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Recent experimental and computational studies indicate that near-wall turbulent flows
can be characterized by universal small-scale autonomous dynamics that is modulated by
large-scale structures. We formulate numerical simulations of near-wall turbulence in a
small domain localized to the boundary, whose size scales in viscous units. To mimic
the environment in which the near-wall turbulence evolves, the formulation accounts for
the flux of mean momentum through the upper boundary of the domain. Comparisons
of the model’s two-dimensional energy spectra and low-order single-point statistics with
the corresponding quantities computed from direct numerical simulations indicate that it
successfully captures the dynamics of the small-scale near-wall turbulence.
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1. Introduction

High Reynolds number wall-bounded turbulent shear flows are characterized by a
separation of scales between the flow in the near-wall region, in which mean viscous
stresses play an important role, and the flow farther away from the wall, where mean
viscous effects are largely negligible. This separation of scales is quantified by the friction
Reynolds number Re, = §/6,, where § is the characteristic length scale of the shear layer,
such as a channel half-width, a pipe radius or a boundary layer thickness, and §, = v/u, is
the viscous length scale, where v is the kinematic viscosity of the fluid, u, = /7, /p,
7,, 1s the mean wall shear stress and p is the fluid density. Both the direct numerical
simulation (DNS) and large eddy simulation (LES) of such wall-bounded turbulent flows
are expensive, as the spatial degrees of freedom required to resolve the near-wall layer
scale as O(Re?”) and O(Re?) for DNS and LES, respectively (Mizuno & Jiménez 2013).
For a large class of flows of technological importance, this cost is prohibitive, even on
modern high-performance computing systems.

Thanks to advances in experimental techniques and computational power, the
understanding of the physics of wall-bounded flows has increased greatly since the earliest
investigations by Hagen (1839), Darcy (1854) and Reynolds (1895), and the later work
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FIGURE 1. Unfiltered, high-pass (SS) and low pass (LS) portion of the turbulent kinetic energy
scaled in viscous units with k8, = 0.00628 (A /8, = 1000) for a channel flow at various Re;
(green: Re; = 550, blue: Re; = 1000, red: Re; = 2000, black: Re; = 5200). The contribution
from the large scales increases with Re;, but the contribution from the small scales is largely
independent of Re,. Figure reproduced from Lee & Moser (2019) with permission.

by Millikan (1938). It is well known that there is an autonomous near-wall cycle of
self-sustaining mechanisms (Jiménez & Moin 1991; Hamilton, Kim & Waleffe 1995;
Jeong et al. 1997), involving low and high speed streamwise velocity streaks and coherent
structures of quasi-streamwise vorticity. Jiménez & Pinelli (1999) showed that this cycle
of near-wall dynamics persists without any input from the turbulence farther away from
the wall. Moreover, if any element of the cycle is suppressed, the near-wall turbulent
kinetic energy (TKE) decays, and the flow becomes laminar. However, the large-scale
structures (superstructures) in the outer layer do modulate the turbulent fluctuations in
the near-wall region (Hutchins & Marusic 2007; Marusic, Mathis & Hutchins 2010a;
Ganapathisubramani et al. 2012), leaving their ‘footprint’ on the autonomous cycle.
Mathis, Hutchins & Marusic (2011) (see also references therein) modulated a ‘universal
signal’ identified in experimental data as the contribution of the small-scale near-wall
turbulence, to formulate a predictive statistical model. The large-scale modulation results,
for instance, in an Re.-dependent peak of the turbulent kinetic energy in the near-wall
region (see figure 1) because its influence increases with increasing Re, (DeGraaff &
Eaton 2000).

Recently, Lee & Moser (2019) performed spectral analysis of channel flow DNS data for
several different Re, (ranging from approximately 550 to 5200) to investigate the relative
importance of different length scales to the production, transport, and dissipation of TKE.
Their results suggest that the small scales in the near-wall region behave universally.
Indeed, when the energy spectrum is high-pass filtered to only include contributions from
wavenumbers (defined to be k = 2w/A, where A denotes wavelength) with magnitude
larger than some k.6, = 0.00628 (corresponding to a wavelength A.,/§, = 1000), the
resulting energy is found to be independent of Re,, as shown in figure 1. Similar
results were also obtained in Samie er al. (2018) for experimental data ranging from
Re, =~ 6000-20000. These works, along with those mentioned above, indicate that the
near-wall region has universal small scales, independent of Re,. The large scale portion
of the near-wall turbulence, however, is the result of eddies whose size and influence on
the turbulent statistics depend on Re,. These observations suggest that an appropriately
formulated numerical simulation of only the small-scale near-wall dynamics should be
able to reproduce the near-wall small-scale statistics (e.g. SS in figure 1). One objective of
the work reported here is to test this hypothesis.
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With this in mind, we endeavour to design a computational model of the universal
near-wall small scales of turbulent, wall-bounded shear flows. The primary modelling goal
is to accurately represent the contribution of the small scales to the near-wall turbulent
statistics without simulating the entire wall-bounded turbulent shear flow. The model is
formulated to simulate wall-bounded turbulence only in a near-wall, rectangular domain
§2 localized to the boundary. The size of the domain scales in viscous units, so that as
Re, increases, the domain shrinks in size relative to the size of the overall flow whose
near-wall turbulence is being modelled.

The model is formulated to mimic the mean flux of momentum from the outer layer, but
it otherwise ‘isolates’, or decouples, the near-wall dynamics from large-scale outer-layer
influences, such as the modulations by superstructures. In this way it is similar to the
numerical experiments described in Jiménez & Pinelli (1999) in which the equations of
motion are filtered to suppress the dynamics above some fixed wall-normal height. It is
fundamentally different from a low Reynolds number channel flow, for example, whose
dynamics is influenced by the presence of the opposite wall. If such a configuration
can accurately model the dynamics of the near-wall, small-scale features of the flow, it
could be used to study the response of near-wall turbulence to changes in the momentum
environment, including the effects of pressure gradients. Further, assuming a separation of
scales between the small-scale autonomous near-wall dynamics and the large-scale outer
turbulence that modulates it, the model flow could be used to inform a representation of
wall turbulence in a wall-modelled LES.

