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Abstract—Cuts in graphs are a fundamental object of
study, and play a central role in the study of graph
algorithms. The problem of sparsifying a graph while
approximately preserving its cut structure has been exten-
sively studied and has many applications. In a seminal
work, Benczúr and Karger (1996) showed that given any
n-vertex undirected weighted graph G and a parameter
ε ∈ (0, 1), there is a near-linear time algorithm that outputs
a weighted subgraph G′ of G of size Õ(n/ε2) such that
the weight of every cut in G is preserved to within a
(1±ε)-factor in G′. The graph G′ is referred to as a (1±ε)-
approximate cut sparsifier of G.

A natural question is if such cut-preserving sparsifiers
also exist for hypergraphs. Kogan and Krauthgamer (2015)
initiated a study of this question and showed that given
any weighted hypergraph H where the cardinality of each
hyperedge is bounded by r, there is a polynomial-time
algorithm to find a (1± ε)-approximate cut sparsifier of H
of size Õ(nr

ε2
). Since r can be as large as n, in general, this

gives a hypergraph cut sparsifier of size Õ(n2/ε2), which is
a factor n larger than the Benczúr-Karger bound for graphs.
It has been an open question whether or not Benczúr-
Karger bound is achievable on hypergraphs. In this work,
we resolve this question in the affirmative by giving a
new polynomial-time algorithm for creating hypergraph
sparsifiers of size Õ(n/ε2).

I. INTRODUCTION

In many applications, the underlying graphs are too
large to fit in the main memory, and one typically
builds a compressed representation that preserves rele-
vant properties of the graph. Cuts in graphs are a fun-
damental object of study, and play a central role in the
study of graph algorithms. Consequently, the problem
of sparsifying a graph while approximately preserving
its cut structure has been extensively studied (see, for
instance, [19], [7], [20], [26], [1], [3], [14], [6], [4], [23],
[17], [5], [18], and references therein). A cut-preserving
sparsifier not only reduces the space requirement for
any computation, but it can also reduce the time
complexity of solving many fundamental cut, flow, and
matching problems as one can now run the algorithms
on the sparsifier which may contain far fewer edges.
In a seminal work, Benczúr and Karger [7] showed
that given any n-vertex undirected weighted graph G

and a parameter ε ∈ (0, 1), there is a near-linear time
algorithm that outputs a weighted subgraph G′ of G
of size Õ(n/ε2) such that the weight of every cut in G
is preserved to within a multiplicative (1± ε)-factor in
G′. The graph G′ is referred to as the (1±ε)-approximate
cut sparsifier of G.

In this work, we consider the problem of cut sparsifi-
cation for hypergraphs. A hypergraph H(V,E) consists
of a vertex set V and a set E of hyperedges where
each edge e ∈ E is a subset of vertices. The rank
of a hypergraph is the size of the largest edge in
the hypergraph, that is, maxe∈E |e|. Hypergraphs are
a natural generalization of graphs and many applica-
tions require estimating cuts in hypergraphs (see, for
instance, [9], [10], [16], [27]). Note that unlike graphs,
an n-vertex hypergraph may contain exponentially
many (in n) hyperedges. This strongly motivates the
question if cut-preserving sparsifiers in the spirit of
graph sparsifiers can also be created for hypergraphs
as this would allow algorithmic applications to work
with hypergraphs whose size is polynomially bounded
in n.

Kogan and Krauthgamer [22] initiated a study of this
basic question and showed that given any weighted
hypergraph H , there is an O(mn2) time algorithm to
find a (1 ± ε)-approximate cut sparsifier of H of size
Õ(nrε2 ) where r denotes the rank of the hypergraph.
Similar to the case of graphs, the size of a hypergraph
sparsifier refers to the number of edges in the spar-
sifier. Since r can be as large as n, in general, this
gives a hypergraph cut sparsifier of size Õ(n2/ε2),
which is a factor of n larger than the Benczúr-Karger
bound for graphs. Chekuri and Xu [11] designed a
more efficient algorithm for building a hypergraph
sparsifier. They gave a near-linear time algorithm in
the total representation size (sum of the sizes of all
hyperedges) to construct a hypergraph sparsifier of
size Õ(nr2/ε2) in hypergraphs of rank r, thus speeding
up the run-time obtained in the work of Kogan and
Krauthgamer [22] by at least a factor of n, but at the
expense of an increased sparsifier size. It has remained
an open question if the Benczúr-Karger bound is also
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achievable on hypergraphs, that is, do there exist
hypergraph sparsifiers with Õ(n/ε2) edges? In this
work, we resolve this question in the affirmative by
giving a new polynomial-time algorithm for creating
hypergraph sparsifiers of size Õ(n/ε2).

Theorem 1. Given a weighted hypergraph H , for any 0 <
ε < 1, there exists a randomized algorithm that constructs a
(1± ε)-approximate cut sparsifier of H of size O(n logn

ε2 ) in
Õ(mn+n10/ε7) time with high probability; here n denotes
the number of vertices and m denotes the number of edges
in the hypergraph.

It is worth noting that the size bound obtained in
Theorem 1 is the best possible to within a logarithmic
factor even when the input is an unweighted hyper-
graph that only contains edges of rank Ω(n). Consider
the following “sunflower graph” with 2n vertices, say,
v1, v2, ..., v2n, and n hyperedges. For any 1 ≤ i ≤ n,
the ith hyperedge ei contains vertex vi along with the
vertices vn+1, vn+2, . . . , v2n. For any 1 ≤ i ≤ n, the size
of the cut ({vi}, V \ {vi}) is 1 as ei is the unique edge
cut by this cut. So any sparsifier for this graph must
include every hyperedge. This in particular means that
the bound in Theorem 1 is the best possible to within
a logarithmic factor even when one measures the total
representation size of a hypergraph cut sparsifier, and
not just the number of edges.

We now briefly describe the high-level idea behind
the proof of Theorem 1. In the work of Benczúr and
Karger [7], a graph sparsifier is constructed by sam-
pling the edges with probabilities according to their
strengths, a notion that captures the importance of an
edge. Informally speaking, any edge that is among a
small number of edges crossing some cut will have a
high strength while any edge that does not participate
in any small cuts will have a low strength. Once edges
are sampled in this manner, a second key element in
showing that the (appropriately weighted) sampled
graph approximately preserves every cut in the original
graph, is to establish a cut counting bound which
shows that there can not be too many cuts that are
within a given factor of the minimum cut size in the
graph. This allows use of a union bound over all cuts
to show that every cut is well-approximated. Kogan
and Krauthgamer [22] extend this elegant approach
to constructing hypergraph sparsifiers. Similar to [7],
they construct a hypergraph sparsifier by sampling
hyperedges according to their strengths. A key point
of divergence occurs in the second element, namely,
the cut counting bound. As it turns out, number of
cuts that are within a given factor of the minimum
cut size, can be exponentially larger in the setting

of hypergraphs1. To compensate for this increase in
the number of cuts, their algorithm samples edges at
roughly r times higher rate, resulting in a sparsifier of
Õ(nr) for hypergraphs of rank r. This size bound is
essentially best possible by a direct execution of the
Benczúr-Karger framework.

