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Abstract. Wildlife are faced with numerous threats to survival, none more pressing than
that of climate change. Understanding how species will respond behaviorally, physiologically,
and demographically to a changing climate is a cornerstone of many contemporary ecological
studies, especially for organisms, such as amphibians, whose persistence is closely tied to abi-
otic conditions. Activity is a useful parameter for understanding the effects of climate change
because activity is directly linked to fitness as it dictates foraging times, energy budgets, and
mating opportunities. However, activity can be challenging to measure directly, especially for
secretive organisms like plethodontid salamanders, which only become surface active when
conditions are cool and moist because of their anatomical and physiological restrictions. We
estimated abiotic predictors of surface activity for the seven species of the Plethodon jordani
complex. Five independent data sets collected from 2004 to 2017 were used to determine the
parameters driving salamander surface activity in the present day, which were then used to pre-
dict potential activity changes over the next 80 yrs. Average active seasonal temperature and
vapor pressure deficit were the strongest predictors of salamander surface activity and, without
physiological or behavioral modifications, salamanders were predicted to exhibit a higher
probability of surface activity during peak active season under future climate conditions. Tem-
peratures during the active season likely do not exceed salamander thermal maxima to cause
activity suppression and, until physiological limits are reached, future conditions may continue
to increase activity. Our model is the first comprehensive field-based study to assess current
and future surface activity probability. Our study provides insights into how a key behavior
driving fitness may be affected by climate change.

Key words: activity; Appalachian; climate change; ectotherm; global circulation model; hierarchical
model; multivariate adaptive constructed analogs; plethodontid salamander.

Storfer 2003). For example, freshwater fish experience

INTRODUCTION .
reduced reproductive output as a result of warmer water

Organisms are facing unprecedented challenges as a
result of climate change, and predicting behavioral,
demographic, and physiological responses dominates cur-
rent research. Broadly, climate change is expected to
increase temperatures and alter periodicity in precipita-
tion (IPCC 2014). Ectothermic organisms, whose physiol-
ogy and behavior are closely linked to abiotic conditions,
are disproportionally impacted by the effects of climate
change (Blaustein et al. 2010, Li et al. 2013). Contempo-
rary climate change has already negatively affected many
ectotherms (Alford and Richards 1999, Collins and
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temperatures (Ficke et al. 2007, Holt and Jergensen
2015), and several ectotherms have seen reductions in
body size and depressed physiological performance corre-
lated with warming temperatures (Reading 2007, Huey
et al. 2009, Sheridan and Bickford 2011, Ohlberger 2013).
To estimate wildlife responses to future climate change,
we can incorporate the known behavioral and physiologi-
cal responses of an organism at existing conditions into
future climate predictions. Consideration of such bio-
physical processes has indicated that some organisms
may exhibit resilience to change through physiological
acclimation and behavioral modification (Kearney et al.
2009, Seebacher et al. 2015, Riddell et al. 2018). Linking
relevant species-specific parameters such as physiological
traits, behavior, and dispersal ability to climate change
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predictions may reveal novel relationships otherwise over-
looked. The inclusion of more biological realism into our
predictions of climate sensitivity is necessary to estimate
the likelihood of persistence and mitigate the impacts of
climate change on species.

Determining the distribution and abundance of organ-
isms in relation to environmental variables is a funda-
mental ecological goal, and developing models to best
estimate such patterns is essential for informing conser-
vation and management strategies that account for cli-
mate change. Hierarchical binomial mixture modeling
has become a staple in ecological research because it can
accommodate and partition underlying ecological pat-
terns (i.e., abundance or occupancy) and observational
processes that may bias sampling (Royle et al. 2007,
Kery and Schaub 2012). Central to many observation
processes is “detectability,” or the idea that we are unable
to perfectly observe all individuals of the focal organism
during every survey event. Often, failure to observe a
species or individual at a given location does not neces-
sarily indicate its absence, but instead may reflect factors
such as observer proximity to the organism, timing
(daily or seasonal), general species biology (calling fre-
quency, phenology, etc.), or the environmental condi-
tions driving surface availability.

