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Intermittently powered devices enable new applications in harsh or inaccessible environments, such as space
or in-body implants, but also introduce problems in programmability and correctness. Researchers have
developed programming models to ensure that programs make progress and do not produce erroneous results
due to memory inconsistencies caused by intermittent executions. As the technology has matured, more and
more features are added to intermittently powered devices, such as I/O. Prior work has shown that all existing
intermittent execution models have problems with repeated device or sensor inputs (RIO). RIOs could leave
intermittent executions in an inconsistent state. Such problems and the proliferation of existing intermittent
execution models necessitate a formal foundation for intermittent computing.

In this paper, we formalize intermittent execution models, their correctness properties with respect to
memory consistency and inputs, and identify the invariants needed to prove systems correct. We prove
equivalence between several existing intermittent systems. To address RIO problems, we define an algorithm
for identifying variables affected by RIOs that need to be restored after reboot and prove the algorithm correct.
Finally, we implement the algorithm in a novel intermittent runtime system that is correct with respect to
input operations and evaluate its performance.
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1 INTRODUCTION

Battery-less, energy-harvesting devices (EHDs) are an emerging class of embedded computing
device that operate entirely using energy extracted from their environment, such as light energy
from a solar panel or energy from radio waves using an antenna. Free from a battery, these
devices enable new applications in IoT [Colin et al. 2018; Fraternali et al. 2018; Hester and Sorber
2017; Jackson et al. 2019], civil infrastructure sensing [Nardello et al. 2019], in-body medical
sensing [Proteus Digital Health 2015], and space exploration [Colin et al. 2018; Denby and Lucia
2020; Zac Manchester 2015]. We study EHDs that compute intermittently as energy is available. The
device slowly harvests energy into a capacitor. After storing sufficient energy to make meaningful
progress, the device operates, quickly consuming the energy. After exhausting the stored energy, the
device powers off, awaiting more energy. Software executes according to an intermittent execution
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model, where programs make progress during an active period that is preceded by and followed by
an inactive recharge period and a reboot [Balsamo et al. 2015; Colin and Lucia 2016; Jayakumar
et al. 2014; Lucia and Ransford 2015; Maeng et al. 2017; Ransford et al. 2011; Woude and Hicks 2016].
A reboot clears volatile state (registers and SRAM) and preserves non-volatile state (FRAM [TI Inc.
2020a] and Flash). This execution pattern is illustrated in Figure 1 (a).

Unpredictably-timed power failures create several challenges for an intermittent execution
model, including how to maintain forward progress, ensure memory consistency, manage 1/O
and concurrency, and correctly interface with hardware. Figure 1 (a) illustrates how executing a
program intermittently can result in a memory state inconsistent with any continuous execution
of a program, if the program contains certain memory access patterns or repeats input operations.
As energy-harvesting devices have matured, an increasing variety of new programming models
and runtime systems for intermittent execution, with varying technical approaches to addressing
these key challenges, have emerged [Balsamo et al. 2016, 2015; Colin and Lucia 2016; Colin et al.
2018; Ganesan et al. 2019; Gobieski et al. 2019; Jayakumar et al. 2014; Kortbeek et al. 2020; Lucia
and Ransford 2015; Ma et al. 2017; Maeng et al. 2017; Maeng and Lucia 2018, 2019; Ransford et al.
2011; Ruppel and Lucia 2019; Woude and Hicks 2016].

The proliferation of diverse intermittent execution models presents a developer with a confusing
space of implementation options and raises the question of how to specify and compare the
behavioral properties of different systems. Models differ subtly, and a program written for one
model may make assumptions not met by another. Moreover, no existing software or hardware
system has clear, formally defined behaviour. Such a characterization and formalism is a key
building block for defining and proving correctness properties, developing tools to find and fix
intermittence-specific bugs, and understanding the fundamental similarities and differences between
models. A primary motivation for using intermittent computing systems is their deployability in
remote, inaccessible environments. Updating the device may be difficult or even impossible, so a
buggy runtime that corrupts the memory state can make the device practically useless. The lack
of specifications of intermittent systems is a key impediment to their deployment, particularly in
applications that demand high reliability or security.

In this work, we lay the groundwork for provably correct intermittent computing by formalizing
the semantics of several classes of intermittent execution models, focusing on the foundational
correctness issue of ensuring memory consistency in the presence of non-deterministic input opera-
tions. Figure 1 (b) provides an overview of our contributions. An intuitive correctness property
is that an intermittent execution’s behavior should be equivalent to some continuously-powered
execution. Prior work [Surbatovich et al. 2019] has shown (confirmed by our formalism) that a
majority of existing intermittent systems do not satisfy a reasonable correctness condition in the
presence of input operations that may change as a program runs intermittently. We articulate
the changes to the execution model that are necessary to correctly handle the behavior of input
operations in an intermittent execution. We start by formalizing a checkpoint-based intermittent
execution model based on DINO [Lucia and Ransford 2015]. A checkpoint model saves important
state during execution and, after a power failure, restarts from that point in the execution by
restoring the checkpoint on reboot. We then formalize the behavior of variants of checkpoint-based
systems [Woude and Hicks 2016], including both redo- and undo-logging checkpoint strategies,
and a task-based execution model [Maeng et al. 2017]. We relate these systems via bi-simulation,
showing that the correctness properties of one system hold for the others. Finally, we propose a
new checkpoint-based intermittent execution model that provably handles input behavior correctly,
while allowing re-execution of inputs (crucial for data freshness). As far as we know, we are the
first to propose such an execution model.
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Fig. 1. (a) The intermittent execution model. Re-executions can result in an inconsistent memory state due to
write-after-read dependencies and repeated input operations. (b) We provide a formal correctness theorem,
prove equivalence between systems, and implement a runtime with a provably correct algorithm

We acknowledge that intermittent systems are similar to systems that handle crashes and failures
in file systems or databases [De Kruijf and Sankaralingam 2013; Izraelevitz et al. 2016a; Koskinen
and Yang 2016], but there are key differences. As intermittent execution targets highly resource-
constrained, embedded systems, and failure is inevitable and frequent, the checkpoint and recovery
mechanisms are typically implemented to save and restore the least state possible. Additionally, the
correctness of the system depends on the state of both the volatile and non-volatile memory, and
programs are often driven by non-deterministic sensor inputs. Existing formalisms for verifying
crash consistency typically do not model the internal state of the recovery mechanism [Koskinen
and Yang 2016], which is necessary to capture the behaviour of the systems we model, model
nonvolatile state only [Chen et al. 2015; Sigurbjarnarson et al. 2016], or do not explicitly model
peripherals. These differences mean that existing automatic verifiers or logic frameworks [Chen
et al. 2015; Koskinen and Yang 2016; Ntzik et al. 2015; Sigurbjarnarson et al. 2016] are not directly
suitable for analyzing intermittent execution models, though the correctness specifications and
invariants that we identify are useful for extending such tools to work for intermittent computing.
Identifying such invariants for the correctness proofs is nontrivial. These invariants deepen our
understanding of intermittent systems. This work is the foundation for formalizing more complex
intermittent behaviour, including event-driven and reactive execution [Ruppel and Lucia 2019;
Yildirim et al. 2018], or guaranteeing forward progress. We make the following contributions:

o A novel, formal intermittent execution model with inputs, a correctness theorem, and sufficient
conditions for correctness.

e A provably sound algorithm to collect variables to checkpoint and an implementation for an
existing intermittent system.

e Formalized variants of intermittent-execution models and proofs of the equivalence of these
systems via bi-simulation.

e An experimental evaluation of our algorithm implementation on real hardware showing that our
technique has low time and space overheads while requiring little to no programmer effort.

Due to space, we relegate detailed formalism and proofs to the companion technical report (TR)
located at https://arxiv.org/abs/2007.15126.

2 SCOPE AND RELATED WORK

Fully specifying intermittent system behaviour requires reasoning about diverse properties. These
properties include memory consistency, forward progress, timeliness, and correct handling of
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concurrency. Our paper addresses memory consistency. An intermittent program that is guaranteed
to finish and always processes only fresh data is incorrect if it operates on a memory state incon-
sistent with any continuous execution of the program. While we focus on memory consistency,
we can extend the formalism to cover other correctness properties in the future. In the remainder
of this section, we describe these other properties at the high level and sketch what extensions
are necessary for our framework to capture these properties. We then discuss how our framework
relates to existing research, particularly in intermittent computing and verified crash consistency.

2.1 Scope: What the Paper Is Not about

We focus on memory consistency with re-executed inputs. Reasoning about other desirable prop-
erties presupposes that the underlying system memory is correct. As intermittent applications
are often sensor-driven, ensuring correctness with input operations is paramount. The full set of
properties mentioned above is a long term goal that can be reached by building on top of our current
framework. Each additional piece requires nontrivial theoretical and implementation components.

Forward progress To make forward progress, a program executing intermittently must be able
to execute the region between any two adjacent checkpoints (or any task) with the amount of
energy in the device’s buffer. Otherwise the program will get stuck, partially executing the region,
recharging energy, and rebooting forever. Current intermittent systems assume that the largest task
or checkpoint region will be cheap enough to finish [Maeng et al. 2017; Woude and Hicks 2016]. Our
correctness theorem is sound relative to this assumption and does not itself prove forward progress.
Formalizing and guaranteeing forward progress requires a persistent energy model, which is likely
to be complex because the amount of energy a sequence of instructions consumes depends on the
state of the entire board, not the processor alone. A region between checkpoints could finish on a
processor in isolation, but may not if, e.g., the radio is enabled. CleanCut [Colin and Lucia 2018] is
a compiler tool that provides a probabilistic energy model to guide programmers in sizing tasks,
but it offers no guarantees and does not consider the full state of the board. Samoyed [Maeng and
Lucia 2019] allows programmers to specify cheaper alternatives to algorithms that the system can
switch to at runtime, if it seems a program is not making progress.

Timeliness As power can be off for an arbitrary period of time, sensor data collected before a power
failure can be stale and useless after a reboot. To avoid processing stale data, prior systems have
either required external persistent timekeepers [de Winkel et al. 2020; Hester et al. 2016] so that a
programmer can specify explicit timing annotations that the system can check at runtime [Hester
et al. 2017; Kortbeek et al. 2020], or required that the programmer place sensor calls and uses
requiring fresh data in the same checkpoint region or task. We assume the latter approach in
this work, and find that while it allows timely processing of data, it also introduces memory
inconsistencies, making current systems that take this approach incorrect. Our formalism aids us
in developing a runtime that allows consistent re-execution of inputs.

Guaranteeing timely consumption of data requires additional language and type constructs to
specify which inputs and uses are time-critical, along with either static checking algorithms to
disallow programs that may incorrectly consume stale data or additional runtime mechanisms to
ensure that a program will not consume stale data.

