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High performance architectures for processing distributed data streams, such as Flink, Spark Streaming, and

Storm, are increasingly deployed in emerging data-driven computing systems. Exploiting the parallelism

afforded by such platforms, while preserving the semantics of the desired computation, is prone to errors, and

motivates the development of tools for specification, testing, and verification. We focus on the problem of

differential output testing for distributed stream processing systems, that is, checking whether two implemen-

tations produce equivalent output streams in response to a given input stream. The notion of equivalence

allows reordering of logically independent data items, and the main technical contribution of the paper is an

optimal online algorithm for checking this equivalence. Our testing framework is implemented as a library

called DiffStream in Flink. We present four case studies to illustrate how our framework can be used to

(1) correctly identify bugs in a set of benchmark MapReduce programs, (2) facilitate the development of

difficult-to-parallelize high performance applications, and (3) monitor an application for a long period of time

with minimal performance overhead.
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1 INTRODUCTION
In recent years, a dramatic increase in real-time data processing needs has led to the popularity

of high performance distributed stream processing systems, such as Flink [Carbone et al. 2015],

Samza [Noghabi et al. 2017], Spark Streaming [Zaharia et al. 2013], Storm [Apache 2019], and

Twitter Heron [Kulkarni et al. 2015]. While these systems achieve high performance through

aggressive parallelization of data operators, programs written in such frameworks are nevertheless

inherently concurrent and consequently prone to errors. As a result, there is a growing need for
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tools that make it easier to write correct programs in such systems, through specification, testing,

and verification.

In a broader context, the problem of ensuring correctness of distributed programs is long estab-

lished, as can be seen by the significant amount of past and ongoing work on the correctness of

distributed protocols (e.g., [Abdulla et al. 2014; Chand et al. 2016; Padon et al. 2016]), concurrent

data structures (e.g., [Burckhardt et al. 2014; Herlihy and Wing 1990]), and distributed systems (e.g.,

[Hawblitzel et al. 2015; Ozkan et al. 2018; Wilcox et al. 2015]). In general, because this body of work

addresses the challenges of verification of distributed protocols and low-level primitives, it targets

experts who design and implement complex distributed systems. However, data-parallel program-

ming frameworks, such as stream processing systems, aim to offer a simplified view of distributed

programming where low level coordination and protocols are hidden from the programmer. This

has the advantage of bringing distributed programming to a wider audience of end-users, and at

the same time it requires new tools that can be used by such end-users (rather than just experts) to

automatically test for correctness.

Unfortunately, there is limited work in testing for stream processing programs; in fact, the

state of the art in practice is unit and integration testing [Vianna et al. 2019]. In order to bridge

this gap and provide support for checking correctness to end-users, we focus on the problem of

differential testing for distributed stream processing systems, that is, checking whether the outputs

produced by two implementations in response to an input stream are equivalent. Differential

testing [Evans and Savoia 2007; Groce et al. 2007; McKeeman 1998], allows for a simple specification

of the correct program behavior, in contrast to more primitive testing techniques, where the

specification is either very coarse (i.e. the application doesn’t crash) or very limited (i.e. on a

given input, the application should produce a specific output). More precisely, differential testing

allows for a reference implementation to be the specification. This is especially useful in the

context of distributed stream processing systems, since bugs introduced due to distribution can be

caught by comparing a sequential and a distributed implementation. In addition, having a reference

implementation as a specification allows testing with random inputs, since there is no need to

specify the expected output.

We identify two critical challenges in testing stream processing programs. The first challenge is

dealing with output events that are out-of-order due to parallelism. In particular, for differential

testing, two implementations might produce events in different rates, asynchronously, and out-of-

order. However, the order between specific output events might not affect the downstream consumer

(e.g. events with timestamp less than t can arrive in any order, as long as they arrive before the

watermark t ), therefore requiring the notion of equivalent streams to be relaxed to allow for out-of-

order events. In fact, lack of order is often desirable, since it enables parallelism. Importantly on the

other hand, not all output events are unordered, because operators in streaming dataflow graphs

(in contrast to in batch processing and MapReduce settings) often require some order to preserved

(see Section 2). Because of this, not all operators simply decompose into commutative/associative

aggregators, and prior solutions on testing [Chen et al. 2016; Csallner et al. 2011; Marynowski et al.

2012; Xu et al. 2013a] and static verification [Liu et al. 2014; Raychev et al. 2015] for MapReduce-like

programs cannot be directly applied.

The second challenge is that stream processing systems, in contrast to batch processing systems,

are designed to process input data that would not fit in memory. As best practice, it is recommended

that applications written in these systems are tested under heavy load for long periods of time,

to match the conditions that are expected after deployment [Vianna et al. 2019]. Achieving this

requires that the testing framework itself is an online algorithm, in the sense that it processes

output events as they arrive, and that the computational overhead is minimal.
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To address these challenges, we propose a matching algorithm that incrementally compares

two streams for equivalence. Following the approach of Mamouras et al. [2019], in our solution,

ordering requirements between pairs of events are abstracted in a dependence relation that indicates

when the ordering of two specific events is of significance to the output consumer. Given any

dependence relation provided by the user, the algorithm determines, in an online fashion, whether

the streams are equivalent up to the reorderings allowed by the dependence relation. We show that

the algorithm is correct and that it reaches a verdict at the earliest possible time (Theorem 4.8). We

also prove that the algorithm is optimal, in the sense that it keeps a minimal amount of space: any

correct online algorithm must store at least as much information (Theorem 4.9).

We have implemented DiffStream, a differential testing library for Apache Flink that incorporates

our algorithm. DiffStream is implemented in Java and can be used alongside existing testing frame-

works such as JUnit [2019] or in stand-alone Flink programs. In order to evaluate the effectiveness

and usability of the proposed testing framework, we have conducted a series of case studies.

First, we evaluate the effectiveness of the framework on a set of nondeterministic MapReduce

programs from Xiao et al. [2014], adapted to the streaming setting. For some of these programs

nondeterminism constitutes a bug, while for others it is acceptable, depending on input assumptions

and application requirements. Using our framework, we demonstrate that tests can be written

to successfully detect 5 out of 5 bugs (true positives), and to avoid flagging 5 out of 7 bug-free

programs (false positives). This improves on previous work [Xu et al. 2013b], which would generally

flag all nondeterministic programs as buggy, thus suffering from false positives.

Second, we design two specific use cases to illustrate the benefits of using DiffStream to design

and implement parallel Flink applications. We consider a difficult-to-parallelize application which

requires event-based windowing: we show that it is significantly more difficult (requiring twice as

many lines of code) to effectively parallelize this application using Flink, and we show how our

framework can be used to test and correctly implement such an application. We also evaluate the

effort needed to write tests for an example computation with a subtle bug. The choice of specific

programs we consider are explained in more detail in Section 2.

Finally, we demonstrate that the matching algorithm is efficient in practice, and can be used

in an online monitoring setting, by monitoring two implementations of the Yahoo Streaming

Benchmark [Chintapalli et al. 2016] over the span of two hours and measuring the impact on

performance. The overhead of testing is a modest 5% reduction in maximum possible throughput,

and the memory usage remains stable at less than 500 unmatched items out of 30K items per second,

reflecting the theoretical optimality of the algorithm for this particular application.

In total, the main contributions of this work are:

• A new testing methodology for specifying ordering requirements in stream processing

programs. (Section 3)

• An optimal online matching algorithm for differential testing of stream processing programs

which uniformly handles data with differing ordering requirements. (Section 4)

• DiffStream, a differential testing library for testing Apache Flink applications based on the

online matching algorithm, together with a series of case studies to evaluate its usability and

effectiveness. DiffStream is available as an open source repository on GitHub.
1
(Section 5)

2 OVERVIEW
2.1 Motivating Examples
Programs written in distributed stream processing frameworks exhibit implicit parallelism, which

can lead to subtle bugs. Programs in such frameworks are usually written as dataflow graphs, where

1
https://github.com/fniksic/diffstream
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input project(taxiID, position) keyBy(taxiID) output (Incorrect)

input keyBy(taxiID) project(taxiID, position) output (Correct)

Fig. 1. A subtle consequence of implicit parallelism over an input stream containing taxi location data.

the edges are data streams and the nodes are streaming operators or transformations. Common

operators include stateless transformations (map), and operations that group events based on

the value of some field (key-by). For example, suppose that we have a single input stream which

contains information about rides of a taxi service: each input event (id, pos, meta) consists of a
taxi identifier, the taxi position, and some metadata. In the first stage, we want to discard the

metadata component (map) and partition the data by taxi ID (key-by). In the second stage, we want

to aggregate this data to report the total distance traveled by each taxi. Notice that the second stage

is order-dependent (events for each taxi need to arrive in order), so it is important that the first

stage does not disrupt the ordering of events for a particular taxi ID.

To make a program for the first stage of this computation in a distributed stream processing

framework such as Flink or Storm, we need to build a dataflow graph representing a sequence of

transformations on data streams. A first (natural) attempt to write the program is given in Fig. 1

(top). Here, the project node projects the data to only the fields we are interested in; in this case,

taxiID and position. And keyBy (also known as “group by” in SQL-like languages, or the concept

of a “stream grouping” in Storm) partitions the data stream into substreams by taxiID. Although
written as an operator, here keyBy can be thought of as modifying the stream to give it a certain

property (namely, if it is parallelized, streams should be grouped by the given key).

The first attempt is incorrect, however, because it fails to preserve the order of data for a particular

key (taxi ID), which is required for the second stage of the computation. The problem is that dataflow

graph operators are implicitly parallelized—here, the stateless map project is internally replicated

into several copies, and the events of the input stream are divided among the copies. Because input

events of the same key may get split across substreams, when the operator keyBy reassigns each
item to a new partition based on its key, if items of a particular key were previously split up, then

they might get reassembled in the wrong order.