This paper reports on the development and evaluation of just such a computational
model of the near-wall layer in turbulent shear flows. It originated as a design for
the high-fidelity, ‘microscale’ component of a multiscale computational approach for
simulating wall-bounded turbulence in the style of the heterogeneous multiscale method
(Abdulle et al. 2012), as pursued by Sandham, Johnstone & Jacobs (2017), who coupled
their microscale model to a LES in a full channel. Previous multiscale approaches of
this type include Pascarelli, Piomelli & Candler (2000) and Tang & Akhavan (2016),
in which LES are coupled to minimal flow unit simulations. One application of the
model will be to generate data to inform a pressure-gradient-dependent wall model
for an LES (Piomelli & Balaras 2002; Bose & Park 2018), as suggested by Coleman,
Garbaruk & Spalart (2015). In this case, the model plays the role of the universal signal
in Mathis et al. (2011). Additionally, the current model approach could be used to study
the interaction between the small, near-wall turbulent dynamics and more complicated
physical processes, such as heat transfer, chemical reactions, turbophoresis or surface
roughness.

The rest of the manuscript is organized as follows: § 2 contains a description of the
computational model and the numerical method used to integrate the equations of motion.
Section 3 provides a comparison between the statistics generated by the model and the
corresponding quantities from DNS for the cases of both zero and mild favourable pressure
gradients. In § 4 the results are summarized, and possible applications and extensions of
the model are discussed.

2. Formulation
2.1. Notation

In the following discussion, the velocity components in the streamwise (x), wall-normal
(y) and spanwise (z) directions are denoted as u, v and w, respectively, and when
using index notation, these directions are labelled 1, 2 and 3, respectively. The expected
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value is denoted with angle brackets (as in (-)), and upper case U and P indicate the
mean velocity and pressure, so that (u;) = U;. The velocity and pressure fluctuations
are indicated with primes, e.g. u; = U; + u.. Partial derivatives shortened to 0; signify
d/dx;, differentiation in the direction x;. The mean advective derivative is D(-)/Dt =
9,(-) + U;0;(-), where Einstein summation notation is implied. In general, repeated indices
imply summation, with the exception of repeated Greek indices. Lastly, the superscript
‘+’ denotes non-dimensionalization with the kinematic viscosity v and the friction
velocity u;.

2.2. Motivation

Intrinsic to the computational model is the assumption of a separation of temporal and
spatial scales between the small-scale turbulence arising from the autonomous near-wall
dynamics and the large-scale outer-layer turbulence. The near-wall dynamics can therefore
be considered to be in local equilibrium with the pressure gradient and momentum
flux environment in which they are evolving. Furthermore, under this scale-separation
assumption, both the local pressure gradient and the turbulent momentum flux from the
outer layer toward the wall can be considered constants on the scale of the near-wall
dynamics being simulated. Note that despite this assumption, the near-wall model will be
representative of the wall layer in wall-bounded flows that are not in equilibrium overall,
or those with non-constant pressure gradients. The assumptions break down, for example,
for a boundary layer near separation.

The goal of the computational model is to simulate the turbulent small scales
in the near-wall region as a function of an imposed pressure gradient only in a
small, rectangular domain localized to the boundary. This necessarily means placing
non-physical computational boundaries in a region of chaotic, highly nonlinear dynamics.
In addition to the standard no-slip condition at the lower boundary y = 0, the use of
periodic boundary conditions at the sidewalls is well established, assuming the flow is
statistically homogeneous in these directions. The problem of prescribing appropriate
boundary conditions at the upper computational boundary, however, is non-trivial
(Berselli, Iliescu & Layton 2006; Sagaut, Deck & Terracol 2006). Once a mathematically
well posed condition is prescribed, care must be taken to prevent the approximation
inherent in the boundary condition from polluting the turbulent dynamics in the domain’s
interior. To address this issue, the model augments the near-wall computational domain
with a ‘fringe region’. In this fringe region, the flow is externally forced to account for
the mean flux of momentum through the upper computational boundary that is precluded
by the boundary conditions imposed there. The inclusion of such a region increases the
computational cost of the model, but it provides the momentum transport needed to
create the ‘correct environment’ for the evolution of turbulence in the near-wall region.
In this way, the fringe region mollifies the effect of the non-physical computational
boundary. Similar techniques are used for designing inflow/outflow conditions in the DNS
of turbulent boundary layers (Colonius 2004; Khujadze & Oberlack 2004; Wu & Moin
2009; Sillero, Jiménez & Moser 2013), for example, as well as in molecular dynamics
simulations, often referred to as a ‘heat bath’ or ‘thermostat’ (Berendsen ef al. 1984; Yong
& Zhang 2013).

If one is interested in the turbulent statistics resulting from a constant-pressure-gradient
near-wall region out to a wall-normal height of y & H, the fringe region consists of a
layer from H < y < 2H in which a horizontally uniform streamwise forcing is applied, as
illustrated in figure 2.
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FIGURE 2. The fluid is subject to periodic boundary conditions at the (dash-dotted) sidewalls,
constant Dirichlet/Neumann conditions at the upper boundary y = 2H and the no-slip condition
at the wall y = 0, as described in (2.1). In addition to the constant pressure gradient assumed to
be present in the near-wall layer, the model includes an auxiliary pressure gradient in a ‘fringe
region’ to account for momentum transport at the computational boundary y = 2H.

2.3. Mathematical formulation

The near-wall patch (NWP) model is defined by the equations of motion and boundary
conditions in the rectangular domain §£2 = [0, L, ] x [0, L,] x [0, L.]:

8;1/{,' + ujajui + 8,p — vajaju,- =f; — 8,P in Q,
aﬂ/l,‘ =0 in Q,
0;P = dP/dx &;; is constant in 2,

u; periodic in x and z directions in §2,
2.1
uy=0, y=0,
v=0w=0, y=L,,
hu=vy R, y=L,,

ﬁ('xvyaz’t) =f(y)811 in £2.

