i ∈ {1, . . . , l} and define, for i ≤ j ≤ l,
f(j) = #(A′ ∩ [xi, xj ])−#(B ∩ [xi, xj ]).

Observe that f(i) ≤ 1 ≤ m− 1. We claim that for all i < j ≤ l,

(5.5) f(j) ≤ min(#(A ∩ [xi, xj ])−#(B ∩ [xi, xj ]),m− 1).

As A′ \B ⊂ A\B, we have f(j) ≤ #(A∩ [xi, xj ])−#(B∩ [xi, xj ]) for i ≤ j.
Assume that our claim is not true, and let k be the minimum of all j > i

such that
f(j) = 1 + min(#(A ∩ [xi, xj ])−#(B ∩ [xi, xj ]),m− 1).

Since f(k) ≤ f(k − 1) + 1, it follows that #(A′ ∩ [xi, xk−1]) − #(B ∩
[xi, xk−1]) = m−1, and since A′4B ⊂ A4B, it follows that xk ∈ A and thus
#(A∩ [xi, xk−1])−#(B ∩ [xi, xk−1]) = m− 1 (otherwise #(A∩ [xi, xk−1])−
#(B ∩ [xi, xk−1]) = m and so #(A ∩ [xi, xk]) − #(B ∩ [xi, xk]) = m + 1).
Therefore, #(A ∩ [xi, xk])−#(B ∩ [xi, xk]) = m.

Either k < l, then xk+1 ∈ B, and since xk ∈ A, it follows from the de-
finition of A′ that xk 6∈ A′ and thus f(k) = f(k− 1) = m− 1, which contra-
dicts our assumption. Or k = l, and therefore #(A∩ [xi, xl])−#(B∩ [xi, xl])
= m, which implies that xk = xl 6∈ A′, since the second case in the definition
of A′ occurs; it would again follow that f(k) = m− 1, which is once more a
contradiction.

Next we let j = 1, . . . , l, and for i = 1, . . . , j put
g(i) = #(B ∩ [xi, xj ])−#(A′ ∩ [xi, xj ]),
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and claim that g(i) ≤ min(#(B ∩ [xi, xj ]) − #(A ∩ [xi, xj ]),m − 1) for
all i ∈ {1, . . . , l}. Then, since B 4 A′ ⊂ B 4 A, it follows that g(i) ≤
#(B ∩ [xi, xj ])−#(A ∩ [xi, xj ]) for all i ∈ {1, . . . , j}.

Assume our claim is not true and let k be the maximal k < j such that
g(k) = m. So it follows that #(B ∩ [xk, xj ])−#(A∩ [xk, xj ]) = m, and thus
xk ∈ B, and xk−1 ∈ A (note that k 6= 1 since x1 ∈ A). But this means that
xk ∈ A′ and thus #(B ∩ [xk, xj ])−#(A′ ∩ [xk, xj ]) = m− 1, which is again
a contradiction.

We have therefore shown that for all 1 ≤ i < j ≤ l, |#(A′ ∩ [xi, xj ]) −
#(B ∩ [xi, xj ])| ≤ m− 1, which finishes our proof of Theorem 5.1.

The following corollary could of course be also proven directly very easily.

Corollary 5.2. For all k,m ∈ N with k < m, ([N]k, d
(k)
I ) embeds iso-

metrically into ([N]m, d
(m)
I ).

The following quantitative embedding result implies Theorem E.

Theorem 5.3. Let (X, d) be an n-point metric space, and α := α(X) =
diam(X)
sep(X) be its aspect ratio, where diam(X) = sup{dX(x, y) : x, y ∈ X} and

sep(X) = inf{dX(x, y) : x, y ∈ X}. Then for every 0 < ε < 1 and every
integer k ≥ (n + 3/2)(α/ε + diam(X) + 1), (X, d) embeds with distortion
(1 − ε)−1 into ([N]k, d

(k)
I ). In particular, for all ε > 0, (X, d) embeds with

distortion at most 1 + ε into ([N]<ω, dI).

Proof. The proof of the general situation can be reduced to the special
case where (X, d) is a finite metric space with even distances. Assuming that
we have proven the following claim, we can finish the proof of the general
case.