Our proof of Theorem 1 follows the high-level idea
of creating a suitable probability distribution over hy-
peredges, and then sampling them in accordance with
this distribution. However, we construct our hyper-
dge sampling distribution by analyzing the interaction
among hyperdeges at a finer granularity. In particular,
we start by constructing an auxiliary graph G where
for each hyperedge e in H , we add a clique Fe whose
vertex set is the same as the vertex set of the hyperedge
e. The probability of sampling a hyperedge e in H is
now determined by the strengths of the edges in the
clique Fe. However, for this “sparsification-preserving
coupling” between the graphs G and H to work, we
can not directly use the graph G but instead need to
create a non-uniform weight assignment to the edges
in G that roughly ensures that the edges in Fe have
similar strengths in G. In particular, for any hyperedge
e, the edges in Fe may get assigned weights that now
range from 0 to the weight of the hyperedge e. This
weight assignment scheme, referred to as a balanced
assignment, and an algorithm to compute it efficiently,
are the key technical insights in our work. We note that
the strategy of building sparsifiers of a hypergraph by
the auxiliary graph G is also used in [5] where the au-
thors use this strategy to construct spectral hypergraph
sparsifier. Unlike our scheme, however, the work in [5]
assigns uniform weights to the edges in Fe.

We conclude our overview by summarizing the three
main technical steps involved in obtaining Theorem 1
by executing the high-level idea and described above.
In the first step, we assign weights to the edges in
G so that the edges in each clique Fe have similar
strengths. In general, this task might be impossible,
but we get around this by working with a weaker
condition, namely, we only require that all edges in Fe

that receive a positive weight have similar strengths.

1As a simple example (derived from an example in [22]), consider
a n-vertex hypergraph that contains a single hyperedge of size n
with weight 1, as well as a clique on the n vertices such that each
clique edge has weight 1/n2. It is easy to see that the weight of a
minimum cut in this graph is 1+(n−1)/n2 ≈ 1. On the other hand,
all possible 2n − 1 non-trivial partitions of the n vertices gives us a
cut of size at most 3/2. This is an exponential increase compared to
the graph setting where it is known that the number of cuts that are
at most twice as big as the minimum cut is bounded by O(n4) [19].
Note the 2n − 1 cuts created above not only correspond to distinct
vertex partitions, but also have a distinct set of edges crossing them.
Interestingly, the maximum number of distinct minimum cuts is the
same in both graphs and hypergraphs, see, for instance, the work of
Ghaffari, Karger, and Panigrahi [13].
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We design an iterative algorithm to achieve this goal,
and show that it converges in polynomial time. In the
second step, we prove that the hypergraph sparsifier
constructed by sampling each hyperedge e according
to the strengths of edges in Fe is indeed a good sparsi-
fier for our input hypergraph. The proof of the second
step follows the framework in [7] at a high-level but a
key challenge is to couple together the performance of
a sparsifier in H with the performance of a sparsifier
in G. Together these two steps give us a polynomial-
time algorithm for constructing a hypergraph sparsifier
of size Õ(n/ε2). However, the running time of the
resulting algorithm is quadratic in terms of m, the
number of hyperedges. Since in a hypergraph, the
number of edges m can be exponentially larger than
n, in the third step, we present a way to speed up
the algorithm so that the run-time has only a linear
dependence on m.

Finally, we note that Theorem 1 also yields a
Õ(n2/ε2) space streaming algorithm for building a hy-
pergraph sparsifier in a single-pass over an insertion-
only stream. This can be done using a black-box tech-
nique for transforming cut sparsification algorithms
into streaming algorithms whose space requirement is
only slightly more than the sparsifier size (see Section
2.2 of [24]):

Lemma 1 ([24]). Given an algorithm that finds a
(1 ± ε)-approximate cut sparsifier of a hypergraph of
size at most f(n, ε) with high probability, there ex-
ists a single-pass insertion-only streaming algorithm
to compute a (1 ± ε)-approximate cut sparsifier of
size 2 log(m/n) · f(n, ε

2 log(m/n) ) that stores at most
2 log2(m/n) ·f(n, ε

2 log(m/n) ) hyperedges at any given time
with high probability.

Corollary 2. For any 0 < ε < 1, there exists a randomized
insertion only streaming algorithm that constructs (1± ε)-
approximate cut sparsifier of H of size O(n logn log3(m/n)

ε2 )

with high probability and stores only O(n logn log4(m/n)
ε2 )

hyperedges, and hence uses O(n
2 logn log4(m/n)

ε2 ) space in
the worst-case.

The above result improves upon the Õ(n3/ε2) space
streaming algorithm in [22] for building hypergraph
sparsifiers in insertion-only streams. We note here that
for hypergraphs of constant rank, an Õ(n/ε2) space
streaming algorithm is known [15] in dynamic streams
where both insertion and deletion of hyperedges is
allowed.

Related Work: Spielman and Teng [26] introduced a
natural strengthening of the notion of cut sparsifiers in
graphs, called a spectral sparsifier. A (1±ε)-approximate
spectral sparsifier of a graph G(V,E) is a weighted

graph G′(V,E′) such that for every vector x ∈ R
n, we

have

|xTLG′ x− xTLG x| ≤ ε(xTLG x),

where LG and LG′ denote the Laplacian matrices of G
and G′, respectively. To see that the notion of spectral
spasrifier only strengthens the notion of a cut sparsifier,
observe that the cut sparsification requirement for any
cut (S, S̄) is captured by the definition above when
we choose x to be the 0/1-indicator vector of the
set S. Batson, Spielman, and Srivastava [6] gave a
polynomial-time algorithm that for every graph G,
gives a weighted graph G′ with O(n/ε2) edges such
that G′ is a (1 ± ε)-approximate spectral sparsifier of
G. Subsequently, Lee and Sun [23] gave an O(m/εO(1))
time algorithm to construct a spectral graph sparsifier
with O(n/ε2) edges.

Very recently, Bansal, Svensson, and Trevisan [5]
explored both the standard multiplicative error notion
as well as a weaker notion of graph and hypergraph
sparsification whereby the size of each cut (S, S̄), is ap-
proximated to within an additive error that is bounded
by ε(d|S| + vol(S)) where d is the average degree in
the graph, and vol(S) denotes the sum of degrees of
vertices in S. It is easy to see that in general, the ad-
ditive error term allowed in the weaker notion can be
Ω(m) times larger than the multiplicative error even in
connected graphs. Bansal et al. designed a randomized
polynomial time algorithm that gives unweighted hy-
pergraph sparsifiers of size O(n log(r/ε)

ε2r ) for the weaker
notion defined above. For the multiplicative error no-
tion, they give a polynomial-time algorithm that out-
puts a weighted spectral sparsifier with O( r

3

ε2 · n log n)
hyperedges. This latter result is in contrast to the recent
result of Soma and Yoshida [25] who gave spectral
hypergraph sparsifiers with O(n

3 logn
ε2 ) hyperedges.

There has also been extensive work on designing
space-efficient streaming algorithms for cut sparsifiers
as well as spectral sparsifiers for graphs, starting with
the work of Ahn and Guha [1] who gave the first
Õ(n/ε2) space single-pass streaming algorithm to build
a (1 ± ε)-approximate cut sparsifier in insertion-only
streams. Ahn, Guha, and McGregor [2] introduced a
powerful linear-sketching primitive for graph connec-
tivity that led to the construction of graph sparsifiers
using Õ(n/ε2) space in the more general setting of dy-
namic streams where a graph is revealed as a sequence
of edge insertions and deletions [3], [14]. Subsequently,
similar results have also been obtained for spectral
sparsifiers in dynamic graph streams [4], [17], [18].