This issue can be addressed by ensuring that parallelization is done only on the basis of taxiID
from the beginning of the pipeline. This can typically be accomplished by simply by reversing the

project and keyBy transformations, as in Fig. 1 (bottom). (For example, this is done explicitly

in Flink, and the concept is the same in Storm, except that instead of an explicit keyBy operator
we implicitly construct it by setting the input stream to be grouped by key.) Although the two

programs are equivalent when the project operation is not parallelized, the second lacks the

undesirable behavior in the presence of parallelism: assuming the project operation has the same

level of parallelism as keyBy, most systems will continue to use the same partition of the stream to

compute the projection, so data for each key will be kept in-order. In particular, this works in any

framework which guarantees that the same key-based partitioning is used between stages.

We have seen that even simple programs can exhibit counterintuitive behavior. In practice,

programs written to exploit parallelism are often much more complex. To illustrate this, consider a

single input stream consisting of very large documents, where we want to assign a topic to each

document. The documents are streamed word by word and delineated by end-of-file markers. The

topic of each word is specified in a precomputed database, and the topic of a document is defined

to be the most frequent topic among words in that document.

In this second example querying the database is a costly operation, so it is desirable to parallelize

by partitioning the words within each document into substreams. However, the challenge is to
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input

get topic (per event);

count total (per topic);

emit on end-of-file

max

(over topics)
output

input

assign timestamp

equal to file number

get topic

(per event)
key-by word

window

(of 1 file)

sum

(per topic)

max

(over topics)
output

Fig. 2. A difficult-to-parallelize sequential program (top), and the correct parallel version (bottom) over an
input set of documents which arrive concatenated in a single stream.

do so in a way that allows for the end-of-file markers to act as barriers, so that we re-group and

output the summary at the end of each document. Although a sequential solution for this problem

is easy, the simplest solution we have found in Flink that exploits parallelism uses about twice as

many lines of code (Fig. 2). The source of the complexity is that we must first use the end-of-file

events to assign a unique timestamp to each document (ignoring the usual timestamps on events

used by Flink). After these timestamps are assigned, only then is it safe to parallelize, because

windowing by timestamp later recovers the original file (set of events with a given timestamp). We

also consulted with Flink users on the Flink mailing list, and we were not able to come up with a

simpler solution. This example is explored in detail in Section 5.2. The additional complexity in

developing the parallel solution, which requires changing the dataflow structure and not simply

tuning some parameter, further motivates the need for differential testing.

2.2 Solution Architecture
These examples motivate the need for some form of testing to determine the correctness of dis-

tributed stream processing applications. We propose differential testing of the sequential and

parallel versions. As the parallel solution might be much more involved, this helps validate that

parallelization was done correctly and did not introduce bugs.

In the example of Fig. 1, the programmer begins with either the correct program P1 (bottom),

or the incorrect program P ′
1
(top), and wishes to test it for correctness. To do so, they write a

correct reference implementation P2; this can be done by explicitly disallowing parallelism. Most

frameworks allow the level of parallelism to be customized; e.g. in Flink, it can be disabled by calling

.setParallelism(1) on the stream. The program P1 or P2 is then viewed as a black-box reactive

system: a function from its input streams to a single output stream of events that are produced by

the program in response to input events.

However, the specification of P1 and P2 alone is not enough, because we need to know whether

the output data produced by either program should be considered unordered, ordered, or a mixture

of both. A naive differential testing algorithm might assume that output streams are out-of-order,

checking for multiset equivalence after both programs finish; but in this case, the two possible

programs P1 will both be equivalent to P2. Alternatively, it might assume that output streams are

in-order; but in this case, neither P1 nor P
′
1
will be equivalent to P2, because data for different taxi

IDs will be out of order in the parallel solution. To solve this, the programmer additionally specifies

a dependence relation: given two events of the output stream, it returns true if the order between

them should be considered significant. For this example, output events are dependent if they have

the same taxi ID. In general, the dependence relation can be used to describe a flexible combination

of ordered, unordered, or partially ordered data.

The end-to-end testing architecture is shown in Fig. 3. In summary, the programmer provides:

(1) a program (i.e., streaming dataflow graph) P1 which they wish to test for correctness; (2) a

correct reference implementation P2; (3) a dependence relation which tells the tester which events
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: user input

Program Input

Program P1

Program P2

Dependence (§3) + Equality

Matching

Algorithm (§4)

Result

Fig. 3. Architecture for our testing framework.

(ev1 , ev2) ->
ev1.taxiID == ev2.taxiID

(a) Specification in DiffStream

tID1 tID2 · · · tIDk · · ·

(b) Dependence visualized as a graph

Fig. 4. Example specification in DiffStream for the taxi example. Taxi events with the same taxiID are
dependent.

in the output stream may be out-of-order; (4) if needed, overriding the definition of equality for

output stream events (for example, this can be useful if the output items may contain timestamps or

metadata that is not relevant for the correctness of the computation); and (5) optionally, a custom

generator of input data streams, or a custom input stream—otherwise, the default generator is

used to generate random input streams. The two programs are then connected to our differential

testing algorithm, which consumes the output data, monitors whether the output streams so far

are equivalent, and reports a mismatch in the outputs as soon as possible.

3 SPECIFYING ORDERING REQUIREMENTS
In this section we describe how the programmer writes specifications in DiffStream. Let’s look back

at the taxi example from Section 2.1. The second stage of the program computes the total distance

traveled by each taxi by computing the distance between the current and the previous location,

and adding that to a sum. For this computation to return correct results, location events for each

taxi should arrive in order in its input—a requirement that must be checked if we want to test the

first stage of the program. We propose expressing this ordering requirement using a dependence

relation D. The concept of dependence relations was first introduced in research on concurrency

theory, where it was used to define Mazurkiewicz traces, i.e. partially ordered sequences of events

in distributed systems [Mazurkiewicz 1986], and has previously been used to give semantics for

stream processing programs [Mamouras et al. 2019].

A dependence relation is a symmetric binary relation on events of a stream with the following

semantics. If x D y, then the order of x and y in a stream is significant and reordering them gives

us two streams that are not equivalent. This could be the case if the consumer of an output stream

produces different results depending on the order of x and y. Thus, the dependence relation can be

thought of as encoding the pairwise ordering requirements of the downstream consumer.

It is often helpful to visualize dependence relations as unordered graphs, where nodes are

equivalence classes of the dependence relation. For the taxi example, the dependence relation is

visualized in Fig. 4b, and it indicates that events with the same taxi identifier are dependent. In

DiffStream, dependence relations can be specified using a Boolean function on a pair of events.
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(ev1 , ev2) ->
ev1.isEOD() ||
ev2.isEOD() ||
(ev1.isEOM() && ev2.isEOM()) ||
(ev1.isTaxiEv () &&
ev2.isTaxiEv () &&
ev1.taxiID == ev2.taxiID)

(a) Specification in DiffStream

tID1 tID2 · · · tIDk · · ·

EODEOM

(b) Dependence visualized as a graph

Fig. 5. Example specification in DiffStream for the extended taxi example. Taxi events with the same taxiID
are dependent and all events are dependent with end-of-day (EOD) events.

(ev1 , ev2) -> distance(ev1.loc , ev2.loc) < 1

Fig. 6. Example specification in DiffStream where events are dependent if their locations are close.

(ev1 , ev2) -> (ev1.isPunctuation () &&
ev2.timestamp < ev1.timestamp) ||

(ev2.isPunctuation () &&
ev1.timestamp < ev2.timestamp)

Fig. 7. Example specification in DiffStream where punctuation events, used to enforce progress, depend on
other events only if the punctuation timestamp is larger.

These functions should be pure and should only depend on the fields of the two events. The

DiffStream specification of the dependence relation from Fig. 4b is shown in Fig. 4a.

Now let’s consider an extension of the above example where the downstream consumer computes

the total distance traveled by each taxi per day, and also computes the average daily distance by

each taxi every month. To make this possible, the output of the program under test is now extended

with special EOD (end-of-day) and EOM (end-of-month) events. The ordering requirements on this

output, while more subtle, can still be precisely specified using a dependence relation. For example,

EOD events are dependent with taxi events since all events of a specific day have to occur before

the EOD event of that day for the total daily distance to be correctly computed. On the other hand,

EOM events do not have to be dependent with taxi events since daily distances are computed on

EOD events. Therefore, an EOM event can occur anywhere between the last EOD event of the

month and the first EOD event of the next month. The DiffStream specification of the dependence

relation and its visualization are both shown in Fig. 5.

Several frequently occurring dependence relations can be specified using a combination of the

predicates seen in the above examples. This includes predicates that check if an event is of a

specific type (e.g. isEOD (), isTaxiEv ()), and predicates that check a field (possibly denoting a

key or identifier) of the two events for equality (e.g. ev1.taxiID == ev2.taxiID). However, it

is conceivable that the dependence of two events is determined based on a complex predicate on

their fields. Figure 6 shows an example where the proximity of two taxi location events determines

if they are dependent.

Another interesting dependence relation occurs in cases where output streams contain punctua-

tion events. Punctuations are periodic events that contain a timestamp and indicate that all events
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Algorithm DiffStream Checking equivalence of two streams

Input: Equality relation ≡, dependence relation D

Input: Connected stream s with π1(s) = s1 and π2(s) = s2
Require: Relations ≡ and D are compatible

1: function StreamsEqivalent(s)
2: u1,u2 ← empty logically ordered sets

3: Ghost state: p1,p2 ← empty logically ordered sets

4: Ghost state: f ← empty function p1 → p2
5: for (x , i) in s do
6: j ← 3 − i
7: if x is minimal in ui and ∃y ∈ minuj : x ≡ y then
8: uj ← uj \ {y}
9: pi ← pi ∪ {x}; pj ← pj ∪ {y}
10: f ← f [x 7→ y] if i = 1 else f [y 7→ x]
11: else if ∃y ∈ uj : x D y then
12: return false
13: else
14: ui ← ui ∪ {x}

15: return (u1 = ∅ and u2 = ∅)

up to that timestamp, i.e. all events ev such that ev.timestamp < punc.timestamp , have most

likely already occurred. Punctuation events allow programs to make progress, completing any

computation that was waiting for events with earlier timestamps. However, since events could be

arbitrarily delayed, some of them could arrive after the punctuation. Consider as an example a taxi

that briefly disconnects from the network and sends the events produced while disconnected after

it reconnects with the network. These events are usually processed with a custom out-of-order

handler, or are completely dropped. Therefore, punctuation events are dependent with events that

have an earlier timestamp, since reordering them alters the result of the computation, while they

are independent of events with later timestamps. This can be specified in DiffStream as shown in

Fig. 7.

