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model, where programs make progress during an active period that is preceded by and followed by

an inactive recharge period and a reboot [Balsamo et al. 2015; Colin and Lucia 2016; Jayakumar

et al. 2014; Lucia and Ransford 2015; Maeng et al. 2017; Ransford et al. 2011; Woude and Hicks 2016].

A reboot clears volatile state (registers and SRAM) and preserves non-volatile state (FRAM [TI Inc.

2020a] and Flash). This execution pattern is illustrated in Figure 1 (a).

Unpredictably-timed power failures create several challenges for an intermittent execution

model, including how to maintain forward progress, ensure memory consistency, manage I/O

and concurrency, and correctly interface with hardware. Figure 1 (a) illustrates how executing a

program intermittently can result in a memory state inconsistent with any continuous execution

of a program, if the program contains certain memory access patterns or repeats input operations.

As energy-harvesting devices have matured, an increasing variety of new programming models

and runtime systems for intermittent execution, with varying technical approaches to addressing

these key challenges, have emerged [Balsamo et al. 2016, 2015; Colin and Lucia 2016; Colin et al.

2018; Ganesan et al. 2019; Gobieski et al. 2019; Jayakumar et al. 2014; Kortbeek et al. 2020; Lucia

and Ransford 2015; Ma et al. 2017; Maeng et al. 2017; Maeng and Lucia 2018, 2019; Ransford et al.

2011; Ruppel and Lucia 2019; Woude and Hicks 2016].

The proliferation of diverse intermittent execution models presents a developer with a confusing

space of implementation options and raises the question of how to specify and compare the

behavioral properties of different systems. Models differ subtly, and a program written for one

model may make assumptions not met by another. Moreover, no existing software or hardware

system has clear, formally defined behaviour. Such a characterization and formalism is a key

building block for defining and proving correctness properties, developing tools to find and fix

intermittence-specific bugs, and understanding the fundamental similarities and differences between

models. A primary motivation for using intermittent computing systems is their deployability in

remote, inaccessible environments. Updating the device may be difficult or even impossible, so a

buggy runtime that corrupts the memory state can make the device practically useless. The lack

of specifications of intermittent systems is a key impediment to their deployment, particularly in

applications that demand high reliability or security.

In this work, we lay the groundwork for provably correct intermittent computing by formalizing

the semantics of several classes of intermittent execution models, focusing on the foundational

correctness issue of ensuring memory consistency in the presence of non-deterministic input opera-

tions. Figure 1 (b) provides an overview of our contributions. An intuitive correctness property

is that an intermittent execution’s behavior should be equivalent to some continuously-powered

execution. Prior work [Surbatovich et al. 2019] has shown (confirmed by our formalism) that a

majority of existing intermittent systems do not satisfy a reasonable correctness condition in the

presence of input operations that may change as a program runs intermittently. We articulate

the changes to the execution model that are necessary to correctly handle the behavior of input

operations in an intermittent execution. We start by formalizing a checkpoint-based intermittent

execution model based on DINO [Lucia and Ransford 2015]. A checkpoint model saves important

state during execution and, after a power failure, restarts from that point in the execution by

restoring the checkpoint on reboot. We then formalize the behavior of variants of checkpoint-based

systems [Woude and Hicks 2016], including both redo- and undo-logging checkpoint strategies,

and a task-based execution model [Maeng et al. 2017]. We relate these systems via bi-simulation,

showing that the correctness properties of one system hold for the others. Finally, we propose a

new checkpoint-based intermittent execution model that provably handles input behavior correctly,

while allowing re-execution of inputs (crucial for data freshness). As far as we know, we are the

first to propose such an execution model.
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concurrency. Our paper addresses memory consistency. An intermittent program that is guaranteed

to finish and always processes only fresh data is incorrect if it operates on a memory state incon-

sistent with any continuous execution of the program. While we focus on memory consistency,

we can extend the formalism to cover other correctness properties in the future. In the remainder

of this section, we describe these other properties at the high level and sketch what extensions

are necessary for our framework to capture these properties. We then discuss how our framework

relates to existing research, particularly in intermittent computing and verified crash consistency.

2.1 Scope: What the Paper Is Not about

We focus on memory consistency with re-executed inputs. Reasoning about other desirable prop-

erties presupposes that the underlying system memory is correct. As intermittent applications

are often sensor-driven, ensuring correctness with input operations is paramount. The full set of

properties mentioned above is a long term goal that can be reached by building on top of our current

framework. Each additional piece requires nontrivial theoretical and implementation components.

Forward progress To make forward progress, a program executing intermittently must be able

to execute the region between any two adjacent checkpoints (or any task) with the amount of

energy in the device’s buffer. Otherwise the program will get stuck, partially executing the region,

recharging energy, and rebooting forever. Current intermittent systems assume that the largest task

or checkpoint region will be cheap enough to finish [Maeng et al. 2017; Woude and Hicks 2016]. Our

correctness theorem is sound relative to this assumption and does not itself prove forward progress.

Formalizing and guaranteeing forward progress requires a persistent energy model, which is likely

to be complex because the amount of energy a sequence of instructions consumes depends on the

state of the entire board, not the processor alone. A region between checkpoints could finish on a

processor in isolation, but may not if, e.g., the radio is enabled. CleanCut [Colin and Lucia 2018] is

a compiler tool that provides a probabilistic energy model to guide programmers in sizing tasks,

but it offers no guarantees and does not consider the full state of the board. Samoyed [Maeng and

Lucia 2019] allows programmers to specify cheaper alternatives to algorithms that the system can

switch to at runtime, if it seems a program is not making progress.

TimelinessAs power can be off for an arbitrary period of time, sensor data collected before a power

failure can be stale and useless after a reboot. To avoid processing stale data, prior systems have

either required external persistent timekeepers [de Winkel et al. 2020; Hester et al. 2016] so that a

programmer can specify explicit timing annotations that the system can check at runtime [Hester

et al. 2017; Kortbeek et al. 2020], or required that the programmer place sensor calls and uses

requiring fresh data in the same checkpoint region or task. We assume the latter approach in

this work, and find that while it allows timely processing of data, it also introduces memory

inconsistencies, making current systems that take this approach incorrect. Our formalism aids us

in developing a runtime that allows consistent re-execution of inputs.

Guaranteeing timely consumption of data requires additional language and type constructs to

specify which inputs and uses are time-critical, along with either static checking algorithms to

disallow programs that may incorrectly consume stale data or additional runtime mechanisms to

ensure that a program will not consume stale data.