Organization: We set up our notation and state some
useful background results in Section II. We present a
detailed technical overview of our hypergraph sparsi-
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fier construction in Section III. In Section IV, we give
a polynomial-time algorithm to construct a balanced
weight assignment, and in Section V, we show how
a balanced weight assignment can be used to create
a hypergraph sparsifier with O(n logn

ε2 ) edges. Finally,
in Section VI, we present a way to speed-up our
algorithm so that the final algorithm has only a linear
dependence on m, completing the proof of Theorem 1.

II. PRELIMINARIES

A. Notation

A hypergraph is defined as a pair (V,E) of vertices
and edges, where each edge in E is a subset of V .
In this paper, we allow parallel edges (that is, E is
a multiset). To emphasize this, we often refer to a
graph/hypergraph as a multigraph/multihypergraph.
Given a weight function w that assigns a nonnega-
tive weight to each edge in E, the triple (V,E,w) is
a weighted hypergraph. Notice that an unweighted
graph/hypergraph can be thought of as a weighted
graph/hypergraph with all weights equal to 1.

Throughout the paper, we use “graph” to refer
to standard graphs with edges of size 2, and “hy-
pergraph” to refer to graphs where edge sizes are
arbitrary. We generally use the symbol G to refer
to standard graphs, and H to refer to hypergraphs.
Additionally, we generally use f to denote an edge
in a standard graph, and e to denote an edge of a
hypergraph. We will assume throughout that we are
dealing with a hypergraph with at least n edges, since
otherwise, we can simply output H as its own spar-
sification. Finally, the phrase “with high probability”
means with probability 1 − 1/poly(n) for some large
polynomial in n.

Given any weight function w : S → R≥0, we
extend it to also be a function on subsets of S so that
w(S′) =

∑
e∈S′ w(e) for S′ ⊆ S. Given a weighted

graph/hypergraph G = (V,E,w) and a subset of
vertices V ′ ⊆ V , we define G[V ′] to be the weighted
subgraph/subhypergraph of G induced by the vertices
in V ′.

A cut C = (S, S̄) of a vertex set V is any disjoint
partition of V into two sets such that neither of the sets
are empty. Given a graph/hypergraph G = (V,E,w)
and a cut C = (S, S̄), we denote by δG(S) the set of
the edges crossing the cut C in G. By definition, |δ(S)|
is the number of edges crossing C and w(δ(S)) is the
weight/size of C. A (1± ε)-approximate cut sparsifier of
G is a graph/hypergraph G′ = (V,E′, w′) with E′ ⊆ E
such that

∀S ⊆ V, |w′(δG′(S))− w(δG(S))| ≤ εw(δG(S)).

The following concentration bound can be found in
[12]:

Lemma 2 (Theorem 2.2 in [12]). Let {x1, . . . , xk} be a
set of random variables, such that for 1 ≤ i ≤ k, each xi

independently takes value 1/pi with probability pi and 0
otherwise, for some pi ∈ [0, 1]. Then for all N ≥ k and
ε ∈ (0, 1],

Pr

⎛
⎝
∣∣∣∣∣∣
∑
i∈[k]

xi − k

∣∣∣∣∣∣
≥ εN

⎞
⎠ ≤ 2e−0.38ε2·mini pi·N

B. Edge Strengths and the Cut Counting Bound
We review some concepts and results that can be

found in previous works on cut sparsifiers in standard
graphs, which also play important roles in our algo-
rithm.

Definition 1. Given a weighted graph G, a k-strong
component of G is a maximal induced subgraph of G that
has minimum cut at least k.

Lemma 3 ([7]). Given a weighted graph G = (V, F,w)
and some real number k, the k-strong components of G
partition V . Given another real number k′ ≥ k, the k′-
strong components of G are a refinement of the partition of
k-strong components of G.

Definition 2. Given a weighted graph G = (V, F,w) and
an edge f ∈ F , the strength of f , denoted by kf , in G
is the maximum value of k such that f is contained in a
k-strong component of G.

Alternatively, the strength of an edge f ∈ F is
the largest minimum cut size among all induced sub-
graphs G[X] that contain f , where X ranges over all
subsets of V . The following two claims give some
properties of strength of edges in a graph.

Claim 1 (Corollary 4.9 in [8]). Given a weighted graph
G on n vertices, there are at most n − 1 distinct values of
edge strengths.

Claim 2 (Lemma 4.11 in [8]). For any weighted graph
G = (V, F,w) on n vertices,

∑
f∈F

w(f)
kf

≤ n− 1.

We can compute the strength of every edge in G
by computing the global min-cut of (n − 1) induced
subgraphs of G [8]. For completeness, we prove the
following lemma in the full version of the paper.

Lemma 4. Given a weighted graph G with n vertices and
m edges. There is an algorithm that computes the strength
of each edge in Õ(mn) time with high probability.

The following cut counting lemma due to Karger [19]
gives an upper bound on the number of “small cuts”
in a graph.
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Lemma 5 (Corollary 8.2 in [19]). Given a weighted graph
G = (V, F,w) with minimum cut size c, for all integers
α ≥ 1, the number of cuts of the graph with weight at most
αc is at most |V |2α. We will refer to such cuts as α-cuts
throughout the paper.

III. CONSTRUCTION OF NEAR-LINEAR SIZE
HYPERGRAPH CUT SPARSIFIERS

Before describing our approach of creating hy-
pergraph sparsifiers, we briefly review Benczúr and
Karger’s algorithm for graph sparsifiers [7], [8].

Given a graph G = (V, F,w), they construct a spar-
sifier Ĝ as follows: for each edge f ∈ F , we include
f in Ĝ with probability pf = Õ(w(f)

kf
) (i.e. its weight

over its strength). Every edge f that gets sampled is
assigned a weight of ŵ(f) = w(f)

pf
in Ĝ . By Claim 2,

the expected size of the sparsifier is Õ(n). For any cut
C = (S, S̄) in the graph, the expected size of ŵ(δĜ(S))
is equal to w(δG(S)). We need to give an upper bound
of the probability that

∣∣ŵ(δĜ(S))− E
[
ŵ(δĜ(S))

]∣∣ >
εE

[
ŵ(δĜ(S))

]
. By concentration bounds, the larger the

size of C, the lower the probability that ŵ(δĜ(S)) is
far from its expectation. By Lemma 5, if a graph has
minimum cut size c, for any integer α, the number
of cuts of size at most αc is at most n2α. So we
can group the cuts in different sizes based on this α
value, take a union bound within each group, and
then take a union bound over all groups to prove that
with high probability, every cut in Ĝ has size close to
its expectation. This gives a (1 ± ε)-approximate cut
sparsifier.