In addition to addressing bias in estimating other state
parameters (e.g., abundance, occurrence, survival), the
“detection” process can be biologically relevant for species
such as plethodontid salamanders because of its direct
link to surface activity, which affects energy intake and
overall fitness. Plethodontid salamanders are lungless and
rely on highly permeable and moist skin for gas exchange
(Feder 1983). Consequently, plethodontids generally
require cool and moist conditions to avoid rapid water
loss (Feder 1983). Individuals spend significant amounts
of time under cover objects or below ground to reduce
evaporative water loss (Jaeger 1980, O’Donnell and Seml-
itsch 2015), and when salamanders do become surface
active, it is often for short periods during cool and moist
times (McEntire and Maerz 2019). In such a system, the
detection component of a binomial mixture model is bet-
ter capturing surface availability (i.e., the likelihood sala-
manders will be surface active) instead of the observer’s
ability to detect an individual. Only when surface active
do plethodontids forage, grow, and search for mates.
Therefore, surface availability is a reasonable proxy of
surface activity, which represents energy intake and sub-
sequently, fitness (Gifford and Kozak 2012, Riddell and
Sears 2015, Peterman and Gade 2017, McEntire and
Maerz 2019). Evaluating surface activity under predicted
climatic change provides a mechanistical understanding
of how future climate may affect plethodontid perfor-
mance and population persistence.

Direct and reliable observations of surface activity in
the field are challenging to measure. Previous work in
other systems has modeled surface activity indirectly
through known physiological limits and/or energy bud-
gets at given abiotic conditions. For example, Buckley
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(2008) assumed eastern fence lizards (Sceloporus undula-
tus) became active once a minimum temperature was
reached, a temperature that was measured in a labora-
tory. In plethodontids, activity time has been modeled as
a function of resistance to water loss at a given tempera-
ture and vapor pressure deficit in the atmosphere (Rid-
dell and Sears 2015). Instead of wusing indirect
physiological models to infer activity, it may be possible
to use surface availability estimates as a more direct sur-
rogate for surface activity, especially because terrestrial
plethodontids are only detectable when surface active,
and have inherently low detection levels consistent with
their restricted surface activity (Bailey et al. 2004).

The Appalachian region is a global hotspot of sala-
mander species richness and abundance, and members
of the Plethodontidae family account for much of the
diversity within this region. Given their high abundance
and biomass, combined with their role as vital members
of the terrestrial food web and contributions to forest
nutrient cycling (Davic and Welsh 2004, Best and Welsh
2014, Hocking and Babbitt 2014), and predicted declines
with climate change (Milanovich et al. 2010, Sutton
et al. 2015), protection and conservation are warranted.
Our goal was to determine common weather parameters
driving salamander surface activity in the present at a
broad scale to inform potential changes in surface activ-
ity probability in the future. We used the Plethodon jor-
dani species complex as a focal group representative of
other Appalachian terrestrial plethodontid species to
estimate surface activity probabilities. Originally thought
to all be subspecies of P. jordani, Highton and Peabody
(2000) used allozyme variation to described seven dis-
tinct high-elevation isolated species across the Southern
Applachian Mountains, each with geographically dis-
tinct color variation (Fig. 1). As high-elevation special-
ists, species of the complex share similar climatic niches
and exhibit niche conservatism, providing a unique
opportunity to apply data from a subset of species to all
species in the complex (Wiens et al. 2010, Riddell et al.
2018, Farallo et al. 2020). Members of the P. jordani
complex are considered “sky island” species, whereby
populations are confined to isolated, but adjacent,
mountain peaks (McCormack et al. 2008, Gifford and
Kozak 2012). Sky island species are often vulnerable to
the effects of climate change because of their genetic iso-
lation, inability to disperse from unsuitable conditions,
and narrow physiological tolerances (Kozak and Wiens
2010, Gifford and Kozak 2012, Wiens et al. 2019),
underscoring the need for determining responses to cli-
mate change as a vital step towards conservation action.

METHODS

Surface activity probability modeling

Data sets description.— Using five independent data sets,
we developed a binomial mixture model to estimate
abundance while accounting for surface availability



November 2020

FUTURE SALAMANDER SURFACE ACTIVITY

Article e03154; page 3

[] Plethodon amplus
[ Prethodon shermani
[ Prlethodon montanus
[ Plethodon metcalfi
[ Plethodon meridianus:
[ Plethodon jordani
[ Plethodon cheoah

FiG. 1.

The geographic ranges for each species of the Plethodon jordani complex (from www.iucnredlist.org) with the data sets

used to develop the hierarchical model symbolized. Inset map shows every sampling location from each data set. Triangles are data
set A, circles are data set B, X’s are data set C, squares are data set D, and stars are data set E (in reference to data sets outlined in

Table 1).

probability (Royle 2004). Each data set was collected
using area-constrained repeated count surveys to esti-
mate abundance across five distinct areas of the South-
ern Appalachian Mountains (Fig. 1). Surveys occurred
between 2004 and 2017, with one data set collected over
multiple years and the four others consisting of a single
season of observations. The multiyear data set (data set
E) used a robust-design survey method (Pollock 1982)
with three sampling occasions per season in spring, sum-
mer, and fall of 2016 and 2017. Our count data included
three of the seven species in the Plethodon jordani com-
plex: P. shermani, P. metcalfi, and P. jordani. The data
sets were initially collected for other purposes and were
adapted for the cross-species assessment in the present
study. The specific details of data collection for each
data set can be found in Appendix S1: Section S1. Sam-
ple plot areas ranged from 9 to 400 m? between data sets
with 14-195 individual sampling locations in each data
set (Table 1).