Concurrency While most current intermittent systems use single-core micro-controllers and

have no parallelism, recent work [Ruppel and Lucia 2019] supported interrupt-based concurrency

through transactions. Modeling concurrency requires modeling interrupts and asynchronous events

and updating the language with synchronization commands.
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2.2 Related Work

The ideas presented in this paper are related to work in intermittent systems, fault tolerance and

crash consistency in files systems, and formal persistent memory models. We first discuss the most

related works in verified crash consistency and persistent memory models, and then how our work

relates to existing intermittent systems, particularly those that deal with inputs or reactivity.

Crash consistency The failure and recovery problems of intermittent systems are similar to those

of crash consistency on concurrent programs and file systems. A file system can crash at any time

and must not exhibit unspecified behaviour after recovering. Developing formal specifications and

verifiable file systems is an important research goal [Joshi and Holzmann 2007], particularly to

guarantee correctness in the presence of crashes [Bornholt et al. 2016; Chen et al. 2015; Ernst et al.

2016; Ntzik et al. 2015; Schellhorn et al. 2014; Sigurbjarnarson et al. 2016].

Bornholt et al. [Bornholt et al. 2016] create a framework for generating crash consistency models.

A crash consistency model specifies the allowed behaviour of a file system across crashes. Their

crash consistency theorem relates the crashy fs trace to a canonical program trace with no crashes.

In contrast, as we model non-deterministic sensor inputs, there is no single canonical trace even for

executions with no crashes. The model consists of litmus tests and an operational semantics of the

file system that models both volatile core state and durable disk state. Our semantics additionally

model checkpoints.

The verification tool Yggdrasil [Sigurbjarnarson et al. 2016] uses crash refinement to aid program-

mers in developing verified file systems. Programmers must write specification and consistency

invariants of their system. Then the verification is process is modular, allowing developers to swap

in different implementation of system components as long as they meet the specification. The

focus of our work is on defining correct specifications of intermittent system behaviour, including

whether different implementations are in fact equivalent. While our correctness theorem is similar

to crash refinement, we do not use Yggdrasil to verify our specifications as Yggdrasil uses file

system abstractions, e.g., inode layouts and disc models, that don’t apply to intermittent systems,

which interact directly with memory. We additionally model the effects of inputs.

Crash Hoare Logic (CHL) [Chen et al. 2015] and fault-tolerant resource reasoning [Ntzik et al.

2015] are proof automation tools that extend Hoare triples with crash conditions to verify file system

implementations. Using CHL has a high programmer proof burden because the programmer must

specify the correctness invariants and recovery procedures and prove the recovery procedure correct.

Thus, a large portion of our work is a prerequisite to using CHL; we define intermittent correctness

invariants, which is non-trivial. We additionally show that existing recovery procedures are in fact

incorrect. Using CHL for proof automation once we have defined intermittent correctness is not

immediately possible as CHL does not provide primitives for checkpoints and only explicitly models

non-volatile state, not the mixed-volatility state typical on an intermittent system. Additionally, the

crash conditions for the Hoare triples should capture the intermediate states at which a crash could

occur, and must be specified for every procedure. For a set of file system procedures, capturing these

intermediate states is not onerous, as each procedure interacts with only a few blocks of the disk.

In contrast, we model intermittent execution traces of programs, which makes enumerating crash

conditions complicated and time-consuming. Ntzik et al. [Ntzik et al. 2015] do consider both volatile

and non-volatile resources, though they also require enumerating the non-volatile states possible

after a procedure crashes. The authors use their framework to prove the soundness of an ARIES

recovery mechanism. They model updates to the durable state at page granularity, and undoing a

transaction requires rolling back all updates to pages modified by the transaction. In contrast, the

intermittent systems we model are designed to roll back the minimum set of updates necessary to
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(ostensibly) guarantee correctness. Neither of these frameworks model non-deterministic sensor

inputs.

Unlike the works above, which deal with verifying the file system itself, Koskinen et al. [Koskinen

and Yang 2016] automatically verify crash recoverability at the program level. Our approach is

most similar to this work. Our correctness theorem is similar, defining correctness in terms of

a simulation relation and observational equivalence between the continuous and intermittent

executions. In contrast to our work, this model assumes that underlying system operations will

be correct. Their method analyzes control-flow and reduces crash recoverability to reachability: if

control-flow cannot reach an error state, it will be correct. The definition of a recovery mechanism is

that given a stateqk in the original program, after a crash the mechanism brings the program back to

qk after transitioning through some recovery states. While this is clearly the desired behaviour of a

recovery mechanism, this definition does not consider the internal state of the recovery mechanism

and is not expressive enough to capture the behaviour of existing intermittent checkpoint systems.

After fully executing the recovery procedure, an intermittent program is not in an equivalent state

to before the crash. Identifying what differences are allowable in the recovered state so that further

execution eventually brings the program to a consistent state is a key contribution of this work.

Persistentmemory formalisms Persistent memory has been used for whole systems [Narayanan

and Hodson 2012], entirely non-volatile processors [Ma et al. 2015a,b], and heap structures [Coburn

et al. 2011; Volos et al. 2011]. There are formalisms exploring persistency models [Pelley et al. 2014,

2015] for reasoning about data on non-volatile systems and parallel persistency [Blelloch et al.

2018]. Other work looks at defining linearizability [Izraelevitz et al. 2016b] for persistent objects on

concurrent systems. While these are useful correctness properties, current intermittent hardware

is single-core and has no thread-level concurrency.

Weak persistency semantics have been formalized for TSO memory models [Raad and Vafeiadis

2018], for ARMv8 [Raad et al. 2019a], and for Intel x86 [Raad et al. 2019b]. In [Raad et al. 2019a],

the authors introduce a declarative semantics for reasoning about persistency. Among memory

persistency formalisms, our approach is most similar to this one, but we are at a higher level;

there are differences in scope and the language features provided. These persistency models reason

about the allowable differences between the order in which instructions execute and the order they

persist to memory on multi-threaded programs. This scope introduces (needed) complexity into

the declarative semantics, but the devices we target do not have multi-threading and expose no

difference between execution and persist order. We do not currently benefit from this complexity,

but in future work we may need to integrate with these models to guarantee assumptions, e.g.,

checkpoint atomicity, that are currently upheld by the simple hardware. Moreover, our modeling

language provides inputs and checkpoints.

Runtime systems for crash consistency Runtime systems that attempt to provide crash consis-

tency on database systems have similar functionality to runtime systems for intermittent execution,

but generally do not provide re-execution of inputs, necessary for data freshness.

JustDo logging [Izraelevitz et al. 2016a] targets hybrid persistent systems. JustDo explicitly avoids

re-executing code for better performance. iDo [Liu et al. 2018], also targeting hybrid systems, identi-

fies idempotent instruction sequences to reduce the number of locations to be logged. Idempotence

has also been used as a correctness criterion for fault tolerance in distributed systems [Ramalingam

and Vaswani 2013]. Idempotent processing [De Kruijf and Sankaralingam 2013; de Kruijf et al. 2012]

has been posed as an alternative recovery mechanism to checkpoint-logging and re-execution,

but does not allow re-executing inputs, which sometimes is necessary for intermittent systems to

provide fresh sensor readings.
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Other work [Ben-David et al. 2019] provides a construction to automatically make accesses

to shared memory and algorithms persistent. Intermittent systems need all executing code to be

checkpointed or in transactions, not just shared data structures.

