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Abstract

We conducted a meta-analysis of published carbon and nitrogen isotope data from archaeological
human skeletal remains (n = 2448) from 128 sites cross China in order to investigate broad
spatial and temporal patterns in the formation of staple cuisines. Between 6000-5000 cal BC we
found evidence for an already distinct north versus south divide in the use of main crop staples
(namely millet vs. a broad spectrum of Cs3 plant based diet including rice) that became more
pronounced between 5000-2000 cal BC. We infer that this pattern can be understood as a
difference in the spectrum of subsistence activities employed in the Loess Plateau and the
Yangtze-Huai regions, which can be partly explained by differences in environmental conditions.
We argue that regional differentiation in dietary tradition are not driven by differences in the
conventional “stages” of shifting modes of subsistence (hunting-foraging-pastoralism-farming),
but rather by myriad subsistence choices that combined and discarded modes in a number of
innovative ways over thousands of years. The introduction of wheat and barley from
southwestern Asia after 2000 cal BC resulted in the development of an additional east to west

gradient in the degree of incorporation of the different staple products into human diets. Wheat
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and barley were rapidly adopted as staple foods in the Continental Interior contra the very
gradual pace of adoption of these western crops in the Loess Plateau. While environmental and
social factors likely contributed to their slow adoption, we explored local cooking practice as a
third explanation; wheat and barley may have been more readily folded into grinding-and-baking
cooking traditions than into steaming-and-boiling traditions. Changes in these culinary practices

may have begun in the female sector of society.

Introduction

Staple foods pass through a long transformative process as they are acquired, prepared,
and distributed by human societies, and the performances of staple food preparation and
presentation are intimately connected with social relationships [1]. Recent investigations have
shown that between 5000 and 1500 cal BC, the Eurasian and African landmass underpinned a
continental-scale process of food ‘globalisation’ of staple crops [2, 3]. By 1500 cal BC, the
process brought together previously isolated agricultural systems to form a new kind of
management system that enabled multi-cropping and fundamentally transformed Eurasian diets.
China plays an important role in this narrative for its diverse forms of food products in the
Neolithic but also as both the source of eastern domesticates (e.g., rice, broomcorn and foxtail
millet) that moved from China to the West, and the recipient of southwest Asian grains (i.e.
wheat and barley) that moved east-wards. Understanding the prehistoric roots of Chinese staple
cuisines provides perspectives that not only transform our knowledge of the past but also raise

awareness of the present and future utilities of these cereals.

Cultivation of staple cereals has played a vital role in the development of many aspects of
Chinese culture from prehistory to today. Globally, the process employs millions of people and
presently feeds 20% of the world’s population [4]. Cereals are the most important food source in
the world, contributing as much as 70% of energy intake in developing countries [5]. In China,
cereal foods such as rice and wheat products contributed 75-85% towards the daily dietary intake
for average low/medium-income individuals in the 1980s [6]. Regional variations in cereal
management and choice of staple products provide a key to understanding food production and
consumption in China. These variations (e.g., rice in the lower Yangtze, wheat in the northwest,

barley in Tibet) have been well documented historically [4, 7].
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The diversity in staple choices has often been linked to origins of the diversity of regional
cooking techniques. Early communities in East and West Asia, for example, were characterized
by differences in food processing technologies: culinary traditions based on boiling and steaming
of grain in the East, and by grinding grain and baking the resulting flour in the West. While the
Pre-Pottery Neolithic cultures of Southwest Asia made extensive use of querns for flour
production and constructed clay ovens for baking bread and roasting foods, cultures in Neolithic
China elaborated forms of ceramic vessels for boiling, steaming, and serving [8]. Current
evidence places pottery in south China c. 18,000 years ago, associated with hunter-gathers [12].
By contrast, in Southwest Asia, ceramics developed relatively late, dated c. 8,500 years ago [8].
This contrast has led to the hypothesis that these distinct East-West cooking technologies are
deep seated in cultural differences between peoples that predate domestication [8]. In the context
of early globalization of staple crops, the dispersal of cereals into new areas was not necessarily
accompanied by the dispersal of culinary traditions. Novel grains could sometimes be
incorporated into existing local traditions of food processing or sometimes lose the status of

being staple grain.

Here, we integrate a large body of isotopic data from both English and Chinese
publications to explore broad spatial and temporal patterns in the prehistoric roots of Chinese
staple cuisines and assess possible gender distinctions in the context of staple consumption.
Other recent reviews of this literature, though are not as broad in geographic scope, have shed
important light on this topic [54, 129]. We additionally explore the nature of regional differences

in staple traditions and consider the context in which culinary innovation arose.

Isotopic values from archaeological skeletons provide direct proxies for long-term
consumption practices of individuals in the past. Due to the resolution of this technique — which
doesn’t enable assessment of the contribution of minor dietary components — we focus our
discussion on the consumption of staple foods. Carbon isotope values (6'*C) vary primarily
according to the photosynthetic pathways employed by plants at the base of the food chain [9,
10]. The potential for using §'*C values to differentiate between different types of cereal diets

was first realized in detecting the C4 domesticate maize (Zea mays) in Americas [9]. Nitrogen
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isotope values (6'°N) provide further information about past diets by situating the consumers on
the trophic food chain; §'°N values increase by 3-5 %o with each step in a trophic chain [11].
Nonetheless, without site specific faunal baseline data, dietary reconstruction with J'°N values at
this broad geographic scope is challenging. There are now over 90 publications presenting
isotopic results from >120 sites and >2000 human individuals from prehistoric China. We
compiled these data to investigate the historic geography of staple cuisines between 6000 cal BC
and 220 cal AD, capitalizing on the contrasting isotopic signatures among major crop
domesticates, including rice, wheat and barley (Cs plants), and broomcorn and foxtail millets (Cs
plants). We focus on three regions featuring differing environmental characteristics and distinct
agricultural and culinary traditions: (1) the broad Loess Plateau including the Yellow, Wei and
Xiliao Rivers, (2) the Yangtze and Huai Rivers, and (3) the Continental Interior bordering the
Loess Plateau and Eurasian steppe including the Tibetan Plateau (Fig 1).