These are simply the forced incompressible Navier—Stokes equations on a periodic
domain in the wall-parallel directions, with the no-slip boundary condition at y = 0 (the
wall), and no-flow through and constant viscous tangential traction v in the streamwise
direction (x) specified at the top y = L,. The term dP/dx models the externally imposed
streamwise pressure gradient in the real turbulent flow being modelled, which is constant
on the scale of the NWP. The pressure p is the NWP model’s pressure field, which
is determined from the incompressibility constraint, in the usual way. It only remains
to specify ¢ and the forcing function f( y). The former represents the viscous flux of
momentum through the top, and the latter is a source of streamwise momentum that
makes up for the missing turbulent flux of streamwise momentum through the upper
computational boundary, owing to the boundary conditions that imply that the Reynolds
stress vanishes there.

The forcing function f(y) is non-zero only in the fringe region y > L,/2, and is
constructed such that

Ly
/ f(y)dy = —Tum, (2.2)
0

where 7, is the turbulent flux of mean momentum through y = L, in the turbulent flow
being modelled.
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In the real turbulent flow with a (locally) constant mean pressure gradient, the mean
streamwise momentum equation integrated over [0, L,] yields

dpP aU
__Ly +{v— — Twrb | — Tw = 0, (23)
d'x ay y=L,
dpP
= T, = —aLy + Tzop- (24)

The term in parentheses, 7,,, is the total momentum flux (viscous plus turbulent) through
y = L, and it, along with dP/dx, determines the mean wall shear stress t,,.
The mean streamwise stress balance for the NWP model system (2.1) is

oUu Y dpP
V— — <u’v’) +/ f()ds =y— +1,. (2.5)
3y 0 dx

The boundary conditions in (2.1) and the constraint (2.2) imply that at y =L,, (2.5)
becomes

Ly dp
w4 | f)ds=L, +1,, (2.6)
0 dx
dP
== Ty = _aLy + VW — Twurb> (27)

so that for fixed L,, the parameters v, T, ¥ and dP/dx determine t,. Dimensional
analysis therefore implies that there is a two-parameter family of possible turbulent flows
to model.

By specifying ¢ and 7, so that v{y — t,,, = T, the NWP model’s mean stress
balance augmented with the forcing function f (2.7) will be consistent with that of the
real turbulent flow being modelled (2.4).

2.4. Physical parameters

The total mean stress at y = L, for the NWP model is given by
Tior := VY — Tuurp- (2.8)

In wall units, 1, is simply a function of dP*/dx*:

) dp+
th =1 + Lydx_""

(2.9)

The pressure gradient dP/dx™ is thus one parameter defining a model case, and its
values for the four cases presented — three favourable-pressure-gradient cases and one
zero-pressure-gradient case — are shown in table 1. The values for 7.}, are also shown for
convenience, but of course they are simply determined via (2.9).

The second parameter to define a NWP model case is ¥ ; it determines the portion of
7}, carried by the mean viscous stress. For all of the statistics reported in § 3, however, the
actual value of ¥ used was found to be insignificant. For each case listed in table 1,
an initial ¥ was determined from available DNS data. Results were then compared
from runs with ¢+ =y T =2¢F YT =) /2 and ¥+ = 0, and the differences
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Case name NWP550 NWP1000 NWP5200 NWPzpg

—dPt/dxT  (543.496)"!  (1000.512)7"  (5185.89)"! 0
T —0.10396 0.4003 0.8843 1

TABLE 1. Imposed pressure gradient and the resulting total momentum flux 7, at y = Ly, for
the model cases presented. The favourable-pressure-gradient parameters were selected to match
the pressure gradients in the channel flow cases at https://turbulence.oden.utexas.edu/. Note that
data from the NWP550 case are only used in figure 14.

@12 NWP1000 )12 NWP5200 12 NWPzpg
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FIGURE 3. Blue: model total stress 7,0 (y*)=0U"/dyT — (u’v/)+; red: target total

SIess Tyhyoer = 1+ yTdPT/dxT; green: primitive F*(y™) of forcing function fT; black:

T (V) + FT(yT); cyan: total stress for a simulation without the forcing function f; for
all the three model cases listed in table 1.

were found to be negligible. Hence, there is really only a one-parameter family of
possible turbulent flows to explore with the model, and for simplicity, ¥/ is set to zero.
Accordingly, (2.8) reduces to

Tiot = — Trurb- (210)

Figure 3 illustrates the statistically converged stress balances for these model cases.
Included in the figure is a stress profile resulting from simulating the equations of motion
(2.1) without the extra momentum flux provided by the auxiliary pressure gradient f
(the cyan curve). In that case, a similar analysis to that shown in (2.5)—(2.7) above
shows that the statistically converged stress profile is simply a linear function with
values 77 = 1 and ¢* at y© =0 and y* = L, respectively. It is clear that this stress
profile is in poor agreement with the target profiles (2.9), which is to be expected, since
yt=1/ (KL;) in the log region. Moreover, this discrepancy increases with decreasing
dP* /dx* (corresponding to increasing Re, when comparing to a channel flow), illustrating
the utility of including the extra momentum flux provided by the auxiliary forcing term f.

2.5. Computational parameters

The remaining model parameters, consistent for all simulation cases, are summarized
in table 2. The size of the rectangular domain §2 is taken to be L = L} = 1500
and L} = 600; these values, while somewhat arbitrary, were determined through a
combination of numerical experimentation and the spectral analysis of Lee & Moser
(2019). Their work suggests that the contributions to the turbulent kinetic energy from
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yt o Lf=Lf LY No N, N, Axt AZf Ay}
0 1500 600 120 256 192 125 5.86 0.002817

TABLE 2. Summary of simulation parameters consistent for all simulation cases; v is the
prescribed value for the Neumann boundary condition in (2.1). Ny and N, refer to the number of
Fourier modes, while Ny is the number of B-spline collocation points. Ax = L, /N, and similarly
for Az. Ay, is the collocation point spacing at the wall.

modes with wavelengths At < 1000 are universal and Re,-independent in a region below
a wall-normal distance of approximately y™ = 300. Accordingly, L;’ =2-300 = 600
is chosen to allow for a sufficiently large fringe region to mollify the effect of the
non-physical computational boundary at y = L, (see figure 2), and both LT and L are
taken to be at least 1000.