Runtimes for Intermittent Systems In this paper, we explicitly model DINO [Lucia and Ransford

2015] as a basic checkpointing system, Ratchet [Woude and Hicks 2016] for the idempotent region

variant, Alpaca [Maeng et al. 2017] as an example of task-based redo logging, and Chinchilla [Maeng

and Lucia 2018] for undo logging. Hibernus [Balsamo et al. 2016, 2015] is a just-in-time checkpoint

system that dynamically inserts checkpoints and does not re-execute code, but suffers timeliness

violations. Mayfly [Hester et al. 2017] is the first work to describe the timeliness problem and

implements a programming model to enforce timeliness using an external timekeeper and explicit

programmer annotations. Capybara [Colin et al. 2018] is a reconfigurable energy-harvesting plat-

form that allows flexible atomicity and reactive events. Homerun [Kang et al. 2018] also explores

atomicity for I/O events. Coati [Ruppel and Lucia 2019] and InK [Yildirim et al. 2018] explore

event-driven intermittent systems. None of these works provide formal definitions or guarantees

of correctness for either memory consistency or timely processing of inputs.

EDB [Colin et al. 2016] and Ekho [Zhang et al. 2011] are frameworks for debugging intermittent

systems, and ScEpTIC [Maioli et al. 2019] is a tool for detecting bugs caused by write-after-read

patterns. The EH Model [Miguel et al. 2018] provides a way of reasoning about the architectural

and software consequences of energy availability and intermittent system design choices.

Dahiya et al. [Dahiya and Bansal 2018] create a formal model for verifying via translation

validation that instrumented intermittent programs are equivalent to continuous ones. They do not

consider repeated input operations or how checkpoints must behave for programs to be correct.

Inputs on intermittent systems IBIS [Surbatovich et al. 2019] identifies and characterizes bugs

caused by repeated inputs in intermittent systems. The authors provide only a bug detection tool,

not a correct runtime system, nor formal correctness invariants. We provide a formal proof of a

sound version of the algorithm the authors use in their tool, as well as a correct runtime system.

We discuss in detail the differences and similarities of the algorithm presented in this paper versus

the algorithm in the IBIS tool in Section 9.3.

Developed most recently, TICS [Kortbeek et al. 2020] is a runtime system that uses an external

timekeeper and programmer annotations to avoid consuming stale data. Rather than regather data,

the runtime reruns expiration checks after rebooting, so that any stale data will not be processed.

This approach avoids any consistency errors associated with re-executing inputs, but can also

miss processing any input events if power failures are frequent. Moreover, this approach requires

external time-keeping hardware.

Samoyed [Maeng and Lucia 2019], Sytare [Berthou et al. 2017] and RESTOP [Arreola et al. 2018]

look at retaining the peripheral state of input devices, not at memory correctness issues caused by

repeated input operations.

3 BACKGROUND ANDMOTIVATION

Our work is motivated by emerging intermittent execution models and their varied correctness

definitions. In this section, we review the fundamentals of checkpoint-based intermittent execution

and show by example how existing models are not correct in the presence of input operations. Any

intermittent execution model must ensure forward progress and preserve state. An intermittent

execution progresses only when energy is available. Power fails when energy is exhausted, erasing

the device’s execution context and volatile state, including registers and all data stored in volatile

memory. By default, the system then restarts from the start of main() and naively-written code

makes no forward progress. To make progress, an intermittent system can periodically save its

execution context and restart from that execution context on reboot; a common mechanism for
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3.2 Repeated Inputs Cause Incorrect Behavior

Applications that target low-power embedded systems rely heavily on peripheral devices, such as

sensors and radios. A program stores in a variable the result of an input operation. In an intermittent

execution, a program may execute an input operation before a power failure, and then repeat that

input operation after a failure, in both cases fetching a fresh, usable value. However, repeating the

input operation can lead to incorrect behavior when a program’s control- or data-flow depends

on the result of that input operation. We refer to a re-executed input as a RIO: a Repeated Input

Operation that can generate a different value each execution.

Continuing with Figure 2 (b), the columns to the right show how a RIO causes incorrect behavior.

The example now assumes that all variables are in non-volatile memory and that the system now

checkpoints variables involved in potentially inconsistent WAR dependencies at line 0, saving

and restoring w and z. The starting memory N0f has a 7→ 0, so the initial branch is not taken.

Instruction i = IN(); on line 6 reads an input value (e.g., from a sensor). Depending on the sensor

reading, a continuous execution could correctly end with either state N10 or N13.

An intermittent execution may produce a result different from both N10 and N13. Such an

execution may first get an input greater than 1 at line 6, causing the branch at line 7 to be taken.

Power then fails and the program restarts. After the restart, the input is less than 1, and the branch

at line 7 is not taken. The final state is N ′
13
, which is inconsistent with all correct, continuously-

powered outcomes because the RIO is not idempotent.

An intermittent execution with inputs is correct if it corresponds to a continuously-powered

execution, regardless of the inputs. Here, the RIO causes different branches to be taken and non-

volatile variable y is written on only one of them. Checkpoint systems that version WAR variables

do not handle y’s RIO problem because y is not a WAR variable. No existing checkpoint or task-based

intermittent execution system correctly handles these non-idempotent RIOs. A correct checkpoint

system must store y’s value at the checkpoint and restore it on reboot. We refer to variables that

are affected by RIOs (e.g., y) as RIO variables. Preventing inputs from re-executing, as by placing

a checkpoint immediately after the operation, is not an adequate solution as some inputs must be

re-executed to be timely [Hester et al. 2017]. This paper fills the gap left by RIOs, formally and with

a practical system implementation that makes intermittent systems robust to RIOs.

4 SYSTEM ASSUMPTIONS AND FORMAL MODEL

We define a language to model checkpoint-based intermittent execution with inputs, providing

the syntax and semantics for both continuously-powered and intermittent executions. First, we

explain the lower-level system assumptions to justify our choice of modeling language.

Target System Assumptions Our target intermittent systems use low-end microcontrollers

(MCUs) such as the TI MSP430FR series [TI Inc. 2020a]. These are single-threaded, single-issue,

in-order compute cores. The MCUs have embedded, on-chip volatile SRAM or DRAM and non-

volatile Flash, FRAM, or STT-MRAM. These architectures often lack caches or have only a simple

write-through cache to avoid repeated non-volatile memory accesses. Unlike prior work in persis-

tent memory targeting more complex architectures [Blelloch et al. 2018; Izraelevitz et al. 2016b;

Raad and Vafeiadis 2018; Raad et al. 2019b,a], we need not reason about concurrency or persist

order due to write-back caches or other microarchitectural optimizations. We thus realistically

assume that execution and persist order are the same and that the compiler never re-orders an

instruction past a checkpoint.