Claim 5.4. Assume that for all x, y ∈ X, d(x, y) is an even integer and
that k is an integer number such that k ≥ 1

2(n + 3/2)(diam(X) + 2). Then
the space (X, d) embeds isometrically into ([N]k, d

(k)
I ).

Indeed, let ε > 0 and choose an integer q such that (sep(X)ε)−1 ≤ q ≤
(sep(X)ε)−1+1, and for each x, y ∈ X define kx,y = max{k ∈ N∪{0} : k/q ≤
d(x, y)}. Define a metric d̃ on X by

d̃(x, y) = min

{∑̀
i=1

kxi,xi−1

q
: xi ∈ X for 0 ≤ i ≤ ` and x = x0, y = y`

}
.

One can check that d̃ is indeed a metric and for all x, y ∈ X we have

(1− ε)d(x, y) ≤ d̃(x, y) ≤ d(x, y),

hence, it suffices to embed the space (X, d̃) with distortion 1 into ([N]k, d
(k)
I )

for an appropriate k. Note that if we denote X̃ = (X, d̃), then diam(X̃) ≤
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diam(X). By Claim 5.4, the space (X, 2qd̃) embeds isometrically into
([N]k, d

(k)
I ) for k ≥ 1

2(n+ 3/2)(2q diam(X) + 2). Recall q ≤ (sep(X)ε)−1 + 1,
which implies 1

2(n+3/2)(2q diam(X)+2) ≤ (n+3/2)(α/ε+diam(X)+1).

Proof of Claim 5.4. We will find an embedding Φ from X into the linear
span of (si)i, endowed with the norm (5.1), such that for each x ∈ X the
vector Φ(x) is of the form

∑
i∈A(x) si with #A(x) ≤ 1

2(n+3/2)(diam(X)+2).
We enumerate X = {x2, . . . , xn+1}. We add one more point x1 to ob-

tain the set X̃ = {x1, x2, . . . , xn+1}. We extend d onto X̃ by setting for
d(x1, x) = d(x, x1) = D, x ∈ X, where D is the minimal even integer
with 2D ≥ diam(X). As the diameter of X is an even integer, we deduce
D ≤ diam(X)/2+1. It is straightforward to verify that the triangle inequal-
ity is still satisfied on X̃. For notational reasons, we add a “ghost” point
xn+1 with the property d(x, xn+1) = 0 for all x ∈ X. We first define a map
Φ0 : X → 〈{si : i ∈ N}〉, the linear span of the si’s, by

Φ0(x) =
1

2

n+1∑
i=1

(d(x, xi)− d(x, xi+1))si.

If we denote by (s∗i )i the sequence of coordinate functionals associated
to (si)i, we observe that for all i ∈ N and x ∈ X, the number s∗i (Φ0(x))
is an integer. We start by showing that Φ0(x) is an isometric embedding. Let
1 ≤ k ≤ m ≤ n+ 1. Then

‖Φ0(x)− Φ0(y)‖ =
1

2

∣∣∣ m∑
i=k

(d(x, xi)− d(x, xi+1 − d(y, xi) + d(y, xi+1))
∣∣∣

=
1

2
|d(x, xm+1)− d(y, xm+1)− d(x, xk) + d(y, xk)|

≤ 1

2
|d(x, xm+1)− d(y, xm+1)|+ 1

2
|d(x, xk)− d(y, xk)|

≤ d(x, y).

For the inverse inequality, let x = xj , y = xj′ and assume without loss of
generality j < j′. Define k = j and m = j′ − 1. Then

‖Φ0(x)− Φ0(y)‖ ≥ 1

2

∣∣∣ m∑
i=k

(d(x, xi)− d(x, xi+1)− d(y, xi) + d(y, xi+1))
∣∣∣

=
1

2
|d(x, xm+1)− d(y, xm+1)− d(x, xk) + d(y, xk)|

=
1

2
|d(x, y)− d(y, y)− d(x, x) + d(y, x)| = d(x, y).

Define

Φ1(x) = Φ0(x) +D

n+1∑
i=1

si.
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Then Φ1 is an isometric embedding of X into 〈{si : i ∈ N}〉 such that for
all i ∈ N and x ∈ X the number s∗i (Φ1(x)) is a non-negative integer. For
k = 1, . . . , n+ 1 define

Nk = max{s∗k(Φ1(x)) : x ∈ X} and Mk =
k∑
j=1

Nj .