Recently, Kogan and Krauthgamer [22] generalized
this approach to hypergraphs by defining an analogue
of edge strengths for hyperedges. Most of the analysis
for standard graphs also holds in the case of hyper-
graphs. The main difference is that in hypergraphs,
the cut counting bound (Lemma 5) is no longer true.
Instead, the authors prove that if the minimum cut size
of a hypergraph is c, the number of cuts with size at
most αc is O(2αrn2α) for any integer α, where r is the
maximum cardinality of the edges in the hypergraph
(see the footnote on page 2 for an example showing
that an exponential dependence on r is necessary even
for constant α). This increase in the number of α-cuts
in turn requires edges to be oversampled at a rate that
is O(r) times higher, giving a hypergraph sparsifier of
size Õ(nr).

A. Overview of Our Approach

Similar to the previous works on graph/hypergraph
sparsification, for each edge e in the hypergraph H , we
will assign a probability pe of sampling the edge in the
sparsifier Ĥ . If e is sampled, we give it weight we

pe
in the

sparsifier. However, unlike [22], our probabilities are
not decided by the strength of the edge e in H . Instead,
we derive these probabilities from edge strengths in an
auxiliary standard graph G, where for each hyperedge
e in H , we create a clique over the vertices of e in G
such that the total weight of these clique edges is we.
The hyperedge sampling probability pe is derived from
the strengths of the edges in the associated clique in
G.

To prove that the sparsifier Ĥ is valid, we compare
Ĥ to the Benczúr-Karger sparsifier Ĝ of G. For any cut
C, it is not hard to see that the total weight of C in H is
at least as large as the size of C in G. Consider the cut
size in Ĥ as the sum of several random variables (each
one representing an edge/hyperedge across the cut).
By concentration bounds, the higher the probability
mass of these random variables, the greater is the
concentration of their sum, which means the variance
of the size of C in Ĥ is at most its variance in Ĝ. So
we can use the cut-counting bound for standard graphs
on Ĝ to analyze the concentration of the hypergraph
sparsifier Ĥ .

The approach of analyzing the performance of a
hypergraph sparsifier through an auxiliary standard
graph is also used in [5]. The authors use it to build a
spectral sparsifier of a hypergraph. For a hyperedge e
in H , like [5], a natural way of assigning its weight is to
distribute its weight uniformly among all correspond-
ing edges in G. However, this may cause the strengths
of these edges in G to be very different. Two natural
ways of assigning pe are to either let pe be decided
by the maximum inverse strength of these edges or
decided by the average inverse strength. We can prove
that deriving probabilities from the maximum inverse
strength gives us small variance in cut sizes, while de-
riving probabilities from the average inverse strength
results in a small number of sampled edges. However,
the first approach may cause the number of sampled
edges to be too large and the second approach cannot
guarantee that the variance of the cut sizes in Ĥ is
small enough. The two examples below illustrate this.

. . .

. . .

v1 v2 vn

vn+1 vn+2 v2n

(a) Example 1

K(2r)
n

K(2r)
n

e0

e1

. . . . . . . . .

. . .

v1 vr v2r−1 vn

vn+1 vn+r v2n

(b) Example 2

Figure 1: Illustrations of Examples 1 and 2. K(2r)
n refers

to a copy of the complete 2r-uniform hypergraph.
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Example 1. Consider the following hypergraph with 2n
vertices v1, v2, . . . v2n: for any 1 ≤ i ≤ n, we have all(

n
r−1

)
edges of size r containing vi and r − 1 vertices in

{vn+1, vn+2, . . . , v2n}. Suppose we were to distribute the
weight of each hyperedge uniformly in the auxiliary graph
G, each edge in G has weight 1/

(
r
2

)
= O(1/r2). For any

1 ≤ i ≤ n, the weighted degree of vi in the graph G
is O(1/r) · ( n

r−1

)
, which means for each hyperedge, some

of the edges in the associated clique in G have strength
O(1/r) ·( n

r−1

)
. Hence if the hyperedges are sampled accord-

ing to the minimum strength of the corresponding edges in
G, each hyperedge will be sampled with probability Ω(r)

( n
r−1)

,
and the expected number of edges in the sparsifier will be
Ω(nr) since there are n · ( n

r−1

)
hyperedges.

Example 2. Consider the following hypergraph with 2n
vertices and hyperedge size 2r ≤ n

2 : let V = V1 ∪ V2 where
V1 = {v1, . . . , vn} and V2 = {vn+1, . . . , v2n}. The graph
contains one hyperedge e0 = {v1, . . . , v2r−1, vn+1}, and one
hyperedge e1 = {v1, . . . , vr, vn+1, . . . , vn+r}. There are also(
n
2r

)
hyperedges in V1 and

(
n
2r

)
hyperedges in V2. Suppose

we distribute the weight of each hyperedge uniformly in the
auxiliary graph G. The cut size of C = (V1, V2) is Θ(1) in G
since there are r2 + 2r − 1 edges of weight 1/

(
2r
2

)
crossing

C. On the other hand, the induced subgraphs G[V1] and
G[V2] both has minimum cut size Ω(2r). So for any edge in
G crossing the cut C, its strength is Θ(1), and other edges
in G have strength Ω(2r). Let F0 be set of edges in G corre-
sponding to e0. About 1/r fraction of the edges in F0 have
strength Θ(1) while the others have strength Ω(2r). Both(
r
2

)
/(
∑

f∈F0
kf ) (inverse of average) and (

∑
f∈F0

1
kf
)/
(
r
2

)
(average of inverse) are O(1/r). However, the cut C has size
2 in the hypergraph, which means that in order to build a
(1 ± ε)-approximate cut sparsifier with ε < 1/2, the edge
e0 must be included.

To solve this problem, we give an algorithm that
assigns the weights of edges in G such that for each
hyperedge e, the strength of all corresponding edges
in G whose weight is positive is close to the smallest
strength edge in the clique (we will formally define this
idea in the next sub-section). In this case, the maximum
inverse strength is quite close to the average inverse
strength, so if pe is decided by the smallest strength
(i.e. the largest inverse strength) in the clique, both the
size of the sparsifier and the variance of the cuts have
the properties we desire.

B. Construction of the Cut Sparsifier

In this section, we formalize the ideas introduced
in the previous section. To simplify the analysis, we
first consider unweighted hypergraphs, and then give
a simple reduction from the weighted case to the
unweighted case. Later, in Section VI, we present a

more sophisticated approach for handling weighted
hypergraphs that gives us our final algorithm whose
run-time has only a linear dependence on m.

Let H = (V,E) be an unweighted multi-hypergraph
with |V | = n and |E| = m. Our goal is to create a
(1± ε)-approximate cut sparsifier, given any ε ∈ (0, 1].
That is, we want to create a weighted hypergraph Ĥ =
(V, Ê, ŵ) where Ê ⊆ E such that with high probability,
for all cuts C = (S, S̄) of V ,

∣∣ŵ(δĤ(S))− |δH(S)|∣∣ ≤ ε |δH(S)| .
In other words, the graph Ĥ preserves all cuts up to
a factor of (1 ± ε). We will sample the graph Ĥ by
computing a probability pe for each edge e ∈ E. Each
edge e ∈ E is included in Ĥ with probability pe, and
if included, it is given a weight of ŵ(e) := 1/pe.

Given a hyperedge e ∈ E, define Fe := {{u, v} :
u, v ∈ e, u 	= v} as the clique on the vertex set of e. Let
F :=

⋃
e∈E Fe be the multiset union of all such cliques.