SyntaxOur simple language includes accesses to volatile memory, accesses to non-volatile memory,

and branch statements. We include arrays but omit general pointer arithmetic. We also omit

functions calls and unbounded loops. These omissions do not affect our ability to capture the
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Values v ::= n | true | false | in(τ ) Configuration Σ ::= (τ ,κ,N ,V , c)

Expressions e ::= x |v | e1 bop e2 | a[e
′] Cont. config. σ ::= (τ ,N ,V , c)

Instructions ι ::= x := e | a[e] := e ′ | x := IN() | Volatile mem. V : M

skip | checkpoint(ω) | reboot(n) Non-vol. mem. N : M

Commands c ::= ι | ι; c | if e then c1 else c2 Context κ ::= (N ,V , c)

Memory loc. loc ::= x | a[n] Read obs. r ::= rd loc v | r , r

Chckpnted loc. ω ::= ω,x , |ω,an Observation o ::= [r ] | in(τ ) | reboot

Mem. mapping M ::= Loc → Val | checkpoint

Fig. 3. Syntax and Semantic Constructs

behavior of existing intermittent execution models. Existing systems [Lucia and Ransford 2015;

Maeng et al. 2017] do not allow recursive function calls, so any code in a function body can be inlined.

Including general pointer arithmetic would not change the correctness invariants we present, as

the definitions consider memory locations directly, but would complicate the implementation of

any checkpoint algorithm (discussed in Section 9), as the alias sets of the memory locations in the

definitions would need to be tracked as well. Unbounded loops can be handled by extending our

infrastructure with loop invariants, which do not introduce technical difficulties but unnecessarily

complicate the presentation. Though simple, this modeling language suffices to illustrate clearly

the key challenges in defining memory-consistent intermittent execution models.

We summarize the syntax in Figure 3. We write v to denote values, which can be numbers

n, the boolean values true and false, and inputs in(τ ), representing the input gathered at time τ .

Expressions, denoted e , can be variables, values, binary operations of expressions, or an array

element. Array lengths are fixed and all array indices are assumed in bounds; this assumption

is necessary for correctness and memory safety for real C code is orthogonal [Grossman et al.

2002] and beyond our scope. Instructions, denoted ι, consist of assignments to variables and arrays,

checkpointing, rebooting, skip, and synchronous input operations IN(). We write ω to denote the

set of non-volatile variables and arrays that must be saved with a checkpoint to avoid inconsistency.

We call these variables checkpointed locations. In the example in Figure 2, checkpoint({w,y, z})

would precede the if statement on line 1, which include both WAR and RIO variables. We write an

to represent all the locations in the array a. That is: each an in ω represents the set of locations

{a[1], · · · ,a[n]}. We often omit the bounds n and write a directly. We assume that checkpoint

operations are manually inserted into code (e.g., like DINO [Lucia and Ransford 2015]). Section 2.2

of the TR details the algorithm to compute ω for WAR variables, as in existing systems. Section 7

describes our novel algorithm for computing ω for RIOs. A program is a command c , which is an

atomic instruction, a sequence of instructions, or an if branching statement. We lift all the branches

to the top-level for ease of explanation. Any program with general branching statements can be

re-written to our language and bounded loops can be un-rolled to if statements.

Semantics for Intermittent ExecutionWe focus on intermittent execution semantics. The rules

for continuously-powered execution semantics are standard and can be found in TR Section 1.2.

First, we define the necessary runtime constructs in Figure 3. Memory is a mapping from a location,

which is either a variable or an array index, to a value. We distinguish between volatile and non-

volatile memory, which are disjoint. The method of specifying where a variable resides varies;

systems may provide abstractions [Colin et al. 2018; Maeng et al. 2017], do automatic compiler

analysis [Maeng and Lucia 2018], or assume that all data is non-volatile [Woude and Hicks 2016]. A

configuration Σ is a tuple consisting of a timestamp τ , a checkpoint context κ, non-volatile memory

state, volatile memory state, and a command to be executed c . The checkpoint context κ consists

of the non-volatile data, volatile data, and command saved at the last checkpoint. The timestamp

is the logical time at the current configuration. Executing commands and evaluating expressions
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the command to be executed must be the same by the end of the program. To show this, we

examine execution segments between checkpoints. Each partial re-execution from a checkpoint can

observe a different value produced by the same input. Consequently, observation sequences from

partial executions are not necessarily prefixes of the same continuous execution. To be correct, the

observation sequence of the final re-execution segment in an intermittent execution must match a

continuous execution with the same input results. We illustrate this in Figure 5. Time advances

from left to right. The top line is an intermittent execution trace. We detail a segment between two

checkpoints, marked by down arrows. Multiple power failures and reboots are present in these

segments, demarcated by red parallel bars. The observed memory reads Oi are shown on top of

the line. For each such intermittent execution, the correctness property dictates the existence of a

continuous executionÐthe second lineÐsuch that the read accesses from the latest reboot to the

checkpoint (On) match the read accesses of that continuous execution. Furthermore, the ending

configuration of both executions at the checkpoint are the same (excepting the extra context κ in

the intermittent configuration). The above holds for all execution segments, including the last.

To formalize this definition, we introduce additional notation and constructs to relate intermit-

tent and continuous program contexts and observation sequences. We define the erasure of the

configuration: (τ ,κ,N ,V , c)− = (τ ,N ,V , c) to relate the configurations at the checkpoints. We next

formally relate the observation sequences.

I-Rb-Base

O ⩽m O

I-Rb-Ind

O ′
1
⩽m O2

O1, reboot,O ′
1
⩽m O2

Cp-Base

O1 ⩽m O2

O1 ⩽m
c O2

Cp-Ind

O1 ⩽m O2 O ′
1
⩽m
c O ′

2

O1, checkpoint,O ′
1
⩽m
c O2,O

′
2

The rules use ⩽m and ⩽m
c to express the prefix requirements of the observation sequence of the

intermittent execution (O1) to the observation of the continuous execution (O2). ⩽
m expresses a

relation between anO1 that may include reboots toO2, and ⩽
m
c expresses a relation between anO1

that may include both reboots and checkpoints toO2. The crucial aspect of the observation relation

is in rule I-Rb-Ind. An intermittent observation consisting of two observation prefixes O1 and O
′
1

separated by a reboot relates to the continuous observation O2 if the latter prefix relates to the

continuous observation. The intuition of this rule is that the observation prefix of an intermittent

execution before a reboot may read values produced by input operations. After the reboot, the

input operations may return different values, so the old prefix should be discarded. The intermittent

and continuous executions need only agree on observations after the most recent reboot.