Concurrency While most current intermittent systems use single-core micro-controllers and
have no parallelism, recent work [Ruppel and Lucia 2019] supported interrupt-based concurrency
through transactions. Modeling concurrency requires modeling interrupts and asynchronous events
and updating the language with synchronization commands.
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2.2 Related Work

The ideas presented in this paper are related to work in intermittent systems, fault tolerance and
crash consistency in files systems, and formal persistent memory models. We first discuss the most
related works in verified crash consistency and persistent memory models, and then how our work
relates to existing intermittent systems, particularly those that deal with inputs or reactivity.
Crash consistency The failure and recovery problems of intermittent systems are similar to those
of crash consistency on concurrent programs and file systems. A file system can crash at any time
and must not exhibit unspecified behaviour after recovering. Developing formal specifications and
verifiable file systems is an important research goal [Joshi and Holzmann 2007], particularly to
guarantee correctness in the presence of crashes [Bornholt et al. 2016; Chen et al. 2015; Ernst et al.
2016; Ntzik et al. 2015; Schellhorn et al. 2014; Sigurbjarnarson et al. 2016].

Bornholt et al. [Bornholt et al. 2016] create a framework for generating crash consistency models.
A crash consistency model specifies the allowed behaviour of a file system across crashes. Their
crash consistency theorem relates the crashy fs trace to a canonical program trace with no crashes.
In contrast, as we model non-deterministic sensor inputs, there is no single canonical trace even for
executions with no crashes. The model consists of litmus tests and an operational semantics of the
file system that models both volatile core state and durable disk state. Our semantics additionally
model checkpoints.

The verification tool Yggdrasil [Sigurbjarnarson et al. 2016] uses crash refinement to aid program-
mers in developing verified file systems. Programmers must write specification and consistency
invariants of their system. Then the verification is process is modular, allowing developers to swap
in different implementation of system components as long as they meet the specification. The
focus of our work is on defining correct specifications of intermittent system behaviour, including
whether different implementations are in fact equivalent. While our correctness theorem is similar
to crash refinement, we do not use Yggdrasil to verify our specifications as Yggdrasil uses file
system abstractions, e.g., inode layouts and disc models, that don’t apply to intermittent systems,
which interact directly with memory. We additionally model the effects of inputs.

Crash Hoare Logic (CHL) [Chen et al. 2015] and fault-tolerant resource reasoning [Ntzik et al.
2015] are proof automation tools that extend Hoare triples with crash conditions to verify file system
implementations. Using CHL has a high programmer proof burden because the programmer must
specify the correctness invariants and recovery procedures and prove the recovery procedure correct.
Thus, a large portion of our work is a prerequisite to using CHL; we define intermittent correctness
invariants, which is non-trivial. We additionally show that existing recovery procedures are in fact
incorrect. Using CHL for proof automation once we have defined intermittent correctness is not
immediately possible as CHL does not provide primitives for checkpoints and only explicitly models
non-volatile state, not the mixed-volatility state typical on an intermittent system. Additionally, the
crash conditions for the Hoare triples should capture the intermediate states at which a crash could
occur, and must be specified for every procedure. For a set of file system procedures, capturing these
intermediate states is not onerous, as each procedure interacts with only a few blocks of the disk.
In contrast, we model intermittent execution traces of programs, which makes enumerating crash
conditions complicated and time-consuming. Ntzik et al. [Ntzik et al. 2015] do consider both volatile
and non-volatile resources, though they also require enumerating the non-volatile states possible
after a procedure crashes. The authors use their framework to prove the soundness of an ARIES
recovery mechanism. They model updates to the durable state at page granularity, and undoing a
transaction requires rolling back all updates to pages modified by the transaction. In contrast, the
intermittent systems we model are designed to roll back the minimum set of updates necessary to
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(ostensibly) guarantee correctness. Neither of these frameworks model non-deterministic sensor
inputs.

Unlike the works above, which deal with verifying the file system itself, Koskinen et al. [Koskinen
and Yang 2016] automatically verify crash recoverability at the program level. Our approach is
most similar to this work. Our correctness theorem is similar, defining correctness in terms of
a simulation relation and observational equivalence between the continuous and intermittent
executions. In contrast to our work, this model assumes that underlying system operations will
be correct. Their method analyzes control-flow and reduces crash recoverability to reachability: if
control-flow cannot reach an error state, it will be correct. The definition of a recovery mechanism is
that given a state gy in the original program, after a crash the mechanism brings the program back to
qr after transitioning through some recovery states. While this is clearly the desired behaviour of a
recovery mechanism, this definition does not consider the internal state of the recovery mechanism
and is not expressive enough to capture the behaviour of existing intermittent checkpoint systems.
After fully executing the recovery procedure, an intermittent program is not in an equivalent state
to before the crash. Identifying what differences are allowable in the recovered state so that further
execution eventually brings the program to a consistent state is a key contribution of this work.
Persistent memory formalisms Persistent memory has been used for whole systems [Narayanan
and Hodson 2012], entirely non-volatile processors [Ma et al. 2015a,b], and heap structures [Coburn
et al. 2011; Volos et al. 2011]. There are formalisms exploring persistency models [Pelley et al. 2014,
2015] for reasoning about data on non-volatile systems and parallel persistency [Blelloch et al.
2018]. Other work looks at defining linearizability [Izraelevitz et al. 2016b] for persistent objects on
concurrent systems. While these are useful correctness properties, current intermittent hardware
is single-core and has no thread-level concurrency.

Weak persistency semantics have been formalized for TSO memory models [Raad and Vafeiadis
2018], for ARMv8 [Raad et al. 2019a], and for Intel x86 [Raad et al. 2019b]. In [Raad et al. 2019a],
the authors introduce a declarative semantics for reasoning about persistency. Among memory
persistency formalisms, our approach is most similar to this one, but we are at a higher level;
there are differences in scope and the language features provided. These persistency models reason
about the allowable differences between the order in which instructions execute and the order they
persist to memory on multi-threaded programs. This scope introduces (needed) complexity into
the declarative semantics, but the devices we target do not have multi-threading and expose no
difference between execution and persist order. We do not currently benefit from this complexity,
but in future work we may need to integrate with these models to guarantee assumptions, e.g.,
checkpoint atomicity, that are currently upheld by the simple hardware. Moreover, our modeling
language provides inputs and checkpoints.

Runtime systems for crash consistency Runtime systems that attempt to provide crash consis-
tency on database systems have similar functionality to runtime systems for intermittent execution,
but generally do not provide re-execution of inputs, necessary for data freshness.

JustDo logging [Izraelevitz et al. 2016a] targets hybrid persistent systems. JustDo explicitly avoids
re-executing code for better performance. iDo [Liu et al. 2018], also targeting hybrid systems, identi-
fies idempotent instruction sequences to reduce the number of locations to be logged. Idempotence
has also been used as a correctness criterion for fault tolerance in distributed systems [Ramalingam
and Vaswani 2013]. Idempotent processing [De Kruijf and Sankaralingam 2013; de Kruijf et al. 2012]
has been posed as an alternative recovery mechanism to checkpoint-logging and re-execution,
but does not allow re-executing inputs, which sometimes is necessary for intermittent systems to
provide fresh sensor readings.
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Other work [Ben-David et al. 2019] provides a construction to automatically make accesses

to shared memory and algorithms persistent. Intermittent systems need all executing code to be
checkpointed or in transactions, not just shared data structures.
Runtimes for Intermittent Systems In this paper, we explicitly model DINO [Lucia and Ransford
2015] as a basic checkpointing system, Ratchet [Woude and Hicks 2016] for the idempotent region
variant, Alpaca [Maeng et al. 2017] as an example of task-based redo logging, and Chinchilla [Maeng
and Lucia 2018] for undo logging. Hibernus [Balsamo et al. 2016, 2015] is a just-in-time checkpoint
system that dynamically inserts checkpoints and does not re-execute code, but suffers timeliness
violations. Mayfly [Hester et al. 2017] is the first work to describe the timeliness problem and
implements a programming model to enforce timeliness using an external timekeeper and explicit
programmer annotations. Capybara [Colin et al. 2018] is a reconfigurable energy-harvesting plat-
form that allows flexible atomicity and reactive events. Homerun [Kang et al. 2018] also explores
atomicity for I/O events. Coati [Ruppel and Lucia 2019] and InK [Yildirim et al. 2018] explore
event-driven intermittent systems. None of these works provide formal definitions or guarantees
of correctness for either memory consistency or timely processing of inputs.

EDB [Colin et al. 2016] and Ekho [Zhang et al. 2011] are frameworks for debugging intermittent
systems, and ScEpTIC [Maioli et al. 2019] is a tool for detecting bugs caused by write-after-read
patterns. The EH Model [Miguel et al. 2018] provides a way of reasoning about the architectural
and software consequences of energy availability and intermittent system design choices.

Dahiya et al. [Dahiya and Bansal 2018] create a formal model for verifying via translation
validation that instrumented intermittent programs are equivalent to continuous ones. They do not
consider repeated input operations or how checkpoints must behave for programs to be correct.
Inputs on intermittent systems IBIS [Surbatovich et al. 2019] identifies and characterizes bugs
caused by repeated inputs in intermittent systems. The authors provide only a bug detection tool,
not a correct runtime system, nor formal correctness invariants. We provide a formal proof of a
sound version of the algorithm the authors use in their tool, as well as a correct runtime system.
We discuss in detail the differences and similarities of the algorithm presented in this paper versus
the algorithm in the IBIS tool in Section 9.3.

Developed most recently, TICS [Kortbeek et al. 2020] is a runtime system that uses an external
timekeeper and programmer annotations to avoid consuming stale data. Rather than regather data,
the runtime reruns expiration checks after rebooting, so that any stale data will not be processed.
This approach avoids any consistency errors associated with re-executing inputs, but can also
miss processing any input events if power failures are frequent. Moreover, this approach requires
external time-keeping hardware.

Samoyed [Maeng and Lucia 2019], Sytare [Berthou et al. 2017] and RESTOP [Arreola et al. 2018]
look at retaining the peripheral state of input devices, not at memory correctness issues caused by
repeated input operations.

3 BACKGROUND AND MOTIVATION

Our work is motivated by emerging intermittent execution models and their varied correctness
definitions. In this section, we review the fundamentals of checkpoint-based intermittent execution
and show by example how existing models are not correct in the presence of input operations. Any
intermittent execution model must ensure forward progress and preserve state. An intermittent
execution progresses only when energy is available. Power fails when energy is exhausted, erasing
the device’s execution context and volatile state, including registers and all data stored in volatile
memory. By default, the system then restarts from the start of main() and naively-written code
makes no forward progress. To make progress, an intermittent system can periodically save its
execution context and restart from that execution context on reboot; a common mechanism for
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saving state is a statically placed checkpoint. A checkpoint is an operation that stores some memory
state and execution context in non-volatile memory, preserving it across a power failure [Balsamo
et al. 2016, 2015; Jayakumar et al. 2014; Lucia and Ransford 2015; Maeng and Lucia 2018; Mirhoseini
et al. 2013; Ransford et al. 2011; Woude and Hicks 2016].

To be correct, an intermittent execution should generate the same result as a continuous execution.
Multiple partial executions followed by a complete execution should have the same behaviour as
some continuous execution. Code between checkpoints must execute idempotently. Unfortunately,
a checkpoint system that saves only volatile execution context and volatile memory [Ransford et al.
2011] may be incorrect. Prior work [Lucia and Ransford 2015; Woude and Hicks 2016] identified that
write-after-read (WAR) dependencies on non-volatile locations cause non-idempotent behavior and
adjust the checkpointed data accordingly. We next discuss how WAR dependencies cause problems.