Setting up the geography

China’s vast landmass ranges across contrasting ecological extremes, from tropical in the
south, to sub-Arctic in the north, alpine in the west and marshy lowlands in the east [12]. A key
dynamic climatic element is the monsoonal system, comprising a warm, wet summer monsoon,
and a cold, dry winter monsoon. The summer monsoon brings water from the Pacific and Indian
Oceans onto much of the east and south of China while the winter monsoon drives the movement
of Aeolian dust from the Gobi desert to the Loess Plateau. The sensitivity of the monsoonal
system to fluctuations in the relative temperatures of land and ocean has rendered it the most
variable part of the physical environment, critically affecting water availability in many parts of
China, particularly towards the south and east [12]. These features have led to an agriculture that
is diverse in its crop ecology, elaborate in its management of water, and with its most intense
sedentary cultivations in the east of the country, including the broad Loess Plateau and the
Yangtze and Huai Rivers, which is geographically divided by the Qinling Mountains and Huai
River [13, 14].

The central/eastern parts of China host the most productive soils and have an enduring
association with important staple cereals: the Yangtze and Huai Rivers with rice (Oryza sativa),

and the Loess Plateau with broomcorn and foxtail millet (Panicum miliaceum and Seteria italica)
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[12, 15]. The oldest archaeological sites preserving broomcorn and foxtail millet remains do not,
however, lie in direct proximity to the great rivers. Sites with millet remains are instead located
along the foothills of the eastern edge of the Loess Plateau at a considerable distance from the
rivers themselves [16]. The earliest sites with rice are situated in the middle and lower Yangtze
and Huai River valleys [17] at locations associated with minor tributaries and inter-mountain
plains where cultivation could be easily managed [18]. In the archaeobotanical record dating to
before 5000 cal. BC, a north-south divide is observable on either side of the Huai River —
Qinling Mountain line, a topographical reference used by modern geographers to distinguish
between north and south China. North of this line, millet cultivation was predominant in the
Loess Plateau, while south of the line, subsistence was based on a diverse spectrum of food
resources including cultivation of rice and managing free-living plants prevalent in the Yangtze-

Huai Region [14, 15].

The same general area of central/eastern China came into contact with Central Asia and
possibly South Asia in the Bronze Age, facilitating the adoption of a variety of cereal crops
originating in the west [2]. To the west and north of this principal area of Chinese agriculture, the
Loess Plateau and the upper Yangtze is flanked by the mountainous Continental Interior. This
includes the Mongolian plateau, the Gobi desert, the Hexi Corridor, western Sichuan and
northern Yunnan bordering the eastern Tibetan Plateau, as well as the northern and eastern parts
of the Tibetan Plateau itself. In the context of a trans-Eurasian exchange of cereal crops, the
founder crops from the Fertile Crescent (modern-day Iran, Iraq, Syria and southern Turkey) —
notably free-threshing wheat (7riticum aestivum) and naked barley (Hordeum vulgare) — were
introduced to China between 3000 and 1500 cal BC possibly along multiple routes through the
Continental Interior [19]. The introduction of the Fertile Crescent grains in the Bronze Age

significantly transformed the staple food system in China.

Prehistoric people did not subsist on cereals alone. Archaeobotanical evidence shows
that, since the terminal Pleistocene, a variety of plants including acorns, beans, tubers and
grasses (Triticeae and Paniceae) were used in the Loess Plateau [20]. Over the course of the
Neolithic (c. 8000 — 1500 BC), additional plant and animal domesticates were introduced into

human and animal diets, including pigs (Sus scrofa), soybean (Glycine max), adzuki bean (Vigna
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angularis), buckwheat (Fagopyrum esculentum), and hemp seed (Cannabis sativa) [12, 21].
Recent research shows that in the Yangtze-Huai region, rice cultivation emerged in the context
of broad spectrum foraging focused on the collection of tree nuts, especially acorns (Quercus
spp.), fruits such as peaches and apricots (Prunus spp.), and wetland nuts and tubers, including
water chestnuts (7rapa natans), foxnuts (Euryale ferox), lotus root (Nelumbo nucifera), job’s
tears (Coix lachrymal-jobi) and barnyard grasses (Echinochloa spp.) [22-24]. With the exception
of jobs’ tears and some members of Triticeae and Paniceae, all the fruits, nuts, tubers and beans

identified employ the C3 photosynthetic pathway.

Materials and methods

To locate published archaeological isotopic studies from China, we searched Web of
Science and Google Scholar using combinations of the following keywords: stable isotopes,
China, human diet, bone collagen, and apatite. To include data published in Chinese, we
searched the China Academic Journals Database using the same set of keywords. We restricted
our search to articles concerned with post-Paleolithic archaeological sites and specimens dating
to before 220 AD, the ending point of the Han Dynasty. Our search yielded isotopic data from
128 sites in over 90 articles published in English and Chinese between 1984 and 2018 (Tables 1-
3, S1 Table). The articles are primarily concerned with §'3C and 6!°N values from archaeological
human bone collagen (n = 83, including 7 review articles), although a subset includes carbon and
oxygen isotope data (J '3C and 6 '®0) from bone apatite and/or tooth enamel (n = 6). Several
recent articles also feature sulphur isotope data (6 3*S), but these are presently few in numbers (n
= 6). We did not consider articles focusing on strontium (Sr) isotope ratios, which are commonly
used as a geographical fingerprinting tool. As we only use published data for the meta-analysis,
no permits were required for this study, which compiled with all relevant regulations. All
published data compiled in this study is presented in S1 Table and summarized in Tables 1-3
with references to the original studies. Specimen IDs (where are available) as given in the

original isotopic studies are also presented in S1 Table.
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Table 1. Published human C and N isotope values from before 5000 cal BC.

Site Site Region Province Cultural ﬂ:;::;l?ct:;i Mean SD Mean SD n Reference
. 15 15 13, 13
number group BC/AD) 0PN oPN o°C o"°C number
Inner
Xinglonggou 1 A Mongolia Xinglongwa 6200-5300 9.8 0.8 -9.9 1.1 30 42,58
Inner
Xinglongwa 2 A Mongolia Xinglongwa 6200-5300 - - -8.9 1.7 7 58
Xiaojingshan 3 A Shandong Houli 6200-5500 9.0 06 -178 03 10 59
Baijia 4 A Shaanxi Laoguantai  5700-5300 10.9 1.7 -137 19 3 60
Beiliu 5 A Shaanxi Laoguantai  6000-5000 8.5 0.1 -120 06 6 61, 62
Jiahu 6 B Henan Jiahu 7000-5800 8.9 09 -203 05 14 63

Summary of published carbon and nitrogen isotope values measured in human bone collagen

from sites dating to before 5000 cal BC.