The correctness of an intermittent execution model is defined as follows:

Definition 1 (Correctness of Intermittent Execution).

A program c can be correctly intermittently executed if for all τ , N , V , O1 s.t. (τ , ∅,N ,V , c)
O1

=⇒∗
Σ,

where the program in Σ is skip (i.e., the program terminated), then ∃O2,τ2,σ s.t. (τ2,N ,V , c)
O2

−→∗ σ ,

τ2 ≥ τ , O1 ⩽m
c O2, and σ = (Σ)−.

Figure 6 illustrates the relations in the correctness definition by revisiting the code from Figure 2.

Assume there is a checkpoint immediately preceding the branch on a, which saves the state of

{w,y, z}. Consider a power failure after the assignment to y on line 9, which lasts for 4 timestamps.

The column on the left shows the intermittent execution state and the right shows the continuous

execution state, starting at a later time, time 8. The final state of the executions (N ′
5
and N5) are

equal, despite differences in their execution paths and intermediate states. Further, the observation

sequences relate: checkpoint, in(1), reboot, in(9), rdz 3 ⩽m
c in(9), rdz 3. There happens to be no

reads before the reboot. If there were, they would not need to match the reads on the right, as they
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which captures how RIOs’ effects may transitively taint variables through dependences. We show

rule RIO-Assign-tainted as an example.

RIO-Cp

ω; ∅; ∅ ⊩RIO c : ok

N ; I ;M ⊩RIO checkpoint(ω); c : ok

RIO-If-NDep

I ∩ rd(e) = ∅ N ; I ;M ⊩RIO ci : ok i ∈ [1, 2]

N ; I ;M ⊩RIO if e then c1else c2 : ok

RIO-If-Dep

I ∩ rd(e) , ∅ M ⊩mstWt if e then c1 else c2 : M ′

N ;M ′ ⊩taint ci : ok i ∈ [1, 2]

N ; I ;M ⊩RIO if e then c1 else c2 : ok

RIO-Assign-tainted

x ∈ (M ∪ N )

N ;M ⊩taint x := e : ok

We explain selected rules for commands. Rule RIO-Cp applies to a command starting with a

checkpoint and checks the remaining command c using the checkpoint’s checkpointed set ω and an

empty I andM . Rule RIO-If-NDep checks a branch that is input-independent. RIO-If-Dep checks

an input-dependent branch , identifying its must-write variables up to the next checkpoint using

auxiliary judgment M ⊩mstWt c : M ′ (not shown). The resulting M ′ includes variables written

on the path up to the branch ({i, b} in the example) and any variables that must be written on all

paths from the branch ({x} in the example). The key difference between these two rules is that

RIO-If-NDep checks its sub-commands with ⊩RIO and the must-write set M , whereas RIO-If-Dep

checks its sub-commands with ⊩taint andM
′. The intuition for this is that an input-independent

branch will always evaluate the same way. Any variable written will be written on any re-execution,

even if it is not written on all paths. An input-dependent branch may not take the same path,

however, so the sub-command must be checked with the must-write set of all paths from the

branch.

Returning to Figure 2, the rules check the if statement at line 7 using judgment ⊩taint . TheM
′ is

{i,b,x}. To satisfy the check, N must include y, z,w .

6.2 Defining the Effect of Input on Execution Prefixes

Input can cause an intermittent execution’s memory state to vary across re-executions, behaviour

impossible on a continuous execution. We introduce notation showing how input interacts with a

program execution.O |in denotes the sequence of input values in observation sequenceO . Let "trace"

refer to the sequence of execution states with observations annotated on top of each transition

generated by an intermittent execution. We define Run(σ ,I, c) to be a trace starting at σ , ending

in command c with the input sequence I and without checkpoints. Formally:

Run(σ ,I, c) = {T |T = σ
O

−→∗(τ ,N ,V , c) ∧O contains no checkpoints ∧ I = O |in}

We write Run(σ ,I,CP ) to denote the trace ending in the nearest checkpoint. Note that given

a set of inputs, Run(σ ,I, c) is always a singleton set with a uniquely determined trace: inputs

already executed from the previous checkpoint to the current execution point are fixed, and any

execution to the current point with those same inputs will yield the same trace. There are, however,

multiple possible traces from an arbitrary point c to the next checkpoint due to inputs yet to execute.

We write Wt(T ) to be the write set of a trace and FstWt(T ) to be the set of variables written

before they are read in a trace. We define the set of locations that must be written on any input:

MstWt(N ,V , c) = {loc | ∀τ ,N ,V , c,∀I,∀T ∈ Run((τ ,N ,V , c),I,CP ), loc ∈ Wt(T )}
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The relation is parameterized with a timestamp τ and an input sequence I. The relation uses

τ and I to define the singleton set Run(σ ,I, c ′) from the initial point to the current point.The

relation has access to all parameters because at each point in the execution, all prior input values

are already concrete and timestamps are given. Beyond sharing the same domain, the definition

restricts locations that differ between the memories. If such a location is not written from the initial

execution point to the current one, then the location must be in the must-first-write set of the

entire trace and must be written between the current execution point and the next checkpoint. The

intuition is that differing locations must be written to on all possible paths through the remainder

of the trace for the intermittent and continuous traces to converge to the same state. Moreover,

re-execution following any path dictated by fresh input values should not read locations that differ,

which would cause non-idempotent re-execution (i.e., first written to in every execution).

In Figure 6, the continuous and intermittent states differ at corresponding points N0 and N ′
0
,

N1 and N ′
1
, and N2 and N ′

2
. Starting with N0, the execution writes b, i,x regardless of input. After

stepping to states N1,N
′
1
, b cannot differ because the execution from its initial point to the current

point wrote to b. After stepping to states N2,N
′
2
, i cannot differ because the execution from its

initial point to the current point wrote to i . i’s written value is the same in both executions because

we choose a continuous execution that reads the input at time 9 , which the intermittent execution

also reads. x is not yet written, but will be on all paths. At states N3 and N ′
3
, all locations must be

the same. x ,b, i have been written between the initial and current execution point and none are

written between the current execution point and the next checkpoint. z is written to on the current

path, but is not in the must-first-write set of the entire trace, nor arew and y.

6.4 Proving Correctness

We prove the following theorem:

Theorem 4 (Correctness). If ⊩WAR c : ok, ⊩RIO c : ok then c can be correctly intermittently

executed.

We actually prove a stronger theorem that relates an intermittent execution up to checkpoints

to a corresponding continuous execution. Only at each checkpoint, are the memories guaranteed

to sync up between the two executions.