For the domain size in the stream/spanwise directions, there generally is a balance
between computational cost and the accuracy of the model, as defined by a comparison
of the model’s energy spectral density with that of large-scale DNS. In particular, a
variety of domain sizes were tested, ranging from L} = L’ = 1000 to approximately
3500. Increasing L, and L, results in better agreement of the model’s low-wavenumber,
large-scale portion of the energy spectral density with the corresponding portion computed
from DNS. The high-wavenumber, small-scale portion of the model’s energy density,
however, was insensitive to the domain size, so long as L, and L, were not taken to be
too close to L} = L = 1000. In particular, L = LT = 1500 was found to be the smallest
domain size capable of reproducing the unlversal small scales discussed in § 3.3.

Given some target turbulent flux of mean momentum t,,,,, the auxiliary forcing f must
satisfy (2.2), but it is otherwise unconstrained. For the simulations reported here, f is
defined explicitly to be

4tun/LY (L, —2y) (5L, —4y), y € [L,/2,L,]
0, y €[0,L,/2],

f(y) = { (2.11)

which was chosen to satisfy f(L,/2) = f'(L,/2) = f'(L,) = 0. In particular the constraint
f'(Ly/2) = 01is important so that the transition in forcing from the near-wall region to the
fringe region is smooth. Other functional forms of f, however, are of course possible. In
particular a quadratic profile satisfying (2.2) and f(L,/2) = f'(L,/2) = 0 was tested, and
no detectable changes in the statistics in the near-wall region y™ € [0, 300] were found.

2.6. Numerical implementation and resolution

The model (2.1) is solved numerically using the velocity—vorticity formulation due to Kim,
Moin & Moser (1987). The equations of motion are discretized with a Fourier—Galerkin
method in the stream/spanwise directions and a seventh-order B-spline collocation method
in the wall-normal direction (Kwok, Moser & Jiménez 2001; Botella & Shariff 2003; Lee
& Moser 2015). They are integrated in time with a low-storage, third-order Runge—Kutta
method that treats diffusive and convective terms implicitly and explicitly, respectively
(Spalart, Moser & Rogers 1991). The numerical resolution in both space and time is
consistent with that of DNS. The number of Fourier modes, and hence the numerical
resolution, used in each simulation is listed in table 2, and can be compared with,
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NWP1000 NWP5200 NWPzpg
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FIGURE 4. Statistical convergence for the model cases listed in table 2 — solid lines:
+
absolute error | 7,1 ./ (y") = Trarger(y )|, where 7, = 0UT /9y — (u/'v')" and 15,0 = 1 +
y*dPT /dxT; dash-dotted lines: standard deviation of the estimated statistical error for 'L';l_ odel 1D

the region y* € [0, 300].

for instance, table 1 in Lee & Moser (2015). In addition, the collocation point spacing
in the wall-normal direction is similar to previous DNS studies; the total number of
collocation points N, is taken to be equal to the number of collocation points below
yt =600 in Lee & Moser (2015). They are then distributed in the near-wall region
according to the same (shifted and rescaled) stretching function.

The model is implemented with a modified version of the PoongBack DNS code
(Lee, Malaya & Moser 2013; Lee et al. 2014), and the initial condition is taken from a
restart file from a DNS run that is truncated to fit in £2 at the resolutions listed in table 2
and modified to satisfy the boundary conditions 2.1.

2.7. Statistical convergence

The method of Oliver et al. (2014) is used to assess the uncertainty in the statistics reported
due to sampling noise. For each pressure-gradient case, statistics are collected by averaging
in time until the estimated statistical uncertainty in the mean stress profiles is less than a
few per cent. For the cases in table 2 reported here, the sampling error is less than three
per cent, as shown in figure 4.

3. Numerical results

The NWP model can be interpreted in two ways. In the first, one considers it to be
a model for the small-scale near-wall turbulence in a wall-bounded flow with mean
pressure gradient in wall units the same as the imposed pressure gradient in the model.
In this case, one aspires to have the statistics from the model and the real flow match
for quantities that are insensitive to the unrepresented large scales or for the statistics
of the small scales computed from a low-pass filter as in Lee & Moser (2019). This is
the interpretation explored in the results reported here. In the second interpretation, the
NWP model represents small-scale near-wall turbulence in a region of a real wall-bounded
turbulent flow with local pressure gradient in wall units based on the local wall shear
stress the same as that imposed in the model. In this case, the NWP model is analogous
to the universal signal of Mathis et al. (2011), representing the process that is modulated
by large-scale outer-layer fluctuations in a real turbulent flow. These interpretations are
clearly complementary, and both should be valid given the scale-separation assumptions
on which the model is predicated.
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The statistics reported here were computed from the three near-wall patch model cases
NWP1000, NWP5200 and NWPzpg. The first two are so named because the imposed
favourable pressure gradient in these cases is the same in wall units as the mean pressure
gradient in a fully developed channel flow with friction Reynolds number Re, = 1000
and 5200. For NWPzpg, the imposed pressure gradient is zero. To assess the quality of
the NWP, statistics from the model will be compared to those from the channel flow
DNS of Lee & Moser (2015, 2019) at Re, = 1000 and Re, = 5200-referred to below
as LM1000 and LM5200 (statistics at https://turbulence.ices.utexas.edu), and the zero
pressure turbulent boundary layer DNS of Sillero et al. (2013), Borrell, Sillero & Jiménez
(2013) and Simens et al. (2009) at Re, = 2000, which is referred to below as SIM2000
(statistics at https://torroja.dmt.upm.es/turbdata/blayers/high_re/). So, comparisons are
being made to flows in which the mean pressure gradient is the same in wall units as
the imposed pressure gradient in the NWP models. However, many wall shear flows can
have the same dP*/9x*. For example, the NWP1000 and NWP5200 cases could equally
well be associated with favourable-pressure-gradient boundary layers and the NWPzpg
case has imposed pressure gradient consistent with an infinite Reynolds number channel.
Note that there is streamwise evolution of the mean wall shear stress in SJIM2000, which
is not the case in the channel flow cases. The comparison here is hence predicated on this
evolution occurring over scales that are asymptotically large relative to the viscous scale,
which indeed is the case.