4 ALGORITHM
In this section we present Algorithm DiffStream, our algorithm for checking equivalence of two

streams. As described in Section 1, the algorithm has two main features: (i) it can check for

equivalence up to any reordering dictated by a given dependence relation, and (ii) it is online—it

processes elements of the stream one at a time. We prove that our algorithm is correct, and we

show that it is optimal in the amount of state it stores during execution.

4.1 Background
Before getting to the algorithm itself, we need to introduce some terminology. A stream s is a
bounded or unbounded sequence of elements: s = ⟨x1,x2, . . .⟩. We write x ∈ s to denote that x is an

element of s , we write s[n] for the nth element of s , and we write s[:n] for the bounded substream

of elements up to and including the nth element.

We follow the convention that all elements of a stream (denoted with x , y, etc.) are distinct. This
is so that we can unambiguously refer to the location of x in the stream s , and for example, say
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a

a b

b a

a b
a

Fig. 8. The logical order of the stream from Example 4.1. Vertically aligned elements are logically unordered,
and for two elements that are not aligned, the left one logically precedes the right one. The two leftmost
elements are minimal.

which of x and y occurs earlier. We use x ≡ y to refer to equality of the underlying values, rather

than the elements as positioned in the stream.

Two streams s1, s2 are given as input to the algorithm as a connected stream s , which is a stream

obtained by arbitrarily interleaving the elements of s1 and s2. More precisely, the elements of the

connected stream s are of the form (x , i) such that i ∈ {1, 2} and x ∈ si . We can recover the original

streams by using projections π1 and π2: π1(s) = s1 and π2(s) = s2. Conversely, given a stream s ,
we can form connected streams using injections ι1 and ι2: ι1(s) is obtained by mapping each x ∈ s
to (x , 1), and analogously, ι2(s) is obtained by mapping each x ∈ s to (x , 2). Thus, ι1(s) and ι2(s)
are characterized by π1(ι1(s)) = π2(ι2(s)) = s and π1(ι2(s)) = π2(ι1(s)) = ∅. The motivation for

connected streams comes from the fact that the streams s1 and s2 are produced by the stream

processing system asynchronously.

Next, we need to describe what it means for two streams to be equivalent. Our notion of

equivalence relies on two user-specified relations on the elements of the streams: an equality

relation, denoted by ≡, and a dependence relation, denoted by D. The equality relation is provided

by the user (e.g., in Java by overriding the method equals()) and is required to be an equivalence

relation, that is, it should be reflexive, transitive, and symmetric. For elements x and y, we write
x ≡ y instead of x = y for the equality relation to emphasize that it refers to equality on the

underlying values, rather than equality of stream elements (as we assume stream elements at

different positions are distinct). The dependence relation is required to be symmetric, that is, for

elements x and y, x D y implies y D x . Finally, the equality and the dependence are required to

be compatible: if x D y and x ≡ x ′, then x ′ D y. The three requirements—the equality being an

equivalence relation, the dependence being a symmetric relation, and the equality and dependence

being compatible—need to be ensured by the user.

Given a stream s , a dependence relation D gives rise to a logical order on the elements in s:
for elements x ,y ∈ s , x logically precedes y, denoted by x < y, if x precedes y in the stream and

either x and y are dependent or they are transitively dependent—there are intermediate elements

x1, . . . ,xn ∈ s given in their order of occurrence in s such that x D x1 D . . . D xn D y. It can be

shown that the logical order is irreflexive and transitive, that is, it is a strict (irreflexive) partial

order on the elements of the stream s . Recall that this makes sense because by convention all

the elements are distinct, even though the underlying values may be equivalent according to the

equality relation ≡.

Example 4.1. Consider a stream s = ⟨a,a,b,a,a,a,b,b⟩. The equality relation ≡ is given by a ≡ a
and b ≡ b, and the dependence relation D is given by a D b (and b D a). The logical order arising
from D is shown in Fig. 8. The logical orderings between elements include s[1] < s[3], s[3] < s[4],
and s[5] < s[7]. Also s[4] ∥ s[5], s[4] ∥ s[6], and s[5] ∥ s[6]. Note that s[1] < s[4] even though

s[1] D̸ s[4] (both elements are a). This is because they both depend on s[3] = b, which is in between.
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Given two streams s and s ′, an equality relation ≡, and a dependence relation D, we say that s
and s ′ are equivalent if they give rise to the same logical order. More precisely, we say they are

equivalent if there exists a bijective mapping f : s → s ′, called a matching, that matches equal

elements and preserves the logical order, that is, for every x ,y ∈ s , f (x) ≡ x and f (x) < f (y) if and
only if x < y. In case the streams are equivalent, we write s ≡D s ′, or simply s ≡ s ′ if the dependence
relation is clear from the context. We call two streams that are not equivalent distinguishable.

If the two streams s and s ′ are bounded, one way to think about them being equivalent is as

follows: we can get from s to s ′ in finitely many steps by either swapping two adjacent logically

unordered elements or by replacing an element with another equal element. In particular, bounded

equivalent streams have the same length.

Example 4.2. Streams s1 = ⟨a, c,b⟩ and s2 = ⟨c,a,b⟩ are equivalent with respect to a dependence

relation given by a D b and c D b. A (unique) matching is given by f : s1[1] 7→ s2[2], s1[2] 7→ s2[1],
and s1[3] 7→ s2[3]. Note that the same streams are not equivalent with respect to a dependence

relation where additionally a D c .

When it comes to unbounded streams, it may be impossible to algorithmically decide whether

they are equivalent or not. For example, consider s1 = ⟨a,a,a, . . .⟩ and s2 = ⟨b,b,b, . . .⟩ with a ̸D b.
Clearly, s1 . s2, but an algorithm processing a connected stream s with π1(s) = s1 and π2(s) = s2
one element at a time can never reach a conclusion: perhaps eventually b’s will start arriving on
the first stream, and a’s will start arriving on the second stream. However, there are situations

when an algorithm can reach a definite decision even if the streams are unbounded. We say that a

connected stream s is finitely distinguishable if there is a position n such that for every continuation

s ′ of s[:n], the projected streams π1(s[:n] · s
′) and π2(s[:n] · s

′) are distinguishable.

Example 4.3. If s is a connected stream such that π1(s) = ⟨a,a,b⟩ and π2(s) = ⟨a,b⟩, and
a D b, then for no continuation of s will the two projections ever be equivalent. Thus, s is finitely
distinguishable.

Given a partial order p, we say that an element x ∈ p is minimal if no other element is less than

x . There can be multiple minimal elements in p; we denote the set of minimal elements in p by

minp. Given two partial orders p and q such that p ⊆ q, we say that p is a prefix of q if for every

element x ∈ p, p also contains all the elements that are less than x in q.

4.2 Algorithm Description
We now give a general specification of an online equivalence-checking algorithm. The algorithm’s

inputs are an equality relation ≡, a dependence relation D, and a connected stream s with the

projections s1 = π1(s) and s2 = π2(s). We require the equality and the dependence relations to be

compatible. The algorithm provides a function StreamsEqivalent that returns return true or
false to report whether or not s1 ≡ s2. The function is allowed to iterate over s exactly once.

The algorithm is correct if it has the following behavior:

(I) StreamsEqivalent returns true if and only if s is bounded and s1, s2 are equivalent.
(II) StreamsEqivalent returns false if and only if either s is finitely distinguishable or it is

bounded and the streams s1, s2 are distinguishable. Additionally, if s is finitely distinguish-

able, it returns false after processing s[n] for the first position n such that s[:n] is finitely
distinguishable.

Algorithm DiffStream achieves the required behavior in the following way. Intuitively, it tries

to construct a matching to demonstrate equivalence of s1 and s2. In doing so, as part of its state it

maintains two logically ordered sets u1 and u2, both initially empty. Their role is to keep track of

the unmatched elements from s1 and s2, respectively. In addition to u1 and u2, which constitute the
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physical state, the algorithm maintains the so-called “ghost state,” written in gray in Algorithm Diff-

Stream. The ghost state need not exist in any real implementation of the algorithm; its sole purpose

is to aid in proving correctness. As part of the ghost state, the algorithm maintains two additional

logically ordered sets p1 and p2, whose role is to keep track of the successfully matched prefixes of

s1 and s2. In the ghost state, the algorithm also explicitly keeps track of the matching f : p1 → p2.
When processing a new element x from si (lines 5–14 in Algorithm DiffStream), there are three

distinguished cases:

(1) The element x is minimal in ui and there is a corresponding unmatched minimal element

y ∈ uj such that x ≡ y (line 7). In this case we remove y from uj . In the ghost state, we add

x to pi and y to pj , and we extend the matching f to map x to y or y to x , depending on

whether x ∈ s1 or y ∈ s1 (lines 9–10).
(2) The element x depends on some unmatched element y ∈ uj (line 11). If this is the case, then

we have detected finite distinguishability and the function returns false (line 12).
(3) If neither of the previous cases holds (line 13), then for every y ∈ uj , x and y are unequal and

independent. We add x to ui as an unmatched element (line 14).

If the whole connected stream has been processed and the function StreamsEqivalent did

not return false in line 12, it returns true in line 15 if and only if both sets of unmatched elements

are empty.

Example 4.4. Let us demonstrate the execution of Algorithm DiffStream on streams s1 and s2
from Example 4.2. Suppose the connected stream given as input is

s = ⟨(a, 1), (c, 2), (c, 1), (b, 1), (a, 2), (b, 2)⟩ .