Surface activity and abundance covariates.— Because of a
lack of common survey-level environmental covariates
measured across all data sets (see Appendix Sl:
Table S1), and to ensure consistency between data sets,
we downloaded daily weather covariates from Daymet
(daymet.ornl.gov) using the Daymetr package (Hufkens
et al. 2018) in R (version 3.5.1, R Development Core
Team 2013). The Daymet data set interpolates local
weather station observations to produce a 1 x 1 km
gridded weather estimate. To validate that Daymet data
were a reasonable surrogate for local, field-collected
weather data, we downloaded temperature data from a
series of weather stations at Coweeta Hydrologic Lab
(CHL), where data set E was collected, and compared it
to the Daymet data at CHL from the years 2004-2017.
Coweeta Hydrological Lab is within close proximity to
all other data sets (Fig. 1), serving as a proxy for the
other data sets to validate the Daymet data used in our
models.


http://daymet.ornl.gov
http://www.iucnredlist.org
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TaBLE 1.  Summary of the individual data sets used to develop the global surface activity model.

Sampling Plot Number
Data set Location years area (m?)  of plots  Elevational range (m)  Type of plot Plethodon species
A 35.04, —-83.19 2004 400 14 718-1,248 Transect Plethodon metcalfi
B 35.18, -83.59 2012 19.6 136 1,228-1,571 Point Plethodon shermanit
C 35.15,-83.55 2017 9 176 953-1,582 Point Plethodon shermanit
D 35.61,-83.43 2012 100 195 412-2,021 Transect Plethodon jordani
E 35.06, —83.44  2016-2017 25 72 739-1,422 Point Plethodon shermanit

T Plethodon shermani is known to hybridize with Plethodon teyahalee at intermediate elevations. Counts are inclusive of hybrids.

From Daymet, we extracted daily precipitation (mm),
maximum and minimum air temperature (°C), and water
vapor pressure (Pa) to point locations of each sampling
site in the five data sets (Fig. 1). We averaged the mini-
mum and maximum air temperature and used rolling
window analyses to assess the 1-, 2-, and 3-d mean tem-
perature, total number of days since a rainfall event (i.e.,
dry days), and 1-, 2-, and 3-d total precipitation. We
then averaged the 1- and 2-day rolling windows for all
weather variables to obtain a corrected 1-d rolling win-
dow because all sampling occurred nocturnally, and thus
overlapped two calendar days.

For the abundance submodel, we used site-level topo-
graphic variables including elevation, slope, topographic
position index (TPI), aspect, and stream distance. Vari-
ables were derived from a 9-m> resolution digital eleva-
tion model obtained from EarthExplorer ASTER
Global DEM. TPI was calculated as the slope position
relative to the surrounding 90 m and aspect was trans-
formed into linear measures of eastness (sine of aspect)
and northness (cosine of aspect). Streams were delin-
eated using a flow accumulation layer with a 450-pixel
cell threshold, resulting in a drainage area greater than
or equal to 0.405 ha (Gade and Peterman 2019). Stream
distance was then calculated using the Euclidean Dis-
tance tool in ESRI ArcGIS v.10.2 (Redlands, CA).

Model description.—We developed a binomial mixture
model for each of the five individual data sets using the
same abundance and surface availability covariates in
each model. The general expected abundance (A;) and
surface activity (p;) as well as the realized (latent) abun-
dance (N;) equations are shown below, with 7 indicating
data set, j indicating survey plot, and k indicating sam-
pling occasion. The bracketed ellipses indicate slope
terms for the multiple covariates used in the model:

Nj; ~Poisson();) 0

log(A;) =a0; +al; x x1;4+a2; x x2; +[...Jlog(plotsize) + &;
@

IOgit(pijk) = [30, + Bl, X X,jl‘ =+ [32, X X2,'jk + [ . ] (3)

Vijk [N~ Binomial(N,j,pUk). ()]

We assume that all salamander species are responding
to environmental and habitat covariates similarly, so the

data-set—level parameters defined above are modeled as
drawing from a common distribution. We included
hyperparameters to represent an additional hierarchical
level and define the global distributions that summarize
the data-set-level parameters.