Also let M0 = 0. We are ready to define the desired embedding. For x ∈ X
set

Φ(x) =

n+1∑
k=1

∑{ Mk−1<i
≤Mk−1+s∗k(Φ1(x))

} si.
We deduce that Φ(x) is of the form

∑
i∈A(x) si with

#A(x) =
n+1∑
k=1

s∗k(Φ1(x)) =
1

2

n+1∑
k=1

(d(x, xi)− d(x, xi+1)) +D(n+ 1)

=
1

2
(d(x, x1)− d(x, xn+1)) +D(n+ 1) =

1

2
D +D(n+ 1)

=

(
n+

3

2

)
D ≤ 1

2

(
n+

3

2

)
(diam(X) + 2).

Applying (5.2) to mi = Mi, i = 1, . . . , n, we deduce for x, y ∈ X that

‖Φ(x)− Φ(y)‖ = max
{∣∣∣ q∑

i=p

Mi∑
j=Mi−1+1

s∗j (Φ(x)− Φ(y))
∣∣∣ : 1 ≤ p ≤ q ≤ n

}

= max
{ q∑
i=p

s∗i (Φ0(x)− Φ0(y))
}

= d(x, y).

Our conclusion follows therefore from Theorem 5.1 and Corollary 5.2.

5.2. Metric universality and metric elasticity. It is a well known
and long standing open problem whether c0 isomorphically embeds into a
Banach space whenever it bi-Lipschitzly embeds into it. Due to Aharoni’s
theorem this fundamental rigidity problem in non-linear Banach space ge-
ometry can be reformulated as the following universality question.

Problem 5.5. Let X be a Banach space. If X is Lipschitz universal for
the class of separable metric spaces, does X contain an isomorphic copy of c0?

It is possible to answer Problem 5.5 positively for Banach lattices using
Kalton’s work on the interlacing graphs. This fact seems to have been over-
looked and we describe the argument in the ensuing discussion. Recall that
a Banach space Y has Kalton’s property Q if there exists C ∈ (0,∞) such
that for all k ∈ N and every Lipschitz map f from ([N]k, d

(k)
I ) to Y , there
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exists M ∈ [N]ω such that for all m̄, n̄ ∈ [M]k we have
(5.6) ‖f(m̄)− f(n̄)‖Y ≤ C Lip(f).

Kalton showed that reflexive Banach spaces [Kal07, Theorem 4.1] and, more
generally, Banach spaces whose unit ball uniformly embeds into a reflexive
Banach space [Kal07, Corollary 4.3] have property Q. It follows from (5.6)
(and the fact that coarse embeddings f whose domains are graphs must be
ω(1)-Lipschitz) that the sequence of interlacing graphs cannot equi-coarsely
embed into a Banach space with property Q. Therefore if a Banach space X
equi-coarsely contains the interlacing graphs, it must fail property Q. By
[Kal07, Corollary 4.3], the unit ball of X does not uniformly embed into a
reflexive Banach space. But Kalton also proved [Kal07, Theorem 3.8] that for
a separable Banach lattice X, BX uniformly embeds into a reflexive Banach
space if and only if X does not contain any subspace isomorphic to c0. Thus,
it follows from the above discussion that:

Theorem 5.6 ([Kal07]). If X is a separable Banach lattice and if
([N]k, dI)k equi-coarsely embeds into X, then X contains an isomorphic copy
of c0.

The following statement is an immediate consequence of Theorem 5.6.
Corollary 5.7. If a separable Banach lattice X is coarsely universal for

the class of separable metric spaces, thenX contains an isomorphic copy of c0.

Thus, Problem 5.5 (as well as its coarse analogue) has a positive solution
for Banach lattices. It is worth pointing out that the coarse (resp. uniform)
analogue of Problem 5.5 does not hold in general since, using the theory of
Hölder free spaces, it is proven in [Kal04] that c0 coarsely (resp. uniformly)
embeds into a Schur space. Recall that a Banach space has the Schur property
if every weakly null sequence converges to 0 in the norm topology, and hence
a Schur space cannot contain any isomorphic copy of c0.