At the time of processing the element s[3] = (c, 1), the first two elements have already been

processed, and both of them are unmatched: u1 = {a} and u2 = {c}. The algorithm detects that

the new element c is minimal in u1 and it can be matched with the element c ∈ u2, so it updates

the matching f with f (s1[2]) = s2[1] and removes c from u2. Next, it processes s[4] = (b, 1): the
element b is not minimal in u1 as it depends on a ∈ u1. It is also not dependent on any element in

u2, as u2 is empty. Therefore, it is added to u1, which now contains the ordering a < b. Finally, the
two elements s[5] = (a, 2) and s[6] = (b, 2) arrive precisely in the right order to be matched with

the elements in u1, and the algorithm concludes that the streams are equivalent.

If the dependence relation contained the additional dependence a D c , the processing would

have stopped at the element s[2] = (c, 2), since the element c from s2 would have been dependent

on an unmatched element a ∈ u1. And indeed, the connected stream s[:2] = ⟨(a, 1), (c, 2)⟩ would
have been finitely distinguishable.

4.3 Correctness
In order to show that the algorithm is correct, we will show that the loop in StreamsEqivalent

(lines 5–14) maintains the following invariants.

(I0) For every x ∈ u1 and y ∈ u2, x and y are unequal and independent: ∀x ∈ u1,∀y ∈ u2 : x .
y ∧ x ̸D y.

(I1) p1 is a prefix of s1: ∀x ∈ p1,∀y ∈ s1 : y < x ⇒ y ∈ p1.
(I2) p2 is a prefix of s2: ∀x ∈ p2,∀y ∈ s2 : y < x ⇒ y ∈ p2.
(I3) f : p1 → p2 is a maximal matching, that is, it is a matching and no extension f ′ : p ′

1
→ p ′

2
to

proper supersets p ′
1
⊃ p1 and p

′
2
⊃ p2 is a matching. We also say that p1 and p2 are maximally

matched prefixes.

Lemma 4.5. The loop in StreamsEquivalent (lines 5–14) maintains invariants (I0)–(I3).
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Fig. 9. Illustration of the argument showing that p′
1
, p1 is impossible in the proof of Lemma 4.6.

Proof. Of the four invariants, the one that is least straightforward is (I3), so let us show that it

holds. In particular, let us show that after the update in lines 9–10 of Algorithm DiffStream, the

function f remains a matching between p1 and p2. Clearly it is still a bijection and it maps elements

in p1 to equal elements in p2. In order to show that it still preserves the logical order, we only need

to show that for every x ′ ∈ p1, x
′ < x if and only if f (x ′) < f (x) = y. Let us show this claim

in one direction (the other one is analogous). Assume x ′ < x . By definition, there exists n ≥ 1

and elements x0, . . . ,xn ∈ p1 such that x ′ = x0 D x1 D . . . D xn = x . By the compatibility of ≡

and D, we also have f (x ′) = f (x0) D f (x1) D . . . D f (xn) = y. By the invariant (I2), y does not

logically precede f (xn−1), so it must be f (xn−1) < y, and finally by transitivity f (x ′) < y. As for
the maximality of f , since (I3) holds at the start of the loop, any extension to f must involve the

element x that is being processed. Thus, if f can be extended, it is extended by the ghost statements

in lines 9–10. □

Lemma 4.6. In a bounded connected stream s , all maximally matched prefixes of s1 = π1(s) and
s2 = π2(s) are equivalent.

Proof. Let f : p1 → p2 and д : q1 → q2 be two maximal matchings, where p1 and q1 are prefixes
of s1, and p2 and q2 are prefixes of s2. Let u1 = s1 \ p1,u2 = s2 \ p2, and v1 = s1 \ q1,v2 = s2 \ q2 be
the corresponding unmatched elements. To show the claim, it suffices to show that p1 ≡ q1.
Clearly the identity function id : p1 ∩ q1 → p1 ∩ q1 is a matching. Let h : p ′

1
→ q′

1
be a maximal

matching between p1 and q1 that extends id; thus, p
′
1
and q′

1
are prefixes such that p1 ∩q1 ⊆ p ′

1
⊆ p1

and p1 ∩ q1 ⊆ q′
1
⊆ q1. To show p1 ≡ q1, it suffices to show that p ′

1
= p1 and q

′
1
= q1.

First we note that for the matchings f ,д,h, an analog of the invariant (I0) holds. In particular,

the sets p1 \ p
′
1
and q1 \ q

′
1
, as well as v1 and v2 are pairwise independent and unequal. Moreover,

let us set p ′
2
= f (p ′

1
) and q′

2
= д(q′

1
). The sets p2 \ p

′
2
and q2 \ q

′
2
are also pairwise independent and

unequal. Let us show the claim for p1 \ p
′
1
and q1 \ q

′
1
. Suppose first that x ∈ p1 \ p

′
1
and y ∈ q1 \ q

′
1

are elements such that x D y. Since x and y are both in s1, we either have x < y or y < x . If x < y,
then we have x ∈ q1 since q1 is a prefix, and consequently x ∈ p1∩q1 ⊆ p ′

1
, which is a contradiction.

Likewise, y < x leads to y ∈ q′
1
, which is also a contradiction. Suppose now that x ∈ p1 \ p

′
1
and
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y ∈ q1 \ q
′
1
are elements such that x ≡ y. They cannot both be minimal, for we would be able to

extend h with h(x) = y. Thus, one of x and y has a logical predecessor; say x ′ ∈ p1 \ p
′
1
is such that

x ′ < x . Without loss of generality, x ′ D x . Since ≡ and D are compatible, this leads to x ′ D y, which
we have just shown to be impossible.

We are now ready to prove p ′
1
= p1 (q

′
1
= q1 is analogous). An illustration of this proof is

shown in Fig. 9. For the sake of contradiction, suppose that p ′
1
, p1, that is, there exists an element

x ∈ p1 \ p
′
1
. Note that x < q1, that is, x ∈ v1. We send x to s2 via f ; we have f (x) ∈ p2 \ p

′
2
. The

element f (x) cannot be in v2 since x ∈ v1 and x ≡ f (x). The element f (x) also cannot be in q2 \ q
′
2
,

since it is in p2 \ p
′
2
and f (x) ≡ f (x). Hence, f (x) ∈ q′

2
. Now we pull f (x) back to s1 via д and h.

Set x1 = h−1(д−1(f (x))); we have x1 ∈ p
′
1
. Since x < p ′

1
, x1 and x are distinct elements such that

x1 ≡ x . We can continue iterating the described process. Suppose we have defined distinct elements

x1, . . . ,xn ∈ p
′
1
for some n ≥ 1 such that x ≡ x1 ≡ . . . ≡ xn . We send xn to s2 via f and note that

neither f (xn) < v2 (otherwise we would have x ∈ v1, f (xn) ∈ v2, and x ≡ f (xn)) nor f (xn) ∈ q2 \q
′
2

(otherwise we would have f (x) ∈ p2 \ p
′
2
, f (xn) ∈ q2 \ q

′
2
, and f (x) ≡ f (xn)). Therefore, f (xn) ∈ q

′
2

and we can bring it back to s1 via д and h to get a well-defined element xn+1 = h
−1(д−1(f (xn))) ∈ p

′
1
.

Suppose xn+1 = xk for some k with 1 ≤ k ≤ n. By removing k layers of application of h−1 ◦ д−1 ◦ f ,
we conclude that xn+1−k = x , which cannot be since xn+1−k ∈ p

′
1
and x < p ′

1
. Therefore, xn+1 is

distinct from all previously defined elements.

By defining the described process, we have shown that there are infinitely many distinct elements

in p ′
1
, which cannot be since p ′

1
is a finite set. Hence, x ∈ p1 \ p

′
1
cannot exist in the first place,

and we have established that p1 = p ′
1
. Analogously, we have q1 = q′

1
, and since p ′

1
≡ q′

1
, we also

have p1 ≡ q1. Finally, using p1 ≡ q1 as a link, we establish that p2 ≡ p1 ≡ q1 ≡ q2, that is, all the
maximally matched prefixes in s are equivalent. □

Lemma 4.7. If StreamsEquivalent returns false in line 12 while processing s[n] for some n ≥ 1,

then the connected stream s[:n] is finitely distinguishable.

Proof. Let s[n] = (x , 1) and assume that ProcessElement returns false in line 12 when process-

ing s[n]. Since the condition in line 11 was satisfied, there exists y ∈ u2 such that x D y. Without

loss of generality, let y be a minimal such element in u2.
The challenge here is that even though f can never be extended to match either x or y, it is

plausible that s[:n] can nevertheless be extended to s ′ with a completely different matching that

somehow accommodates both elements. To show that such a scenario is impossible, suppose s ′ is an
extension of s[:n] such that π1(s

′) = s ′
1
⊇ s1, π2(s

′) = s ′
2
⊇ s2, and suppose д : s ′

2
→ s ′

1
is a matching

(it helps to view д in the direction opposite of f ). Since x D y and д(y) ≡ y, we have x D д(y),
so x and д(y) are logically ordered in s ′

1
. There are three possibilities: д(y) = x (the elements are

identical), д(y) < x , or x < д(y).
The first possibility can easily be discarded. From д(y) = x it follows that x ≡ y. The elements x

and y cannot both be minimal elements unmatched by f , otherwise x would have been matched in

lines 7–10. Therefore, either there is x ′ ∈ u1 such that x ′ < x and x ′ D x , or there is y ′ ∈ u2 such
that y ′ < y and y ′ D y. In the former case we have x ′ D y, contradicting the invariant (I0), and in

the latter case we have x D y ′ and y ′ < y, contradicting the choice of y as a minimal unmatched

element such that x D y.
The second possibility, that д(y) < x , can be discarded as follows. Set y0 = y. The element д(y0)

cannot be in u1 as that would break the invariant (I0); therefore it has to be in p1. We can send it

to p2 via f ; let y1 = f (д(y0)). Since y0 < p2, y0 and y1 are distinct elements such that y0 ≡ y1. We

iterate the process: suppose we have defined the elements y1, . . . ,yn ∈ p2 for some n ≥ 1 such that

all of them are equal to y0, and all of them together with y0 are distinct. Since д(yn) D x , д(yn) and
x are logically ordered. It cannot be д(yn) ≥ x , as that would imply д(yn) > д(y0) and consequently
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yn > y0. But then, since yn ∈ p2 and p2 is a prefix, we would have y0 ∈ p2, which is a contradiction.