)

o, ~dnorm(p,,6%)
P>V

B; ~ dnorm(py, Gé; ). (6)

We used normally distributed, weakly informative pri-
ors with a mean of zero and precision of 0.1 for all pri-
ors, global and data-set specific. To accommodate
overdispersion in counts, a plot-specific random effect
error term, €;, was included in each data set. An offset
term (log of the plot area) was also added to account for
differences in survey plot sizes between data sets (Eq. 2).
We constructed a global model that included all abun-
dance and activity covariates mentioned above and sub-
sequently removed any covariate where <75% of the
posterior distribution had the same sign as the mean
parameter estimate to create our final model. Tempera-
ture (minimum/maximum/average and rolling windows)
were correlated; thus we ran separate models including
one temperature covariate a time along with the other
activity covariates. We analyzed our models in a Baye-
sian hierarchal framework using the JAGS (v.4.3.0;
Plummer 2003) in R using the jagsUI (Kellner 2017) in
R. All covariates were standardized prior to analysis by
subtracting their mean and dividing by the standard
deviation. Posterior summaries of the final model were
based on 223,300 Markov chain Monte Carlo (MCMC)
iterations on four chains thinned at a rate of 10 follow-
ing an adaptation of 318,000 and burn-in of 210,000.
Model convergence was assessed using the Gelman—
Rubin statistic (Rhat < 1.1) and visual inspection of
MCMC chain mixing.

Future surface activity.—Using the estimates from the
binomial-mixture model described above, which were
informed by data from three species of the P. jordani
complex, we estimated future surface activity for the
seven species of the P. jordani complex. Species of the
complex are closely related and are geographic replace-
ments, as they all inhabit high elevations and share simi-
lar climate and physiological requirements (Weisrock
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and Larson 2006). We incorporated statistically down-
scaled daily future weather predictions from 10 global
circulation models (GCMs) using the multivariate adap-
tive constructed analogs (MACA) data set (Abatzoglou
and Brown 2012) into the global surface availability
model we developed above. The MACA method down-
scales GCMs from a coarse resolution (Appendix S1:
Table S2) to a 4-km spatial resolution for the years
2005-2099 at representative concentration pathway
(RCP) 4.5 and 8.5. RCP 4.5 represents a stabilized sce-
nario whereby moderate effort is needed to curb emis-
sions and RCP 8.5 represents a scenario where no action
is taken to mitigate emissions and greenhouse gas con-
centration levels increase substantially (Clarke et al.
2007, Riahi et al. 2007). Although 20 GCMs are avail-
able in the MACA data set, we selected 10 representative
models that (1) incorporated the greatest variation in
how the model was developed (using atmospheric chem-
istry, interactions with biogeochemical processes, etc.),
(2) were developed at the finest spatial resolution, and
(3) were either recommended by the MACA data set
developers and/or were evaluated as “highly credible”
from Rupp et al. (2013). Refer to Appendix S1: Table S2
for details on the selected GCMs.

We downloaded daily weather data from the MACA
data set to 1,012 unique point locations that spatially
encompassed the ranges of the seven P. jordani complex
species (Fig. 1). Range maps of the species complex were
obtained from the IUCN Redlist website.® Points were
uniformly placed 5 km apart to capture the variation in
daily weather variables across the range of the P. jordani
species complex within the distribution of each species.
Data were downloaded from 15 May to 15 August for
the years 2020-2099 to represent the peak salamander
active season. This time frame was also selected as it is
representative of the sampling dates of data sets A-D
(Appendix S1: Section S1). We used minimum and maxi-
mum temperature, minimum and maximum relative
humidity, and the total precipitation at both RCP 4.5
and 8.5. All data were downloaded using the ClimateR
package in R (Johnson 2019). Similar to the aforemen-
tioned methods, we averaged the minimum and maxi-
mum temperate and relative humidity and used rolling
window analyses to determine the number of dry days
and the 1-, 2-, and 3-d average temperature and total
precipitation. We averaged 1-d and 2-d rolling windows
for temperature and precipitation to obtain a corrected
1-d rolling average. Vapor pressure (VPA) was derived as
a function of the minimum daily temperature (7},,,) as
described in Peterman and Gade (2017) using the follow-
ing equation:

exp(vpa) =6.46740.0657 X Typ. (@)

All future-climate covariates were rescaled using the
mean and standard deviation of the current climate

8 www.iucnredlist.org
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variables that were used to fit the original hierarchical
model from the Daymet data set.