Remark 5.8. The Lipschitz version of Corollary 5.7 can be proven for
a Banach space with an unconditional basis using classical linear and non-
linear Banach space theory. Indeed, for Banach spaces with an unconditional
basis the following dichotomy holds: either the unconditional basis is not
boundedly complete, and by a result of James [Jam50], X will contain an
isomorphic copy of c0, or the unconditional basis is boundedly complete and
hence X will be isomorphic to a dual space and thus X will have the Radon–
Nikodým property. Note that the two possibilities are mutually exclusive. In
the first situation the conclusion of Corollary 5.7 already holds, and in the
second situation we can use classical differentiability theory and obtain a
contradiction. A similar dichotomy argument fails for Banach lattices since
L1 is a Banach lattice that does not linearly contain c0 and yet L1 does not
have the Radon–Nikodým property.
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Theorem 5.6 also has an application to metric analogues of the linear
notion of elasticity. In 1976 Schäffer raised the problem whether the isomor-
phism class of every infinite-dimensional Banach space X is unbounded in
the sense that D(X) := sup{dBM(Y,Z) : Y, Z are isomorphic to X} = ∞
where dBM denotes the Banach–Mazur distance (1). Johnson and Odell in-
troduced the notion of elasticity for their solution of Schäffer’s problem for
separable Banach spaces.

Definition 5.9 ([JO05]). Let K ∈ [1,∞). A Banach space Y is K-
elastic provided that if a Banach space X isomorphically embeds into Y
then X must be K-isomorphically embeddable into Y , and Y is elastic if it
is K-elastic for some K.

The connection with Schäffer’s problem comes from the observation that
if D(X) <∞ then X as well as all isomorphic copies of X are D(X)-elastic.
Elasticity is intimately connected with universality. First of all, it is immedi-
ate that every Banach space is crudely finitely representable into any elastic
Banach space, in particular every elastic Banach space has trivial cotype.
Second of all, a consequence of Banach–Mazur embedding theorem is that
C[0, 1] is 1-elastic. Moreover, a key step in [JO05] is the following theorem.

Theorem 5.10 ([JO05, Theorem 7]). LetX be a separable infinite-dimen-
sional Banach space. If X is elastic then c0 isomorphically embeds into X.

The conjecture from [JO05] that a separable elastic Banach space must
contain an isomorphic copy of C[0, 1] was recently solved positively by Als-
pach and Sarı [AS16].

We now discuss a metric analogue of Theorem 5.10. According to Johnson
and Odell a Banach space Y is said to be Lipschitz K-elastic provided that
if a Banach space is isomorphic to Y then X must bi-Lipschitzly embed
into Y with distortion at most K. The definition by Johnson and Odell
of Lipschitz elasticity is motivated by the fact that a Banach space X is
K-elastic if and only if every isomorphic copy of X is K-isomorphic to a
subspace of X (the proof uses a Hahn–Banach extension argument that
goes back to Pełczyński [Peł60]). It was observed in [JO05] that it follows
from Aharoni’s embedding theorem and James’ distortion theorem that there
exists K ≥ 1 such that every Banach space that contains an isomorphic copy
of c0 must be Lipschitz K-elastic. The constant K is related to the optimal
distortion in Aharoni’s embedding and can be taken to be 2 + ε for every
ε > 0 due to [KL08]. Motivated by Definition 5.9 the following definition is
another metric analogue of elasticity.

(1) This widely used terminology can be misleading since log(dBM) (and not dBM) is
a semimetric.
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Definition 5.11. Let K ∈ [1,∞). A metric space Y is metric K-elastic
provided that if a metric space X bi-Lipschitzly embeds into Y then X must
be bi-Lipschitzly embeddable into Y with distortion at most K, and Y is
metric elastic if it is metric K-elastic for some K.

It is immediate that a Banach space that is metric K-elastic (as a metric
space) is Lipschitz K-elastic. With this stronger non-linear notion of elas-
ticity we obtain the following theorem, which contains a strong non-linear
analogue of Theorem 5.10 in the context of Banach lattices.