Thus, д(yn) < x and consequently д(yn) ∈ p1 due to the invariant (I0). Hence, yn+1 = f (д(yn)) is a
well-defined element such that yn+1 ∈ p2. Clearly yn+1 is distinct from y0, and yn+1 ≡ y0. Suppose
yn+1 = yk for some k with 1 ≤ k ≤ n. By “pealing off” k layers of applications of f and д, we
would get yn+1−k = y0, which is a contradiction. Therefore, the new element is distinct from every

previously defined element. We have thus defined infinitely many distinct elements in the finite set

p2, which is a contradiction. Hence, д(y) ≮ x .
The third possibility, that x < д(y), is discarded by a similar argument. The idea is again to start

from x0 = x and define an infinite sequence of distinct elements x1,x2, . . . in p1, all of which are

equal to and distinct from x0. However, the argument that shows the sequence is well-defined is

slightly different. Similarly as before, given xn for n ≥ 1 we start by arguing that д−1(xn) ∈ p2.
We first establish that д−1(xn) < y, as otherwise д−1(xn) ≥ y > д−1(x0) would imply xn > x0 and
consequently x0 ∈ p1. Next, if д

−1(xn) ∈ u2, then we argue as in the first possibility: either x and

д−1(xn) can be matched, or there is x ′ < x in u1 such that x ′ D д−1(xn), contradicting the invariant

(I0), or there is y ′ < д−1(xn) < y in u2 such that x D y ′, contradicting the minimality of y. Hence,
д−1(xn) ∈ p2 and xn+1 = f −1(д−1(xn)) is well-defined. Showing that it is distinct from previously

defined elements is done using the same argument as before. Thus, we again reach a contradiction,

and x ≮ д(y).
By discarding all three possibilities, we conclude that the extension of s[:n] to a connected stream

s ′ such that s ′
1
≡ s ′

2
does not exist. Hence, s[:n] is finitely distinguishable. □

Theorem 4.8. Algorithm DiffStream is correct.

Proof. We first show that Algorithm DiffStream satisfies the correctness condition (I). If Stream-

sEqivalent returns true in line 15, then the whole connected stream s has been processed. Hence,

s is bounded. Moreover, in this case both u1 and u2 are empty, implying p1 = s1 and p2 = s2. There-
fore, s1 ≡ s2 follows from the invariant (I3). Conversely, if s is bounded and s1, s2 are equivalent,
by Lemma 4.7, StreamsEqivalent does not return false on line 12, and the loop in lines 5–14

finishes. By the invariant (I3) and Lemma 4.6, f must fully match s1 and s2. Hence, u1 and u2 are
empty and StreamsEqivalent returns true.
Next, we show the correctness condition (II). If StreamsEqivalent returns false, it either

returns false in line 12 and s is finitely distinguishable by Lemma 4.7, or it returns false in line 15.

In the latter case, s is bounded and one ofu1 andu2 is not empty. Hence, s1 and s2 are distinguishable
by the invariant (I3) and Lemma 4.6. Conversely, if s is bounded and s1, s2 are distinguishable, by (I)

the function StreamsEqivalent does not return true, so it returns false.
It remains to show that if s is finitely distinguishable, then StreamsEqivalent returns false in

line 12 for the first position n such that s[:n] is finitely distinguishable. Clearly StreamsEqivalent

does not return false on line 12 when processing s[k] for k < n, since in that case by Lemma 4.7

already s[:k] would be finitely distinguishable. Let s[n] = (x , 1) and let u1 and u2 be the logically
ordered sets of unmatched elements at the start of the loop when processing s[n]. If x can be

matched with an element y ∈ minu2, then we extend s[:n] with ι1(u2 \ {y}) followed by ι2(u1), with
the elements of ui , i ∈ {1, 2} given in the order in which they appear in s[:n − 1]. Likewise, if x ̸D y
for every y ∈ u2, then we extend s[:n] with ι1(u2) followed by ι2(u1 ∪ {x}). In either case, from the

invariants (I0)–(I3) it follows that Algorithm DiffStream would decide that the two streams in the

extension are equivalent, and since the algorithm is correct for bounded equivalent streams, the

streams would indeed be equivalent. Therefore, in both cases the connected stream s[:n] would not

be finitely distinguishable. Since s[:n] is finitely distinguishable, the only remaining option is that

there exists y ∈ u2 such that x D y, and hence StreamsEqivalent returns false in line 12 when

processing s[n]. □
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4.4 Optimality
When it comes to stateful stream processing programs, space usage is an important topic. If a stateful

stream processing program inadvertently stores too much of the stream’s history, since the stream

is potentially unbounded, the program’s space usage may grow unboundedly as well. In case of

Algorithm DiffStream, its space usage may indeed grow unboundedly. Since Algorithm DiffStream

stores sets of unmatched elements, it can be forced to keep the complete history of the connected

stream it takes as input. For example, this would happen on a connected stream s such that

π1(s) = ⟨a,a, . . .⟩, π2(s) = ⟨b,b, . . .⟩, with a . b and a ̸D b. However, it turns out that for a correct
equivalence-matching algorithm there is no way around this: a correct equivalence-checking

algorithm must store a certain amount of unmatched elements in one way or another. In each step,

Algorithm DiffStream stores minimal sets of unmatched elements (the complements of maximally

matched prefixes), and as we show in this subsection, in this sense it is optimal.

Recall that by Lemma 4.6, in a bounded connected stream s with s1 = π1(s) and s2 = π2(s), all
maximally matched prefixes of s1 and s2 are equivalent. It follows that their complements—minimal

sets of unmatched elements—are equivalent as well. More precisely, let (p1,p2) and (q1,q2) be two
pairs of maximally matched prefixes such that pi ,qi ⊆ si for i ∈ {1, 2}, and let ui = si \ pi and
vi = si \ qi for i ∈ {1, 2}. Then u1 ≡ v1 and u2 ≡ v2. This allows us to define up to equivalence a

function u(s) = (u1,u2), where u1 and u2 are any minimal sets of unmatched elements in s1 and s2.
We write (u1,u2) ≡ (v1,v2) to mean u1 ≡ v1 and u2 ≡ v2.

If a bounded connected stream s withu(s) = (u1,u2) is not finitely distinguishable, then an analog

of the invariant (I0) holds for u1 and u2: for every x ∈ u1 and y ∈ u2, x . y and x ̸D y.

Theorem 4.9. Algorithm DiffStream is optimal. More precisely, letA be any other correct algorithm

for the equivalence-checking problem. If s and s ′ are two bounded connected streams that are not

finitely distinguishable, and if Algorithm DiffStream reaches a different state after processing s and s ′,
then A reaches a different state after processing s and s ′.

Proof. The state stored by Algorithm DiffStream on processing a string s is u(s). Suppose
a correct equivalence-checking algorithm reaches the same state after processing s and s ′. Let
u(s) = (u1,u2) and u(s

′) = (u ′
1
,u ′

2
). We extend both s and s ′ with ι1(u2) followed by ι2(u1). It is not

difficult to see that the two connected streams in the extension of s are equivalent, and the streams

in the extension of s ′ are not equivalent. However, since the algorithm is deterministic, it would

come to the same decision for both extensions, which contradicts its correctness. □

4.5 Practical Bounds on Space Usage
While the space used by Algorithm DiffStream can grow with the input stream in the worst case,

Theorem 4.9 shows that it is impossible to write an algorithm which uses a smaller amount of space.

In addition to this result, it is possible to give concrete bounds on the space usage in certain cases.

Here we discuss some patterns that we have encountered, including the examples we implemented

in Section 5, and how bounds on the space usage can be derived for these patterns.

The simplest pattern is differential testing of sequential outputs: both streams are completely

ordered, i.e., any two events are dependent. In this case, any differential testing algorithm must

at least keep track of the difference of the two streams seen so far (assuming their prefixes are

equal). For example, suppose both streams are sequences of integers, and one stream has seenm
integers and the other has seen n integers, wherem < n. Then if the firstm integers are equal, any

matching algorithm must keep track of the remaining (n −m) integers. Thus, the space usage of
the algorithm is bounded by the maximum drift between the two streams, defined as the difference

in the number of events produced. In practice, such drift is typically bounded since inputs arrive

at the same rate for both the implementations, and most systems try to ensure that no operator
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in the stream processing dataflow graph lags behind the others by accumulating a large queue of

unprocessed inputs. This dependence relation pattern (and the resulting bound) occurs in the case

studies of Sections 5.2 and 5.3.

A second common pattern is key-based parallelism, where events with the same key are dependent,

but events with different keys are independent. In such a case, considering the drift between the

two streams is not enough. For example, suppose there are only two keys, a and b, and one stream

produces n as, but the other stream produces n bs. Then although the two streams are producing

the same number of items, because stream 1 never produces an a and stream 2 never produces a

b, any algorithm for correct matching must keep at least the as and the bs so far until they are

matched on the other stream. To address this, we can obtain a bound on the space by considering

the drift per key. In general, “keys” can be generalized as dependent subsets of events, and a bound

can be obtained by taking the maximum drift on any dependent subset, together with the number

of independent keys in the input. This dependence relation pattern (and the resulting bound) occur

in the case study of Section 5.1. Related to key-based parallelism, fully independent parallelism

(where all input events are independent) occurs in the case studies of Sections 5.3 and 5.4.

Finally, we have encountered cases where the input includes special synchronization events,

such as punctuation marks and end-of-day markers, as described in Section 3. These events are

dependent on all other events. If both input programs to the differential testing algorithm produce

these events at regular intervals, then the space usage becomes bounded. In particular, suppose

that the frequency of such events is at least one in every k events, and the drift restricted only to

such events is d . Then the space usage of our algorithm is at most k × d .
To ensure that bounded drift holds between the two streams in practice, one approach would

be to leverage back-pressure of the underlying system [Chen et al. 2017; Collins and Carloni 2009;

Kulkarni et al. 2015]. In particular, back-pressure may prevent drift from growing in cases where

one implementation is significantly faster than the other, since the system would slow down the

fast implementation to prevent unbounded buffering.