3.1 Write-After-Read (WAR) Dependencies

An intermittent execution may produce an incorrect result if the execution writes a value into
non-volatile memory before a power failure and the execution reads that updated value after
rebooting. Consider the example shown in Figure 2 (a). On the left of the figure is a small program.
The next column shows execution traces illustrating the WAR problem. In the initial execution, the
branch at line 1 is taken. After executing through line 4, there is a power failure. The column then
shows the re-execution of the code. The re-execution assumes that the checkpoint restores only
volatile state (i.e., control state) and retains non-volatile variables’ values. This time, the execution
completes and yields state N;. A continuous program would finish with the memory in state Nj.
The state in N contains a different value for x. The re-execution does not idempotently update x
because x depends on w. When the re-execution reads w into x at line 2, the read produces the
(incorrect) value of w written before the power failure. The example shows that the re-execution is
non-idempotent because w is involved in a WAR dependence, which we call a WAR Variable.

Code (a) WAR Problem (b) RIO Problem
0 ckpt . !
1ifa>0 Inglall)exicu&on Possible correct executions Initial execution Re-execution
2 then x:=w; abxyzw abxyzw abxyzw
N,
3 w5 N‘?‘Egiz] Nos(0[0]1[2]3]4) Nos(0[0[1]2]3]a) N'os(0[3[6]7[3[4]
‘Slelsel?-:—:; NZ[1045] Ns [0[31]2]3]4) Ns (0[3]1]2]3]4) N's (0[3]6]7[3]4)
=3 3
6 i=IN(); N, [1 214 5] éN() >2 INO >0 INO > 2 INO >0
7 ifi>1 e S2bhxyvzw abxyzw n (g[3]6]2]3]4)N1.(0]3]3]7]3]4)
8 then x:= 6; Re-executon Ng (0/3]6/2(3/4 N11[0[3|3 213 4] No (o[3]6]7]3 4]N'12[O 3[3[7]8[4]
9 y:=7;| No(1]2[4[5) No (0[3]6]7[3[4] N1, (0][3]3]2[8 4] e Nas(0[33]7]8]5)
ig | b:=9 | N, (1[2]5]5] Nio(0[9]6]7]3]4) Nis(0[3[3]2[8]5)
else x:=z; .
1 S le[l 2|5 5] N NV memory ~— p fail and reboot Consistent Inconsistent?
13 w:=5 N4[1‘ 2|5 5] P stateatlinei =~ ower fail and reboof Memory Memory

Fig. 2. An example program illustrating WAR and RIO problems

To ensure that code containing WAR dependencies executes idempotently, existing checkpoint-
based systems must add potentially inconsistent variables to the checkpoint [Lucia and Ransford
2015; Maeng and Lucia 2018] and restore those variables with the checkpoint after a power failure.
In the example, w is potentially inconsistent because a write to w before the power failure may
be visible to a read after restarting from the checkpoint. At line 0, a checkpoint system needs to
save a version of w with the checkpoint. Prior work observed that not all WAR dependences lead
to inconsistency [Lucia and Ransford 2015; Maeng et al. 2017; Woude and Hicks 2016]. If w had
been written before being read, e.g. if line 1 was instead w := 3;if a > 0, then w need not be
checkpointed. The read on line 1 would always see a consistent value.

Checkpointing WAR variables that are not write-dominated is the current state-of-art in ensuring
idempotent re-execution, which is insufficient for correctness, due to RIOs [Surbatovich et al. 2019].
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3.2 Repeated Inputs Cause Incorrect Behavior

Applications that target low-power embedded systems rely heavily on peripheral devices, such as
sensors and radios. A program stores in a variable the result of an input operation. In an intermittent
execution, a program may execute an input operation before a power failure, and then repeat that
input operation after a failure, in both cases fetching a fresh, usable value. However, repeating the
input operation can lead to incorrect behavior when a program’s control- or data-flow depends
on the result of that input operation. We refer to a re-executed input as a RIO: a Repeated Input
Operation that can generate a different value each execution.

Continuing with Figure 2 (b), the columns to the right show how a RIO causes incorrect behavior.
The example now assumes that all variables are in non-volatile memory and that the system now
checkpoints variables involved in potentially inconsistent WAR dependencies at line 0, saving
and restoring w and z. The starting memory Nys has a + 0, so the initial branch is not taken.
Instruction ¢ = IN(); on line 6 reads an input value (e.g., from a sensor). Depending on the sensor
reading, a continuous execution could correctly end with either state Ny or Nys.

An intermittent execution may produce a result different from both Njg and Nj3. Such an
execution may first get an input greater than 1 at line 6, causing the branch at line 7 to be taken.
Power then fails and the program restarts. After the restart, the input is less than 1, and the branch
at line 7 is not taken. The final state is N1’3, which is inconsistent with all correct, continuously-
powered outcomes because the RIO is not idempotent.

An intermittent execution with inputs is correct if it corresponds to a continuously-powered
execution, regardless of the inputs. Here, the RIO causes different branches to be taken and non-
volatile variable y is written on only one of them. Checkpoint systems that version WAR variables
do not handle y’s RIO problem because y is not a WAR variable. No existing checkpoint or task-based
intermittent execution system correctly handles these non-idempotent RIOs. A correct checkpoint
system must store y’s value at the checkpoint and restore it on reboot. We refer to variables that
are affected by RIOs (e.g., y) as RIO variables. Preventing inputs from re-executing, as by placing
a checkpoint immediately after the operation, is not an adequate solution as some inputs must be
re-executed to be timely [Hester et al. 2017]. This paper fills the gap left by RIOs, formally and with
a practical system implementation that makes intermittent systems robust to RIOs.

4 SYSTEM ASSUMPTIONS AND FORMAL MODEL

We define a language to model checkpoint-based intermittent execution with inputs, providing
the syntax and semantics for both continuously-powered and intermittent executions. First, we
explain the lower-level system assumptions to justify our choice of modeling language.

Target System Assumptions Our target intermittent systems use low-end microcontrollers
(MCUs) such as the TI MSP430FR series [TI Inc. 2020a]. These are single-threaded, single-issue,
in-order compute cores. The MCUs have embedded, on-chip volatile SRAM or DRAM and non-
volatile Flash, FRAM, or STT-MRAM. These architectures often lack caches or have only a simple
write-through cache to avoid repeated non-volatile memory accesses. Unlike prior work in persis-
tent memory targeting more complex architectures [Blelloch et al. 2018; Izraelevitz et al. 2016b;
Raad and Vafeiadis 2018; Raad et al. 2019b,a], we need not reason about concurrency or persist
order due to write-back caches or other microarchitectural optimizations. We thus realistically
assume that execution and persist order are the same and that the compiler never re-orders an
instruction past a checkpoint.

Syntax Our simple language includes accesses to volatile memory, accesses to non-volatile memory,
and branch statements. We include arrays but omit general pointer arithmetic. We also omit
functions calls and unbounded loops. These omissions do not affect our ability to capture the
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Values v = n|true|false|in(r) Configuration ¥ == (1r,k,N,V,c)
Expressions e == x|v|e1 bopez]|ale’] Cont. config. o == (r,N,V,¢)
Instructions L u= x:=el|ale]:=¢€’|x:=IN(| Volatile mem. 'V M

skip | checkpoint(w) | reboot(n) Non-vol. mem. N : M
Commands c == 1]g;c]if ethen cg else co Context k == (N,V,c¢)
Memory loc. loc = x|a[n] Read obs. r == rdloco|rr
Chckpnted loc.  © = wx,|wa" Observation o == [r]lin(z)|reboot
Mem. mapping M = Loc — Val | checkpoint

Fig. 3. Syntax and Semantic Constructs

behavior of existing intermittent execution models. Existing systems [Lucia and Ransford 2015;
Maeng et al. 2017] do not allow recursive function calls, so any code in a function body can be inlined.
Including general pointer arithmetic would not change the correctness invariants we present, as
the definitions consider memory locations directly, but would complicate the implementation of
any checkpoint algorithm (discussed in Section 9), as the alias sets of the memory locations in the
definitions would need to be tracked as well. Unbounded loops can be handled by extending our
infrastructure with loop invariants, which do not introduce technical difficulties but unnecessarily
complicate the presentation. Though simple, this modeling language suffices to illustrate clearly
the key challenges in defining memory-consistent intermittent execution models.

We summarize the syntax in Figure 3. We write v to denote values, which can be numbers
n, the boolean values true and false, and inputs in(7), representing the input gathered at time .
Expressions, denoted e, can be variables, values, binary operations of expressions, or an array
element. Array lengths are fixed and all array indices are assumed in bounds; this assumption
is necessary for correctness and memory safety for real C code is orthogonal [Grossman et al.
2002] and beyond our scope. Instructions, denoted ¢, consist of assignments to variables and arrays,
checkpointing, rebooting, skip, and synchronous input operations IN(). We write o to denote the
set of non-volatile variables and arrays that must be saved with a checkpoint to avoid inconsistency.
We call these variables checkpointed locations. In the example in Figure 2, checkpoint({w, y, z})
would precede the if statement on line 1, which include both WAR and RIO variables. We write a”
to represent all the locations in the array a. That is: each a” in w represents the set of locations
{a[1],-- , a[n]}. We often omit the bounds n and write a directly. We assume that checkpoint
operations are manually inserted into code (e.g., like DINO [Lucia and Ransford 2015]). Section 2.2
of the TR details the algorithm to compute w for WAR variables, as in existing systems. Section 7
describes our novel algorithm for computing w for RIOs. A program is a command c, which is an
atomic instruction, a sequence of instructions, or an if branching statement. We lift all the branches
to the top-level for ease of explanation. Any program with general branching statements can be
re-written to our language and bounded loops can be un-rolled to if statements.

Semantics for Intermittent Execution We focus on intermittent execution semantics. The rules
for continuously-powered execution semantics are standard and can be found in TR Section 1.2.
First, we define the necessary runtime constructs in Figure 3. Memory is a mapping from a location,
which is either a variable or an array index, to a value. We distinguish between volatile and non-
volatile memory, which are disjoint. The method of specifying where a variable resides varies;
systems may provide abstractions [Colin et al. 2018; Maeng et al. 2017], do automatic compiler
analysis [Maeng and Lucia 2018], or assume that all data is non-volatile [Woude and Hicks 2016]. A
configuration X is a tuple consisting of a timestamp 7, a checkpoint context x, non-volatile memory
state, volatile memory state, and a command to be executed c. The checkpoint context k consists
of the non-volatile data, volatile data, and command saved at the last checkpoint. The timestamp
is the logical time at the current configuration. Executing commands and evaluating expressions
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I/O-CP-PowERFAIL
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(t+1,(Nlw,V,c),N,V.c)

I/O-CP-ReBoOOT
k=(N,V,c)

boot
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Fig. 4. Selected semantic rules
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Fig. 5. lllustrating the correctness definition

generate observations, which are memory reads, input reads, or occurrences of a checkpoint or
reboot instruction. These observations are used for facilitating definitions of correctness.