The proof requires augmenting the semantics with variable taint tracking, dynamically marking

all input-dependent locations. We leverage standard taint tracking semantics rules and omit them

here. The proof follows the structure in Figure 7 and requires the following properties: (1) arbitrary

intermittent configurations relate to the continuous initial configuration, (2) each intermittent

configuration relates to a continuous configuration at the same execution point, and (3), after

reboot, we can switch from the relation illustrated by the solid line to that of the dashed line and

after checkpoint, we can switch from dashed line to solid line.

With properties (1) ś (3) established, the proof of Theorem 4 is by induction over the structure of

the intermittent execution trace. First over the number of checkpoints to show that, from checkpoint

to checkpoint, the resulting memories are the same and memory reads are idempotent. For each

segment between checkpoints, we induct over the number of reboots and use the relations in

the previous section to relate memory at each execution step. Note that no existing intermittent

execution model checks⊩RIO c : ok; none meets a reasonable correctness definition in the presence

of I/O, which is one of the key results of this work. We show the full proofs in TR Section 6.6.

7 COLLECTING EXCLUSIVE MAY-WRITES

Given our correctness definition, an intermittent execution model must collect and checkpoint

not only WAR variables, but also RIO variables. Our algorithm identifies a (safe) conservative
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over-approximation of this set. If a variable might be written on one side of a branch and not the

other, and the branch condition might change from one re-execution to the next due to a RIO, then

the variable should be checkpointed. In other words, RIO variables are in the exclusive may-write

set for some command c ś i.e., the set of variables that may be written on exclusively one side of

some future branch, but that will not be written unconditionally. Using the exclusive may-write set,

a simple rewriting algorithm can transform a program with empty checkpoint sets into a program

that correctly checkpoints RIO variables.

Our algorithm computes exclusive may-write sets, and identifies input-dependent (or tainted)

branches. Given a branch if e then c1 else c2, if e is not (transitively) input-dependent, the branch’s

outcome is the same on every re-execution. The first branch in Figure 2 is never taken under N0f ,

and the write to b happens regardless of line 6’s input; the write is not in the exclusive may-write

set. If e is input-dependent, the branch outcome depends on input and later writes are candidates

for exclusive may-write. In Figure 2, the branch at line 7 is input-dependent and its exclusive

may-write set is {w,y, z}, each of which are written on one, but not both sides of the branch.

Our algorithm uses taint analysis to identify input-dependent branches, and adds to ω exclusive

may-write variables for input-dependent branches.

Collection per instruction. Two sets of rules collect the exclusive may-write set X , must-write

set M , and input-dependent variable set I for instructions: X ;M; I ⊩RIO ι : X ′;M ′; I ′ and

X ;M ⊩taint ι : X ′;M ′. The ⊩RIO rules apply to ι in commands from an input-independent

branch and ⊩taint rules apply to ι in commands from an input-dependent branch. The primary

distinction for instruction level rules is that I does not need to be collected in the ⊩taint rules as

our branches never merge. We explain selected ⊩RIO rules; rules for X ;M ⊩taint ι : X
′;M ′ are

similar with taint tracking removed.

X ;M; I ⊩RIO x := IN() : X ;M ∪ x ; I ∪ x
I/O-Get

I ∩ rd(e) , ∅

X ;M; I ⊩RIO x := e : X ;M ∪ x ; I ∪ x
I/O-Assign-dep

I/O-dep-clear

I ∩ rd(e) = ∅ x ∈ I

X ;M; I ⊩RIO x := e : X ;M ∪ x ; I \ x

I/O-Arr-loc

I ∩ rd(e) , ∅

X ;M; I ⊩RIO a[e] := e ′ : X ∪ a;M; I ∪ a

All assignments add the variable x toM , since x must be written on the current command. Rule

I/O-Get adds x to I . If any assignment has an expression that reads a value in I , the assigned

location is also added to I , as taint propagates to x (rule I/O-Assign-dep). Conversely, assigning a

location in I to an input-independent expression removes that location from I , effectively clearing

its taint (rule I/O-dep-clear). Propagating taint to an array element would cause the entire array a

to be conservatively tainted. If an array index is tainted, then a is added to X because the written

array element may differ in each re-execution (rule I/O-Arr-loc).

Collection for commands Two sets of rules define collection and rewriting for commands:

X ;M; I ⊩RIO c −→ c ′ : X ′ and X ;M ⊩taint c −→ c ′ : X ′;M ′, with the same distinction as

the ι rules between ⊩RIO and ⊩taint . These rules compute the exclusive may-write set X ′ and

must-write setM ′ up to a checkpoint in c and rewrite the checkpoint command to use the collected

X ′ as ω. Rewriting an instruction ι directly uses the rules we introduced in the previous paragraph

to collect relevant variants (e.g, X ,M) and rewrites of itself. Much of the complexity for commands
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its translation to a checkpoint program in Figure 10. The program is a series of three tasks: init,

swap, and rest. The variables x ,y, z are shared between the tasks. Variable a is local to task swap.

In the translation, each toTask is replaced by a goto whose label points to a checkpoint followed

by the translated task command.

Using these constructs and the translated program, we relate a configuration of a task-based

system to that of redo-logging. We show the formal relation below and an execution of the task

program on the right side of Figure 10. The redo-log execution of the translated program is the

same as in column (b) of Figure 9 as the only difference to the original Ckpt code is the addition of

the blue goto instructions.

ΣRL = (κRL,Nr ,Vr , cr ) ΣTSK = (κTSK ,Ts,Tp,Tι, ct )

κRL = (L,Vc , cc ,ωr ) κTSK = (T , i) T (i) = (ωt , ctt ) T { Ψ ⟦ct ⟧ = cr ⟦ctt⟧ = cc
ωt = ωr Tp = L Tι = TιV ,TιN Nr = Ts ∪ TιN Vr ≈ TιV dom(Vr ) ⊆ dom(TιV )

ΣTSK ↬ Ψ, ΣRL

The redo-log L and Tp are equivalent. Any updates to locations in ω will be placed into Tp, not

Ts. If Tι is entirely volatile, then Ts and Nr will also be equivalent. Otherwise, if a is stored in a

non-volatile location, then Nr will be equal to the union of Ts and TιN . If a in a volatile location,

TιV will be equal to the redo log volatile memory, once a has been initialized (Vr ≈ TιV ). This

qualification is necessary as TιV is cleared on reboot (after line 8), whereas redo logging restores the

checkpointed volatile memory. Translated commands will always be well-formed w.r.t. task-local

memory, however, so there can be no read to a volatile memory location before it is initialized.