5 IMPLEMENTATION AND CASE STUDIES
We implemented the matcher algorithm in DiffStream, a differential testing library written in Java.

The matcher can be used to test programs in any distributed stream processing system given an

output interface. For our case studies we chose Flink as the target platform because it is one of the

most widely used distributed stream processing frameworks [Stack Overflow 2020]. We integrated

DiffStream with JUnit-QuickCheck [Holser 2013] to support generation of streams of random input

values.

Our first case study (Section 5.1) is used to qualitatively measure the developer effort needed to

test an application with non-trivial ordering dependency in its output. In the second case study

(Section 5.2) we demonstrate that getting performance benefits from parallelization in Flink might

require an elaborate implementation and we illustrate how our tool can be used to streamline that

process. In the third case study (Section 5.3), we show that our framework is successful in finding

real bugs while largely avoiding false positives by adapting a set of non-deterministic MapReduce

programs from the literature [Xiao et al. 2014]. The final case study (Section 5.4) investigates the

performance overhead when using DiffStream for online monitoring of long-running applications.

5.1 Taxi Distance
This case study illustrates the process that one has to follow in order to test their implementation

using our tool. Recall the taxi distance example in Section 2.1. This example shows two seemingly

equivalent implementations of the same query that produce different results in the presence of
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public void testKeyBy () throws Exception {
StreamExecutionEnvironment env = ...;

DataStream input = generateInput(env);

StreamEquivalenceMatcher matcher =
StreamEquivalenceMatcher.createMatcher(

sequentialImpl(input), parallelImpl(input),
(ev1 , ev2) -> ev1.taxiID == ev2.taxiID);

env.execute ();
matcher.assertStreamsAreEquivalent ();

}

Fig. 10. An example test in DiffStream.

parallelism. Here is an instantiation of that example in Flink; the first implementation preserves

the order of events for each key, while the second one does not:

inStream.keyBy("taxiID").project("taxiID", "position");

inStream.project("taxiID", "position").keyBy("taxiID");

Note that both implementations preserve the order when executed sequentially. Since such subtle

differences are difficult to spot manually, we would like to be able to test a parallel implementation

against a sequential one, before deploying it. A slightly simplified example of a test that can

exercise this bug using our framework is shown in Fig. 10. First, the Flink execution environment

is initialized and the dataflow graph is setup. Then, a random input stream is generated and fed to

both implementations, that are finally compared using the matcher for output equivalence.

Notice that the final argument of the matcher is a lambda expression representing the dependence

relation that is expected from the consumer of the output. This specific instantiation represents

the dependence that was shown in Fig. 4a—i.e., that two items are dependent (and thus must be

ordered) if they have the same taxiID . If the user did not want to test differences in the ordering

of the output, they can use (ev1 , ev2) -> false as the dependence relation.

In order to compare the effort required to write a test with and without using our framework,

we manually implemented a test that exercises this bug. The manually implemented matcher spans

two Java classes, totaling around 100 LoC (in contrast to the 13 LoC of the test in our framework

shown in Fig. 10). This does not include input generation, for which we used JUnit QuickCheck.

The manually implemented matcher keeps two hashmaps—one for each implementation—that map

keys to lists, in order to encode the dependence of events of the same key. It appends each output

item to the list associated with its key. After the two implementations stop executing, it checks

that the two hashmaps represent equivalent output. Note that this manual matcher is not online, in

the sense that the two implementations have to stop producing outputs for it to make a decision.

We also implemented an online version of it by extending it with 30 more lines of code.

The important point is that the dependence relation abstraction enables the design of a reusable

testing framework that can be used for testing applications with different ordering requirements on

their outputs. In contrast, the main drawback of the manual matcher is that it is tied to a specific

ordering requirement on the output; whenever a user wants to write a test that requires a different

output dependence relation, they would have to implement a new matcher that maintains the
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output in a data structure suitable for the specific dependence. This can quickly become an overhead

if the user wants to write tens or hundreds of tests for different parts of their application.

In summary, we have shown that using our tool to write a test for a stream processing application

is significantly easier than writing custom tests (∼10 LoC vs. ∼100 LoC). In addition, our tool offers

additional flexibility, as it can be used to test any two implementations just by changing the

dependence relation given to it. This flexibility reduces the effort needed to implement tests for

an application. It also exposes ordering requirements, forcing the developer to think about them

explicitly.

5.2 Topic Count
The main goal of our second case study is to show that achieving parallelism in distributed stream

processing programs can be very difficult and require a drastically more complicated solution than

the sequential code. In particular, we consider the example introduced in Section 2.1, that involves

counting topics associated with words in a long document and outputting the most frequent topic

as the overall topic of the document. The documents are streamed word by word, with end-of-file

markers delineating words in different documents. In the sequential solution (Fig. 2, top), we process

each word by querying the topic for that word, then updating the total count for that topic; when

we get end-of-file, we emit the counts. We feed this output to a second operator count max, which

finds the maximum over all topics of the count.

At first, one may think that going from a sequential to a parallel program is simply a matter

of setting the Flink’s parallelism parameter to more than 1. Unfortunately, this is not the case.

Consider the first operator in the sequential dataflow shown in Fig. 2 (top). The problem with

parallelizing this operator is that an end-of-file marker for a particular document would only be

processed by a single sub-operator; thus the other sub-operators would not be able to properly

delineate words from this document and the next one. Another way of stating the problem is to

say that even though the words themselves are independent, they are dependent on the end-of-file

markers, and thus the obvious parallelization is not possible. A differential test that compares the

sequential dataflow to the same dataflow with parallelism set to more than 1 quickly discovers that

the two versions are indeed not equivalent.

Instead, a correct parallel solution (Fig. 2, bottom) works as follows. We first attach logical

timestamps to each word in the input, corresponding to the number of the document that we are

currently processing. We then replace end-of-file markers, which act as explicit punctuation in the

stream, with punctuated watermarks—a mechanism in Flink that informs the dataflow operators

about the passage of logical time. Unlike the explicit end-of-file markers that cannot be shared by

multiple sub-operators, the watermarks are seamlessly propagated by the system. In effect, they

allow us to break the explicit dependence between words and end-of-file markers in the input

stream, allowing the later stages of the dataflow to be parallelized. We parallelize with key-by (keys

can be assigned arbitrarily to words), and query the database for each word. The next operator is a

tumbling window which uses the logical timestamps from earlier to form the window of events for

a single document, still parallelized. Finally, we sum up the values in each window by topic, and in

the last stage count max we find the maximum over all topics of the count.

In our search for a correct parallel solution, we consulted with Flink users on the Flink mailing

list. Several iterations of feedback were needed to find a correct parallel implementation, and this

shows that it is not obvious. Having the differential testing framework helped guide the search

by quickly dismissing wrong implementations. The final solution is the dataflow shown in Fig. 2

(bottom), consisting of 6 dataflow operators and twice as many lines of code as the sequential

solution.
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Speedup due to parallelism (par.)

Solution Lines of Code par. 2 par. 4 par. 6 par. 8

Sequential 68 – – – –

Correct Parallel 133 2.01 4.33 5.0 4.99

Fig. 11. Results of the second case study on difficulty of writing parallel code.

It is not necessarily true that a solution that seems parallel achieves a speed-up in practice. We

therefore finally need to measure the performance of the parallel solution to show that it indeed

takes advantage of parallelism and scales performance with the level of parallelism. We evaluated

our parallel solution on an input stream of 5 documents, each consisting of 500,000 words randomly

selected from a list of 10,000 most common English words. Each word had previously been randomly

assigned one of 20 topics, and the association had been stored in a standalone Redis key-value

store. The purpose of having the Flink program query the Redis store was to simulate a series of

non-trivial operations that would benefit by being parallelized. We executed this experiment on a

server with an Intel Xeon Gold 6154 processor and 384 GB of memory. The results of the evaluation

are shown in Fig. 11. By increasing parallelism from 1 to 6, the execution time decreases from 80 s

to 16 s (on our setup, the benefits taper off after 6).

In summary, although there is a clear performance benefit in having a parallel solution (Fig. 11),

the correct solution is difficult to find, as evidenced qualitatively by our search and discussions on

the Flink mailing list, and quantitatively because it has about twice as many lines of code as the

sequential solution. Applying differential testing to the parallel solution ensures that bugs were

not introduced in the process.

5.3 Real-World MapReduce Programs
To determine whether our testing framework can successfully find bugs in real-world programs, we

surveyed the literature for empirical studies which have collected and categorized bugs in stream-

and batch-processing programs. We excluded works that focus on job failures and performance

issues [Kavulya et al. 2010; Li et al. 2013; Schroeder and Gibson 2009; Zhou et al. 2015], as they

do not provide examples of semantic bugs where the output might be incorrect. In contrast, Xiao

et al. [2014] study nondeterminism due to parallelism in MapReduce jobs in production workflows,

identifying both real bugs as well as several nondeterministic code patterns which are bug-free. This

empirical study provides a good starting point to evaluate whether our framework can successfully

identify the bugs, while not falsely flagging the bug-free examples.

By examining 507 custom (i.e., user-written) reduce functions, the study identifies 5 common

reducer patterns (spanning 258 of the custom reducers) which are non-commutative on general

input data, meaning that there is potential for nondeterminism in the output due to parallelism.

An example reducer pattern reported by the study is shown in Fig. 13 (left). While the original

custom reducers are not publicly available, the 5 code patterns are nevertheless minimal test cases

which exhibit the same behavior, and a large majority of non-commutative reducers (88%) were

found to fall into these categories. However, as the study notes, there are two reasons why code

written using these patterns might not be erroneous. First, with certain input assumptions, the

nondeterminism may disappear (this is possible in 4 out of 5 patterns). Second, nondeterminism

may simply be acceptable for the particular application (this is most conceivable in 3 out of 5

patterns). We therefore evaluate our testing framework for each of the five patterns, considering

three possibilities for the application-specific requirements: determinism (nondeterminism is not
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Application-Specific Requirements

Code pattern Determinism Determinism under

input assumptions

None

(nondeterminism acceptable)

SingleItem ✓ ✓ n/a

IndexValuePair ✓ ✓ n/a

MaxRow ✓ ✓ ✗

FirstN ✓ ✓ ✗

StrConcat ✓ n/a ✓

Fig. 12. Results of the MapReduce case study. A ✓ indicates successfully identifying the bug in the first
column, and successfully avoiding a false positive in the second and third columns, for each of the 5 reducers
implemented.

acceptable), determinism under certain input assumptions, and no determinism required. We want

to answer the following questions, corresponding to these three possibilities:

Q1. If determinism is required on all inputs, can we write a test which successfully detects the

nondeterminism and reports a bug?