Table 2. Published human C and N isotope values from between 5000 and 2000 cal BC.

Site Site Region Province Cultural group g::legl?ct:g Mean  SD -~ Mean  SD n Reference
number 3N 8N 8BC  8BC number
BC/AD)
Inner
Baiyinchanghan 7 A Mongolia Hongshan 4300-3900 8.6 0.3 -8.8 0.4 3 42
Inner
Caomaoshan 8 A Mongolia Hongshan 3400-3100 9.1 0.4 93 0.6 7 42
Inner
Dakou 9 A Mongolia Dakou 2300-1900 7.5 1.0 -8.9 1.8 2 64
Inner
Miaozigou 10 A Mongolia Miaozigou 3500-3000 9.2 0.2 -7.2 0.2 9 65
Inner
Xinglongwa 11 A Mongolia Hongshan 4500-3000 8.7 - -5.4 - 1 58
Inner
Xishan 12 A Mongolia Xiaoheyan 2900-2400 8.8 0.4 -1.5 0.5 16 41
Qingliangsi 13 A Shanxi Yangshao/Longshan  5000-2000 8.5 1.1 -8.1 0.9 27 66
Taosi 14 A Shanxi Longshan 2500-2000 8.9 1.3 -7.3 24 15 67, 68
Xinhuacun 15 A Shanxi Longshan 2300-2000 6.5 1.4 -7.3 0.7 2 64
Beigian 16 A Shandong Dawenkou 4000-3000 8.8 1.0 -9.6 0.8 38 43
Beizhuang 17 A Shandong Beizhuang 4500-2500 13.2 - -7.9 - 1 58
Guzhendu 18 A Shandong Dawenkou 4000-3000 9.6 - -8.5 0.7 4 58
Xigongqiao 19 A Shandong Dawenkou 4000-3000 8.1 2.1 -153 38 10 69
Banpo 20 A Shaanxi Yangshao 4800-4300 9.1 - -15.0 - 1 41
Beiliu 21 A Shaanxi Yangshao 4000-3500 8.7 09 -120 14 6 61,62
Beishouling 22 A Shaanxi Yangshao 5000-3500 - - -13.8 09 3 67
Dongying II 23 A Shaanxi Longshan 2600-2000 9.4 0.3 -8.0 1.3 5 70
Jiangzhai 24 A Shaanxi Yangshao 4900-4000 8.6 0.6 -9.9 1.2 20 41,71
Quanhucun 25 A Shaanxi Yangshao 3500-3000 11.5 - -11.2 - 1 72
Shengedaliang 26 A Shaanxi Longshan 2500-2000 8.8 1.4 -8.5 1.8 28 73
Shijia 27 A Shaanxi Yangshao 4300-4000 8.1 0.5 -100 0.7 9 41
Xipo 28 A Shaanxi Yangshao 4000-3300 94 1.0 -9.7 1.1 31 74
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Summary of published carbon and nitrogen isotope values measured in human bone collagen

from sites dating to between 5000 and 2000 cal BC.

Table 3. Published human C and N isotope values from between 2000 cal BC and 212 cal

AD.
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Estimated

Site nusmltlier Region  Province Cultural group dates (cal. 1\641?1:‘ SS‘:?\I l\élgén SS‘?C n I{Iﬁff:;zz?
BC/AD)
T LS UINLT
Beigian >4 A Shandong Zhou Dynasty 1046-23ps:.//ab0-0re/ 11371 /j5tthal péh8.024930 43
Qianzhangda 55 A Shandong  Shang/Western Zhou 1200-771 10.0 1.2 -8.9 1.4 49 87
Xiyasi 56 A Shandong Eastern Zhou 770-221 8.1 09 -119 22 30 49
Liulihe 57 A Hebei Western Zhou 1046-771 - - -8.2 1.4 19 58
Nancheng 58 A Hebei Proto Shang 2000-1600 9.4 0.0 -6.9 0.1 75 88
Neiyangyuan 59 A Shanxi Spring and Autumn 770-476 9.6 1.0 -8.6 1.6 23 89
Niedian 60 A Shanxi Xia 1900-1500 10.5 0.7 7.1 03 60 90
Xiaonanzhuang 61 A Shanxi Eastern Zhou 770-221 10.5 0.9 -8.0 04 16 91
Xiaoshuanggiao 62 A Shanxi Shang 1600-1046 8.5 1.6 -100 17 10 92
Anyang 63 A Henan Shang 1400-1046 - - -8.2 25 39 58
Changxinyua 64 A Henan Eastern Zhou 770-221 7.7 1.0 -103 14 15 49
Erlitou 65 A Henan Erlitou 1900-1500 119 42 94 21 31 58, 68
Handeng 66 A Henan Proto Shang 1750-1600 9.3 - -6.7 - 1 93
Liuzhuang 67 A Henan Proto Shang 2000-1600 9.7 1.5 -8.2 19 21 94
Xiaomintun 68 A Henan Shang 1400-1046 9.5 0.6 -11.5 27 4 95
Xinzhai 69 A Henan Erlitou 1900-1500 9.0 1.0 96 1.4 8 96
Xinzheng City 70 A Henan Eastern Zhou 770-221 8.8 08 -11.0 16 75 79
202BC-
Xuecun 71 A Henan Han 220AD 10.6 13 -137 12 53 79
Yanshi 72 A Henan Shang 1600-1046 - - -7.6 0.8 3 58
97, 98, 99,
Yinxu 73 A Henan Shang 1250-1046 9.1 1.2 -8.5 1.0 130 103
Fenggeling 74 A Shaanxi 500-300 9.1 0.4 -9.2 0.5 4 64
202BC-
Guandao 75 A Shaanxi Han 220AD 104 03 -10.7 038 5 100
Guangming 76 A Shaanxi Western Han 202BC-8AD 11.0 0.8 -9.8 0.9 7 100
Jianhe 77 A Shaanxi Warring States 476-221 8.7 0.5 9.2 0.7 14 101
Jichang 78 A Shaanxi Eastern Han 8-220AD 9.0 09 -120 12 30 100
300BC-
Lintong 79 A Shaanxi 700AD 9.4 1.3 -13.8 3.8 3 64
Muzhuzhuliang 80 A Shaanxi Longshan/Xia 1900-1700 8.8 06 -82 1.5 8 102
Shimao 81 A Shaanxi Longshan/Xia 2100-1600 6.9 0.9 -8.4 0.1 4 64
Shigushan 82 A Shaanxi Western Zhou 1200-900 9.4 9.8 1 103
Sunjianantou 83 A Shaanxi Eastern Zhou 770-221 8.5 1.0 -108 13 25 104
Xinhua 84 A Shaanxi 2000-1700 8.2 - -8.7 - 1 64
Zhanguo 85 A Shaanxi 450-350 8.8 - -14.8 - 1 64
Zhouyuan 86 A Shaanxi Western Zhou 1200-900 9.8 1.3 -109 23 9 103
In.
Dabaoshan 87 A Mongolia Warring States 410-180 9.6 0.9 -9.0 14 40 105
In.
Dashangian 88 A Mongolia Upper Xiajiadian 900-200 9.3 0.6 -7.0 0.4 9 106
In.
Huhewusu 89 A Mongolia Western Han 202BC-8AD 9.1 0.6 9.1 0.7 5 107
In.
Jinggouzi 90 A Mongolia Eastern Zhou 770-221 9.8 0.6 -124 0.7 10 108
In.
Nalintaohai 91 A Mongolia Western Han 202BC-8AD 133 1.2 -100 0.8 7 109
In. 100BC-
Tuoba Xianbei 92 A Mongolia Tuoba Xianbei 557AD 10.4 13 -114 28 65 110
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In.
Xindianzi 93 A Mongolia Eastern Zhou 770-221 10.3 0.8 -11.5 09 20 111
In.
Xinglongwa 94 A Mongolia Lower Xiajiadian 1500-1300 - - -4.2 0.9 2 58
In.
Xinglongwa II1 95 A Mongolia Lower Xiajiadian 1500-1300 9.8 0.9 -7.0 0.6 9 42,58
In.