Thus any memory accesses on the two systems will be equivalent. This property does not hold for

any arbitrary redo-log program; consider a redo-log program where the assignment to a occurred

before the checkpoint Ð the first access to a after the checkpoint would be a read. At line 9, task

swap transitions to task rest. A task transition commits Tp to Ts, resets Tp, and transfers control

to the specified task, switching the task reference in the context to the new task. The translated

program jumps to the label L3, corresponding to the command checkpoint(y, z); ⟦crest⟧. When

it executes this checkpoint, it updates Nr with the log and the clears the log. As Tp and L are

equivalent, the updated non-volatile memory is still equivalent to the union of the task-shared and

non-volatile task-local memories. Furthermore, as no writes are left to occur, Vr = TιV . We prove

equivalence in TR Section 5.

9 IMPLEMENTATION

We implemented the exclusive may-write (EMW) collection algorithm in Section 7, which consists

of both write-set collection and taint-tracking, and combined its output with Alpaca’s runtime

system, yielding an intermittent execution runtime with safe access to I/O. We built two variants:

EMW, which backs up EMW sets for all branches (correct, but conservative), and taint-optimized

EMW, which calculates the EMW set for only input-dependent branches. EMW requires no code

changes, but backs up some unnecessary variables. Taint-optimized EMW requires very minor code

changes to annotate input operations, but backs up a smaller, far less conservative variable set.

9.1 System

We implemented EMW collection in LLVM [Lattner and Adve 2004] and to Alpaca, we added

support to back up EMW variables. Alpaca is a task-based system and can use either undo or redo

logging [Maeng et al. 2019]. As Section 8 shows, a task-based program translates into an equivalent

checkpoint-based program with either style of logging. We use undo-log Alpaca since it is the most

efficient Alpaca variant.
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9.2 Limitations Due to C Features

The algorithm in Section 7 is sound for our simple modeling language. However, Alpaca extends

C, which has several features not present in the modeling language, such as merging branches,

arbitrary pointers, and non-recursive functions (which do not checkpoint state), leading to a

few differences between the formal statement of the algorithm and the implementation. Merging

branches and functions do not require changes to the algorithm. All paths can be explored even if a

branch merges A write in an unconditionally executed block will execute on all paths and be in the

must-write set. Functions are treated as inlined, leveraging the lack of recursion.

Taint tracking Pointers and functions complicate taint tracking. Taint-optimized EMW collection

is sound only if taint does not propagate indirectly, as through pointer arithmetic (e.g., y points

to N , the address of a tainted location, x points to N − 1, x + +. The algorithm would miss that x

points to a tainted location). Our implementation propagates taint through function parameters

and return values. A call with a tainted parameter taints the corresponding argument. A tainted

return value taints the store of the return value in the function’s caller. A function may taint a

reference parameter, and our implemented algorithm taints the corresponding parameter in the

function’s caller (similar to [Surbatovich et al. 2019]). These aliasing limitations of taint tracking

do not affect the soundness of taint-agnostic EMW collection, and none of our test programs had

indirect taint propagation, which would compromise soundness.

Write set collection To compute write sets, we assume that task-shared variables must be stored

to directly, and cannot be aliased through a task local pointer. All Alpaca applications followed this

behaviour. This direct access of task-shared variables allows the algorithm to compute may and

must write sets precisely, apart from arrays. This limitation is due to our prototype implementation

and is not inherent to the formal algorithm. To extend the prototype to compute safe EMW sets

with complex aliasing, must-write sets should include must-alias only, and may-write sets should

include may-alias locations. As in the formal algorithm, any array written to on a tainted branch is

conservatively (safely) put into the EMW set.

9.3 Algorithm Implementation

We implement taint tracking as a fixed-point dataflow analysis, propagating data taint in a tra-

versal. At the end of each traversal, the algorithm examines any instructions that introduced

inter-procedural dataflow, and adds any new sinks to a worklist from which to start future traver-

sals. When no new inter-procedural flows are identified, the algorithm is at a fixed point and stops.

The analysis returns a list of tainted instructions. As we mentioned earlier, we could under-taint,

though we did not observe any under-tainting.

EMW collection is a separate analysis directly implemented from our formal description. Taint-

enabled EMW collection narrows the scope of the analysis, using the taint tracking analysis result

and calculating the EMW sets for conditionals that are tainted only. EMW collection returns a map

from a function to its computed EMW sets.

We modify Alpaca’s undo-logging compiler analysis to use the EMW set information. Alpaca

maintains a per-function set of WAR variables to undo-log in their called task. We modify Alpaca

to include a function’s EMW set with the function’s WAR variables, which are then passed together

to Alpaca’s existing undo-logging instrumentation pass, which allocates undo log storage, creates

checkpoint metadata, and adds undo-logging instrumentation.

Comparison to IBIS’ algorithm The specification of the algorithm in IBIS is unsound. Even

assuming perfect pointer aliasing and taint propagation, IBIS could still miss bugs. IBIS detects RIO

bugs by calculating the may-write sets of paths off tainted branches and comparing them. If the
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EMW analysis eliminates the risk of manual code fixes and directly backs up the necessary data,

ensuring correctness with reasonable overhead and essentially no programming burden.

11 EXTENDING THE FRAMEWORK

Weuse the presented framework to define and prove correctnesswith respect tomemory consistency

and input operations. There are more properties that must be reasoned about to truly develop

provably correct, reliable intermittent systems. This framework serves as a foundation that can be

built upon to reach that ultimate goal. We discuss the strategies to extend the framework to include

other programming models or correctness properties. Some programming models can be modeled

by straightforward extensions, such as changes to the execution state or logging mechanisms

(Section 8). Others require more significant changes to the current framework, such as guaranteeing

forward progress.

11.1 Extending Memory Consistency to Other Programming Models or Architectures

Extending the memory consistency theorem to cover systems with different checkpointing algo-

rithms or architectural state is straightforward. The proof of the memory consistency theorem is

built around two memory relations 1) current-to-initial execution point and 2) same execution point

(Section 6.3). If the intermittent and continuous states satisfy relation 1, the states remain related

after each reboot. If they satisfy 2, the states will have the same memory by the next checkpoint.

To extend the framework to cover a new execution model, one can show that these relations hold

directly, or one can show equivalence to the basic model as in Section 8. A model with differing

checkpoint placement or additional language instructions may satisfy these relations directly,

such as just-in-time checkpointing [Balsamo et al. 2015; Maeng and Lucia 2019] or idempotent

regions [Woude and Hicks 2016]. If a model changes the state tuple or runtime constructsÐe.g.,

the context or memory layout, additional architectural componentsÐit is more practical to show

correctness via bi-simulation, rather than tweaking the parameters of relations 1 and 2. In Section 8,

we showed equivalence to systems with differing program models. Below we sketch an extension

to a different architecture, one that uses a write-back cache.