We estimated future surface activity probability at
each sample point for each day of the 2020-2099 active
season using 5,000 random posterior samples generated
based on our binomial mixture model for salamander
abundance and activity probability. We used the follow-
ing inverse logit equation to estimate activity:

1
T Ttexp(—1x (a0 +opl x xl;+oap2 xx2:+[..])
®)

P

We made daily surface activity probability predictions
at each of the 1,012 locations by averaging 5,000-poste-
rior samples for every day at each site. The daily activity
probability estimates at each location were subsequently
averaged together by species and year. The final data set
included a yearly mean (+SD) activity probability for
each of the seven species. To account for the physiologi-
cal limitations of salamanders, we assumed surface
activity was zero if the temperature on any day exceeded
25°C (Peterman and Gade 2017, Caruso and Rissler
2018). We also calculated the coefficient of variation by
dividing the mean surface activity by the standard devia-
tion for each species for each year. We then spatially pro-
jected the mean surface activity probability for the years
2020, 2050, and 2099 for all species by averaging the
activity probability estimates across the year at each
point and rasterizing each point to a 5-km resolution.

We assessed the changes in surface activity probability
for each species over time using mixed- effect models fit
with the brms package (Biirkner 2017). In all models,
surface activity probability was the response variable;
year, RCP, and year x RCP interaction were modeled as
predictor variables; and GCM was the random effect.
We used a Gaussian distribution with uninformative
Student-¢ priors (brms default), run for 3,000 iterations
on four chains after a burn-in phase of 1,000 and
thinned at a rate of 1. Model fit was assessed using the
Gelman-Rubin statistic (Rhat < 1.1). We also projected
the change of each weather variable using a mixed-effect
model with the weather covariate as the response; year,
RCP, and year x RCP interaction as predictor variables,
and GCM as the random effect.

REsuLTs

Global surface activity model

Across the five data sets, the average individual sur-
face activity probabilities ranged from 0.04 (£0.19) to
0.12 (£0.05). Global surface activity was positively
related to 1-d precipitation, 3-d mean temperature, and
water vapor pressure. Global surface activity was nega-
tively related to the number of dry days, 3-d precipita-
tion, and 1-d mean temperature (Fig. 2A). Global
abundance was related to elevation, stream distance, and


http://www.iucnredlist.org
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the interaction of elevation and stream distance (Fig. 2
B; Appendix S1: Table S3). The abundance covariates
had greater variation in magnitude and direction
between data sets relative to activity covariates, which
showed more consistency between data  sets
(Appendix S1: Fig. S1). Further, the Coweeta weather
station data was highly correlated with the Daymet data
for the same region from 2004 to 2017 (r = 0.98;
P < 0.005; Fig. 3).

Future surface activity probability

Future projections of surface activity probabilities
indicated that mean individual surface activity rates
increased with time for all seven species of the P. jordani
complex (Fig. 4). All species had similar increases in
activity probability over time, with P. metcalfi, P. am-
plus, and P. meridianus estimated to increase by 0.08%
per year (Credible Interval (CRI): +0.001) and P
cheoah, P. jordani, P. montanus, and P. shermani were
estimated to increase by 0.05% per year (CRI: +0.001)
(Fig. 5). There was no difference in surface activity
probability over time between the RCP 4.5 and 8.5 sce-
narios for all species (average p = 0.001, CRI: +0.001).
Across all species, the coefficient of variation (CV) in
surface activity probability increased over time
(Appendix S1: Fig. S2). Plethodon metcalfi, P. amplus,
and P cheoah had a similar increase in CV with
f=0.040 (CRI: 0.040, 0.050). Plethodon jordani,
P. meridianus, P. montanus, and P. shermani had similar
increases in CV over time with f = 0.05 (CRI: 0.04,
0.05). The CV for all species did not differ between RCP
4.5 and RCP 8.5 (p = 0.0001, CRI: £0.0001). There was
no significant interaction between year and RCP for any
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Mean estimates for (A) surface activity covariates and (B) abundance covariates from the global hierarchical model.
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Fic. 3. Mean temperature over time averaged from five

weather stations at Coweeta Hydrological Lab (CHL; triangles)
and downloaded from the Daymet database (circles) at the same
spatial locations of CHL. Data is averaged from the years
2004-2017. The grey shaded region represents the active season
time frame we used for future projections of surface activity.

species. Predicted activity probabilities from models run
with the 25°C physiological threshold forcing activity to
zero and models without the threshold were highly cor-
related (r = 0.97, P < 0.001).