Q2. If determinism is required but only under certain input assumptions, can we write a test

using those input assumptions to avoid a false positive?

Q3. If determinism is not required at all, can we write a test which avoids a false positive?

For each question, we implement the reducer adapted to the streaming setting, and run DiffStream

to compare a sequential and parallel version. The results are summarized in Fig. 12, where columns

1, 2, and 3 correspond to the above three questions, respectively.

For example, in the IndexValuePair pattern in Fig. 13 (left), the user wrote a reducer to aggregate
input items with two input fields, x and y, by accumulating them in a map where the value of

field x is set to the value of field y. The reducer is nondeterministic in general because there may

be multiple updates to the same field: multiple items with the same x and a different y (which

may be out-of-order due to parallelism in the map stage of MapReduce). However, if the input

satisfies a functional dependency where y is a function of x, the pattern becomes deterministic.

Without knowing the user’s intention, it may be that determinism is required, and the functional

dependency is not satisfied, in which case this code is a bug (Fig. 12, first column); or it may be

that determinism is required, and the functional dependency is satisfied, in which case this code is

not a bug (Fig. 12, second column). Though unlikely for this particular pattern, the study authors

also noted for some patterns that nondeterminism in the output may be acceptable, despite the

functional dependency not being satisfied (Fig. 12, third column).

We implemented each of the 5 reducer patterns in Flink. We start by translating each reducer

directly to an aggregator (AggregateFunction in Flink); for the IndexValuePair reducer, this

yields the code in Fig. 13 (right). To adapt the reducer to the streaming setting, a tumbling window

is applied to the input stream, and the reducer is applied to get a result for each window. We used

the same input stream item type (Item) for all examples, which contains fields x and y. Before
constructing the tumbling window, we used an identity map operator to shuffle the data for each

key, so that the order is nondeterministic (thus potentially exposing bugs due to parallelism). We

then compared the parallel version of this pipeline with the sequential one using our matcher to

look for a bug (difference in the outputs).

To evaluate Q1, we generated arbitrary input data and fed it to the sequential and parallel

versions. With enough input data (3000 input data items is sufficient), using a small number of keys

and possible input data items, our tester consistently detects the incorrectly parallelized program

for all 5 patterns. Concretely, of the 5 confirmed bugs found in production code by the previous
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Dictionary <int , int > dict
= new ...;

foreach (Row row in input) {
int x = row["x"]. Integer;
int y = row["y"]. Integer;
dict[x] = y;
// ...

}

public class IndexValuePairReducer ... {
public Map <Integer , Integer >

createAccumulator () {
return new HashMap <>();

}
...
public Map <Integer , Integer > add(

Item in, Map <Integer , Integer > outmap
) {

outmap.put(in.x, in.y);
return outmap;

}
...

}

Fig. 13. Example MapReduce code: the IndexValuePair reducer pattern reported by the study from produc-
tion MapReduce jobs [Xiao et al. 2014] (left), and our implementation of the pattern in Flink (right).

study (these do not correspond to the 5 patterns), 4 of the 5 are of this nature, so our test cases

likely would have identified these 4 bugs.

To evaluate Q2, we use the same setup but with a custom generator for the input data items. For

all patterns except one (called StrConcat), the output is deterministic if certain assumptions are

made on the input; the custom generator enforces these assumptions. For example, for the fields x
and y which are used in the IndexValuePair example of Fig. 13, we enforce the requirement that

y is a function of x. We show that in 4 out of 4 patterns, the output successfully passes our tester,

i.e. we avoid a false positive in these 4 scenarios.

Finally, to evaluate Q3, we look at three patterns where it is conceivable that nondeterminism

in the output is acceptable. For the first two of these, we are unable to write a test which avoids

a false positive. The MaxRow pattern involves finding the value of one field such that another

field is maximized; it is nondeterministic because there may be multiple values which achieve the

maximum. In such a case, differential testing results in a false positive because the two programs

may return different values, even though they are both correct. Similarly, the FirstN pattern is

a reducer which discards all but the first N elements that are seen; on inputs with more than

N elements, differential testing results in a false positive for a bug. However, we can avoid the

false positive in the last StrConcat pattern. This reducer consumes a sequence of input items and

concatenates them into a single string separated by a special character (say, @). It is nondeterministic

because the concatenation is non-commutative, but it is likely that the application requirements

consider this acceptable. For this pattern, we implement a custom-defined equality on output data

items to define when strings separated by @ are equal; using this, the pattern is able to pass our tester.
Additionally, we implement a second version of StrConcat which is more suited to the streaming

setting: instead of collecting all items in a single @-separated string, we output the items as a data

stream. In this case, our tester successfully reports a bug when nondeterminism is undesirable; but

when the dependence relation is used to indicate that nondeterminism is acceptable, the test passes.

Summary. When nondeterminism is undesirable, we have written tests to successfully identify it

(if it exists) for 5 out of 5 reducer patterns. Of the reducer patterns where nondeterminism might

not be present due to input data assumptions, we show how an input data generator can be used to

cause the programs to pass our tester for 4 out of 4 patterns. Finally, in the reducer patterns where

it is conceivable that nondeterminism in the output might be acceptable, we show how using the

dependence relation or custom equality with our tester can successfully make the test pass for 1 of
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the 3 patterns (StrConcat). In total, out of the scenarios where the reducer might conceivably not

be buggy (the 4 and 3 patterns just mentioned, respectively), we avoid a false positive in 5 out of 7.

5.4 Performance for Online Monitoring
In Sections 4.4 and 4.5 we discussed theoretical lower and upper bounds on DiffStream’s space usage.

We showed that DiffStream is optimal, but also that depending on the application and dependence

relation, space usage in the worst case could grow unboundedly. In this subsection we evaluate

the performance of the matcher in practice for monitoring a realistic streaming application. We

aim to demonstrate DiffStream’s applicability in online monitoring scenarios, e.g. when testing an

application under production load for bugs, or for multi-version execution—a method commonly

used to safely update production software [Hosek and Cadar 2013; Maurer and Brumley 2012;

Tucek et al. 2009].

We broadly aim to answer the question: what is the overhead of the matcher? Relevant metrics are

both its memory usage (reflecting unmatched items) and its impact on the application performance

(throughput and latency). We evaluate the following three questions:

Q1. What is the effect of the equivalence matcher on the maximal throughput of the application?

Q2. What is the memory footprint of the matcher? How does the memory usage vary over time?

Q3. What is the latency of the matcher, i.e. how much time does it take for the matcher to process

a single event?

For the application, we chose the Yahoo Streaming Benchmark [Chintapalli et al. 2016], a

standard performance benchmark for stream processing systems. The Yahoo Streaming Benchmark

implements a simple advertisement processing application that receives a stream of advertisement

events in the JSON format. The events are parsed, filtered for the ad view events, joined with the

ad campaign data from an external database, aggregated over time windows, and stored into the

database. The application integrates a Kafka queue, a Flink program, and a Redis database, which

makes it representative of streaming applications which interact with external services. In our

evaluation, we run a sequential and a parallel version of the advertisement program, with the

parallelism parameter set to 2. The matcher compares the streams of the two programs after the

join with the ad campaign data, but before the aggregation. The aggregation simply counts the

number of ad view events per campaign id and per time window, so it does not depend on the order

of events. Thus, we use an empty dependence relation (all events are independent).

To answer Q1, we modified the ad event producer to steadily increase the input rate over time.

We then executed two experiments: one with the matcher and one without it. (We simulated the

absence of the matcher with a dummy matcher that ignores every event.) Both experiments started

with an input rate of 40,000 events/s and the acceleration of 10 events/s
2
and ran for 2,500 seconds,

allowing the input rate to increase to 65,000 events/s. The expected ideal throughput of the matcher

is 2/3 of the input rate due to (i) the duplication for the two versions of the program, and (ii) the

filtering step, which filters approximately 2/3 of the events and leaves 1/3 that finally reach the

matcher. The measured throughput is shown in Fig. 14a. Initially, in both experiments the measured

throughput matches the ideal throughput. After 1,737 seconds, the experiment with the matcher

reaches the throughput of 38,072 events/s, after which it rapidly drops and starts fluctuating. In

the experiment without the matcher, the throughput continues to rise with the input rate until it

reaches 40,082 events/s after 2,023 seconds, after which it also starts fluctuating. Thus, using the

matcher results in approximately 5% decrease in the maximal throughput.

To answer Q2 and Q3, we implemented a rudimentary memory profiler that outputs the total

heap memory used by the Java Virtual Machine running the Flink program in 1-second intervals. In

addition, we measured the latencies of the matcher by measuring the time it takes to process each
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Fig. 14. Results of the fourth case study: performance measurements of monitoring an application with
DiffStream on the Yahoo streaming benchmark over a span of 2 hours, compared to the same application
without the DiffStream matcher.

event; we stored the latencies in a file during execution. We executed two experiments, with and

without the matcher, with a constant input rate of 45,000 events/s and the duration of 7,200 seconds

(2 hours). The input rate of 45,000 events/s translated into the throughput of 30,000 events/s, which

was stable during the execution.

Figure 14b shows a scatter plot of the memory samples taken during execution. In particular,

the total memory used by the program stays bounded throughout the duration of the experiment.