Given a weight function wF : F → R≥0, we define
G = (V, F,wF ) as the weighted multigraph induced by
wF . Finally, given any subset Fsub ⊆ F , define F+

sub =
{f ∈ Fsub : w

F (f) > 0} to be subset of Fsub containing
only positive weight edges.

For all hyperedges e ∈ E, define κe := minf∈Fe
kf

to be the minimum strength over all edges in its
associated clique, and κmax

e := maxf∈F+
e
kf to be the

maximum strength over all positive-weighted edges in
its associated clique.

Definition 3. Let γ ≥ 1 be some parameter. The weight
function wF : F → R≥0 is called a γ-balanced weight
assignment if it satisfies the following two conditions for
all e ∈ E in the hypergraph H :

(1)
∑

f∈Fe
wF (f) = 1, and

(2) κmax
e /κe ≤ γ.

The next theorem, whose proof appears in Sec-
tion IV, shows that there exists a γ-balanced weight
assignment for any γ ≥ 2. We say two hyperedges are
distinct if the vertex sets of these two hyperedges are
not the same.

Theorem 3. Suppose we are given a hypergraph with n
vertices and m hyperedges such that there are at most m̄
distinct hyperedges. Then for any integer γ ≥ 2, there is
an algorithm that runs in Õ(mm̄n4) time and finds a γ-
balanced weight assignment.

In fact, with a more careful analysis, we can prove
the statement of Theorem 3 is true for any real number
γ > 1. Together with Bolzano-Weierstrass theorem and
some standard analysis, we can prove the existance of
a balanced weight function even for γ = 1. We discuss
this in more detail in the full version of this paper.
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Given such a weight assignment, the theorem below,
whose proof appears in Section V, shows that sampling
with probabilities proportional to 1/κe gives a good
sparsifier:

Theorem 4. Let ε ∈ (0, 1] and let d be any integer constant.
Suppose wF is a γ-balanced weight assignment of H .
Consider a random subgraph Ĥ of H where each edge e ∈ E

is sampled with probability pe := min(1, 8(d+6)γ2 logn
0.38ε2κe

)
and is given weight 1/pe if sampled. Let ŵ be this weight
function on the sampled edges. Then with probability at least
1−O(n−d), for every cut C = (S, S̄),

∣∣ŵ(δĤ(S))− |δH(S)|∣∣ ≤ 2ε |δH(S)| .
Furthermore, the expected number of edges in Ĥ is
O(γ

3n logn
ε2 ).

Setting γ = 2, for any unweighted hypergraph
H = (V,E), by Theorem 3, there exists an algorithm
that finds a γ-balanced weight assignment. Thus by
Theorem 4, we can create a (1 ± ε)-approximate cut
sparsifier of H of size O(n logn

ε2 ) with high probability.
The corollary below gives a simple reduction from

the weighted case to the unweighted case.

Corollary 5. Given a weighted hypergraph H = (V,E,w),
suppose W is the ratio of the largest edge weight to the
smallest edge weight in H . Then for any ε ∈ (0, 1], there
exists an algorithm that constructs an (1± ε)-approximate
sparsifier of H with size O(n logn

ε2 ) in Õ(Wm2n4) time with
high probability.

Proof: Without loss of generality, assume that 1/ε
is an integer, and also that the weights w are between
3/ε and 3W/ε. For every edge e ∈ E, we add 
w(e)�
copies of e to a multiset E′. Since w(e) ≥ 3/ε, the
number of copies of e in E′ is (w(e) ± 1), which is
within the range (1± ε/3) ·w(e). Let Ĥ be a (1± ε/3)-
approximate cut sparsifier of H ′ = (V,E′) computed
using Theorems 3 and 4. Then the weight of a cut in Ĥ
is within a (1± ε/3)2 factor (which is within the range
(1 ± ε)) of its weight in H . In H ′, there are at most
Wm hyperedges and there are at most m hyperedges
are distinct with each other. By Theorem 3, the running
time is Õ(Wm2n4).

We prove Theorem 3 in Section IV and Theorem 4
in Section V. In Section VI, we speed up our algorithm
so that the running time is linear in m and eliminate
the dependance of W , and thus prove Theorem 1.

IV. FINDING A γ-BALANCED ASSIGNMENT

In this section, we prove Theorem 3, which shows
that given an unweighted hypergraph H = (V,E) with
n vertices and m hyperedges, and for any integer γ ≥
2, we can find a γ-balanced assignment in polynomial

time. Although we only consider the case when γ is
an integer for convenience, the argument can be easily
generalized to the case when γ is not an integer.

We find a γ-balanced assignment using an iterative
algorithm. We start with the uniform weight assign-
ment. In each step, say e is an unbalanced hyperedge
(i.e. e violates condition (2) of Definition 3) where f1
and f2 are the two edges in Fe that “witness” e being
unbalanced, i.e. f1 has positive weight and kf1 > γkf2 .
We move weight from f1 to f2. Informally (we will
prove this later), the strength of f1 can only decrease
and the strength of f2 can only increase as a result of
this weight transition. There are two possible events
that may happen if we keep moving weight from f1
to f2: either the strength of f1 finally moves within a
γ factor of f2; or we end up moving all the weight
of f1 to f2, but kf1 is still larger than γkf2 . In either
case, f1 and f2 are no longer a pair of “witnesses” to e
being unbalanced. We repeat this weight transfer until
no unbalanced hyperedge remains.

Before we formally describe the algorithm, we first
prove a lemma that shows how edge strengths in a
graph change when we change the weight of an edge.

Lemma 6. Let G = (V,E,w) be a weighted graph, and let
G′ = (V,E,w′) be the weighted graph obtained from G by
increasing the weight of some edge f by δ. For any edge
f ′, denote by kf ′ and k′f ′ the strengths of f ′ in G and G′

respectively. Then for any edge f ′,
1) kf ′ ≤ k′f ′ ≤ kf ′ + δ
2) If k′f ′ > kf ′ , then kf ′ ≥ kf and k′f ′ ≤ k′f

Proof: Let f ′ be an edge, and let G[Xf ′ ] be the
induced subgraph of G that contains f ′ and has mini-
mum cut size kf ′ . Since we only increase the weight of
an edge f , the minimum cut size of G′[Xf ′ ] is at least
kf ′ , which means kf ′ ≤ k′f ′ . On the other hand, since
the weight of f is increased by δ, the minimum cut
size of any induced subgraph is increased by at most
δ. So k′f ′ ≤ kf ′ + δ.