Zhukaigou 96 A Mongolia Zhukaigou 2200-1600 9.0 1.1 -8.2 0.4 2 64
Buziping 97 C Gansu Qijia 2100-1700 8.1 - =13 - 1 47
Buzishan 98 C Gansu Qjjia 2100-1700 8.3 - =13 - 1 47
Ganguai 99 C Gansu Siba 1400-900 1.6 09 -153 15 30 82

Huoshaogou 100 C Gansu Siba 2000-1300 12.0 1.3 -120 19 30 82
Huoshiliang 101 C Gansu 2135-1690 8.0 26  -88 0.1 2 57
Lianhuatai 102 C Gansu Xindian 1500-1000 8.6 03 -100 03 6 103
Lixian 103 C Gansu Spring and Autumn 750-500 8.8 03 -13.1 4.1 3 61
Mogou 104 C Gansu Qijia/Siwa 1800-1100 10.2 12 -139 15 85 82, 86
202BC-
Mozuizi 105 C Gansu Han 220AD 105 08 -157 14 6 82
Qijiaping 106 C Gansu Qijia 1500-1200 9.8 09 -89 1.1 42 110
Xiahaishi 107 C Gansu Qjjia 2200-1900 8.6 1.0 -75 03 13 47,103
Xichengyi 108 C Gansu Siba 2000-1000 1.7 2.1 -9.0 0.6 4 112
Xishan 109 C Gansu Spring and Autumn 770-403 7.9 1.8 -134 40 41 84
Zhanqi 110 C Gansu Siwa 1100-900 104 06 -155 1.0 31 46, 103
Lajia 111 C Qinghai Qijia 2000-1200 10.0 0.2 -7.9 0.4 4 113
Lajigai 112 C Qinghai Kayue 1400-1000 9.0 05 -149 18 5 84
Sanheyi 113 C Qinghai Qijia 2000-1800 8.1 1.5 -9.1 0.5 5 84
Shangsunjia 114 C Qinghai Kayue 1500-600 9.8 14 -162 13 21 58
Donghuigou 115 C Xinjiang Hongshankou 900-0 133 0.6 -184 04 13 114
Duogang 116 C Xinjiang Qunbake 900-500 126 06 -145 1.0 39 115
Gumugou 117 C Xinjiang Xiaohe c. 1800 14.6 0.6 -182 0.2 10 116, 117
Heigouliang 118 C Xinjiang Western Han 500BC-8AD 125 0.6 -185 04 36 118,119

Qiongkeke 119 C Xinjiang Early Iron Age 500-202 12.7 04 -162 02 8 120

500BC-

Kelasu 120 C Xinjiang Early Iron Age/Han 220AD 11.8 0.6 -166 04 7 121
Tianshanbeilu 121 C Xinjiang Tianshanbeilu 2000-1300 147 09 -154 13 124 122,123
Xiabandi 122 C Xinjiang Andronovo 1500-600 12.3 1.0 -182 08 27 124

Yanbulake 123 C Xinjiang Early Iron Age 1000-500 - - -146 1.7 2 58
Yanghai 124 C Xinjiang 1200-100 12.1 1.0 -163 11 22 125

475BC-
Shenmingpu 125 B Henan Warring States/Han 220AD 8.5 1.1 -146 22 32 93
Boyangcheng 126 B Anhui Spring and Autumn 1122-771 10.9 1.0 -188 1.5 38 126
Jinlianshan 127 B Yunnan 700 9.8 09 -188 04 9 127
Shilinggang 128 B Yunnan 850-250 10.0 1.0 -188 0.7 16 128

Summary of published carbon and nitrogen isotope values measured in human bone collagen

from sites dating to between 2000 cal BC and 212 cal AD.

10
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We performed all statistical analyses in R [25]. Before beginning analyses, we filtered
out samples with poor C:N ratios (< 2.9 or > 3.6) suggesting that they were contaminated or
poorly preserved. We described the basic structure of the data by calculating the mean and
standard deviations of the isotope data by time period, region, province and/or sex. We recognize
that present-day provinces are artificial borders, however for the sake of simplicity, we compare
isotopic data among provinces as a way to examine north to south and east to west geographic
gradients. Although these data did not always conform to the assumptions of parametric statistics
(specifically, residuals were not always normally distributed and groups did not necessarily have
equal variance), we nonetheless chose to use ANOVA with posthoc Tukey’s test for multigroup
comparisons and were cautious about rejecting the null-hypothesis when p-values were close to
0.05. In the case of highly heteroscedastic groups, we used the more conservative Welch’s

ANOVA for multi-group comparisons (see S3 Table A-D and S4 Table A-H for results).