Theorem 5.12. Let X be a separable infinite-dimensional Banach lattice.
The following assertions are equivalent:

(1) c0 isomorphically embeds into X.
(2) c0 bi-Lipschitzly embeds into X.
(3) c0 coarsely embeds into X.
(4) X is metric elastic.
(5) ([N]k, dI)k∈N equi-bi-Lipschitzly embeds into X.
(6) ([N]k, dI)k∈N equi-coarsely embeds into X.

Proof. (1)⇒(2)⇒(3) is trivial. (3)⇒(1) is Corollary 5.7. (2)⇒(4) fol-
lows from Aharoni’s embedding theorem and the fact that separability is
a Lipschitz invariant. For (4)⇒(5), observe that an infinite-dimensional Ba-
nach space X has a 1-separated sequence of unit vectors, and thus for all
k ∈ N, the k-dimensional interlacing graph ([N]k, dI) (which is countable,
1-separated, and has diameter k) bi-Lipschitzly embeds into X with distor-
tion at most k. Since X is metric K-elastic for some K ≥ 1, it follows that
supk∈N cX(([N]k, dI)) ≤ K. For Banach spaces, (5)⇒(6) always holds. An
appeal to Corollary 5.6 gives the remaining implication.

5.3. Separating interlacing graphs in Banach spaces with non-
separable biduals. The following concentration result for interlacing
graphs was shown by Kalton [Kal07].

Theorem 5.13 ([Kal07, Theorem 3.5]). Let k ∈ N and Y be a Banach
space such that Y (2k), the iterated dual of order 2k of Y , is separable. Assume
that (gi)i∈I is an uncountable family of 1-Lipschitz maps from ([N]k, d

(k)
I )

to Y . Then there exist i 6= j ∈ I and M ∈ [N]ω such that for all n̄ ∈ [M]k we
have

‖gi(n̄)− gj(n̄)‖ ≤ 3.

Vaguely speaking, it follows from Theorem 5.13 that if a Banach space X
contains uncountably many well separated 1-Lipschitz images of the inter-
lacing graphs and if X coarsely embeds into a Banach space Y , then Y
cannot have all its iterated duals separable. This idea was devised by Kalton
in [Kal07] to show that if c0 coarsely embeds into a Banach space Y , then
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one of the iterated duals of Y is non-separable (in particular, Y cannot be
reflexive). It was adapted in [LPP20] to show that the same conclusion holds
if the James tree space JT or its predual coarsely embeds into Y . In these
proofs the non-separability of the bidual of the embedded space plays an
important role. However, since `1 coarsely embeds into `2, this is not a suffi-
cient condition. We will prove that a certain presence of `1 in the embedded
space is essentially the only obstruction.

Theorem 5.14 (Theorem F). Let X be a separable Banach space with
non-separable bidual X∗∗, `1 6⊂ X, and such that no spreading model gener-
ated by a normalized weakly null sequence in X is equivalent to the `1-unit
vector basis. Assume that X coarsely embeds into a Banach space Y . Then
there exists k ∈ N such that Y (2k) is non-separable.

Proof. We start with the construction of our well separated 1-Lipschitz
maps from ([N]k, d

(k)
I ) to X. Since X is separable and X∗∗ is not, using

the Riesz lemma and an easy transfinite induction, we can build (x∗∗α )α<ω1

in SX∗∗ such that
∀α < ω1, d(x∗∗α , sp(X ∪ {x∗∗β : β < α})) > 3/4.

Fix now α < ω1. Since `1 6⊂ X, it follows from a result by Odell and
Rosenthal [OR75, equivalence of (1)–(5) on p. 376] that for each α < ω1

there is a sequence (xα,n)∞n=1 in SX which converges weak∗ in X∗∗ to x∗∗α . In
particular, the sequence (xα,n)∞n=1 is weakly Cauchy. Since d(x∗∗α , X) > 3/4,
we may as well assume, after extracting a subsequence, that ‖xα,n − xα,m‖
> 3/4, for all n 6= m.