The semantic rules are of the form: (r,x,N,V,c¢) é:» (r/,k’,N’,V’,c¢’), where O is a list of
observations. We write = to denote an intermittent execution, and — to denote a continuous
execution. We show rules specific to intermittent execution in Figure 4. The rule I/O-CP-CkPT states
that at a checkpoint, the context x is updated to include the portion of the current non-volatile
memory whose domain is w, the current state of volatile memory, and the current command to
be executed. We write m|,, to denote the part of m, whose domain is w. The system generates the
checkpoint observation and proceeds to execute the command after the checkpoint. This operation
is assumed to be atomic, implemented at the low-level with an atomic flag update and double
buffering to ensure there is always a valid last checkpoint. The I/O-CP-PowERFAIL can execute
at any step, as power failures can occur at any time, and is thus non-deterministic. When power
fails, volatile memory is reset, the current command is lost, and a positive integer n is picked at
random for the subsequent reboot instruction. The system then transitions to reboot. On reboot,
I/O-CP-ReBoOT partially restores non-volatile memory using the checkpoint. This rule applies
even before the first checkpoint is reached as « is a piece of memory initialized with the starting
V and ¢ and empty non-volatile portion. We write m; < mgy to denote the memory resulting from
updating locations in m; with the values of those locations in my. The reboot restores volatile
memory and the command to the values in the checkpoint’s context. A reboot is added to the
observation sequence, and the timestamp increases to 7 + n. The increase captures the idea that a
power failure can have an arbitrary duration.

We write N,V + e ||, v to mean that with memories N and V, expression e evaluates to value v
with observation r. For example, Nos, V + W rd w4 4 is a sub-derivation when line 2 of the program
in Figure 2 is executed. The rules are standard, so we omit them for space.

5 FORMALLY CORRECT INTERMITTENT EXECUTION

A program can be executed correctly in an intermittent model if and only if any completed
intermittent execution trace of the program corresponds to a continuous execution, w.r.t. the
program context and the observation sequence. More precisely, comparing an intermittent and
continuous execution, the program contexts, including volatile and non-volatile memory and
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the command to be executed must be the same by the end of the program. To show this, we
examine execution segments between checkpoints. Each partial re-execution from a checkpoint can
observe a different value produced by the same input. Consequently, observation sequences from
partial executions are not necessarily prefixes of the same continuous execution. To be correct, the
observation sequence of the final re-execution segment in an intermittent execution must match a
continuous execution with the same input results. We illustrate this in Figure 5. Time advances
from left to right. The top line is an intermittent execution trace. We detail a segment between two
checkpoints, marked by down arrows. Multiple power failures and reboots are present in these
segments, demarcated by red parallel bars. The observed memory reads O; are shown on top of
the line. For each such intermittent execution, the correctness property dictates the existence of a
continuous execution—the second line—such that the read accesses from the latest reboot to the
checkpoint (O,) match the read accesses of that continuous execution. Furthermore, the ending
configuration of both executions at the checkpoint are the same (excepting the extra context x in
the intermittent configuration). The above holds for all execution segments, including the last.

To formalize this definition, we introduce additional notation and constructs to relate intermit-
tent and continuous program contexts and observation sequences. We define the erasure of the
configuration: (r,x, N,V,c)” = (r, N, V,c¢) to relate the configurations at the checkpoints. We next
formally relate the observation sequences.

I-RB-IND Cr-BASE Cr-IND
I-RB-BASE Oi gm 02 O1 <m 02 O1 <m 02 Oi <Z’l Oé
o<™o 01, reboot, 0] <™ 02 01 <" 09 01, checkpoint, 07 <* 02,05

The rules use <™ and <[ to express the prefix requirements of the observation sequence of the
intermittent execution (O;) to the observation of the continuous execution (O2). <™ expresses a
relation between an O; that may include reboots to Oz, and <" expresses a relation between an O;
that may include both reboots and checkpoints to O. The crucial aspect of the observation relation
is in rule I-RB-IND. An intermittent observation consisting of two observation prefixes O; and O
separated by a reboot relates to the continuous observation O, if the latter prefix relates to the
continuous observation. The intuition of this rule is that the observation prefix of an intermittent
execution before a reboot may read values produced by input operations. After the reboot, the
input operations may return different values, so the old prefix should be discarded. The intermittent
and continuous executions need only agree on observations after the most recent reboot.
The correctness of an intermittent execution model is defined as follows:

Definition 1 (Correctness of Intermittent Execution).

O,
A program c¢ can be correctly intermittently executed if for allt, N, V, Oy s.t. (z,0,N,V,c) =" %,
Oz
where the program in 3. is skip (i.e., the program terminated), then 302, 12, o s.t. (12, N, V,¢) —* o,

70 27,01 <P Og,ando =(2)".

Figure 6 illustrates the relations in the correctness definition by revisiting the code from Figure 2.
Assume there is a checkpoint immediately preceding the branch on a, which saves the state of
{w, y, z}. Consider a power failure after the assignment to y on line 9, which lasts for 4 timestamps.
The column on the left shows the intermittent execution state and the right shows the continuous
execution state, starting at a later time, time 8. The final state of the executions (N5' and N5) are
equal, despite differences in their execution paths and intermediate states. Further, the observation
sequences relate: checkpoint, in(1), reboot, in(9),rdz3 <" in(9), rd z 3. There happens to be no
reads before the reboot. If there were, they would not need to match the reads on the right, as they
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are not in the final (successful) re-execution. To ensure this correctness property, a checkpointed

set must include both WAR and RIO variables, which we will explain in the next section.

6 PROVING MEMORY CONSISTENCY

Non-volatile memory updates of an intermit-

Trace | Intermittent execution Continuous execution . . .
= : tent execution can diverge from non-volatile
"-b'*3: b i xyzw b i xyzw . .
i memory updates of a continuous execution
5 l::IN{):NO[O 0 1234] ckpt NO[O 0 1234] . - .
in;:6 A Blinwl6]7[3[4) "™ | N, 3]0 12304) - in two key ways. A continuous execution up-

=7 1 . . .
;% i N'o (3in(2)[6 [2[3 [4)ireboor| N2 (3]in9)[ 1 2[3]4)iin®) dates memory through the writes of a single
Tpo—z (N1(3]inw[6123]4) - | Ns[3[in)[3[2[3[4)raz3; execution of the program. An intermittent
190 i:=Ig EN'Z (3]in9)]6 [2[3[4)iin9 | Na(3]in9)[312]8]4); - execution updates memory through multi-
M B i’]:’,,3[3 in(9) 3 |2[3(4]irdz 3 | Ns(3]in(9)3]2]8]5)] - ple executions of a prefix of the program
1 z::85 EN’4%3 in(9)3 2|8 4% " il Scheckpoint N; ;es:;‘;r:’ and by overwriting some set of non-volatile

w:=5 iN's(3in9)[3[2]8]5)i - i .

EN i in(2) { — power failure and reboot;  memory locations after a reboot. To be cor-

. . L rect, an intermittent execution model must
Fig. 6. lllustrating the correctness definition by example

ensure that any inconsistencies caused by
these different update traces have resolved by the next checkpoint. In this section, we define for
the first time invariants on the checkpointed set and non-volatile memory updates that allow us to
prove an intermittent execution model correct. A runtime system that upholds these invariants
will provably update memory consistently, no matter the algorithm used in implementation.

6.1 Locations to Checkpoint

The correctness of an intermittent execution model requires restoring at reboot a set of non-volatile
memory locations w (e.g., {y, z, w} in Figure 6). We refer to the minimal set of potentially inconsistent
non-volatile memory locations as ' and observe that precisely computing this set is difficult in
general. It is safe to over-approximate »'. One safe over-approximation is all of non-volatile
memory, ®* = dom(N), but ©*! is inefficient because it requires unnecessarily checkpointing
many variables. Existing systems use ostensibly less conservative over-approximations, such as
a subset of the variables involved in WAR dependence, »"WAE [Hicks 2017; Lucia and Ransford
2015; Maeng et al. 2017; Maeng and Lucia 2018; Woude and Hicks 2016], but as we have shown,
this set misses any variables that are inconsistent due to RIOs. Next, we describe how to to check
that all potentially inconsistently written locations are checkpointed. We then define an algorithm
to statically analyze the program and add those locations to the checkpoint in Section 7.

To express that a checkpoint includes the subset of potentially inconsistent variables, we introduce
two judgments: IF 4 ¢ : ok, which checks variables inconsistent due to WARs and IFrro ¢ : ok
which checks variables inconsistent due to RIOs. We formally define rules for this judgment here.
Rules for the WAR checking judgment are in TR Section 2.1.

Our checking algorithm leverages taint-tracking to find branch operations that depend on an
input, then ensures that if a non-volatile location is written on any path of such a branch, that
location is either written on all paths of the branch or is in the checkpointed set. We call variables
that are written on all paths regardless of inputs must-write variables.

There are two top-level judgments for commands, depending on whether control is currently
input-dependent — i.e., tainted — or not: N; M IF4g:,¢ ¢ : ok and N;I; M IFgjo ¢ : ok respectively.
Likewise there are two judgments for instructions: N; M’ IF4int 1 : ok or N; I; M IFRro 1 : ok. N is
the set of checkpointed variables, I is the set of variables that depend on inputs (control and data
dependence), and M is the set of variables written prior to executing c. The IF;4,¢ judgment does
not use I as the judgment itself carries the information that control is tainted. The IF4,,: check for
instructions ensures that all writes access checkpointed variables in N or are must-write variables,
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which captures how RIOs’ effects may transitively taint variables through dependences. We show
rule RIO-ASSIGN-TAINTED as an example.

RIO-Cp RIO-Ir-NDEP
@;0;0 IFrro c: ok INrd(e)=0 N; LM IFRro ci: ok i€[1,2]
N;I; M IFgro checkpoint(w);c : ok N;I; M IFgjo if e then cyelse co : ok

INnrd(e) #0 M IFTSEWE L o then ¢y else cg : M’

N; M’ \rtgint ci: oki€[1,2] RIO-ASSIGN-TAINTED
RIO-Ir-DEpP - x € (MUN)
N;I;M IF-gjo if e then ¢ else ¢o : ok
N; M I;igint x = e : ok

We explain selected rules for commands. Rule RIO-Cp applies to a command starting with a
checkpoint and checks the remaining command c using the checkpoint’s checkpointed set w and an
empty I and M. Rule RIO-IF-NDEP checks a branch that is input-independent. RIO-Ir-DEP checks
an input-dependent branch , identifying its must-write variables up to the next checkpoint using
auxiliary judgment M IF™s*W¢ ¢ . M’ (not shown). The resulting M’ includes variables written
on the path up to the branch ({i, b} in the example) and any variables that must be written on all
paths from the branch ({x} in the example). The key difference between these two rules is that
RIO-Ir-NDEP checks its sub-commands with IFz;o and the must-write set M, whereas RIO-Ir-Dep
checks its sub-commands with IFy4;,; and M’. The intuition for this is that an input-independent
branch will always evaluate the same way. Any variable written will be written on any re-execution,
even if it is not written on all paths. An input-dependent branch may not take the same path,
however, so the sub-command must be checked with the must-write set of all paths from the
branch.