Mixing model

To estimate the proportional contributions of potential plant and animal food resources to
past human diets at Xinglonggou - one of the oldest sites at which humans were using millet as a
staple food - we used the Bayesian stable isotope mixing model MixSIAR [26, 27] following the
best practices for stable isotope mixing models outlined by Phillips et al. [28]. We grouped
dietary items into ecologically relevant isotopically distinct source groups by assessing whether
sources had significantly different means using MANOVA followed by Tukey tests; dietary
items that were isotopically indistinct (p > 0.05) were grouped and averaged over all of the
samples. We accounted for concentration dependence by including the digestible [C] and [N] of
the potential dietary resources, which we calculated from data available in the United States
Department of Agriculture (USDA) Nutrient Database following Koch and Phillips [29]. To
account for human diet-to-collagen isotope discrimination, we used a nitrogen isotope dietary
discrimination factor of 3.5 £ 1 %o and a carbon isotope discrimination factor of 5 £ 1 %o [11,
30]. We initially tried nitrogen isotope discrimination factors of between 4.6 — 6 %o [31], but
found that these values placed the human collagen samples well outside the dietary mixing
space. To evaluate the sensitivity of the model to the nitrogen isotope discrimination factor, we
ran the model using several discrimination factors (S5 Table); the estimated mean proportional

contribution of C4 plants to human diet varies by just 4% among the models. We conducted
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Markov Chain Monte Carlo (MCMC) sampling within MixSIAR using the “very long” chain
length, which includes running three replicate chains, each with 1,000,000 draws, a burn-in of
500,000, and a thinning rate of 500. We used Gelman-Rubin diagnostics to confirm model
convergence [32]. Although the relative abundance of various dietary resources found at the
archaeological sites could arguably be used to construct informative priors, we chose to use
uninformative priors (i.e., flat) for past human diet because of the potential for differences in

preservation and/or sampling effort between floral and faunal material.

Kellner and Schoeninger’s approach

Partitioning the relative contributions of plant and animal resources to human diet is
difficult to accomplish using stable isotope values of bulk collagen alone because collagen §'3C
and §°N values reflect both dietary protein and dietary non-protein disproportionately
(approximately 60% of the carbon atoms in collagen come from dietary protein [10, 33-37]. One
approach to addressing this issue is to use 6'3C values in collagen and apatite from the same
individual to model the regression lines of energy and protein sources, as collagen and bioapatite
reflect dietary protein and the whole diet disproportionately [38]. Using the limited available
data, we additionally followed [38] approach of plotting collagen §'*C against apatite §'°C with
their modern-calibrated C3 and Cs protein regression lines [39, 40]. We identified three
populations between 5000-2000 cal BC to be included in the analysis: Jiangzhai, Shijia and
Banpo [41]. We also included Jiahu, a site that predates 5000 cal BC.

Results

Mapping staple cuisines in prehistoric China

We considered temporal and spatial patterns by organizing the results in three successive
periods: 6000-5000 cal BC, 5000-2000 cal BC, and post 2000 cal BC (Liu et al. 2019), and
within the geographic framework of the three regions described above: the broad Loess Plateau,

the Yangtze-Huai Region, and the Continental Interior (Fig 1).

12



PLOS ONE
https://doi.org/10.1371/journal.pone.024930

B0E 100°E 1206

Fig 1. Site Maps. (a) Site locations with isotope (white circles) and archaeobotanical (black
triangles) data (see Tables 1-3, S1 for isotope studies and S2 for archaeobotanical). (b) Proposed
culinary traditions in China after 2000 cal BC as described in the discussion. Regional difference
in cooking follows the hypothesis proposed by Fuller and Rowlands (2011). Map generated
using ArcMap v. 10.2 and NASA Blue Marble with data set obtained from NASA Earth
Observatory (public domain). See: http://earthobservatory.nasa.gov/Features/BlueMarble/.
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6000-5000 cal BC

Carbon and nitrogen isotope values measured in human bones are reported from five sites
dating to the period between 6000-5000 cal BC (Fig 2 a-c). With the exception of Jiahu from the
Yangtze-Huai Region, the sites are located in the Loess Plateau. Carbon isotope ratios from Jiahu
are consistent with a predominantly-Cs diet (mean §'*C < -17%o). In the Loess Plateau, human
values from Xiaojingshan, Baijia and Beiliu are consistent with a mixed C3-C4 diet (6'3C values
from -17 to -12%o), while at Xinglonggou and Xinglongwa, people have carbon isotope values
indicative of a C4-plant dominated diet (mean §'3C > -12%o). The two regions have significantly

different 6'3C and 6'°N values (§'°C: F168=93.4, p =2.16 e-14, §"'N: F1,66= 4.8, p = 0.0319).

Xinglonggou I (c. 6000 cal BC) provides a unique case study, as there are additionally data
available from a range of both plant and animal dietary sources. At Xinglonggou, 6'3C values
measured in human bone collagen are consistent with a C4 diet with relatively high 6'°N values
(Fig 3 b; mean 6"*°C =-9.9 £ 1.1 %o; 6N = 9.8 + 0.8 %o, n = 32) [42]. The majority of animals
(except dogs) from the same site demonstrate consistency with a Cs diet and relatively low
nitrogen isotope values (Fig 3 ab; mean 6'3C =-19.0 + 2.4 %o; 6'°’N =5 + 1.4 %o, n = 50).
Carbon isotope ratios in humans seemingly suggest that humans directly consumed millet as a
staple food, perhaps on a daily basis. Nitrogen isotope ratios on the other hand, suggest that the
animal protein consumption at Xinglonggou was also significant, with a human-animal collagen

offset of about 5 %o in 6'°N values.

14



5°C (%)

5°C (%o)

. ......_1_: 4

5°C (%)

-10.0

-15.0

-20.0

-25.0

-10.0

-15.0

-20.0

-25.0

-10.0

-15.0

-20.0

|
+m
.

f.