3.1. Mean velocity and shear stresses

If the near-wall turbulence fluctuations represented in the NWP model dominate the
Reynolds stress, as is expected from the spectral analysis of Lee & Moser (2019), then the
mean velocity in the NWP should match that in a full turbulent flow. Figure 5 demonstrates
that this is indeed the case. The relative error in Ut is less than 0.6 % for y* € [0, 300],
and the error is similarly small for the log-law indicator function S+

+

0
By =y Y

oyt (3.1

in the range y* € [0, 100]. However, there is mild disagreement of B in the range
y* €[100,300]. As expected, the profiles diverge for y* > 300. The NWP model’s
Reynolds shear stress (u'v’) is in excellent agreement with that of the DNS in the region
y* € [0, 300], as expected given the agreement of the mean velocity; see figure 6. For
the channel cases, the error is less than 0.5 %, and for the zero-pressure-gradient case
the error is below 4 %. In the former, the total stress at y = L, is known analytically
as 7, =1+ L7 dP"/dx* and is used to define f(y) in (2.2), (2.8), and (2.9). In the
latter, the same relations are used, though they are approximate due to the streamwise
growth of the near wall layer in a boundary layer. This may explain the relatively larger
discrepancy between the (u'v’) profiles for the boundary layer. In both instances, recall
that (u'v’) necessarily vanishes at the upper computational boundary as a consequence of
the boundary condition v = 0 in (2.1). The accuracy of the Reynolds shear stress profiles
in spite of this condition demonstrates the utility of the forcing function f in enabling
momentum transport to the near wall region y* € [0, 300].

3.2. Energy spectral density

For two points (x,y,z), (x',y,7) € R x [0,25] x R in an infinitely long channel,
define the separation distances r, = x — x’ and r, = z — 7. For a turbulent flow that is
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FIGURE 5. Mean velocity UT (a) and the indicator function B = y™d,+U" (b) versus
log(y™). The black dashed-dotted vertical line marks y+ = 300, and the red dashed-dotted lines
plot the law of the wall UT = y* and UT = (1/«) log(y™) + B, where k = 0.384 and B = 4.27
(Lee & Moser 2015).
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FIGURE 6. (a) Reynolds stress — <u’v’)+ and (b) the filtered Reynolds stress — <u’ v’);s (defined

by (3.8) and discussed in § 3.3) as a function of log( y™). The black dashed-dotted vertical line
marks y* = 300.

statistically homogeneous in the stream and spanwise directions, the two point correlation
tensor

Rij(ry, y, 1) := (u;(x + 1y, 2 rux, y, z)) (3.2)

is a function only of r,, y and r,. Taking the Fourier transform of (3.2) in the variables r,
and r, defines the spectral density Ej;(k,, y, k;), which encodes the average contribution
to the Reynolds stress tensor from different length scales as a function of the wall-normal
variable y. The Reynolds stress tensor can be recovered by taking the limit (r,, r,) —
(0, 0) in (3.2), or by integrating the spectral density over all wavenumbers

(WMm://@@J&m@%. (3.3)
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For a wall-bounded flow in a full size domain, the low-wavenumber contributions to the
Reynolds stress represent the mean influences of the large-scale structures on the near-wall
dynamics. As is well known (Hutchins & Marusic 2007; Marusic et al. 2010a; Lee &
Moser 2017; Samie et al. 2018; Lee & Moser 2019), these low-wavenumber features of
the near-wall flow depend on Re;. In contrast, there is evidence that the high-wavenumber
(small-scale) contributions to the Reynolds stress profiles are universal and independent
of Re, (Samie et al. 2018; Lee & Moser 2019). By design, the NWP model’s domain
size does not allow accurate representation of the very large-scale structures known to
exist in the near-wall region, and thus one cannot expect to capture their influence on the
near-wall velocity fluctuations. Instead, one expects the NWP model to correctly capture
the dynamics of the universal small scales elucidated by Samie et al. (2018) and Lee &
Moser (2019) associated with the autonomous cycle of Jiménez & Pinelli (1999).

To determine whether or not this is the case, the model’s spectra E;; are compared to
their DNS counterparts. The spectra are visualized in so-called log-polar coordinates (Lee
& Moser 2019), in which the wavenumber magnitude k = /k2 + k2 is represented on a
logarithmic scale. For fixed wall-normal location, the log-polar coordinates are defined as

kf: :=1310gIO i ,
k kref

k k
K= zz log,, (E) ,

where k. is an arbitrary reference wavenumber that must be smaller than the smallest
non-zero wavenumber included in the spectrum, taken here to be k;f = 1/50000. Two
advantages of these coordinates are that lines of constant k,/k, have slopes of k,/k.,
and lines of constant magnitude k map to circles. In this way, the orientation and
alignments of the Fourier modes are easily interpreted; see Lee & Moser (2019) for a
more detailed discussion. The two-dimensional spectral densities of the streamwise and
wall-normal velocity variances are shown in figures 7 and 8, respectively. The spectra
are visualized at the wall-normal locations y* = 15, y* = 100 and y* = 300 for the
simulations NWP1000, NWP5200, LM1000 and LM5200.

In each of the cases, the streamwise velocity spectra Ej; consist primarily of energy
concentrated along the k* axis, with Fourier modes for which k,/k, 2 10 (Lee & Moser
2019). These correspond to structures that are strongly elongated in the streamwise
x-direction, such as the well-known, near-wall low- and high-speed streaks. The channel
flow data LM 1000 and LM5200 (columns two and four in figure 7) show that this energy
exhibits two distinct features. The first is an ‘inner energy site’ (Samie e al. 2018), a
triangular shaped region in the near-wall layer y™ ~ 15 distributed primarily between
wavelengths AT = 100 and AT = 1000 that can be attributed to the autonomous near-wall
dynamics described by Hamilton et al. (1995), Jeong et al. (1997) and Jiménez & Pinelli
(1999) and others. The model Ej; spectra, shown in columns one and three in figure 7,
qualitatively reproduce the inner energy site, suggesting that it captures the dynamics of
the near-wall, small-scale energetic motions.