Next, we prove the second part of the lemma. Let
f ′ be an edge, and suppose k′f ′ > kf ′ . Let G′[X ′

f ′ ] be
the induced subgraph of G′ that contains f ′ and has
minimum cut size k′f ′ . Since k′f ′ > kf ′ , the minimum
cut size of G[X ′

f ′ ] is strictly less than k′f ′ , which means
f is a part of some minimum cut of G[X ′

f ′ ]. In partic-
ular, this implies that f is in X ′

f ′ , so k′f is at least the
minimum cut size of G′[X ′

f ′ ], which is k′f ′ .
On the other hand, let G[Xf ] be the induced sub-

graph of G that contains f and has minimum cut size
kf . Consider the subgraph G[X ′

f ′ ∪Xf ]. Let C = (S, S̄)
be a minimum cut of this induced subgraph, and let
c be the size of C. Since this subgraph contains f ′,
by definition of strength, c is at most kf ′ . Note that
X ′

f ′ and Xf have nonempty intersection (they both
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contain the edge f ). Therefore any cut of X ′
f ′ ∪ Xf

must either cut through Xf , or cut through X ′
f ′ but

not Xf . In the case that C cuts through X ′
f ′ but not

Xf , C does not cut through f , so it has size at most
c in G′[X ′

f ′ ] (since the weight of all edges crossing C
stays the same). This implies that the minimum cut of
G′[X ′

f ′ ] is at most c, which means that k′f ′ ≤ c ≤ kf ′ ,
contradicting our assumption. So it must be the case
that C cuts through the vertex set Xf , which means c is
at least the minimum cut size of G[Xf ], and therefore
kf ≤ c ≤ kf ′ .

Our algorithm will maintain the invariant that all
weights in the current weight assignment graph are
integer multiples of some fixed δ > 0, and the magni-
tude of each weight update will be exactly δ. In such
a graph, Lemma 6 immediately implies that changing
(increasing or decreasing) the weight of some edge f
by δ can only change the strength of an edge f ′ if f
and f ′ have the same strength both before and after
the change.

A. The Algorithm
Now we describe the algorithm to find a γ-balanced

assignment. Let δ = 1
n2 . First we assign the initial

weights winit : F → R≥0 with the following constraint:
the weight of each edge in G is an integer multiple
of δ and is at least 2δ. We can always do so because
each hyperedge in H has weight 1, which is an integer
multiple of δ, and the number of edges in the clique
associated with a hyperedge is at most

(
n
2

)
, which

is less than 1
2δ . These initial weights give us a set

of initial edge strengths kinitf of the weighted graph
Ginit = (V, F,winit). Define K0 := minf∈F kinitf , and
define � to be the smallest integer such that K0 · γ� is
larger than maxf∈F kinitf . For each integer 0 ≤ i ≤ �,
define Ki = K0 · γi. Note that since the weights of all
edges are integer multiples of δ, the strength of each
edge is also an integer multiple of δ, which means
K0 is an integer multiple of δ. Since γ is an integer,
all Ki is also integer multiples of δ. We partition the
interval I = [K0,K�] into subintervals I0, I1, I2, . . . , I�,
where Ij := (Ki−1,Ki] for i > 0, and I0 = {K0}.
Note that maxf∈F kinitf is at most the total weight
of the edges and K0 is at least 2δ, so � is at most
logγ(n

2m) = O(logm). We fix this partition for the rest
of this section.

We use this partition I0, I1, I2, . . . , I� to determine
how to iteratively modify these weights. Given a real
number x ∈ I , we define ind(x) to be the integer j such
that x ∈ Ij . Given a weight function wF : F → R≥0 and
the corresponding edge strengths k : F → R≥0, we say
that a hyperedge e ∈ E is bad in G = (V, F,wF ) if there
exist some f, f ′ ∈ Fe such that wF (f ′) > 0 and kf <

Kind(kf′ )−1. It is clear that if a hyperedge is not bad,
then it is γ-balanced. We note that in general, as we
update the weights, kf and kf ′ might not be contained
in I (so ind(k′f ) might not be defined), but as it will
turn out that we will maintain the invariant that all the
edge strengths are always contained in I . We expand
this definition to ind(e) := ind(maxf∈F+

e
kf ). Note that

a hyperedge e is bad if and only if κe < Kind(e)−1.
We run the following algorithm: while there exist

bad hyperedges, we find a bad hyperedge e with the
maximum ind(e). Let f, f ′ ∈ Fe be a pair that such
wF (f ′) > 0 and kf < Kind(kf′ )−1. We move δ weight
from f ′ to f .

Algorithm 1: An algorithm that eliminates all
bad hyperedges

1 w = winit;
2 while there exists some bad hyperedge do
3 Let e be the one with maximum ind(e);
4 Let fmin := argminf∈Fe kf and

fmax := argmaxf∈F+
e
kf ;

5 Let kmin and kmax to be the strengths of fmin

and fmax, respectively;
6 Increase w(fmin) by δ and decrease w(fmax)

by δ;
7 end
8 Return w;

Note that throughout the execution of the algorithm,
the weight of each edge is an integer multiple of δ, so
the strength of each edge throughout the running of
the algorithm is also an integer multiple of δ.

The next two claims highlight important invariants
maintained by our algorithm, and help establish both
the correctness and efficiency of the algorithm. The
proof of the following claims is deferred to the full
version of this paper.

Claim 3. Let i equal the value of ind(e) at some iteration
of the while loop. For any edge f whose strength increased
as a result of transferring the weights (Line 6), ind(kf ) < i
after executing the transfer of weights. Also, no edge f has
strength less than K0 after executing the transfer of weights.

Claim 3 essentially proves that the interval I =
[K0,K�] (which was defined using the initial graph
Ginit) is the correct range of strengths to focus on.
Algorithm 1 gives a γ-balanced assignment if it ter-
minates since there would be no bad hyperedges.
Therefore, to prove Theorem 3, it is sufficient to prove
that the running time of Algorithm 1 is Õ(mm̄n4). We
call the tth iteration of the while loop as iteration t.
The following claim is another important invariant of
Algorithm 1.
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Claim 4. For any integer i, we define iteration ti as the
earliest iteration that the bad hyperedge e in the while loop
has ind(e) ≤ i. Then after iteration ti, the total weight of
edges that have strength larger than Ki−1 is non-increasing.

Using Claim 4, we can prove the following upper
bound of the number of iterations in the algorithm.

Claim 5. Algorithm 1 iterates in the while loop Õ(mn2)
times.

By Claim 3 and Claim 5, Algorithm 1 correctly
outputs a γ-balanced weight assignment within a poly-
nomial number of iterations.

Proof of Theorem 3: The multi-graph G contains
O(mn2) edges, so computing the initial weight assign-
ment takes O(mn2) time.

In each iteration of the while loop, we need to
compute the strength of all edges in G and find the
bad hyperedges with maximum index. Note that if
two edges share the same endpoints, their strengths
are the same, so to compute the strength of the edges,
we only need to compute the strength on a weighted
complete graph Ḡ where for each pair of vertices (u, v),
the weight of edge (u, v) is the sum of weights of edges
whose endpoints are u and v in G. By Lemma 4, we
need Õ(n3) time to compute the strength of all edges in
Ḡ since there are

(
n
2

)
edges in Ḡ. Updating the weight

of edges in Ḡ only takes O(1) time.
Once the strengths of all edges in Ḡ has been com-

puted, it takes O(mn2) time to check for each hyper-
edge if it is bad or not. However, if there are at most
m̄ distinct hyperedges, we can do it in O(m̄n2) time in
the following way: we group the hyperedges with the
same vertex sets. For each group, we store the total
weight in each edge slot, together with the identity
of the hyperedges which have positive weight in each
edge slot. To find a bad hyperedge with the maximum
index in one group, we only need to consider the
edge slot that has the maximum strength with positive
weight, and check if the hyperedge that has weight in
this slot is bad. In each iteration, it takes O(m̄n2) time
to find the maximum strength positive weight edge
slot in each group and takes constant time to update
the information in each edge slot.