Figure 14c visualizes the same information in a different way: for an amount of used memory x on

the x-axis, the corresponding value on the y-axis is the fraction of memory samples that exceed

x . The two figures together show that there is virtually no difference in the memory usage in the

two experiments. We get a more fine-grained view if we look at the number of unmatched events

that the matcher stores during execution. Figure 14d shows a scatter plot of samples of unmatched

events taken in 1-second intervals during execution. In particular, in almost all samples, the number

of unmatched events is below 500. This is even more clearly illustrated in Fig. 14e, which shows

the fraction of samples exceeding the given number of unmatched events. Thus, to answer Q2, the

memory footprint of the matcher is bounded and negligible relative to the memory used otherwise

and the throughput of 30,000 events/s.

Finally, to answer Q3, Fig. 14f shows the fraction of recorded latencies that exceed a given number

of microseconds. The mean latency is 2 microseconds. While the maximal latency is 30 milliseconds,

this is rare: 98.77% of latencies are at most 10 microseconds, and > 99.99% of latencies are at most

100 microseconds.

Summary. The results show that the overhead of running DiffStream in practice is low. First, the

matcher results in a modest 5% reduction in maximal throughput. Second, the memory usage is

stable over time and reflects the theoretical optimality for applications where drift between the two
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streams is bounded: the number of unmatched elements is < 1.67% compared to the number events

that it processes. Finally, the latency of the matcher is at most 100 microseconds in > 99.99% of

cases, which competitively meets streaming performance standards.

6 RELATEDWORK
We survey three broad categories of related work. First, we describe the state of the art on estab-

lishing correctness for data-parallel programs: we include both batch processing frameworks like

MapReduce, and stream processing frameworks like Flink. Second, we survey the use of partially

ordered traces in modeling concurrency, and the associated problems that have been considered

such as checking for linearizability, serializability, and data races. Finally, we briefly mention the

general testing methodologies our work fits under.

6.1 Correctness for Data-Parallel Programs
Testing. Many previous works focus on batch processing programs written in the MapRe-

duce [Dean and Ghemawat 2008] framework [Chen et al. 2016; Csallner et al. 2011; Marynowski

et al. 2012; Xu et al. 2013a] (see also the recent survey by Morán et al. [2019]). Going beyond batch

processing, Xu et al. [2013b] study testing semantic properties of operators in general dataflow or

stream-processing programs. One problem with many of these works [Chen et al. 2016; Csallner

et al. 2011; Xu et al. 2013a,b] is that real-world MapReduce programs (and, by extension, aggregators

in stream processing programs) can be non-commutative: the empirical study at Microsoft [Xiao

et al. 2014] reports that about 58% of 507 user-written reduce jobs are non-commutative, and that

most of these are most likely not buggy. The previous work on testing would erroneously flag such

programs as containing bugs due to nondeterminism, which would generate a large number of

false positives. We adopt a black-box differential testing approach with the goal of avoiding this

problem. Concretely, we have shown in Section 5.3 how to avoid a false positive for most cases

where the application requirements imply that the nondeterminism is acceptable.

Static Verification. In addition to testing—a dynamic method of checking correctness—there has

also been research on the static verification of data-parallel programs. Recent work focuses on

the verification of parallel aggregators that are used in MapReduce programs; either by enabling

automated verification and synthesis of partial aggregators given an aggregation function [Liu et al.

2014], or by parallelizing user defined aggregators using symbolic execution [Raychev et al. 2015].

Both of these works help developers by statically providing guarantees about the correctness of par-

allel aggregator functions. DiffStream complements these approaches by checking the correctness

of general stateful streaming programs, which are not always decomposable into aggregators, and

whose parallel and sequential implementations might have significant structural differences (like

the Topic Count case study in Section 5.2), implying that the parallel implementation cannot be

simply derived from the sequential implementation. Finally, another difference is that DiffStream

(and dynamic approaches in general) can be used on programs that interact with external services

(e.g. the Redis database in Section 5.2) without having to model them—as is the case with static

approaches.

Language Design. In contrast to the dynamic approach of testing and static verification techniques,

there are language-based restrictions to achieve correct (i.e., semantics-preserving) parallelization

in stream processing programs. The language StreamIt [Thies et al. 2002] leverages Synchronous

Dataflow [Lee and Messerschmitt 1987] to achieve correct parallelization; however, this requires

a restriction on dataflow graphs where all operators must have a static selectivity (number of

output items produced per input item), so it is not appropriate for general stream processing where

operators often lack static selectivity. For general stream processing, Schneider et al. [2013] and
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Mamouras et al. [2019] have proposed and implemented different approaches to ensure correct

parallelization: the first is based on categorizing operators for properties such as statefulness and

selectivity, while the second is based on a type discipline where streams are annotated with types.

The idea of using dependence relations to specify partially-ordered output streams is originally

proposed by Mamouras et al. [2019], and here we apply that idea to testing and online monitoring.

Other Approaches. Complementary to directly establishing the correctness of user-written pro-

grams, there is work on indirectly facilitating correctness through visualization, through debugging,

and finally by ensuring correctness at the system level. Visualization includes generating ex-

ample inputs for dataflow programs showcasing typical semantic behavior [Olston et al. 2009].

Debugging includes, e.g., setting up breakpoints, stepping through computations, and determining

crash culprits [Gulzar et al. 2016; Olston and Reed 2011]. Towards testing functional correctness

of a stream processing system implementation, a framework has been proposed for Microsoft

StreamInsight [Raizman et al. 2010].

6.2 Partially Ordered Traces in Concurrency Theory
Mazurkiewicz Traces. We build on foundational work in concurrency theory dating back to

Mazurkiewicz [1986], where partially ordered sets of events are called traces. Mazurkiewicz traces

have been studied from the viewpoint of algebra, combinatorics, formal languages and automata,

and logic [Diekert and Rozenberg 1995]. In practical applications to verification and testing of

concurrent systems, they appear in relation to partial order reduction [Godefroid 1996; Peled 1994],

a technique for pruning the search space of possible execution sequences. The idea of a dependence

relation to specify output ordering originally comes from Mazurkiewicz traces; however, the core

algorithmic problem in our work corresponds to checking equivalence of two Mazurkiewicz traces,

and to our knowledge this particular testing problem has not been studied in any of the mentioned

contexts. An additional difference is that in the theory of Mazurkiewicz traces, one usually assumes a

finite, symmetric, and reflexive dependence relation. In contrast, we only require it to be symmetric.

This is in order to support user-provided dependence relations over a possibly infinite data domain,

which is necessary to model common patterns in the streaming setting: one example is the key-

based dependence relation (where the number of keys may be unbounded and different keys are

independent). Patterns such as this one cannot be captured by a finite alphabet, and this limits

the direct application of classical work on concurrency theory over a finite dependence relation,

e.g. Diekert and Rozenberg [1995].

Checking Properties of Traces. Much classical research has focused on deciding properties of

traces such as serializability, linearizability, sequential consistency, and data race detection. Broadly

speaking, these properties are search problems: the algorithm monitors an execution of events,

and it must decide if there exists some possible equivalent execution that witnesses the desired

property. For example, race detection involves deciding, given a sequence of events, if there is a

valid reordering of the events, subject to the constraints imposed by synchronization events, in

which two specific events (representing a potential race condition) get reordered. The search aspect

means that race detection is NP-hard [Netzer and Miller 1990, 1992]. Similarly, checking sequential

consistency of a given trace is NP-complete [Gibbons and Korach 1992], as is checking linearizability

in general [Gibbons and Korach 1997]. As a result, practical tools for testing correctness of traces

(e.g., [Burckhardt et al. 2010; Lowe 2017; Park et al. 2011; Savage et al. 1997; Sen 2008; Wing and

Gong 1993]) must explore the trade-off between soundness, completeness, and tractability. In

contrast, the problem we consider of checking two traces for equivalence up to re-ordering is in

PTIME (for the offline variant), and admits an optimal online monitoring algorithm.
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6.3 Testing Methodologies
Runtime Verification. Our work contributes to the large body of work on runtime verifica-

tion [Havelund and Roşu 2004; Leucker and Schallhart 2009], a lightweight verification paradigm

which aims to identify bugs in the output of a program as it is executed, using minimal computa-

tional resources. Most work in runtime verification focuses on detecting violations of a property

written in a logical specification language (e.g., the temporal logic LTL and its extensions), whereas

we consider differential testing of a program against a reference implementation, and we model

program execution traces as partially rather than totally ordered.

Differential Testing. Differential testing [Groce et al. 2007; McKeeman 1998] is a well-established,

lightweight, and scalable way to detect bugs in complex programs (for instance, in C compilers [Yang

et al. 2011]), by simply comparing two programs that are supposed to be equivalent. We consider

some specific problems that arise in the stream processing domain, specifically, output comparison

in the presence of out-of-order data.

7 CONCLUSION
We have presented DiffStream, an algorithm and library for differential testing of distributed

stream processing applications. The input to our library, implemented in Flink, consists of the two

programs as well as a dependence relation which is used to describe which output events must

be produced in order, and an optional custom equality which is used to compare output events.

Our four case studies demonstrate that (1) our framework can be used to successfully find bugs

in MapReduce programs that were previously identified in the literature, while at the same time

it avoids false positives in most scenarios; (2) it can be used to ease the development of Flink

applications, particularly programs that are difficult to parallelize; and (3) it can run in an online

fashion on large input streams with minimal performance overhead.

The core algorithmic problem is testing output streams from two implementations for equivalence,

when the output may contain both ordered and unordered events. Formally, we justified that our

algorithm is correct in an online sense, meaning that it produces a verdict on whether the streams

are equivalent as early as possible; and that it is optimal, meaning that for any other correct online

algorithm, that algorithm must maintain at least as much information as our algorithm does. These

theorems are reflected in the overhead in practice (Section 5.4).

The current work focuses on bugs due to parallelism. In future work, we would like to extend

our framework to target other classes of bugs, including those due to node or network faults.

Additionally, we would like to generalize the definition of correct behavior, which currently assumes

that the output should be determined up to allowed reordering and equality of data items. There

are cases where this is too strong, for instance when operations are approximate or randomized.

Finally, we hope to extend our framework to consider input generation and input equivalence as

well as output equivalence, and use this for a better strategy for selecting inputs.

DiffStream is open source and is available on GitHub.
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