The second feature is a concentration of energy at relatively low wavenumbers (in
the range 1000 < A* < 10000) along the k¥ axis at each of the wall-normal locations
yt =15, y* =100, and y* = 300. These are due to the very large-scale motions
(VLSMs) imposed from the outer-layer flow described by Hutchins & Marusic (2007)
and Marusic et al. (2010a). These VLSMs contribute energy in the near-wall region
around y* = 15, and farther away from the wall they are responsible for the majority

34
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FIGURE 7. Two-dimensional spectra of the streamwise velocity variance (u/ u' )+ in log-polar
coordinates, as defined by (3.4). AT = 10 on the outermost dotted circle and increases by a factor
of 10 for each dotted circle moving inward, where A = 27 /k is the wavelength.

of the turbulent kinetic energy. As both y* and Re, increase, the energy becomes
more concentrated and is found at larger wavelengths, consistent with the attached eddy
hypothesis of Townsend (1976). In addition, the VLSMs modulate the near-wall cycle
through nonlinear interactions, creating large-scale variations in the local wall shear stress
that result in local variations in the dominant (most-energetic) wavelength (Lee & Moser
2019). Consequently, the spectral peak of the inner energy site for the DNS data is reduced
and ‘smeared out’ as a function of Re,. For example, the Re, = 5200 peak is ~10 % lower
than the Re, = 1000 peak.

By design, the NWP model can only support modes with wavelengths less than or
equal to L} = L = 1500, meaning the VLSMs present in real wall-bounded turbulence
are not represented by the model. As a result, there is no energy associated with such
large-scale structures; the concentration of energy at low wavenumbers along the k¥ axis
(corresponding to wavelengths AT = 1000) present in the DNS spectra is not present in
that of the model. This is true both in the near-wall region and farther away from the wall
at y* = 100 and y* = 300.

Furthermore, the NWP model does not capture the nonlinear modulations of the
autonomous cycle by the VLSMs. For instance, even though the model represents
wavenumbers along the AT = 1000 band, its spectra is not simply a spectral truncation
of the DNS spectra. Additionally, the peak of the inner energy site is nearly identical for
the two model cases, differing by only a few per cent. These differences between spectra of
the model and DNS highlight the important role the VLSMs play in the turbulent near-wall
layer.
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FIGURE 8. Two-dimensional spectra of the wall-normal velocity variance (v’v/ )+ in log-polar
coordinates, as defined by (3.4). AT = 10 on the outermost dotted circle and increases by a factor
of 10 for each dotted circle moving inward, where A = 27 /k is the wavelength.

The E,, spectra are largest in the wavenumber regions in which the E;; spectra are
peaked, as discussed in Lee & Moser (2019). Additionally, the distribution of energy
generally becomes more isotropic with increasing wall-normal distance y*. Figure 8
shows that the DNS energy density E,, is primarily, but not exclusively, located at
the small scales, i.e. at wavenumbers AT < 1000. Because the NWP model adequately
resolves such structures, its energy density E;; is in overall good agreement with the DNS
spectra, especially in the near-wall region. Farther away from the wall the agreement is
not as good since the DNS spectra are peaked at lower wavenumbers. Accordingly, the
model’s unfiltered (v'v’) profiles shown in figure 10 show excellent agreement with the
corresponding DNS profiles in region y* € [0, 300]; they are nearly identical for y* < 50
and only display slight discrepancies for y* € [50, 300].

Lastly, the fidelity of the NWP model’s energy density E5; (not shown) in reproducing
the DNS spectra is similar to the E/; spectra. It clearly approximates the small scales in the
near-wall region well, but it fails to capture the modulation by the large-scale structures at
each wall-normal location.

3.3. Universality of small scales

To better quantify the universality of the small scales and assess the NWP model’s ability
to reproduce them, the energy spectral density is high-pass filtered and then integrated
to measure the energy residing in the small scales. Let /C denote the set of wavenumbers
supported by a simulation, and let k., = 27/, with 2}, = 1000. Define g to be the



Downloaded from https://www.cambridge.org/core. University of Texas Libraries, on 26 Apr 2021 at 21:31:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2020.658

Near-wall patch representation of wall-bounded turbulence 903 A23-15

b

FIGURE 9. (a) The shaded grey region indicates the subset (in the first quadrant) of wave space

Kss defined by (3.5). (b) The corresponding region defined instead by the circular, L2 filter (3.6)
used in Lee & Moser (2019).

subset of /I with the property that (k., k,) € Kgg if
min{[ke [, [k:[} > Keu, (3.5)

visualized in figure 9(a). The g sets are meant to contain large wavenumbers associated
with the universal small scales. Here k., is chosen based on the two-dimensional spectra in
Lee & Moser (2019), where it is observed that the energy associated with the autonomous
cycle has AT < 1000.

Note the high-pass filter (3.5) is slightly different than the L? filter

VK Ak > ke (3.6)

used in Lee & Moser (2019) and visualized in figure 9(b). In particular, the wavenumbers
on the axis k, = 0 (respectively k, = 0) with k, > k., (resp. k, > k.,) are filtered out
by (3.5) but not by (3.6). These axes contain the NWP model’s approximation to
the large-scale motions present in a DNS that do not ‘fit’ in the NWP domain. Such
motions correspond to wavenumbers smaller than 27/L, = 27/L,, and they are not well
represented by the NWP model. Hence, they are filtered out by (3.5). The approximation
can be improved by increasing L, and L, (confirmed by numerical tests), although this of
course increases the model’s overall computational cost.
Given K and Kgs, the Reynolds stresses are

(W) ()= > Eytke.y. ko), (3.7)

(ky k) elC

and the small-scale energy can be quantified as

(ky k) €Rss

The velocity covariance (u#'v’) and variances (u; u&) a = 1, 2, 3 and their high-pass filtered
counterparts are shown in figures 6 and 10, respectively. As previously mentioned, the
model’s unfiltered (#'v’) and (v'v’) profiles both agree quite well with the corresponding
DNS profiles. The model’s streamwise and spanwise velocity variances, however, display
non-trivial discrepancies with the DNS profiles, as expected from the observed differences
in the two-dimensional spectra. In contrast, the model’s high-pass filtered profiles all
show agreement with the high-pass filtered DNS quantities. In all cases the agreement is
excellent in the region y™ € [0, 100], although there are some relatively mild discrepancies
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FIGURE 10. Velocity variances (ufxu&)Jr (a—c) and the corresponding high-pass filtered
quantities (i), u, );rs (d—f) as a function of log( y™).