Returning to Figure 2, the rules check the if statement at line 7 using judgment IF;4;,¢. The M’ is
{i, b, x}. To satisfy the check, N must include y, z, w.

6.2 Defining the Effect of Input on Execution Prefixes

Input can cause an intermittent execution’s memory state to vary across re-executions, behaviour
impossible on a continuous execution. We introduce notation showing how input interacts with a
program execution. Ol;, denotes the sequence of input values in observation sequence O. Let "trace”
refer to the sequence of execution states with observations annotated on top of each transition
generated by an intermittent execution. We define Run(o, 7, ¢) to be a trace starting at o, ending
in command ¢ with the input sequence 7 and without checkpoints. Formally:

o
Run(o,7,c)={T|T = c—>"(r,N,V,c) A O contains no checkpoints A 7 = O|;,}

We write Run(o, I, CP) to denote the trace ending in the nearest checkpoint. Note that given
a set of inputs, Run(o, I, c) is always a singleton set with a uniquely determined trace: inputs
already executed from the previous checkpoint to the current execution point are fixed, and any
execution to the current point with those same inputs will yield the same trace. There are, however,
multiple possible traces from an arbitrary point c¢ to the next checkpoint due to inputs yet to execute.

We write Wt(T) to be the write set of a trace and Fst Wt(T) to be the set of variables written
before they are read in a trace. We define the set of locations that must be written on any input:

MstWt(N,V,c) = {loc|VYt,N,V,c,YI,VT € Run((tr,N,V,c), I, CP),loc € Wt(T)}
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Fig. 7. lllustrating the correctness proofs and invariants

The must-write set of the example program is {b, x}. We define the set of locations that must be
first written before being read, no matter the input value, below:

MFstWt(N,V,c) = {loc|¥r,N,V,c,VI ,VT € Run((r,N,V,c),I, CP),loc € FstWi(T)}

This set contains locations in non-volatile memories that are first written (not read) on all possible
runs through the checkpointed region, starting from c. We call the set the must-first-write set, or
MFstWt. In the example program, the MFstWt = MstWt, but the distinction is important as the
must-first-write set will not include variables that have a (non-write-dominated) WAR dependence.

6.3 Invariants Relating Memories

As shown in Figure 6, the non-volatile memories are not always the same. To prove the intermittent
execution model correct, we need to identify relations between the intermittent execution and the
continuously-powered execution configurations. Therefore, we define relations between memories
in intermittent and continuous executions, as illustrated in Figure 7. We relate the memory states
at the same execution point with dashed lines and relate an intermittent execution’s memory state
at any point to a continuous execution’s memory at its initial point with solid lines. These relations
describe how memory locations are allowed to differ, while still converging to the same memory
and observation by the next checkpoint, the key invariant for correctness.

Arbitrary-point Memory Relation (Solid Line) We define the relation of the memory state of
an intermittent execution Nj;,,; at an arbitrary point to the memory state of a continuous execution
Neony at its initial point:

Definition 2 (Related memories between current and initial execution point). Neppe, N,V,c F
Nint ~ Ncont ﬁdom(Nznt) = dom(Ncont): Vioc € Nint s.L. Nint(loc) # Ncont(loc): loc € chpt U
MFstWt(N,V,c)

For correctness, all locations that differ between N;;,,; and N,,,; must be in the checkpointed
set Neppe or in the must-first-write set of the initial command c. The checkpoint reverts writes to
data in the checkpointed set on each reboot. Re-execution after a reboot over-writes each variable
in the must-first-write set because every path to the next checkpoint writes to variables in that
set, regardless of input. In Figure 6, variables b, i, x, y differ between Ny and Ny. Given the initial
memory state, execution always takes the false path from the first branch and always writes b and i.
All paths write x and it is always first written to. Finally, y is checkpointed. Together these actions
reconcile all differences between Ny and Nj.

Same-point Memory Relation (Dashed Line) We next define the relation of the memory state
of an intermittent execution N;,,; and a continuous execution N, at the same point :

Definition 3 (Related memories at the same execution point). 7,N,V,c,c’,7 + Nijpy ~ Neont iff
dom(N;pt) = dom(Neont) and Yioc € Nipg s.t. Nint(loc) # Neont(loc),
e [oc € MFstWt(N,V,c)
e let {T} = Run((r,N,V,c), I,c’) and the last state of T is (t’, Nint, V, ¢’), loc € MstWit(Nint,V,c’) and
loc ¢ Wt(T)
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The relation is parameterized with a timestamp 7 and an input sequence . The relation uses
7 and 7 to define the singleton set Run(o, I, c¢’) from the initial point to the current point.The
relation has access to all parameters because at each point in the execution, all prior input values
are already concrete and timestamps are given. Beyond sharing the same domain, the definition
restricts locations that differ between the memories. If such a location is not written from the initial
execution point to the current one, then the location must be in the must-first-write set of the
entire trace and must be written between the current execution point and the next checkpoint. The
intuition is that differing locations must be written to on all possible paths through the remainder
of the trace for the intermittent and continuous traces to converge to the same state. Moreover,
re-execution following any path dictated by fresh input values should not read locations that differ,
which would cause non-idempotent re-execution (i.e., first written to in every execution).

In Figure 6, the continuous and intermittent states differ at corresponding points Ny and N,
Nj and Nj, and N; and Nj. Starting with Ny, the execution writes b, i, x regardless of input. After
stepping to states N1, Ny, b cannot differ because the execution from its initial point to the current
point wrote to b. After stepping to states Ny, N2’, i cannot differ because the execution from its
initial point to the current point wrote to i. i’s written value is the same in both executions because
we choose a continuous execution that reads the input at time 9, which the intermittent execution
also reads. x is not yet written, but will be on all paths. At states N3 and N3, all locations must be
the same. x, b, i have been written between the initial and current execution point and none are
written between the current execution point and the next checkpoint. z is written to on the current
path, but is not in the must-first-write set of the entire trace, nor are w and y.

6.4 Proving Correctness

We prove the following theorem:

Theorem 4 (Correctness). Ifl-war ¢ : ok, IFrro ¢ : ok then ¢ can be correctly intermittently
executed.

We actually prove a stronger theorem that relates an intermittent execution up to checkpoints
to a corresponding continuous execution. Only at each checkpoint, are the memories guaranteed
to sync up between the two executions.

The proof requires augmenting the semantics with variable taint tracking, dynamically marking
all input-dependent locations. We leverage standard taint tracking semantics rules and omit them
here. The proof follows the structure in Figure 7 and requires the following properties: (1) arbitrary
intermittent configurations relate to the continuous initial configuration, (2) each intermittent
configuration relates to a continuous configuration at the same execution point, and (3), after
reboot, we can switch from the relation illustrated by the solid line to that of the dashed line and
after checkpoint, we can switch from dashed line to solid line.

With properties (1) — (3) established, the proof of Theorem 4 is by induction over the structure of
the intermittent execution trace. First over the number of checkpoints to show that, from checkpoint
to checkpoint, the resulting memories are the same and memory reads are idempotent. For each
segment between checkpoints, we induct over the number of reboots and use the relations in
the previous section to relate memory at each execution step. Note that no existing intermittent
execution model checks I g0 ¢ : ok; none meets a reasonable correctness definition in the presence
of I/O, which is one of the key results of this work. We show the full proofs in TR Section 6.6.

7 COLLECTING EXCLUSIVE MAY-WRITES

Given our correctness definition, an intermittent execution model must collect and checkpoint
not only WAR variables, but also RIO variables. Our algorithm identifies a (safe) conservative
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over-approximation of this set. If a variable might be written on one side of a branch and not the
other, and the branch condition might change from one re-execution to the next due to a RIO, then
the variable should be checkpointed. In other words, RIO variables are in the exclusive may-write
set for some command ¢ - i.e., the set of variables that may be written on exclusively one side of
some future branch, but that will not be written unconditionally. Using the exclusive may-write set,
a simple rewriting algorithm can transform a program with empty checkpoint sets into a program
that correctly checkpoints RIO variables.

Our algorithm computes exclusive may-write sets, and identifies input-dependent (or tainted)
branches. Given a branch if e then ¢; else co, if e is not (transitively) input-dependent, the branch’s
outcome is the same on every re-execution. The first branch in Figure 2 is never taken under Nof,
and the write to b happens regardless of line 6’s input; the write is not in the exclusive may-write
set. If e is input-dependent, the branch outcome depends on input and later writes are candidates
for exclusive may-write. In Figure 2, the branch at line 7 is input-dependent and its exclusive
may-write set is {w, y, z}, each of which are written on one, but not both sides of the branch.
Our algorithm uses taint analysis to identify input-dependent branches, and adds to w exclusive
may-write variables for input-dependent branches.

Collection per instruction. Two sets of rules collect the exclusive may-write set X, must-write
set M, and input-dependent variable set I for instructions: X; M;I IFrro ¢ : X';M’;1" and
XiM IFigine t @ X'; M. The IFrro rules apply to ¢ in commands from an input-independent
branch and IF44in: rules apply to ¢ in commands from an input-dependent branch. The primary
distinction for instruction level rules is that I does not need to be collected in the IF;,;,,; rules as
our branches never merge. We explain selected I-r o rules; rules for X; M kg 1 @ X'; M are
similar with taint tracking removed.

I/0-GET
X;M;IlFpro x :=IN() : X; MU x;TU x
INnrd(e)#0 I/O-DEP-CLEAR
I/O-ASSIGN-DEP INnrd(e) =0 xel

X;M;IlFprox:=e: X;MUx;I1Ux
X;M;IlFpjo x:=e: X;MUx;I\ x

I/O-ARr-LOC
INnrd(e)+0

X;M;IlFgpro ale] =€’ : XUa;M;IUa

All assignments add the variable x to M, since x must be written on the current command. Rule
I/O-GET adds x to I. If any assignment has an expression that reads a value in I, the assigned
location is also added to I, as taint propagates to x (rule I/O-AssiGN-DEP). Conversely, assigning a
location in I to an input-independent expression removes that location from I, effectively clearing
its taint (rule I/O-DEP-CLEAR). Propagating taint to an array element would cause the entire array a
to be conservatively tainted. If an array index is tainted, then a is added to X because the written
array element may differ in each re-execution (rule I/O-ARR-LOC).