After passing to a further subsequence we can also assume that (xα,n)∞n=1

has a spreading model. But this means that all the sequences of the form
(xα,n2j − xα,n2j−1)∞j=1 ⊂ 2BX , with (nj)

∞
j=1 an increasing sequence in N,

have the same spreading model (eαj )∞j=1. Define now λαk = ‖
∑k

j=1 e
α
j ‖. Since

spreading models generated by weakly null sequences are 1-suppression un-
conditional, we see that for any α < ω1, the sequence (λαk )k is non-decreasing.
It also follows from our assumptions on X and from the fact that (xα,m −
xα,n)n6=m is seminormalized that

∀α < ω1, lim
k→∞

k

λαk
=∞.

For fixed α < ω1 and k ∈ N, we can apply Ramsey’s theorem and, after
passing to a further subsequence, we can assume that for all m̄, n̄ ∈ [N]k,
with k ≤ m1 < n1 < m2 < n2 < · · · < mk < nk, we have∥∥∥ k∑

j=1

xα,nj − xα,mj
∥∥∥ ≤ 3

2
λαk .

Applying then the usual diagonalization argument we can assume that for
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all k ∈ N and all m̄, n̄ ∈ [N]k with m1 < n1 < m2 < n2 < · · · < mk < nk,

(5.7)
∥∥∥ k∑
j=1

(xα,nj − xα,mj )
∥∥∥ ≤ 3

2
λαk .

Then for α < ω1 and k ∈ N we define

f (k)
α : [N]k → X, n̄ 7→ 2

3λαk

k∑
i=1

xα,ni .

It follows from the definition of the interlaced distance, (5.7) and the mono-
tonicity of (λαk )k that f (k)

α is 1-Lipschitz.
Consider now α < β ∈ [1, ω1). Since dist(x∗∗β , sp(x∗∗α )) > 3/4, by Hahn–

Banach, there exists an x∗∗∗α,β ∈ SX∗∗∗ with x∗∗∗α,β(x∗∗α ) = 0 and x∗∗∗α,β(x∗∗β ) =
dist(x∗∗β , sp(x∗∗α )) > 3/4. By the principle of local reflexivity (applied to the
space X∗) there exists x∗α,β ∈ SX∗ with x∗∗α (x∗α,β) = 0 and x∗∗β (x∗α,β) > 3/4.
It therefore follows that for any M ∈ [N]ω,

(5.8) sup
n̄∈[M]k

‖f (k)
α (n̄)− f (k)

β (n̄)‖

≥ lim sup
n1∈M, n1→∞

. . . lim sup
nk∈M,nk→∞

x∗α,β

(
2

3λβk

k∑
i=1

xβ,ni −
2

3λαk

k∑
i=1

xα,ni

)
≥ 2

3λβk

3k

4
=

k

2λβk
.

This finishes our construction of uncountably many well separated X-valued
Lipschitz maps.

Assume now that X coarsely embeds into a Banach space Y such that
all the iterated duals of Y are separable and let g : X → Y be such a coarse
embedding. Of course, we may assume that ωg(1) ≤ 1. Then, for any α < ω1

and k ∈ N, we define g(k)
α = g ◦ f (k)

α . We observe that g(k)
α is 1-Lipschitz

from ([N]k, d
(k)
I ) to Y . For a fixed k ∈ N, we can therefore apply Theorem

5.13 to any uncountable subfamily of (g
(k)
α )α<ω1 . We then deduce from (5.8)

that for any k ∈ N, {α < ω1 : ρg(k/(3λ
α)
k ) > 3} is countable. This implies

that the set {α < ω1 : ∃k ∈ N, ρg(k/(3λαk )) > 3} is also countable and,
since [1, ω1) is uncountable, there exists α < ω1 such that for all k ∈ N,
ρg(k/(3λ

α
k )) ≤ 3. This is in contradiction with the fact that for this given

α < ω1, k/(3λαk )↗∞ if k ↗∞ and limt→∞ ρg(t) =∞.

Understanding quantitatively what is the order of the non-separable it-
erated dual in Theorem F is a very interesting problem.

Problem 5.15. Assume that X is c0, or any separable Banach space with
non-separable bidual X∗∗ and `1 6⊂ X such that no spreading model generated
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by a normalized weakly null sequence is equivalent to the `1-unit vector basis.
If X coarsely embeds into a Banach space Y , does this imply that Y ∗∗ is
non-separable?
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