Thus overall, each iteration takes Õ(m̄n2 + n3) =
Õ(m̄n2) time. So by Claim 5, Algorithm 1 runs in
Õ(mm̄n4) time.

V. CONSTRUCTING A CUT SPARSIFIER FROM A
γ-BALANCED ASSIGMENT

In this section, we prove Theorem 4, which shows
that given a γ-balanced assigment wF , we can con-
struct a (1±ε)-approximate cut sparsifier that contains
O(γ

3n logn
ε2 ) edges.

Let ρ = 8(d+6)γ2 logn
0.38ε2 , we sample each hyperedge e

in H with probability pe = min{1, ρ
κe
}. If an edge e is

sampled, it is assigned weight ŵe = 1
pe

in Ĥ . We first
show the expected number of edges in the sparsifier
Ĥ is small.

Claim 6. The expected number of edges in the sparsifier Ĥ

is O(γ
3n logn

ε2 ).

Proof: The expected number of edges in the spar-
sifier is

∑
e∈E

pe ≤ ρ
∑
e∈E

1

κe
= ρ

∑
e∈E

∑
f∈Fe

wF (f)

κe

= ρ
∑
e∈E

∑
f∈Fe

wF (f)

kf

kf
κe

≤ ργ
∑
e∈E

∑
f∈Fe

wF (f)

kf

= ργ
∑
f∈F

wF (f)

kf
≤ ργ(n− 1).

For the second-to-last inequality, we used that for
every f ∈ Fe such that wF (f) > 0, kf ≤ κmax

e ≤ γκe

by Definition 3. The last inequality is due to Claim 2,
which asserts that

∑
f∈F

wF (f)
kf

≤ n− 1. By the defini-
tion of ρ, this is O(γ3n log n/ε2).

In the rest of this section, we prove that Ĥ is indeed
a good sparsifier. This proof is inspired by the frame-
work of [7], who partition the edges into classes based
on strength, and analyze the performance of each class
separately. Before we start, as an additional piece of
notation, given any subset of hyperedges E′ ⊆ E, we
define Ê′ to be the subset of edges of E′ that were
sampled in the sparsifier.

We first group the edges by their strengths. For each
integer i, let F≥i := {f ∈ F+ : kf ≥ ρ · 2i} be the
multiset of positive-weight edges with strength at least
ρ · 2i. Let E≥i := {e ∈ E : κe ≥ ρ · 2i} be the set
of hyperedges with minimum strength at least ρ · 2i,
and let Emax

≥i := {e ∈ E : κmax
e ≥ ρ · 2i} be the set of

hyperedges with maximum strength at least ρ ·2i. Note
that E≥i ⊆ Emax

≥i .
Let Ei := E≥i \E≥i+1. We will prove an error bound

for each Ei separately. To prove this error bound, we
define and analyze some slightly modified graphs. We
first define some modified weights wF

i : F≥i → R
+

and wE
i : E≥i → R

+ in the following way: for an
edge f ∈ F such that ρ · 2j ≤ kf < ρ · 2j+1, wF

i (f) :=
wF (f)·2i−j , and for a hyperedge e ∈ Ej , wE

i (e) := 2i−j .
Note that for a hyperedge e ∈ Ei, the weight of e
in wE

i remains 1. Finally, define G≥i = (V, F≥i, w
F
i ),

H≥i = (V,E≥i, w
E
i ), and Hmax

≥i = (V,Emax
≥i , wE

i ) to
be the weighted graphs induced by these modified
weights.

The following lemma proves that for any i and any
cut C, the weight of the edges in Êi which cross C is
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close to its expectation.

Lemma 7. Fix some integer i ≥ 0. With probability at least
1− 4n−(d+1), for all cuts C = (S, S̄) of V , we have that

∣∣∣ŵ(δÊi
(S))− |δEi(S)|

∣∣∣ ≤ ε

γ
· wE

i (δEmax
≥i

(S)).

Note that this lemma is not claiming that Êi is a
good sparsifier of Ei - the error term ε

γw
E
i (δEmax

≥i
(S))

can be much larger than ε |δEi(S)|. We defer the proof
of Lemma 7 to the full version of the paper. We next
show how Lemma 7 completes the proof of Theorem 4.

Proof of Theorem 4: In order to obtain concentration
over all edges, we wish to take a union bound over
every value of i such that Ei is not empty. By Claim 1,
there are at most n− 1 such values of i.

By Lemma 7, taking a union bound over these values
of i, we get that with probability at least 1− 4n−d, for
all cuts C = (S, S̄) of V and for all i,∣∣∣ŵ(δÊi

(S))− |δEi
(S)|

∣∣∣ ≤ ε

γ
· wE

i (δEmax
≥i

(S))

≤ ε

γ
·

∑
j≥i−log γ

2i−j
∣∣δEj

(S)
∣∣

where the last inequality is because Emax
≥i ⊆ E≥i−log γ

(since κmax
e /κe ≤ γ). Note that for all hyperedges e that

do not belong to any Ei, κe ≤ ρ, so pe = 1. That is, the
contribution of these hyperedges to the error is 0. We
sum the errors over edges in Ei for i ≥ 0 to obtain that
the total error is at most∑

i≥0

∣∣∣ŵ(δÊi
(S))− |δEi(S)|

∣∣∣

≤ ε

γ

∑
i≥0

∑
j≥i−log γ

2i−j
∣∣δEj (S)

∣∣

=
ε

γ

∑
j≥0

⎛
⎝∣∣δEj

(S)
∣∣ ·

∑
i≤j+log γ

2i−j

⎞
⎠

≤2ε
∑
j≥0

∣∣δEj
(S)

∣∣ ,

which is at most 2ε |δE(S)|. Here the last inequality
is due to

∑
i≤j+log γ 2

i−j ≤ ∑∞
i=−�log γ� 2

−i ≤ 2γ.
Therefore with probability at least 1 − 4n−d, for all
cuts C = (S, S̄), the size of C in Ĥ is a (1 ± 2ε)-
approximation of the size in H .

VI. SPEEDING UP THE SPARSIFIER CONSTRUCTION

In this section, we complete the proof of Theorem 1
by speeding up our algorithm so that its running time
reduces to Õ(mn + n10/ε7) from Õ(Wm2n4) (Corol-
lary 5). Note that even for unweighted case (W = 1),
this is a significant speed-up in dense hypergraphs.

At a high-level, the idea underlying the speed up is
to reduce the general weighted problem to one where

both m and W are polynomially bounded in n. The
first task is easy to accomplish using previously known
results while the second task requires some additional
ideas.

Our starting point for reducing the number of edges
is the following result by Chekuri and Xu [11] which
shows that the number of edges m can be reduced to
a polynomial in n in near-linear time:

Lemma 8 (Corollary 6.3 of [11]). A (1± ε)-approximate
cut sparsifier of a weighted hypergraph H with O(n3/ε2)
edges can be found in O(mn log2 n logm) time with high
probability.

After running this algorithm, we obtain a (1 ± ε)-
approximate cut sparsifier of H with only O(n3/ε2)
edges.We then run the algorithm by Kogan and
Krauthgamer [22] and get a cut-sparsifier with
Õ(n2/ε2) edges.