Collection for commands Two sets of rules define collection and rewriting for commands:
X;M;I lFgro ¢ — ¢’ : X' and X; M IFypine ¢ — ¢ : X’; M’, with the same distinction as
the : rules between I ;o and IF444,:. These rules compute the exclusive may-write set X’ and
must-write set M’ up to a checkpoint in ¢ and rewrite the checkpoint command to use the collected
X’ as w. Rewriting an instruction ¢ directly uses the rules we introduced in the previous paragraph
to collect relevant variants (e.g, X, M) and rewrites of itself. Much of the complexity for commands
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is collecting exclusive may-write and must-write sets from (nested) branches. We show key rules:

INnrd(e) #0 X;M lrigins ci — ¢} : X3 M i €[1,2]
X;M;11FRro if e then ¢y else co — if e then Ci else Cé : (X1 UXo UM UMs)\ (M N Ma)

I/O-Ir-DEP

O;M b ygine i — ;= Xis My i€[1,2]

X; M IFging if e then ¢y else cg — if e then ¢] else ¢
D(X1 UX2 UMy UMz) \ (M N Ma2); (M1 N M2)

I/O-IF-TAINTED

0;0;0lFrroc— ¢ : X’

CP-TAINTED
X; M IFygine checkpoint(); ¢ — checkpoint(X’); ¢’ : X; M

I/O-Ir-DEP applies to an input-dependent branch encountered when control is not yet tainted.
The rule switches from I- g7 to IF¢4int in the premises because the condition expression is input
dependent. The exclusive may-write set is the union of exclusive may-write and must-write sets
from each side of the branch, minus the intersection of the must-write sets. I/O-IF-TAINTED applies
to branches encountered while in IF;,;,; This rule must also collect the branch’s must-write set,
which is the intersection of the must-write sets from both sides of the branch, unioned with the
must-write set from before the if statement.

Exclusive-May-Write Collection Example

. . . . i X, ={wy,
Figure 8 illustrates exclusive may-write collec- Oifa=0 %=}

tion, using code from Figure 2. We letter each X, ={} 5’::?\‘( )

branch outcome path and number each branch A B

instruction. Collection begins in the I- ;o rule, Qif i>1 X, ={w,y,2}

as the branch is not tainted. For path A, X4 is 0. Mc ={bixy,} x:=6 x=z My ={bi,x,z,w}
For path B, the must-write set is {b, i} before ~Xc={} %i; c D fv:.=185 Xp={3

branching on i. We apply IF¢qn¢ rules to paths
C and D because i is input-dependent. X¢ and
Xp are empty, Mc = {b,i,x,y}, and Mp = {b, i, x, z, w}. Then the must-write set for branch 2 is
the intersection of M¢ and Mp, which is {b, i, x}. The may-write set of paths C and D is the union
of the segments’ X and M sets: {b, i, w, x, y, z}. The exclusive may-write set removes variables that
must be written on both paths (i.e., {b, i, x}); so Xo = {w, y, z}. Collection propagates Xp = X5 and
the final exclusive may-write set for branch 1 is the union of those for paths A and B: X; = {w,y, z}.
For this code snippet, {w, y, z} have to be checkpointed.

Fig. 8. Example of exclusive may-write set collection.

Inserting o At a checkpoint, collection inserts the exclusive may-write set returned from rewriting
¢ as  (rule CP-TAINTED). The rules re-write the command after a checkpoint using the judgment
IFr10, even if control is tainted. This re-writing is correct because after checkpointing, the input
operation will never be re-executed and execution is deterministic until the next input operation.

Correctness of the Algorithm We prove that the collection rules are safe with regard to the
checking rules, which is a condition in Theorem 4.

Lemma 5. If Frjo ¢ — ¢’ : X thenlkrro ¢’ : ok.

The lemma states that if a command has been rewritten using the collection algorithm, the
rewritten command is safe with respect to RIOs. Note that separating the collection algorithm
from the checking IF g0 ¢’ : ok enables modular proofs. A different collection algorithm does not
change the overall correctness proof as long as it can be shown to be safe w.r.t. the checking rules.
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8 EQUIVALENCES BETWEEN SYSTEMS

The checkpoint system presented is based on DINO [Lucia and Ransford 2015], but many others
exist. We additionally formalize four alternative implementations—undo logging [Maeng and Lucia
2018], redo logging, idempotent regions [Woude and Hicks 2016], and a task-based execution model
Alpaca [Maeng et al. 2017]. Instead of reproving the correctness theorems for each system, we
define and prove a bi-simulation relation between the basic system and each alternative showing
that they are equivalent. While these systems differ in mechanism and performance, the equivalence
result shows that their correctness criteria are the same, allowing us to implement the algorithm
in Section 7 for the more performant Alpaca. We relegate bi-simulation for undo logging and
idempotent regions to TR Section 4, as DINO implements a conservative form of undo-logging,
and idempotent regions differ from the basic model by constraints on checkpoint placement.

8.1 Redo Logging

State restoration can be implemented with redo-
. . . Ckpt Code (a) Ckpt DINO  (b) Ckpt Redo
logging, which works by logging memory up- 0 ckpt(); N [r:ly:2] @iy}
dates during execution and committing the log |1 = 7. CNd xyz Noxyz £ xy
Ny

to memory upon reaching a checkpoint. Aredo |2 y:=2; Ns Ls

logging context kg, is of the form (£,V,c,w), [32=3 Ne (2]2]3) N (1]2]3]) £, (2]9)

where L is a log and o has the same meaning |, ckpt(x,y); N, (2[1[3)  N; [1]2[3] &,

as before. 5 a;zx,-' ’ Ng(2]1]5)  Ng (1]2]5) £,

We illustrate the key behaviour of redo- |6 x:=y; o = NN = L:0

logging and its relation to the basic model in Fig- 7y:=0 E N (1l2]s])  w¢(af2]s] Lt
. . s 8 z:=5; ' '

ure 9. Ckpt Code is a simple program that ini- N, N Ll

tializes the variables x, y, z, checkpoints {x,y}, |g ckpt(y,2); N (2]1]5 Ny(1]2]5] £}

swaps their values using a volatile variable a, Ng (2]1]5 Ng (1]2]5) £

10 uninitialized‘}

and takes another checkpoint before continu- = checkpoint | > S NoL vz
ing with the rest of the program. Columns (a-c) {_ """ No(201]s) Ny [2[2]5) £o
on the right show the program’s state at each =~ s S Ne iLz5] wifyz)

point in the execution. Column (a) shows the
execution of the basic model starting from the
checkpoint at line 4. Column (b) shows a redo-logging execution. Volatile memory V and command
c are equivalent at each step and omitted. DINO starts with N, containing the values of x, y at the
checkpoint. Redo-logging starts with an empty log and w = {x, y}. In any checkpoint region, the
domain of the log will be w. If the program contains an assignment to a non-volatile location in
o (lines 6,7), the update is placed directly into the log, leaving non-volatile memory untouched.
Otherwise the variable is updated directly in non-volatile memory (line 8). On reboot, the redo
log clears but leaves non-volatile memory untouched, as all updates to locations in w reside in the
log only. The basic model updates non-volatile locations in w to the values from the checkpoint.
As the program re-executes, updates to locations in w are redone, either directly to non-volatile
memory (a) or to the log (b). When the program reaches the next checkpoint on line 9, the Redo
model applies the log to non-volatile memory, committing the changes.

A key part of the bi-simulation relation between DINO and redo-logging is that if the value
of a location in redo-log non-volatile memory N, is not equal to the same location in DINO’s
non-volatile memory Ny, then that location is in the domain of w and therefore in the log. The value
in the log is equal to the value in Ny, as both reflect its latest update. Consequently, Ny = N, < L. At
reboots and checkpoints £ is empty, and the non-volatile memory, volatile memory, and command
of both models are equal. We formalize this relation and prove bi-simulation in TR Section 4.4.

Fig. 9. llustrating the relation of DINO to redo-logging
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8.2 Task-Based Systems

Task-based systems [Colin and Lucia 2016; Colin et al. 2018; Hester et al. 2017; Maeng et al. 2017;
Ruppel and Lucia 2019] require the programmer to structure an intermittent program as a series
of transaction-like tasks. Updates within a task are not be visible to other tasks (including re-
executions of the same task) until the task commits. Task semantics rely on either undo or redo
logging. The key differences between checkpoint- and task-based systems are in their memory
abstraction and control structure.

Task Map T ::=
Instr. o=

T, i (w,c)
-+ | toTask(i)

A task-based program has no checkpoints, and is instead a series of tasks. The context is aug-
mented with a task map T, from task IDs to a checkpoint set w and command for the corresponding
task. The context k pgx for intermittent execution is a pair (7, i) consisting of the task map and the
ID of the current task. A special instruction toTask(j) ends the current task, transitioning to task j
(rule TSK-TRANS).

1(j) = (w,¢)

transition

= 15k (T.), Ts<Tp.0,Ti,c)

krsi = (T, 1)

TSK-TRANS
(xTsk, TS, Tp, Ti, toTask(j))

The task-system has a memory abstraction of task-shared memory 7, task-local memory 77, and
task-private memory 7p. A programmer assigns variables accessed in multiple tasks to task-shared
memory and variables used only in a single task to task-local. Task shared memory must be non-
volatile, and task-local can be split into volatile and non-volatile sections, 71y and 71y respectively.
Task-private variables are hidden from the programmer and used to implement logging. A task
must initialize task-local variables by writing them before reading them. Like basic checkpoints, the
command in each task is well-formed given the checkpoint set: w IFwar ¢ : ok and w IFrro ¢ : ok.

Commands ¢

.-+ |goto ¢

Code context ¥
To prove equivalence between a task-

¥ . | ¢; : checkpoint(w); c

. Task Code Task Execution
based and a checkpoint-based system, we tasks {1:init, task (ZX) lz{' }eo)
aSKS : X,¥j, C
first translate task transitions to check- rz‘:swzp,&r est} Zfrls(l:atzd Texyz :}T]l aS T, xy
. . shared {x,y,z pt Lode
point commands. We augment the basic boyz) Tss Tis (@) Ts
: t1 task_init{ |[L1 ckpt(); P
language with a goto command andacode |1 x:=1; 1 x:=1; Tss T (1) 76
context ¥ that includes a set of labeled pro- g y:= ji 2 y=2 Ts7 Tz W Tp7
. o . _ z:=3; 3 z:=3; Tis(1]2]5) T 1) Tps (21
gram points, each beg%nmng with a che.ck 4 toTask(2);} |[a gotorz | & s W Tn
point. Correctness still holds; extending  [t2 task_swap { ||L2 ckpt(x,y):| =] — 8 Twi  Tpi0
the main proofs is trivial as goto does not ~ [> a:=% 5 a:=x Tss 2} T W Tos
change memor 6 x:=y; 6 x:=y; Tso 7 [ 7 210)
& - Y- i lation £ 7yi=a 7 y=a 75 (120) 7@ 7, 21
We specity a trar_ls ation relation e 8 z:=5; B =S o Tl 75
tasks to a redo-logging code context, writ- 33 iOT‘;’(SkB)t'{} ) 9 QI:’“’ L3; w TaT, y 2
. . ask_rest{...} ||L3 ckpt(y,z);
ten T ~» V. The key idea is that each = ckptlyz) Teo (2115) 7i(1) 7 (2]0)

task can be translated to a checkpoint fol-
lowed by the translated task command:
i > (w,¢;) ~ € : checkpoint(w);c,.