Over the next 80 yr, the MACA data set showed no
significant trend in dry days over time (p = 0.09, CRI:
—0.17, 0.34) or between RCPs (p = -323.19, CRI:
—1,117.98, 466.63); 1-d precipitation over time
(B = 0.01, CRI: —0.01, 0.01) or between RCPs (f = 5.91,
CRI: -6.20, 18.15); or 3-d precipitation over time
(B = -0.001, CRI: -0.01, 0.01) or between RCPs
(B = 1448, CRI: —22.51, 52.33). There was a significant
increase of VPA over time (f = 3.25, CRI: 2.95, 3.55)
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Fic. 4. Average active season surface activity probability across the range of the seven species of the Plethodon jordani complex

for the years 2020, 2050, and 2099.

and RCP 4.5 was significantly lower than RCP 8.5
(p = —11,446.01, CRI: —12,407.23, —10,478.78). Both 1-
and 3-d temperature increased over time (f = 0.03, CRI:
0.02, 0.03 and p = 0.03, CRI: 0.02, 0.03, respectively)
and RCP 4.5 was significantly lower than RCP 8.5
(p = —81.3, CRI: —89.17, —73.40 and § = —-81.73, CRIL:
—90.05, —73. 29; Appendix S1: Fig. S3).

DiscussioN

The threats of climate change are ubiquitous and
require immediate attention to understand how species
will persist in the future. Our study assessed how surface
activity, a fitness-related behavior of terrestrial salaman-
ders, may change over time in the face of global climate
change. We developed a model to describe the environ-
mental covariates driving salamander abundance and
surface activity probability at a broad scale by integrat-
ing five independent data sets. Several previous studies
have used hierarchical models to assess similar questions
(Dodd and Dorazio 2004; Kéry et al. 2005; Chandler
and King 2011; Connette and Semlitsch 2013; Peterman
and Semlitsch 2013; Studds et al. 2017; Gade and Peter-
man 2019), and have found myriad of factors driving
abundance and more consistent factors predicting activ-
ity probability. For example, independent investigations
have found temperature and precipitation to be reliable
predictors of activity (Connette et al. 2015, Muiioz et al.
2016, Gade and Peterman 2019). Even across our five
data sets, activity covariates maintained more consistent
parameter estimates (e.g., covariate “3-d temperature,”
the parameter estimate ranged from 1.052 to 1.558;
Appendix S1: Fig. S1). Surface activity is more likely to
be affected by abiotic conditions consistent with the

physiological limitations of Plethodon. Abundance,
alternatively, is affected by both abiotic and biotic fac-
tors and often, the site and survey-level nuances, param-
eters researchers choose to measure in the field, and a
priori model decision criteria drive abundance predic-
tors, likely resulting in the greater variance in abundance
predictors. Between our five data sets, there were no con-
sistent site-level covariates measured (Appendix S1: Sec-
tion S1), and our parameter estimates for the abundance
covariates significantly varied between each data set
(Appendix S1: Fig. S1). Our approach to model and esti-
mate common parameters for both abundance and
activity is therefore novel and allows for inferences to be
made at broad scales across similar species.

Using our global model parameter estimates, we pro-
jected surface activity into the future and found an over-
all increase in surface activity probability over time,
largely coinciding with changes in temperature and
VPA. Temperature and VPA had the largest standard-
ized effect sizes in our global model (Fig. 2) and had sig-
nificant increases over time (Appendix S1: Fig. S3).
Both temperature and VPA are key variables relating to
plethodontid physiology. Plethodontids are lungless and
become surface active during wet and cool nights (Feder
and Londos 1984). However, salamander activity
appears to increase with increasing temperatures and
VPA, a seemingly contradictory result. Southern Appa-
lachian plethodontid salamanders are typically most
active during the middle of the summer (Connette et al.
2015) and our sampling window for future projections
occurred during the peak activity season when yearly
temperatures reach their maximum (Fig. 3). Tempera-
tures likely do not exceed salamander thermal maxima
to cause activity suppression, even into the future, which
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is further supported by our high correlation between
models that included a 25°C threshold of assumed zero
activity and models without the threshold. Clay and Gif-
ford (2017) showed the estimated performance breadth
of P. montanus ranged from ~17° to 27°C, with 30°C
representing the critical thermal maxima of other
Plethodon species (Spotila 1972). Increased temperatures
have also been shown to increase survival probability in
P. montanus, likely because temperatures never exceeded
the species’ thermal maxima (Caruso and Rissler 2018).
Thus, for high-elevation species with peak activity at the
warmest times of the year, future climates might be
expected to increase activity until conditions approach
and surpass physiological limits.