for y*™ € [100, 300]. Moreover, it is clear that the high-pass filtered quantities are
nearly Re, independent; the collapse of the (u'u')¢, profiles is particularly convincing.
Although two-dimensional spectra data is not available for the zero-pressure-gradient
DNS case SJM2000, the <u;u]/> o profiles computed from the model simulation NWPzpg
are included for completeness; they display the same universal behaviour as the
favourable-pressure-gradient flows. These observations lend support to the conclusion
that the small scales in the near-wall region are universal, and that the difference in the
Reynolds stress profiles as a function of Re, is due to the increasing influence of the
VLSMs. Previous results of this type obtained in both Lee & Moser (2019) and Samie
et al. (2018) involve high-pass filtering the entire turbulent flow field, in which there
are nonlinear interactions between wavenumbers across all the scales of motion. It is
particularly remarkable, however, that the NWP model reproduces the universal behaviour
of the small scales without the dynamic modulation of the near-wall autonomous cycle by
the large-scale structures.

3.4. Reynolds stress transport
The production of turbulent kinetic energy in a wall-bounded flow is primarily due to
the large mean velocity gradient in the wall-normal direction dU/dy. In a flow that is
homogeneous in the stream/spanwise directions with V = W = 0, the only (ut’xufx) term
with a non-zero production is (u'u’); it is given by

ou, ,
P =25 {uv). (3.9)

The two-dimensional spectra of Py; are accordingly defined as

oUu
Eﬁ(kx9 y’kz) = _2E(y)E12(kx’yakz)' (310)
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FIGURE 11. Two-dimensional, premultiplied spectra y*(Eﬁ)Jr in log-polar coordinates, as
defined by (3.4). AT = 10 on the outermost dotted circle and increases by a factor of 10 for
each dotted circle moving inward, where A = 27 /k is the wavelength.

The spectral analysis of channel flow data in Lee & Moser (2019) demonstrated that,
in contrast to the near-wall energy spectra E;;, the near-wall production spectra E]|
contain only a high-wavenumber peak (see columns two and four in figure 11). It follows
that the large scales in the near-wall region, and hence the energy that they contain,
are due to energy transport (either in y or in scale), rather than local production. This
observation suggests that the NWP model should be able to capture the near-wall energy
production, even though the VLSMs are not present. The production spectra shown in
figure 11 show that this is indeed true. At both y* = 15 and y* = 30, the NWP1000
and NWP5200 spectra are qualitatively similar to that of DNS, including the regions of
negative production occurring over a range of scales around AT = 100. Farther away from
the wall, the large-scale structures increasingly influence the energy production, and their
influence increases with Re,. At y* = 300, the large-scale influences dominate the DNS
production spectra, and the model is not able to reproduce such low-wavenumber features.

The one-dimensional, premultiplied production profiles are shown in figure 12,
and they are consistent with the aforementioned observations regarding the
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FIGURE 12. Profiles of the premultiplied <u’ u ) production Pﬁ versus log(y™) in the region
yT € [0, 300].

two-dimensional spectra. The DNS profiles are approximately Re,-independent for y™ <
70, the corresponding model profiles show strong agreement for y* < 100, and they begin
to show modest discrepancies for y* 2> 200.

After being produced by the mean velocity gradient, turbulent kinetic energy is
redistributed across scales and velocity components, transported both towards and away
from the wall, and ultimately dissipated by viscosity. The relative strength, or importance,
of these processes as a function of wall-normal distance can be measured by the terms
in the Reynolds stress budget equation (Pope 2000). Exhaustive analyses of the behaviour
of these terms for wall-bounded flows can be found in Hoyas & Jiménez (2008), Richter
(2015), Mizuno (2015, 2016), Aulery et al. (2017) and Lee & Moser (2019) and other
references therein. A general conclusion to be drawn from these works is that, similar to the
production and velocity variances, the small-scale contributions to the terms in the budget
equation are universal in the near-wall region, and differences in the profiles as a function
of Re, can be attributed to modulations by large-scale motions. As a consequence, the
terms in the Reynolds stress budget equations evaluated in the NWP model are consistent
with those in near-wall turbulence. For example, the terms in the turbulent kinetic energy
and Reynolds shear stress budget equations are shown in figure 13 for both NWP5200 and
LM5200. The precise definitions of the terms in figure 13 are standard, but for clarity they
are specified in the appendix (A 1).

3.5. Near-wall turbulence structure

In addition to producing consistent near-wall statistics, the NWP model flow produces flow
structures that are consistent with expectations for near-wall turbulence. For example, the
well-known high- and low-speed streaks are apparent in visualizations of the streamwise
velocity fluctuations near the wall (figure 14), and those streaks have the expected spanwise
spacing, as evidenced by the two-dimensional spectra in figure 7 at y* = 15, and the
spanwise two-point correlations of streamwise velocity fluctuations in figure 14. In the
NWP flows, increasing the magnitude of the imposed favourable pressure gradient appears
to increase the coherence of the streaks, as indicated by the depth of the mild local
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FIGURE 13. Budget equations of the turbulent kinetic energy k = (uﬁui) /2 (a,b) and shear stress
(u’v/ ) (c,d) for the largest Reynolds number cases LM5200 (a,c) and NWP5200 (b,d). The terms
are defined in appendix (A 1).

minimum at & 50, although the imposed pressure gradient in the NWP5200 case is
weak enough to have no effect relative to NWPzpg. The correlations from NWP1000
and NWP550 are also in excellent agreement with those of their corresponding channel
flow DNS, while the correlations from NWP5200 and LM5200 are quite different. This is
almost certainly due to the large-scale modulations of the near-wall turbulence that occur
in the high Reynolds number channel flow. These are apparent from the two-dimensional
spectrum for LM5200 at y* = 15 (see figure 7), which cannot be represented in the NWP
model, and are largely absent in the lower Reynolds number channel flows (LM1000 at
yt = 15 in figure 7).