4

!
-

Region

5N (%o)

5'°N (%o)

5N (%o)

15.0

10.0

5.0

15.0

10.0

5.0

10.0

5.0

PLOS ONE

https://doi.org/10.1371/journal.pone.024930

8"°N (%o)

10.0

5.0

PN

%

<
<&

<

+

4
< ++4+
& +

-20.0

-15.0

-10.0

-50

e 410

8"°N (%o)

-10.0

-5.0

Region

8"°N (%o)

15.0

10.0

5.0

200

-15.0

-100

3"3C (%0)

50

Region

® Loess Plateau

® Yangtze-Huai

@ Continental Interior

Province

m Fujian

® Gansu

® Guangdong
O Hebei

A Henan

& Hubei

+ Inner Mongolia
* Jiangsu

X Qinghai

<& Shaanxi

Vv Shandong
O Shanxi

@ Xinjiang
1 Zhejiang

Figure 2. Box- and scatterplots of §'3C and §'5N values measured in human bone collagen.
Data are from sites occupied pre-5000 cal BC (a-c), 5000-2000 cal BC (d-f), and post-2000 cal
BC (g-1). Regions are differentiated by color and provinces by shape. Boxplots illustrate
minimum, first quartile, median, third quartile, and maximum; means are depicted as hollow
black diamonds and outliers as black dots. See Tables 1-3 for data citations and S1Table for

original data.

To further explore these localized dietary patterns observed in bulk collagen data, we

used an isotope mixing model to quantify the importance of Cs plants to human diets at this site.

The results suggest that the proportional contribution of Cs plants (likely millet) to human diet at

Xinglonggou was between 52-62% (95% CI; Fig 3¢, S5 Table). Herbivores formed the second

most important human dietary item, accounting for approximately 33-46%. These results

confirm that humans in the Xinglonggou community relied on C4 plants as a staple food.

Nonetheless, when dietary reconstruction is based on bulk collagen isotopic determinations,

informative variation at the molecular level is masked. Future research at the compound specific

level that separates essential and non-essential amino acid isotope values could be undertaken to

confirm or refute the validity of these interpretations derived from bulk collagen isotope data.
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Fig 3. Xinglonggou mixing model results. (a) Animal bone collagen and plant §'*C and §'°N
values from Xinglonggou; standard ellipse areas are depicted as ovals (Cs plant - green,
omnivore - pink, C4 plant - orange, and herbivore - purple). (b) §'3C and §'°N values for grouped
dietary sources (mean = 1 std dev) plotted with trophic corrected §'3C and 6'°N values from
human bone collagen from Xinglonggou. The dashed line and the gray area illustrate the
minimum and maximum convex hulls for the dietary mixing space, respectively. And (¢) median
(lines in center of boxes = median, box boundaries = 50% CI, error bars = 50% CI) proportional
contributions of each dietary resource to humans from Xinglonggou.

5000-2000 cal BC

Between 5000 and 2000 cal BC, isotope data from the Loess Plateau and the Yangtze-
Huai Region reveal a more pronounced north-south distinction in human diets. Limited data are
available from the Continental Interior. Humans from the Yangtze-Huai Region preserve isotopic
signatures consistent with Cs-dominated diets, while humans from the Loess Plateau present
isotopic values suggesting they consumed a varying degree of C4 plant foods (Fig 2 d-f). There is
a statistically significant difference in the §'3C and 6'°N values from these two regions (Welch’s
ANOVA, §3C: Fi586=291.1, p < 2.2e-16; § °N: F1,560 = 20.9, p = 5.785e-06). Twenty-seven out
of thirty populations from the Loess Plateau show significant consumption of C4 plants (§'3C > -
12%o, see Table 3). High §'3C values can also be caused by significant consumption of marine
resources, making it difficult to distinguish between C4 and marine dietary inputs for coastal sites
as in Shandong and the Lower Yangtze, where marine resources were abundant in the
archaeological record [43]. The three Loess Plateau sites that do not exhibit dominant Cs
consumption at this time are all located in more southerly provinces that border on the Yangtze-
Huai Region (Shandong and Shaanxi), suggesting that there is probably northward expansion of
rice cultivation at this time (Fig 4 a). In the Yangtze-Huai Region, seven out of thirteen
populations have isotope values consistent with a predominantly-C3 diet (§'*C < -17%o, see

Table 3). The other six populations are consistent with a predominantly-Cs diet. The latter group
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comes from the southern Henan and Hubei provinces, and likely reflects the southern expansion
of millet cultivation in this period. Several individuals with extremely high 6'°N values in the
Yangtze-Huai region (Fig 2 f) come from coastal sites at which marine resources were likely

being consumed [44, 45].
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Fig 4. Isotope data by province, 5000-2000 cal BC. Boxplots of human bone collagen §'3C (a)
and 6 '°N values (b) by province from sites that date to between 5000-2000 cal BC arranged from
north (left) to south (right). Regions are differentiated by color: Loess Plateau (red) and Yangtze-
Huai (gray). Provinces sharing a letter are not significantly different (Tukey’s HSD). Statistics
are summarized in S3 Tables A-B.

Some interesting patterns emerged in the collagen versus apatite §'°C plot, using Kellner
and Schoeninger’s approach as described in the methods (Fig 5). At Jiahu, humans plot along
the Cs protein line, but their position on the y-axis (~ -10%o) suggests that their energy comes
from a mixture of C3 and Cs4 resources. Humans from Jiangzhai and Shijia, on the other hand,
plot more closely to the C4 protein line and their position along the y-axis, with apatite §'3C
values > -5%o, suggests their dietary energy is derived primarily from C4 energy sources. Both of
these sites are located on the Loess Plateau and these results help to clarify that some humans
from this time period and region were likely consuming fully Cs diets. The individual from
Banpo, another Loess Plateau site, tells a slightly different story because they fall between the Cs
and C4 protein lines, suggesting a mixed protein diet; their apatite 6'3C value is similarly

suggestive of mixed Cs and Cs energy sources. Although this method is not quantitative, it
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nonetheless allows for energy and protein resources to be evaluated separately, allowing for a
deeper understanding of past human diet than bulk collagen isotope values provide. Indeed, these
data suggest that later in the period of 5000-2000 cal BC, some humans on the Loess Plateau

were consuming millet directly as well as animals provisioned with millet (Jiangzhai and Shijia).
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Fig 5. Kellner and Schoeninger’s approach. §'3Capatite and §'*Ccollagen measured in
archaeological humans from one site dating to >5000 cal BC in the Yangtze-Huai region (gray,
Jiahu) and three sites from the Loess Plateau dating to between 5000 and 2000 cal BC (red).
Humans plotting along the Cs regression line are interpreted to consume primarily Cs protein,
while those along the Cs regression line consume Cs protein. The position on the line along the
y-axis is further indicative of the energy source, with low apatite 6'3C values corresponding with
Cs energy sources and high apatite §'3C values corresponding with Cs energy sources.