Globally, ectotherms’ current activity times are
restricted to the warm summer months, and trends sug-
gest that in temperate regions, there will be an increase
of potential surface activity with climate change (Buck-
ley et al. 2012). Our observed increased of activity prob-
ability over time is thus likely a warm-season effect.
Increases in temperature affect nearly all physiological
processes in ectotherms (Rome et al. 1992, Homyack

et al. 2010). Warm temperatures increase the metabolic
demands of salamanders, which may force more surface
activity to maximize foraging opportunities. Connette
and Semlitsch (2013) found that salamander surface
activity increased in timber harvest plots relative to con-
trol plots, which could be a potential result of increased
energy demands in the hotter harvest plots. Further, in a
lab-based study, Novarro et al. (2018) found that P,
cinereus had had greater ingestion rates at hotter temper-
atures, presumably in an attempt to counteract increased
metabolic demands. Although Novarro et al. (2018) did
not assess activity rates, their results suggest that sala-
manders would have to increase their surface activity to
increase ingestion rates. Further, energy assimilation
tends to decrease at higher temperatures, suggesting
salamanders will need to increase feeding frequency to
maintain energy balances (Clay and Gifford 2017, Fon-
taine et al. 2018, Huey and Kingsolver 2019). Increased
metabolism could also have important population-level
demographic consequences. For example, higher meta-
bolism associated with increased temperature has been
shown to decrease body sizes and growth rates in
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Plethodon (Homyack et al. 2010, Caruso et al. 2014,
Muioz et al. 2016). Reductions in body sizes could lead
to delayed maturity or reduced fecundity, ultimately
leading to population declines. Thus, although our
model predicts greater opportunity for surface activity
under future conditions, there may be physiological
trade-offs that collectively have negative consequences
for salamander populations.

Salamander physiological tolerance and performance
appears to be dependent on the climatic history of popu-
lations, which often exhibit local adaptation to the expe-
rienced background climate (Spotila 1972, Riddell and
Sears 2015, Clay and Gifford 2017, Novarro et al. 2018).
For example, temperature differentially impacts growth
across elevational gradients in P montanus whereby sala-
manders inhabiting high elevations have increased
growth as temperatures increase, and those at low eleva-
tion show the opposite growth trend (Caruso and Rissler
2018). The elevational variation in growth rate is likely a
result of the conditions experienced at each elevation;
higher-elevation temperature increases are within the
thermal tolerances of P. montanus, whereas low-eleva-
tion increases may exceed such tolerances, resulting in
decreased growth (Caruso and Rissler 2018). Our mod-
eling framework assesses surface activity probability
across the entire range (latitudinal and elevation) of the
species complex, combining high- and low-elevation
individuals. The average weather conditions across the
entire range of the P. jordani species complex appear to
not exceed the species’ thermal maxima, thus explaining
why our model predicts continued increases in surface
activity probability over the next 80 yr.

Concurrent with increased surface activity probability
over time is an increase in variation in our activity prob-
ability (Appendix S1: Fig. S2), which corresponds with
increased GCM uncertainty. Global circulation models
typically have high uncertainty, especially towards the
end of the century (Rupp et al. 2013, Northrop and
Chandler 2014), with precipitation predictions being
more variable than temperature, particularly at the
regional scale (Knutti et al. 2008, Northrop and Chan-
dler 2014). We found precipitation to impact surface
activity probability in our global model estimates
(Fig. 2), supporting previous findings (Connette and
Semlitsch 2013, Connette et al. 2015, Muiioz et al. 2016,
Caruso and Rissler 2018). Yet, there was no significant
trend of precipitation into the future (Fig.5), thus
resulting in no discernable effects on our future surface
activity probability estimates. As expected, the RCP 8.5
scenario had greater estimates of changes in VPA and
temperature relative to RCP 4.5 (Fig. 5). These scenarios
are representative of possible climate futures given emis-
sion levels and were specifically included to capture a
range of variation in our model. There was no difference
in surface activity probability between RCP scenarios,
and all species responded with similar rates of increase
in surface activity probability. This uniform response
across the seven species is not surprising given that

FUTURE SALAMANDER SURFACE ACTIVITY

Article e03154; page 9

members of the P. jordani complex exhibit levels of niche
conservatism. Mid to high elevations are the cradle of
biodiversity for Plethodon likely because the climatic
conditions experienced here have constrained species to
specific climate (elevation) zones for millions of years,
leading to greater species accumulation. Geographic iso-
lation and limited dispersal through warmer low eleva-
tions has led to species diversification, and resulted in
adaptation to the climatic conditions at these elevational
regions (Kozak and Wiens 2010).