In the autonomous near-wall dynamics, the near-wall streaks are formed by near-wall
streamwise vortices (Jiménez & Pinelli 1999), and such streamwise vortices are indeed
present in the NWP flow (figure 15). The presence of near-wall streamwise vortices is also
imprinted in the streamwise vorticity variance profiles (figure 16) in the local maximum
that occurs at ~y* = 15. Streamwise, wall-normal and spanwise vorticity variances in the
NWP model flows are also all largely consistent with those from the channel flow and
boundary layer DNS. Other features of the autonomous near-wall dynamics include the
predominantly streamwise vortices that lift up from the wall forming inclined vortices, as
well as sharp gradients in the streamwise velocity that are manifested as inclined spanwise
vorticity structures. These too are apparent in visualizations of spanwise vorticity from the
NWP flows (figure 15).
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FIGURE 14. (a) Snapshot of the streamwise velocity fluctuation u' in the x—z plane;

(b) two-point correlation function R, (r;) for all three model cases, as well as an additional model

case NWP550, and channel flow DNS ranging from Re,; ~ 180-5200. Each R, is measured at
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FIGURE 15. Contour plots of the streamwise vorticity fluctuation o/, in the y—z plane and
spanwise vorticity w, in the x—y plane.
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FIGURE 16. Vorticity variances (w&w&)Jr versus log( y*) in the region y* € [0, 300].
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FIGURE 17. Skewness S, and kurtosis K;, of the streamwise velocity fluctuations in the NWP
cases, and skewness in SJM2000.

Given the consistency of the NWP flow structures with those of near-wall turbulence,
one would expect that higher-order statistical quantities would also be consistent. As an
example, the skewness and kurtosis of the streamwise velocity fluctuations are shown
in figure 17. While these quantities are not as widely reported, and are in particular
not currently available for LM1000 and LM5200, their profiles in the NWP cases are
nonetheless consistent with data in the literature (Monty et al. 2009; Chin et al. 2015;
Samie et al. 2018). In particular, skewness has a local minimum at y*™ ~ 20, crosses zero
at y* ~ 10 and attains a maximum at the wall of ~1.1. Also, kurtosis has a local minimum
at y* ~ 10 and reaches a maximum at the wall of ~5.

4. Conclusions

The NWP model of near-wall turbulence described here was formulated in part
to address the hypothesis that the autonomous dynamics of the near-wall turbulence
modulated by the large-scale outer-layer turbulence is responsible for the observed
characteristics of near-wall turbulence. The NWP flow was also formulated to serve as
as a computationally accessible quantitative model of near-wall turbulence which will be
useful in a number of contexts.

Regarding the former objective, the study described here builds on previous work
by Jiménez & Pinelli (1999) and Jiménez & Moin (1991), which use simulations with
restricted periodic domains, and in the case of Jiménez & Pinelli (1999), manipulation
of the turbulence outside the near-wall layer. These simulations were used to characterize
in detail the fluid dynamic processes responsible for near-wall turbulence, and establish
that these processes are autonomous, not requiring interaction with the outer turbulence.
Here, however, the objectives were different, and so the domain sizes, while still restricted,
are larger in the horizontal and vertical directions (1500 and 600 wall units, respectively),
motivated by the spectral analysis of Lee & Moser (2019).

The statistical profiles from the NWP flows are in close agreement with those from DNS
of turbulent channels and a boundary layer in large spatial domains. For some quantities
for which very large scales make a significant contribution, such as the streamwise velocity
variance, this agreement is attained only after the large-scale fluctuations that are too
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large to be represented in the NWP have been filtered out. This indicates that there is a
universal near-wall small-scale dynamics that produces the familiar statistics of near-wall
turbulence, which had been suggested previously based on analysis of both experimental
and DNS data from wall-bounded turbulent flows (Marusic, Mathis & Hutchins 20105b;
Mathis et al. 2011; Lee & Moser 2019). By actually simulating the autonomous near-wall
dynamics over the range of scales at which it occurs, as determined from spectral analysis
(Lee & Moser 2019), we confirm that the ‘universal signal’ described by Marusic et al.
(2010b) and Mathis et al. (2011) arises from universal dynamics, where universal here
means independent of Reynolds number or external flow configuration.

As a quantitative model of near-wall turbulence, the NWP flow defines a
one-dimensional family of near-wall turbulent flows, parameterized by the imposed
streamwise pressure gradient P /dx*. In this context, the NWP model can, for example,
be used as a source of data to inform a wall model for wall-modelled LES. For such an
application, one would invoke the scale-separation assumption discussed in § 2.2 and use
NWP flows matched to the local pressure gradient and momentum flux associated with the
large-scale outer-layer flow simulated by the LES. Other applications of the NWP model
are as a vehicle for numerical experiments on near-wall turbulence as in Jiménez & Pinelli
(1999) and to investigate the interactions of the small-scale, near-wall turbulence with such
complications as surface roughness, heat transfer, chemical reactions and turbophoresis.
These applications of the NWP were outside of the scope of the current study, but the
NWP model allows such near-wall phenomena to be studied computationally at a much
lower cost than a full DNS of a real turbulent flow. For example, the NWP computational
grid is a factor of 24 080 smaller than the DNS grid used for the LM5200 channel case.

Finally, the NWP formulation described here can be considered a lowest-order
asymptotic description of near-wall turbulence, in which the imposed pressure gradient,
the momentum flux from the outer flow and the mean wall shear stress are considered
uniform in space and time on the scale of the patch. A higher-order approximation could
allow one or more of these quantities to vary slowly in the streamwise direction or time,
which can be treated asymptotically as in Spalart (1988) or Topalian et al. (2017) to model
the resulting spatial or temporal evolution of the wall turbulence. This would broaden
the applicability of NWP models, which, for example, would allow them to be used with
stronger pressure gradients, especially strong adverse-pressure-gradient boundary layers
in which wall shear stress generally evolves relatively rapidly.
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Appendix A. Reynolds stress budget equation

The Reynolds stress budget equations govern the evolution of the Reynolds stress tensor.
The terms of the equation are given by
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Here P; denotes turbulence production, Tj; turbulent transport, D; viscous transport,
IT;; pressure strain, 7 pressure transport and €; dissipation.
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