2000 cal BC — 220 cal AD

Between 2000 cal BC and 220 cal AD, China’s staple food system experienced a major
shift resulting from the introduction of wheat and barley (both are Cs plants) [46-48]. The
compiled isotopic data reflect distinct dietary choices between the prehistoric communities in the
Loess Plateau and the Continental Interior (Fig 2 g-i). In the Loess Plateau, other than a few
exceptional individuals from Henan Province, humans show isotopic signatures consistent with
predominantly-Cs or mixed C3-Cs consumption. Conversely, humans from the Continental
Interior exhibit a broader spectrum of dietary habits including predominantly-Cs, mixed C3-Ca,
and predominantly-Cs diets. The two regions show statistically significant differences in §'3C
and 6 °N values (613C: Welch’s ANOVA, Fi,1548=1113.8, p < 2.2e-16; § °N: Welch’s ANOVA,
Fi,1454=335.13, p <2.2e-16). Human data from 39 out of 43 sites from the Loess Plateau suggest
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that millet consumption was very significant (§'3C > -12%o), while human data from 19 out of 28
sites from the Continental Interior are consistent with C3 or C3-C4 mixed diets (§'°C < -12%o).
The significantly different §'°N values between the two regions could be the result of a
combination of several factors, including variable animal protein input, differences in crop §'°N
values caused by variable soil '°N enrichment, or aridity in the Continental Interior. The earlier

north to south divide in staple crop use is accompanied by a new divide between the east and the

west (see Fig 6).
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Fig 6. Isotope data by province, post-2000 cal BC. Boxplots of human bone collagen §'3C (a)
and 6 °N values (b) by province from sites that date to post-2000 cal BC arranged from east
(left) to west (right). Regions are differentiated by color: Loess Plateau (red) and Continental
Interior (blue). Provinces sharing a letter do not have significantly different means (Tukey’s
HSD). Statistics are summarized in S3 Tables C-D.

Gendered consumption

We next consider the differences in staple consumption between males and females
between 5000 and 2000 cal BC. In the Loess Plateau, females and males do not have
significantly different §'3C and §'°N values (Fig 7 a and b). In the Yangtze-Huai Region, no
significant difference in §'>N is observed, but significant differences are observed in §'3C values
(»p =0.0014, Fig 7 a and b, S4 Tables A-B), with males exhibiting higher carbon isotope values.
This difference is primarily driven by regional variations within the Yangtze-Huai Region; when

sexed individuals are compared within provinces, no significant differences are observed (Fig A
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in S1 File, S4 Tables C-D). It does not appear that social customs prohibited the consumption of
Ca-plants or animals consuming Ca4 products by females in either the Loess Plateau or Yangtze-
Huai Region during 5000-2000 cal BC, despite the fact that males consumed these foods to a

higher degree than females in both regions.

After 2000 cal BC, males exhibited higher §'3C and §'°N values than females in all three
regions (Fig 7 e and f), although the Loess Plateau is the only region where male and female
& 13C values differ significantly (p = 0.01, S4 Tables E-F). Because there is a risk of conflating
gender differences with differences in social status, particularly when sample sizes are small, we
focus our discussion on the Loess Plateau, where sample sizes are greatest. Lower §'3C values in
females from the Loess Plateau (n = 218) could indicate that females had greater access to newly
introduced Cs crops than males (n = 293). When gendered differences are considered at the
provincial level, differences (although not significant) are evident in several provinces where
males display higher access to Ca resources and protein products (e.g., Shandong, Henan,
Shaanxi, Inner Mongolia and Gansu; Fig B in S1 File, S4 Tables G-H). Only in Henan do males
have significantly higher §'*C values than females, which has been clearly documented at sites

in the region [49].
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a, b, e, and f, groups sharing a letter do not have significantly different means (Tukey’s HSD).
Statistics are summarized in S4 Tables A-B.

Discussion

Our results suggest that both environmental and cultural-culinary conditions contributed
significantly to the formation of staple cuisines in China. We shall next consider the observed
isotopic patterns in two temporal and spatial dimensions. Before 2000 cal BC, the north-and-
south dietary division will be considered in the context of regional variations of subsistence
activities, which are partly driven by differences in environmental conditions. After 2000 cal BC,
the introduction of crops originating from southwestern Asia resulted in an additional east-to-
west gradient in the degree of incorporation of wheat and barley in human diets. We shall
explore this pattern in relation to culinary traditions and emphasize the incompatibility of novel

exotic grains with local culinary practice.

It is no exaggeration to say the millennium between 6000 and 5000 cal BC is crucial to
understanding the origins of farming activities in East Asia [13, 15]. The north and south dietary
divergence observed in this period is better understood as a difference in the spectrum of
subsistence activities, rather than as separated peoples. In the Yangtze-Huai Region, human
carbon isotope values are consistent with a C3-plant dominated diet, which likely consisted of Cs3
resources identified in the archaeobotanical record (i.e. rice, fruits, tubers, nuts) [23]. In the
Loess Plateau, however, humans relied on C4 foods. Broomcorn and/or foxtail millet were
documented at all four northern sites (or associated cultural sites) in high quantities [12, 50]. No
other Cs cereal has been identified in the plant macrofossil assemblages from this time period.
There is microbotanical evidence for job’s tears (a C4 plant) at Xinglonggou [51], however,
given the tropical adaptation of genus Coix, job’s tears were unlikely to be cultivated on a large
enough scale to become a staple cereal 7500 years ago. The tradition of consumption of Cs crops
as staple foods emerged in this period and was particularly pronounced among the Xinglongwa
cultural communities. At Xinglonggou, we estimated the proportional contribution of Cs plants
to human diet to be greater than 50%, nearly two-times more significant than herbivores, the

second most important dietary resource.