Our model predicts the probability of a salamander
being surface active on a given night into the future,
which is related to, but distinct from, the total time a
salamander is active during a given night. This distinc-
tion is important because the duration of surface activ-
ity must be sufficient to fulfill the foraging
requirements necessary for growth and survival. Fur-
ther, mate finding and courtship occur on the forest
floor (Jaeger 1980, Feder 1983, Petranka 1998); there-
fore reproductive opportunities are also tied to surface
activity. However, teasing apart the probability of
activity and total activity time is challenging. Total
season activity has been previously modeled to
increase with predicted rainfall (McEntire and Maerz
2019), and total activity time increases with dehydra-
tion resistance and water loss thresholds of salaman-
ders, suggesting the importance of wet nights on
activity time (Riddell et al. 2018). Our model cannot
disentangle these effects. Additionally, discerning
between the effects of environmental conditions on
surface activity and annual and seasonal cycles is chal-
lenging. For instance, we have not observed salaman-
ders at our sites becoming active under suitable
conditions outside of their normal active season
(JMaerz, J. Crawford, D. Hocking, et al. personal
observations). There may be a strong seasonal circadian
rhythm to salamander activity that our model cannot
detect. Photoperiod circadian rhythm can be a driver
of activity initiation and metabolic activity in other
urodeles, both of which can be modified by experimen-
tally shifting photoperiod (Adler 1969, Hervant et al.
2000, Maerz et al. 2001). Bird migrations and many
mammalian behaviors are strongly influenced by circa-
dian and circannual rhythms (Gwinner 1996, Reppert
and Weaver 2002, Albrecht and Eichele 2003). It
could, therefore, be possible that the P. jordani species
complex activity patterns have circadian patterns based
on the summer season independent of the proximate
environmental conditions.

Understanding surface activity of salamanders has
been a long-standing challenge, and previous studies
have used agent-based simulations (McEntire and Maerz
2019) and intensive lab-based physiological experiments
(Riddell and Sears 2015) to understand and model sur-
face activity. There are also a variety of existing models
that attempt to discern future climate change effects on
species ranges or biophysical processes (e.g., correlative
approaches or mechanistic biophysical models). Our
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modeling framework is unique in that we adapted an
existing framework to understand a targeted behavior—
surface activity— directly. Our model is the first compre-
hensive field-based study to assess surface activity prob-
ability at a regional scale and then project activity into
the future under climate change scenarios. Our model
does, however, have important limitations to consider.
Our approach assumes that abundance is constant
through time, which may not be wholly representative.
There have been numerous studies suggesting declines in
amphibians at global scales (Houlahan et al. 2000) and
across North America (Grant et al. 2016). Using occu-
pancy models, Grant et al. (2016) found that declines are
driven by interacting stressors, including human modifi-
cation, pesticides, and climate at a local scale. Milano-
vich et al. (2010) suggested that suitable climate in the
Appalachian highlands will significantly decrease, result-
ing in range contractions and abundance reductions over
time. Our future surface activity model does not account
for changes in abundance, nor does it account for the
interactive and multiplicative stressors amphibians face
that may contribute to declines (Blaustein et al. 2010).
Our model also uses data from only three out of the
seven species in the P. jordani complex, and our sam-
pling efforts are somewhat west-skewed geographically
(Fig. 1). However, all species of the complex are con-
strained to similar elevations that experience similar
environmental conditions. All of the species had similar
projected activity probability in the future (Fig. 5), sug-
gesting our sampling bias does not strongly impact the
results for all species in the complex. Finally, our model
projects surface activity assuming that salamanders do
not modify any behavior or physiology. Short-term lab
studies suggest that salamanders have plastic physiologi-
cal responses with metabolic and water loss suppression
during the warmest parts of the year (Riddell et al.
2018). Salamanders may also modify the timing of sur-
face activity to exploit more optimal conditions, a pat-
tern seen commonly in other taxa (Fielding et al. 1999,
Tingley et al. 2012, Schuster et al. 2014, Buckley et al.
2015, Muiioz et al. 2016). However, the ultimate demo-
graphic consequences of sustained physiological adjust-
ments are unknown. Assessing surface activity cost
trade-offs and phenological shifts in activity should be
priorities for future studies.

Climate change will favor species with wide thermal
tolerances, short generation times, and a range of geno-
types among populations (i.e., high adaptive capacity;
Ficke et al. 2007). Species of the P. jordani complex are
unfortunately lacking in all three attributes. They have
relatively narrow thermal performance windows (Clay
and Gifford 2018), long generation times (Staub 2016),
and small and geographically isolated populations with
limited gene flow (Highton and Peabody 2000), empha-
sizing their conservation concern. Our regional, multi-
species model demonstrates that temperature,
precipitation, and vapor pressure strongly influence sur-
face activity probability, and without physiological or
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behavioral changes, these salamanders will exhibit
higher levels of surface activity during their peak active
season under future climate conditions. Our study pro-
vides necessary insight into how a key behavior driving
fitness of plethodontid salamanders will be affected by
climate change.
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