5 checkpoint

="reboot

wytransition i
@ uninitialized :

tasks(3)1 ({y: Z}‘ Crest)

Fig. 10. Relating checkpoint redo-logging to tasks

Here ¢, = [[¢;]] and task transitions are translated to gotos: [toTask(i)]] ~ goto ¢;. The translation
of the rest of the constructs recursively translates the sub-terms and returns the same construct
when an instruction is reached. We show a task-based version of the program to swap x and y and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 163. Publication date: November 2020.



Towards a Formal Foundation of Intermittent Computing 163:21

its translation to a checkpoint program in Figure 10. The program is a series of three tasks: init,
swap, and rest. The variables x, y, z are shared between the tasks. Variable a is local to task swap.
In the translation, each toTask is replaced by a goto whose label points to a checkpoint followed
by the translated task command.

Using these constructs and the translated program, we relate a configuration of a task-based
system to that of redo-logging. We show the formal relation below and an execution of the task
program on the right side of Figure 10. The redo-log execution of the translated program is the
same as in column (b) of Figure 9 as the only difference to the original Ckpt code is the addition of
the blue goto instructions.

ER = (KRL:NrsViser)  Zrsk = (k7sk, T8 Tp, Ti,ct)
krp = (L, Ve,ce,0r)  krsx =(T,1)  T@) =(wr,ct) T~>¥ [l =cr lceell = cc
Wt = wr Tp=L Ti=Tiwy,TIN N, =TsUTin Vi = Ty dom(V;) € dom(71y)

rsk ¢+ ¥, ZRL

The redo-log £ and Tp are equivalent. Any updates to locations in w will be placed into 7p, not
Ts. If T1is entirely volatile, then 7s and N, will also be equivalent. Otherwise, if a is stored in a
non-volatile location, then N, will be equal to the union of 7s and 7. If a in a volatile location,
Ty will be equal to the redo log volatile memory, once a has been initialized (V, ~ 7iy). This
qualification is necessary as 71y is cleared on reboot (after line 8), whereas redo logging restores the
checkpointed volatile memory. Translated commands will always be well-formed w.r.t. task-local
memory, however, so there can be no read to a volatile memory location before it is initialized.
Thus any memory accesses on the two systems will be equivalent. This property does not hold for
any arbitrary redo-log program; consider a redo-log program where the assignment to a occurred
before the checkpoint — the first access to a after the checkpoint would be a read. At line 9, task
swap transitions to task rest. A task transition commits 7p to 7, resets 7p, and transfers control
to the specified task, switching the task reference in the context to the new task. The translated
program jumps to the label L3, corresponding to the command checkpoint(y, z); [Crest . When
it executes this checkpoint, it updates N, with the log and the clears the log. As 7p and L are
equivalent, the updated non-volatile memory is still equivalent to the union of the task-shared and
non-volatile task-local memories. Furthermore, as no writes are left to occur, V, = 71y. We prove
equivalence in TR Section 5.

9 IMPLEMENTATION

We implemented the exclusive may-write (EMW) collection algorithm in Section 7, which consists
of both write-set collection and taint-tracking, and combined its output with Alpaca’s runtime
system, yielding an intermittent execution runtime with safe access to I/0O. We built two variants:
EMW, which backs up EMW sets for all branches (correct, but conservative), and taint-optimized
EMW, which calculates the EMW set for only input-dependent branches. EMW requires no code
changes, but backs up some unnecessary variables. Taint-optimized EMW requires very minor code
changes to annotate input operations, but backs up a smaller, far less conservative variable set.

9.1 System

We implemented EMW collection in LLVM [Lattner and Adve 2004] and to Alpaca, we added
support to back up EMW variables. Alpaca is a task-based system and can use either undo or redo
logging [Maeng et al. 2019]. As Section 8 shows, a task-based program translates into an equivalent
checkpoint-based program with either style of logging. We use undo-log Alpaca since it is the most
efficient Alpaca variant.
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9.2 Limitations Due to C Features

The algorithm in Section 7 is sound for our simple modeling language. However, Alpaca extends
C, which has several features not present in the modeling language, such as merging branches,
arbitrary pointers, and non-recursive functions (which do not checkpoint state), leading to a
few differences between the formal statement of the algorithm and the implementation. Merging
branches and functions do not require changes to the algorithm. All paths can be explored even if a
branch merges A write in an unconditionally executed block will execute on all paths and be in the
must-write set. Functions are treated as inlined, leveraging the lack of recursion.

Taint tracking Pointers and functions complicate taint tracking. Taint-optimized EMW collection
is sound only if taint does not propagate indirectly, as through pointer arithmetic (e.g., y points
to N, the address of a tainted location, x points to N — 1, x + +. The algorithm would miss that x
points to a tainted location). Our implementation propagates taint through function parameters
and return values. A call with a tainted parameter taints the corresponding argument. A tainted
return value taints the store of the return value in the function’s caller. A function may taint a
reference parameter, and our implemented algorithm taints the corresponding parameter in the
function’s caller (similar to [Surbatovich et al. 2019]). These aliasing limitations of taint tracking
do not affect the soundness of taint-agnostic EMW collection, and none of our test programs had
indirect taint propagation, which would compromise soundness.

Write set collection To compute write sets, we assume that task-shared variables must be stored
to directly, and cannot be aliased through a task local pointer. All Alpaca applications followed this
behaviour. This direct access of task-shared variables allows the algorithm to compute may and
must write sets precisely, apart from arrays. This limitation is due to our prototype implementation
and is not inherent to the formal algorithm. To extend the prototype to compute safe EMW sets
with complex aliasing, must-write sets should include must-alias only, and may-write sets should
include may-alias locations. As in the formal algorithm, any array written to on a tainted branch is
conservatively (safely) put into the EMW set.

9.3 Algorithm Implementation

We implement taint tracking as a fixed-point dataflow analysis, propagating data taint in a tra-
versal. At the end of each traversal, the algorithm examines any instructions that introduced
inter-procedural dataflow, and adds any new sinks to a worklist from which to start future traver-
sals. When no new inter-procedural flows are identified, the algorithm is at a fixed point and stops.
The analysis returns a list of tainted instructions. As we mentioned earlier, we could under-taint,
though we did not observe any under-tainting.

EMW collection is a separate analysis directly implemented from our formal description. Taint-
enabled EMW collection narrows the scope of the analysis, using the taint tracking analysis result
and calculating the EMW sets for conditionals that are tainted only. EMW collection returns a map
from a function to its computed EMW sets.

We modify Alpaca’s undo-logging compiler analysis to use the EMW set information. Alpaca
maintains a per-function set of WAR variables to undo-log in their called task. We modify Alpaca
to include a function’s EMW set with the function’s WAR variables, which are then passed together
to Alpaca’s existing undo-logging instrumentation pass, which allocates undo log storage, creates
checkpoint metadata, and adds undo-logging instrumentation.

Comparison to IBIS’ algorithm The specification of the algorithm in IBIS is unsound. Even
assuming perfect pointer aliasing and taint propagation, IBIS could still miss bugs. IBIS detects RIO
bugs by calculating the may-write sets of paths off tainted branches and comparing them. If the
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may-write sets are equal it reports no bug. Consider if(tainted e) x := 1;if(e2) y := 1 else z := 1;
else x := 1;y := 1; z := 1. IBIS would report no bugs as the may-write sets are the same, but y and
z are in the EMW set and thus potentially inconsistent. Additionally, conservatism, whether due
to implementation decisions such as aliasing or inherent in static analyses (such as opaque path
conditions) hampers the usability of IBIS. Any variable falsely identified as potentially inconsistent
generates a confusing false-positive bug report that the programmer must reason through, whereas
the EMW runtime safely adds it to the checkpoint at little runtime cost.

10 EVALUATION

The goal of the evaluation is to show that modifying Alpaca to correctly support input operations
is practically efficient. We evaluate Alpaca’s baseline system, a variant that checkpoints all data
identified by our exclusive may-write (EMW) analysis without taint tracking, and a variant that
checkpoints all data identified by our EMW analysis refined with taint-tracking support. Our
data show that our analysis provides correctness, through checkpointing both WAR and RIO
variables, with low run time and memory overheads. EMW alone has very low overheads with
no programming effort and EMW plus taint analysis has virtually no time overhead and very low
memory overhead, but asks the programmer to annotate input operations. To demonstrate the
programmability benefit of our analysis, we perform case studies, showing that it is non-trivial
(sometimes complicated) to fix RIO bugs manually, even using a state-of-the-art bug detection tool
(IBIS [Surbatovich et al. 2019]), but trivial using our analysis.

10.1 Benchmarks

We use benchmarks from the IBIS paper [Surbatovich et al. 2019], obtained from the authors, as they
run on Alpaca and have input bugs. There are 11 programs: 7 drivers and low-level applications
from TI-RTOS [TI Inc. 2020b] and 4 from Alpaca [Maeng et al. 2017]. The TI-RTOS programs are
bmp a pressure sensor driver, hdc a humidity sensor driver, elink, a radio implementation, mpu, a
magnetometer driver, opt, an optical sensor driver, temp, a temperature sensor driver, and wsn, a
sensor data aggregator. The Alpaca programs are ar, activity recognition, bc, bit counting, cem, a
compressive logger, and cuckoo, a cuckoo filter. IBIS found RIO bugs in mpu, opt, temp, and wsn.

10.2 Performance Overhead of EMW Tracking

Checkpointing data added to w by EMW anal-
ysis guarantees correctness and causes only
low run time and memory overheads. Fig-
ure 11 shows run time normalized to Alpaca
for plain Alpaca (blue), Alpaca with check-
pointing for EMW sets (yellow), and Alpaca
with checkpointing for I/O-tainted EMW data
only (green). Each bar averages 100 run times “ar bc bmp cemcuckooelink hdc mpu opt temp wsn geo-m
on continuous power with fixed inputs, and  Fig. 11. Normalized runtimes of Alpaca, Alpaca with
error bars are a 95% confidence interval. Plain  EMW sets, and Alpaca with taint-optimized EMW sets
Alpaca is fastest, but incorrect because it does

not back up variables made inconsistent by RIOs. EMW with taint-tracking has virtually no time
overhead (0 - 0.7%) because the analysis checkpoints the few variables from the EMW set required
for correctness. Checkpointing full EMW sets has higher overhead, ranging from negligible to
nearly 15% for cuckoo. The higher overheads of EMW alone demonstrate the need for taint tracking,
which eliminates overheads, requiring only that the programmer annotate input operations.

Alpaca (incorrect)
1.10 1 Alpaca + EMW
Bl Alpaca + EMW + taint

Normalized Runtime
-
o
o
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Checkpoint and Memory Overheads Taint-optimized EMW analysis checkpoints only the few
variables necessary to avoid RIOs and WARs, while using EMW analysis conservatively requires
checkpointing many more variables, at a higher memory overhead. Figure 12 shows the bytes
needed to back up variables identified by EMW and taint-optimized EMW. The left bar in each
pair is for EMW alone, and the right is for taint-optimized EMW. Each bar is broken up into
bytes due to variables in a WAR dependence (blue), untainted variables conservatively in the
exclusive-may-write set (yellow), and tainted variables in the exclusive may-write set (green).
Any array is double-buffered, potentially causing a large difference in log size (bmp) Together, the
yellow and green segments in an EMW bar include all tainted and untainted EMW variables. The
taint-optimized EMW bar eliminates the yellow segment, identifying input-tainted EMW variables
only and illustrating the conservatism in EMW alone that requires checkpointing more variables.
Figure 13 quantifies the normalized mem- s,
ory overhead caused by the increase inlogged 53¢ ] == |
¥ 80
variables, accounting for all checkpoint stor-
age and metadata (including array-size de-
pendent metadata [Maeng et al. 2017]). Taint-
optimized EMW reduces memory overheads
significantly compared to EMW alone.