Lemma 9 ([22]). A (1± ε)-approximate cut sparsifier of a
weighted hypergraph H with Õ(n2/ε2) edges can be found
in O(mn2 + n3) time with high probability.

Since the number of hyperedges in the sparsifier
given by Lemma 8 is O(n3/ε2), we only need Õ(n5/ε2)
time to run the algorithm in Lemma 9. Let H̄ =
(V, Ē, w̄) be the sparsifier.

It is worth noting that although the number of
edges in H̄ is polynomial, the ratio of maximum and
minimum weight is still unbounded. In fact, even if H
is unweighted, the ratio of maximum and minimum
weight of H̄ still could be as large as 2n. To solve
this problem, we group the edges by their weights.
Let α = 10n2

ε3 and Ē = E1 ∪ E2 ∪ . . . where Ei = {e ∈
Ē : w̄(e) ∈ [w0 ·αi−1, w0 ·αi)} where w0 is the minimum
weight in H̄ .

Let Hi = (V,Ei, w̄) and mi = |Ei|. By Corollary 5, we
only need Õ(αm2

in
4) time to build a near-linear size (in

n) sparsifier for each of Hi. However, if we combine
these sparsifiers together, the size is no longer near-
linear.

Note that α ≥ 10m̄
ε where m̄ is the number of edges

in H̄ . Suppose a cut separates an edge e in Hi, the sum
of weights of all edges in ∪j≤i−2Ej is less than ε/10
fraction of the size of the cut. Therefore, for any i, we
can ignore the performance of the sparsifier of Hj for
j ≤ i− 2 within the connected components of Hi.

Define Eodd = E1∪E3∪. . ., and Eeven = E2∪E4∪. . ..
We will independently construct sparsifiers of Hodd =
(V,Eodd, w) and Heven = (V,Eeven, w) and merge them
into a single sparsifier for H̄ .

Lemma 10. For any 0 < ε < 1, there is an algorithm that
constructs (1±ε)-approximate cut sparsifiers for both Heven

and Hodd with size O(n logn
ε2 ) in Õ(n10/ε7) time with high
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probability.

Without loss of generality, we focus on Heven. The
algorithm builds sparsifiers for each of H2i one by
one from higher i to lower i. Let E>2i = ∪j>iE2j

and H>2i = (V,E>2i, w̄). For each i, we first find all
connected components of H>2i. Let V C

2i be a vertex
set such that each connected component (including
isolated vertices) of H>2i is a “supervertex” in V C

2i .
Let EC

2i be the hyperedge set such that for each edge
e ∈ E2i, EC

2i contains the hyperedge e′ ⊆ V C
i with

weight w̄(e′) = w̄(e) that contains all vertices in V C
i

such that e contains a vertex in the corresponding
connected component. Let HC

2i = (V C
2i , E

C
2i, w̄).

For each connected component of HC
2i, we build a

(1± ε
2 )-approximate cut sparsifier by the algorithm in

Corollary 5. We take the union of these sparsifiers and
get an ε

2 -sparsifier ĤC
2i = (V C

2i , Ê
C
2i, ŵ) of HC

2i. Let Ĥ2i =

(V, Ê2i, ŵ) be the graph “restored” from ĤC
2i, i.e. for

each edge e in E2i, e is in Ê2i if the corresponding
edge e′ is in ĤC

2i. It also gets the same weight as e′ if
it is included in Ĥ2i. For any cut (S, S̄) of V2i which
does not cut any component in H>2i, the cut size in
Ĥ2i and ĤC

2i are the same, and the cut size in H2i and
HC

2i are the same. In particular, this implies that Ĥ2i is
a good sparsifier of H2i with respect to all cuts that do
not cut any component in H>2i.

We output Ĥeven = ∪iĤ2i as a sparsifier of Heven.
By Corollary 5, the running time is

∑
i

Õ(αm2
in

4)

=Õ((
∑
i

mi)
2αn4) = Õ(αm̄2n4) = Õ(n10/ε7).

We now prove Ĥeven is indeed a good cut sparsifier
of Heven. From this point on, we assume the algorithm
in Corollary 5 is always successful throughout the
algorithm (which happens with high probability). We
first prove that Ĥeven is indeed a (1 ± ε)-approximate
cut sparsifier of Heven.

Claim 7. Ĥeven is a (1 ± ε)-approximate cut sparsifier of
Heven.

Proof: We first prove that for any i, ŵ(Ê2i) ≤
3w̄(E2i). Equivalently, we prove that ŵ(ÊC

2i) ≤ 3w̄(EC
2i).

Let (S′, S̄′) be some cut of ĤC
2i of weight at least

ŵ(ÊC
2i)/2. Such a cut must exist because the expected

weight of a random cut of a graph/hypergraph is
at least half of the total weight of the graph. Since
ĤC

2i is a (1 ± ε
2 )-approximate cut sparsifier of HC

2i,
ŵ(δĤC

2i
(S′)) ≤ (1 + ε

2 ) · w̄(δHC
2i
(S′)) ≤ 1.5 · w̄(EC

2i) since
ε < 1. Therefore ŵ(ÊC

2i)/2 ≤ 1.5 · w̄(EC
2i), concluding

the proof.

Now fix any cut C = (S, S̄) of V . Let i be the
largest integer such that δE2i

(S) 	= ∅. Since α ≥ 10m̄
ε ,

w̄(δE2i(S)) is at least (1− ε
10 ) fraction of w̄(δEeven(S)).

Since C does not cut through any component
of H>2i, ŵ(δĤ2i

(S)) is within (1 ± ε
2 ) fraction of

ŵ(δH2i
(S)), which means

ŵ(δĤeven
(S)) ≥ ŵ(δĤ2i

(S)) ≥ (1− 0.5ε)w̄(δH2i
(S))

≥(1− ε)w̄(δH̄even
(S)).

On the other hand, since α ≥ 10m̄
ε and ŵ(Ê2j) ≤

3w̄(E2j) for any j, we have ŵ(∪j<iÊ2j) < 0.3ε ·
w̄(δHeven(S)). which means

ŵ(δĤeven
(S)) ≤ ŵ(δĤ2i

(S)) + 0.3ε · w̄(δEeven(S))

≤ (1 + 0.5ε)w̄(δH2i(S)) + 0.3ε · w̄(δEeven(S))

≤ (1 + ε)w̄(δH̄even
(S)).

The next claim shows that Ĥeven has near linear size.
The proof of this claim is deferred to the full version
of this paper.

Claim 8. The size of Ĥeven is O(n logn
ε2 ).

Lemma 10 immediately follows from Claim 7 and
Claim 8. Now we are ready to prove Theorem 1.

Proof of Theorem 1: We first apply the algorithm
in Lemma 8 and Lemma 9 to build H̄ , which runs in
time Õ(mn+ n5/ε2). Then we build the graphs Heven

and Hodd, find (1± ε)-approximate cut sparsifiers with
size O(n logn

ε2 ) for each of them and take the union of
these two sparsifiers to get a (1 ± ε)-approximate cut
sparsifier Ĥ of H̄ . By Lemma 10, this runs in time
Õ(n10/ε7). So we get a (1 ± O(ε))-approximate cut
sparsifier Ĥ of H with size O(n logn

ε2 ), in Õ(mn+n10/ε7)
time.
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