A write-back cache commits an update to memory only when the update is evicted from the

cache, either due to an eviction policy or through explicit flushing. Thus, the order in which updates

execute may differ from the order they are evicted and committed. Our target hardware has a

write-through cache, allowing us to assume identical persist and execution order in the presentation

of the basic model (Section 4), but devices with write-back caches are reasonable future targets.

We show that the framework can be simply extended to handle this change in architecture. The

state tuple of the basic model should be extended with a cache C. An update to a location l may be

made to the cache instead of N , and a future eviction from the cache updates N with the value, i.e.,

N ◁ C[l]. Note that this is almost exactly the behaviour of Redo logging (Section 8.1); updates to

checkpointed locations are logged, and the log is committed at a checkpoint. Updates to N occur

out of execution order. The key change to the semantics is that the commit must flush the newly

added cache as well as the log, acting as a serialization point. Additionally, items in C can be flushed

before reaching a checkpoint. This behaviour does not introduce new inconsistencies, however, as

region re-execution is idempotent. Consider an execution that caches updates x and y, persisting

only y before failing. y is after x in execution order but before x in persist order. If the first access

to y after reboot is a write, the previously persisted value is never accessed. If the access is a read,

then y had a WAR dependence. y is thus in ω and the update would have been made to the redo

log. Adding a write-back cache to a sequential redo-log model thus requires only minor changes to

the semantics and bi-simulation relation, as the model already commits at checkpoints and safely

redoes partial flushes.
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Undo-logging with a write-back cache is more complex. In the basic model presented, the back-up

copies of variables are created at the checkpoint, so flushing after a checkpoint persists both cached

updates from the previous region and all the backup copies. A more performant undo log that

creates backup copies on demand could become inconsistent if the update to general non-volatile

memory persists before the update to the log, and power then fails. A simple way to make caching

correct is that any update to the log must be flushed immediately, so the log update always is

persisted before the general update, but this destroys much of the benefit of having a cache for any

variable in ω. This issue of persisting log data before program data is a known and well studied

problem with logging on persistent memory [Chakrabarti et al. 2014; Genç et al. 2020; Raad et al.

2019a].

Updating the checkpoint semantics to flush (and fence) the cache makes a checkpoint a serializa-

tion point between checkpointed regions. The WAR:ok and RIO:ok checks are static, and thus put

any variable that could potentially be inconsistent (including those visible to a re-execution of the

current checkpoint region) into the checkpoint set. Any out-of-order persists or variables from

partial flushes are thus either over-written during the course of re-execution, were made to a log

(redo model) or are undone when applying the checkpoint set (basic, undo-log model).

As energy-harvesting devices develop to target more complex architectures, the modular next

step is to add a hardware layer to the model to abstract away ordering details from the higher-level

theorem. The instructions to fence and flush updates are ISA specific [Raad et al. 2019b,a]. As shown

above, changes to the architecture need not dramatically effect the memory consistency theorem.

The interface with the hardware layer should provide certain assumptions, e.g., checkpoints are a

serialization point, updates are linearizable. The proofs of these assumptions would not change the

main correctness theorem, but can instead draw from formalizations in prior work [Chakrabarti

et al. 2014; Raad and Vafeiadis 2018; Raad et al. 2019b,a].

11.2 Towards Correctness Properties beyond Memory Consistency

Ensuring that programs are correct with respect to memory consistency is a crucial first step

towards reliable intermittent computation, but there remain others, such as ensuring progress,

correct timing, and concurrency (Section 2.1). The presented framework can be extended modularly

to reason about these properties.

Forward Progress To be able to guarantee forward progress, any possible trace between check-

points must not consume more energy than can fit in the energy buffer. Reasoning about the energy

consumption of a trace requires creating an energy model. This energy model must model the full

system, including peripherals, as energy consumption depends on all components on the board,

not just the CPU. The prior work CleanCut [Colin and Lucia 2018] develops an energy model to

guide programmers in creating appropriately sized tasks, but it is probabilistic, and furthermore

does not consider the full system. Developing such a full-system, non-probabilistic energy model is

a complex problem. While this energy model is necessary to reason about the forward progress

property, it does not change the memory consistency correctness property presented in this work.

Rather, an additional energy layer should be added to the framework. To be correct, any intermittent

execution must correspond w.r.t. memory to some continuous execution, and additionally a trace

between checkpoints must always take less energy than can fit in the energy buffer. Thus, we

anticipate that energy modelling can be added to the current framework modularly.

Concurrency through Interrupts While there are not yet multi-core intermittently-powered

devices, some research [Ruppel and Lucia 2019; Yildirim et al. 2018] addresses interrupt driven

computation. In such execution models, inputs can be asynchronous and ephemeral Ðafter reboot,
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interrupts may not occur as they did before power-failure. Intermittent executions must be consis-

tent, as in defined in the theorem presented here, but they must also correctly deal with concurrency,

The updates to memory of any interrupt handlersÐincluding those partially executedśand the

main thread of program execution must be linearizable. Linearizability for persistent memory is a

well-studied problem [Izraelevitz et al. 2016a,b; Liu et al. 2018; Raad et al. 2019a]. Extending the

framework requires adding interrupts to the semantics and adding linearizability to the proof.

Time-sensitivity In this work, as in [Koskinen and Yang 2016], the continuous, non-crashy

execution to which the intermittent, crashy execution corresponds can pause for arbitrary amounts

of time, while the system recovers to a consistent state. Allowing these arbitrary pauses at any

location can make the correctness definition too weak for programs whose behaviour depends on

highly timing-sensitive input processing. The value an input operation returns depends on the time

that it was gathered Ð arbitrary pauses within a sequence of input operations can produce program

behaviour not possible on a continuous execution without pauses. To be correct w.r.t timing of

inputs, an intermittent execution must not only correspond to some continuous execution, but

that continuous execution must be one without pauses in time-sensitive regions. Which regions

are time-sensitive is frequently application dependent. Robust reasoning about time-sensitivity

requires adding language constructs to describe the time-constraints on data, as well as mechanisms

to preserve the constraints. As with the properties above, adding time-sensitivity to the framework

does not change the underlying memory-consistency theorem, but adds another constraint to

correct intermittent execution.

12 CONCLUSION

We provide the first formal framework for examining the correctness of intermittent systems, w.r.t

memory consistency. We show the framework’s usefulness by using it to formalize intermittent sys-

tems with input operations, showing that many existing systems do not meet reasonable correctness

criteria, and using the correctness invariants to implement a correct runtime system. We further

extend the framework to show that a variety of existing systems are equivalent, indicating that the

same correctness properties hold for all the modeled systems. This framework lays the foundation

for formally defining intermittent system correctness, a crucial step towards the development of

provably correct, reliable applications for intermittent systems. Future work should extend the

framework to define properties beyond memory consistency, such as timeliness, forward progress,

or concurrency.
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