WAR vars
EMW vars
I EMW+Taint vars

“WL L] G B

Programmability Benefits of EMW Using ET _

. .. .. . ar bc bmp cem cuckoo elink hdc mpu opt temp wsn
taint-optimized EMW analysis is a simpler so-
lution for repeated I/O than manually chang-
ing code. Prior work detects RIO bugs using
an ad hoc approximation of our taint-optimized EMW analysis [Surbatovich et al. 2019], suggesting
that the programmer fix bugs. Taint-optimized EMW has low overheads and requires the pro-
grammer to annotate input operations only, which is simple. Manually finding and fixing bugs is
relatively more complex. IBIS [Surbatovich et al. 2019] advises re-initializing I/O-tainted variables
at the start of the task that taints them. This strategy moves each variable into the must-first-write
set, causing it to be written on every task execution and eliminating the need to include it in
. However, unconditional initialization in a task may change a program’s meaning if the value
overwritten by the initialization is important. Instead, a programmer could create their own backup
copy of the variable and save its value on the first write in the task; doing so amounts to manually
applying undo-logging, guided by IBIS’s bug report.

Manual undo-logging requires modifying
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Fig. 12. Space needed to back up variables identified by
EMW and taint-optimized EMW analysis, by category

each use, and adding an initialization and a % 81 EMw.
backup operation, requiring changing at least 5 ; M Tant
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Concretely, mpu required 22 changes, opt re- § 41
quired four, temp required seven, and wsn re- % :
quired 17. As reported by IBIS, only these £,
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benchmarks had RIO bugs that required code
changes to fix.
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T Fig. 13. Normalized checkpoint size overhead caused by
Manual fixing is not only onerous, but ul- EMW tracking and taint-optimized EMW tracking.
timately duplicative: manual backup intro-

duces a WAR dependence on a task-shared variable and any non-idempotent EMW variable will be
added to the checkpoint anyway by the WAR analysis after fixing manually. IBIS may also miss
RIO bugs. Fixing only IBIS’ reported bugs may result in still incorrect code. Our taint-optimized
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EMW analysis eliminates the risk of manual code fixes and directly backs up the necessary data,
ensuring correctness with reasonable overhead and essentially no programming burden.

11 EXTENDING THE FRAMEWORK

We use the presented framework to define and prove correctness with respect to memory consistency
and input operations. There are more properties that must be reasoned about to truly develop
provably correct, reliable intermittent systems. This framework serves as a foundation that can be
built upon to reach that ultimate goal. We discuss the strategies to extend the framework to include
other programming models or correctness properties. Some programming models can be modeled
by straightforward extensions, such as changes to the execution state or logging mechanisms
(Section 8). Others require more significant changes to the current framework, such as guaranteeing
forward progress.

11.1 Extending Memory Consistency to Other Programming Models or Architectures

Extending the memory consistency theorem to cover systems with different checkpointing algo-
rithms or architectural state is straightforward. The proof of the memory consistency theorem is
built around two memory relations 1) current-to-initial execution point and 2) same execution point
(Section 6.3). If the intermittent and continuous states satisfy relation 1, the states remain related
after each reboot. If they satisfy 2, the states will have the same memory by the next checkpoint.
To extend the framework to cover a new execution model, one can show that these relations hold
directly, or one can show equivalence to the basic model as in Section 8. A model with differing
checkpoint placement or additional language instructions may satisfy these relations directly,
such as just-in-time checkpointing [Balsamo et al. 2015; Maeng and Lucia 2019] or idempotent
regions [Woude and Hicks 2016]. If a model changes the state tuple or runtime constructs—e.g.,
the context or memory layout, additional architectural components—it is more practical to show
correctness via bi-simulation, rather than tweaking the parameters of relations 1 and 2. In Section 8,
we showed equivalence to systems with differing program models. Below we sketch an extension
to a different architecture, one that uses a write-back cache.

A write-back cache commits an update to memory only when the update is evicted from the
cache, either due to an eviction policy or through explicit flushing. Thus, the order in which updates
execute may differ from the order they are evicted and committed. Our target hardware has a
write-through cache, allowing us to assume identical persist and execution order in the presentation
of the basic model (Section 4), but devices with write-back caches are reasonable future targets.
We show that the framework can be simply extended to handle this change in architecture. The
state tuple of the basic model should be extended with a cache C. An update to a location [ may be
made to the cache instead of N, and a future eviction from the cache updates N with the value, i.e.,
N < C[l]. Note that this is almost exactly the behaviour of Redo logging (Section 8.1); updates to
checkpointed locations are logged, and the log is committed at a checkpoint. Updates to N occur
out of execution order. The key change to the semantics is that the commit must flush the newly
added cache as well as the log, acting as a serialization point. Additionally, items in C can be flushed
before reaching a checkpoint. This behaviour does not introduce new inconsistencies, however, as
region re-execution is idempotent. Consider an execution that caches updates x and y, persisting
only y before failing. y is after x in execution order but before x in persist order. If the first access
to y after reboot is a write, the previously persisted value is never accessed. If the access is a read,
then y had a WAR dependence. y is thus in o and the update would have been made to the redo
log. Adding a write-back cache to a sequential redo-log model thus requires only minor changes to
the semantics and bi-simulation relation, as the model already commits at checkpoints and safely
redoes partial flushes.
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Undo-logging with a write-back cache is more complex. In the basic model presented, the back-up
copies of variables are created at the checkpoint, so flushing after a checkpoint persists both cached
updates from the previous region and all the backup copies. A more performant undo log that
creates backup copies on demand could become inconsistent if the update to general non-volatile
memory persists before the update to the log, and power then fails. A simple way to make caching
correct is that any update to the log must be flushed immediately, so the log update always is
persisted before the general update, but this destroys much of the benefit of having a cache for any
variable in w. This issue of persisting log data before program data is a known and well studied
problem with logging on persistent memory [Chakrabarti et al. 2014; Geng et al. 2020; Raad et al.
2019a].

Updating the checkpoint semantics to flush (and fence) the cache makes a checkpoint a serializa-
tion point between checkpointed regions. The WAR:ok and RIO:ok checks are static, and thus put
any variable that could potentially be inconsistent (including those visible to a re-execution of the
current checkpoint region) into the checkpoint set. Any out-of-order persists or variables from
partial flushes are thus either over-written during the course of re-execution, were made to a log
(redo model) or are undone when applying the checkpoint set (basic, undo-log model).

As energy-harvesting devices develop to target more complex architectures, the modular next
step is to add a hardware layer to the model to abstract away ordering details from the higher-level
theorem. The instructions to fence and flush updates are ISA specific [Raad et al. 2019b,a]. As shown
above, changes to the architecture need not dramatically effect the memory consistency theorem.
The interface with the hardware layer should provide certain assumptions, e.g., checkpoints are a
serialization point, updates are linearizable. The proofs of these assumptions would not change the
main correctness theorem, but can instead draw from formalizations in prior work [Chakrabarti
et al. 2014; Raad and Vafeiadis 2018; Raad et al. 2019b,a].

11.2 Towards Correctness Properties beyond Memory Consistency

Ensuring that programs are correct with respect to memory consistency is a crucial first step
towards reliable intermittent computation, but there remain others, such as ensuring progress,
correct timing, and concurrency (Section 2.1). The presented framework can be extended modularly
to reason about these properties.

Forward Progress To be able to guarantee forward progress, any possible trace between check-
points must not consume more energy than can fit in the energy buffer. Reasoning about the energy
consumption of a trace requires creating an energy model. This energy model must model the full
system, including peripherals, as energy consumption depends on all components on the board,
not just the CPU. The prior work CleanCut [Colin and Lucia 2018] develops an energy model to
guide programmers in creating appropriately sized tasks, but it is probabilistic, and furthermore
does not consider the full system. Developing such a full-system, non-probabilistic energy model is
a complex problem. While this energy model is necessary to reason about the forward progress
property, it does not change the memory consistency correctness property presented in this work.
Rather, an additional energy layer should be added to the framework. To be correct, any intermittent
execution must correspond w.r.t. memory to some continuous execution, and additionally a trace
between checkpoints must always take less energy than can fit in the energy buffer. Thus, we
anticipate that energy modelling can be added to the current framework modularly.

Concurrency through Interrupts While there are not yet multi-core intermittently-powered
devices, some research [Ruppel and Lucia 2019; Yildirim et al. 2018] addresses interrupt driven
computation. In such execution models, inputs can be asynchronous and ephemeral —after reboot,
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interrupts may not occur as they did before power-failure. Intermittent executions must be consis-
tent, as in defined in the theorem presented here, but they must also correctly deal with concurrency,
The updates to memory of any interrupt handlers—including those partially executed—and the
main thread of program execution must be linearizable. Linearizability for persistent memory is a
well-studied problem [Izraelevitz et al. 2016a,b; Liu et al. 2018; Raad et al. 2019a]. Extending the
framework requires adding interrupts to the semantics and adding linearizability to the proof.

Time-sensitivity In this work, as in [Koskinen and Yang 2016], the continuous, non-crashy
execution to which the intermittent, crashy execution corresponds can pause for arbitrary amounts
of time, while the system recovers to a consistent state. Allowing these arbitrary pauses at any
location can make the correctness definition too weak for programs whose behaviour depends on
highly timing-sensitive input processing. The value an input operation returns depends on the time
that it was gathered — arbitrary pauses within a sequence of input operations can produce program
behaviour not possible on a continuous execution without pauses. To be correct w.r.t timing of
inputs, an intermittent execution must not only correspond to some continuous execution, but
that continuous execution must be one without pauses in time-sensitive regions. Which regions
are time-sensitive is frequently application dependent. Robust reasoning about time-sensitivity
requires adding language constructs to describe the time-constraints on data, as well as mechanisms
to preserve the constraints. As with the properties above, adding time-sensitivity to the framework
does not change the underlying memory-consistency theorem, but adds another constraint to
correct intermittent execution.

12 CONCLUSION

We provide the first formal framework for examining the correctness of intermittent systems, w.r.t
memory consistency. We show the framework’s usefulness by using it to formalize intermittent sys-
tems with input operations, showing that many existing systems do not meet reasonable correctness
criteria, and using the correctness invariants to implement a correct runtime system. We further
extend the framework to show that a variety of existing systems are equivalent, indicating that the
same correctness properties hold for all the modeled systems. This framework lays the foundation
for formally defining intermittent system correctness, a crucial step towards the development of
provably correct, reliable applications for intermittent systems. Future work should extend the
framework to define properties beyond memory consistency, such as timeliness, forward progress,
or concurrency.
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