21



PLOS ONE
https://doi.org/10.1371/journal.pone.024930

Above all, the distinct subsistence modes between north and south in Neolithic China are
driven by regional environmental differences. The lower catchment of the Yangtze and Huai
Rivers was an intricate deltaic wetland crisscrossed by hundreds of distributaries, merging and
diverging with seasonal flooding. People in this region relied overwhelmingly on wetland
resources, including rice — an aquatic plant - for their subsistence. In contrast, landscapes in the
north form a single relatively uniform semi-arid zone across the Loess Plateau. From early on,
millet cultivation became the key component of agrarian based subsistence in the Loess Plateau.
Within this perspective, the broad spectrum of subsistence activities in the Yangtze-Huai within
an environmental mosaic consisting of swamps, marshes, fens and wetlands can be seen as the
mirror image of unified agrarian practices based on millet grain in the northern Loess Plateau.
That is, both of these highly sustainable systems in the north and south took advantage of the
subsistence options their landscape setting provided. And this arrangement seems to have
persisted for another 3000 years (5000-2000 cal BC). The regional difference in dietary tradition
between north and south, along with the variation within each region, challenges the
conventional “stages” of shifting modes of subsistence — hunting, foraging, pastoralism, and
farming — in an evolutionary framework. Both historical and archaeological evidence shows that
peoples moved fairly readily between distinctive modes of subsistence and the same people
might have practiced more than one subsistence mode in a single lifetime [52, 53]. In China as
elsewhere, it seems early peoples combined subsistence modes in a number of innovative hybrids
that co-existed over thousands of years. The north-south dietary distinction in China resonates
with the conceptual distinction in southwest Asia between the northern “Hilly Flanks” and the

southern Mesopotamian alluvium highlighted by James Scott [53].

The rapid adoption of wheat and barley as staple foods in the Continental Interior by
2000 cal BC contrasts the very gradual pace of the adoption of these western crops in the Loess
Plateau. In a recent review focused on northern China, the authors noted that the shift from a Ca-
dominated diet to a mixed C3-Cs diet at this time was concurrent with “Holocene Event 3” at
4200 BP (2,250 BC) [54]. A global aridification event may well be part of the explanation of the
readiness of communities in the Continental Interior to accept wheat and barley as new staples.
Nonetheless, the question remains - what delayed the adoption of wheat and barley in the Loess

Plateau? As discussed elsewhere, one plausible social explanation is that in the early stages of
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their adoption in the Loess Plateau, these crops were exclusively used by the few--such as elites,

ritual specialists or others--rather than the many [55]. But this is not the only explanation.

An alternative interpretation lies in the deep-seated East and West culinary distinction.
As established, boiling and steaming of grains and other foods appear to have been and remained
the predominant East Asian methods for preparing foods. By contrast, cereals in southwestern
and Central Asia such as wheat and barley were processed for a flour-focused food system. Such
an East-West culinary distinction can be traced back to the pre-agricultural Palaeolithic [56].
These culinary preferences had consequences for the selection of grain quality and features, with
gluten protein being the target of selection in west Eurasia for making bread, and starch
properties being selected in East Asia for the function of boiling-steaming. It has been
hypothesized that the western boundary of the boiling-steaming culinary tradition appears to
correspond approximately to the geographic range of the summer monsoon [56]. In other words,
the people of the Loess Plateau and Continental Interior each belonged to two distinct culinary
systems: the boiling-and-steaming cultures in the East and grinding-and-baking cultures in the
West. The gradual adoption of western grains (wheat and barley) and the isotopic evidence
associated with it could be understood in this context. The dispersal of crops into new areas was
not necessarily accompanied by the spread of the culinary traditions from their regions of origin.
Novel grains could instead be incorporated into existing local practices of food processing. In the
case of wheat, it has been illustrated this incorporation may have exerted selection on the crops
for phenotypic traits adapted to the eastern cooking traditions [55]. In southeast Asia, the
preference for cultivation of cereals that show within-species variation for stickiness of the
cooked grain are typified by the eastern boiling-and-steaming cultures [57]. In both cases, it is
plausible that the novel grains from the West (i.e. wheat and barley) might be initially “rejected”
as a staple grain because of their incompatibility with local culinary practice, and this is
consistent with the isotopic results showing a significant delay in human consumption of wheat
and barley as a staple food in the Loess Plateau. Within the context of symbolism and social use
of food [1], culinary traditions are often related to kinship and family structure, and that was the
case in southeast Asia with the sticky food culture [57]. In the post-2000 BC Loess Plateau,
newly introduced staple cereals from the West were consumed by females to a greater degree

than males. This hints at the gender roles in the context of social status of grains and food
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processing with the female sector of the society being the primary agent of the process,

pioneering innovations in culinary practice.

Conclusion

Modern Chinese cuisine formed over thousands of years through the development of diverse
regional subsistence systems and cuisines, which were further influenced by food traditions from
other parts of the world. Our results help to illustrate the ways in which both environment and
culture contributed to shaping the Chinese staple food system over the past 8000 years. A distinct
north versus south divide in Chinese ancient staple cuisines was already evident isotopically
between 6000-5000 cal BC and became more pronounced between 5000-2000 cal BC. We infer
that this pattern is better understood as a difference in the spectrum of subsistence activities,
which was partly driven by environmental differences between the Loess Plateau and the
Yangtze-Huai region. The introduction of wheat and barley from southwestern Asia after 2000
cal BC resulted in the development of an additional east to west gradient in the degree of
incorporation of the different staple products into human diets. We argue the regional differences
in dietary tradition between and within the three broad regions throughout the Neolithic and the
Bronze Age could not be understood in the conventional “stages” of shifting modes of
subsistence: hunting-foraging-pastoralism-farming. Instead the same people might have
practiced more than one subsistence mode and combined them in a number of innovative hybrids
that co-existed over thousands of years. The rapid adoption of wheat and barley as staple foods
in the Continental Interior by 2000 cal BC contrasts the very gradual pace of the adoption of
these western crops in the Loess Plateau. Apart from the possible environmental and social
drivers, we explored a third explanation that these novel grains may have at first been ignored as
a staple grain because of their incompatibility with local culinary practice; people of the Loess
Plateau belonged to a boiling-and-steaming culture while those in the Continental Interior
belonged to a grinding-and-baking culture into which wheat and barley were more readily
folded. Finally, in some cases in the Loess Plateau, newly introduced staple cereals from the
West were consumed by females to a greater extent than males, suggesting that the female sector

of society may have pioneered the innovations in culinary practice.
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