IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021 441

CodedPrivateML: A Fast and Privacy-Preserving
Framework for Distributed Machine Learning

Jinhyun So ™, Bagsak Giiler

Abstract—How to train a machine learning model while keep-
ing the data private and secure? We present CodedPrivateML,
a fast and scalable approach to this critical problem.
CodedPrivateML keeps both the data and the model information-
theoretically private, while allowing efficient parallelization
of training across distributed workers. We characterize
CodedPrivateML’s privacy threshold and prove its conver-
gence for logistic (and linear) regression. Furthermore, via
extensive experiments on Amazon EC2, we demonstrate that
CodedPrivateML provides significant speedup over crypto-
graphic approaches based on multi-party computing (MPC).

Index Terms—Distributed
machine learning.

training, privacy-preserving

I. INTRODUCTION

ODERN machine learning models are breaking new

ground by achieving unprecedented performance in var-
ious application domains [1]. Training such models, however,
is a challenging task. Due to the typically large volume of data
and complexity of models, training is a compute and storage
intensive task. Furthermore, training should often be done on
sensitive data, such as healthcare records, browsing history, or
financial transactions, which raises the issues of security and
privacy of the dataset. This creates a challenging dilemma. On
the one hand, due to its complexity, training is often desired to
be outsourced to more capable computing platforms, such as
the cloud. On the other hand, the training dataset is often sen-
sitive and particular care should be taken to protect its privacy
against potential breaches in such platforms. This dilemma
gives rise to the main problem that we study here: How can we
offload the training task to a distributed computing platform,
while maintaining the privacy of the dataset?

Manuscript received August 15, 2020; revised December 3, 2020; accepted
January 14, 2021. Date of publication January 21, 2021; date of current version
March 16, 2021. This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Contract HR001117C0053; in
part by the Army Research Office (ARO) under Award W911NF1810400;
in part by the National Science Foundation (NSF) under Grant CCF-1703575
and Grant CCF-1763673; in part by the Office of Naval Research (ONR)
under Award N00014-16-1-2189; and in part by the Intel. (Jinhyun So
and Bagsak Giiler contributed equally to this work.) (Corresponding author:
Jinhyun So.)

Jinhyun So and A. Salman Avestimehr are with the Department of Electrical
and Computer Engineering, University of Southern California, Los Angeles,
CA 90089 USA (e-mail: jinhyuns@usc.edu; avestimehr @ee.usc.edu).

Basak Giiler is with the Department of Electrical and Computer
Engineering, University of California Riverside, Riverside, CA 92521 USA
(e-mail: bguler@ece.ucr.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JSAIT.2021.3053220, provided by the authors.

Digital Object Identifier 10.1109/JSAIT.2021.3053220

, Member, IEEE, and A. Salman Avestimehr, Fellow, IEEE

Cloud environments often operate on a shared physical
infrastructure, where multiple users share the same host
machine, and are separated from each other by virtual
machines that act as barriers to prevent information leakage.
This shared environment provides significant benefits for scal-
ing up cloud systems, but also introduces important security
and privacy challenges that may result from potentially adver-
sarial users. For instance, it has been shown that adversarial
users can compromise the host machines by disguising them-
selves as regular users, and access the information of other
users sharing the same host machines [2]-[7]. The focus of
this article is on privacy protection against such adversaries
that can access a portion of the physical host machines in
the cloud, and use them to spy on other users’ datasets. We
focus on the semi-honest adversary setup, where the adver-
saries follow the protocol but may leak information in an
attempt to learn the training dataset. Our goal is to develop
a privacy-preserving training strategy for the honest users
that will protect the privacy of their datasets even if a por-
tion of the compute machines in the cloud are controlled by
adversaries.

More specifically, we consider a scenario in which a data-
owner (e.g., a hospital) wishes to train a logistic regression
model by offloading the large volume of data (e.g., healthcare
records) and computationally-intensive training tasks (e.g.,
gradient computations) to N machines over a cloud plat-
form, while ensuring that any collusions between T out of N
workers do not leak information about the training dataset.
We propose a new framework, CodedPrivateML (Coded
Privacy-preserving Machine Learning), towards addressing
this problem. CodedPrivateML has three salient features:

1) provides strong information-theoretic privacy guarantees
for both the training dataset and model parameters in the
presence of colluding workers,

2) enables fast training by distributing the computation load
effectively across several workers,

3) leverages a new method for encoding the dataset and
model parameters based on coding and information
theory principles, which significantly reduces the com-
munication overhead and the complexity for distributed
training.

At a high level, CodedPrivateML can be described as fol-
lows. It secret shares the dataset and model parameters at each
round of the training in two steps. First, it employs stochas-
tic quantization to convert the dataset and the weight vector at
each round into a finite domain. It then combines (or encodes)
the quantized values with random matrices using Lagrange

2641-8770 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5592-0248
https://orcid.org/0000-0002-3246-1667

442 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

coding [8], to guarantee privacy (in an information-theoretic
sense) while simultaneously distributing the workload among
multiple workers. The challenge is however that Lagrange cod-
ing can only work for computations that are in the form of
polynomial evaluations. The gradient computation for logis-
tic regression, on the other hand, includes non-linearities that
cannot be expressed as polynomials. CodedPrivateML han-
dles this challenge through polynomial approximations of the
non-linear sigmoid function in the training phase. Upon secret
sharing of the encoded dataset and model parameters, each
worker performs the gradient computations using the chosen
polynomial approximation, and sends the result back to the
master. The workers perform the computations over the quan-
tized and encoded data as if they were computing over the
uncoded dataset. That is, the structure of the computations
are the same for computing over the uncoded dataset versus
computing over the encoded dataset. Finally, the master col-
lects the results from a subset of fastest workers and decodes
the gradient over the finite field. It then converts the decoded
gradients to the real domain, updates the weight vector, and
secret shares it with the worker nodes for the next round.
We note that since the computations are performed in a finite
domain while the weights are updated in the real domain,
the update process may lead to undesired behavior as weights
may not converge. Our system guarantees convergence through
a stochastic quantization technique while converting between
real and finite fields.

We theoretically prove that CodedPrivateML guarantees
the convergence of the model parameters, while providing
information-theoretic privacy for the training dataset. Our
theoretical analysis also identifies a trade-off between pri-
vacy and parallelization. More specifically, each additional
worker can be utilized either for more privacy, by protecting
against a larger number of collusions 7, or more paralleliza-
tion, by reducing the computation load at each worker. We
characterize this trade-off for CodedPrivateML. Furthermore,
we empirically demonstrate the impact of CodedPrivateML
by comparing it with the cryptographic approach based on
secure multi-party computing (MPC) [9]-[12], that can also
be applied to enable privacy-preserving machine learning tasks
(e.g., see [13]-[18]). In particular, we envision a master who
secret shares its data and model among multiple workers who
collectively perform the gradient computation using a multi-
round MPC protocol. Given our focus on information-theoretic
privacy, the most relevant MPC-based schemes for empirical
comparison are the protocols from [10] and [11], [12] based
on Shamir’s secret sharing [19]. While several more recent
works design MPC-based learning setups with information-
theoretic privacy, their constructions are limited to three or
four parties [20], [21].

We run extensive experiments over the Amazon EC2
cloud platform to empirically demonstrate the performance
of CodedPrivateML. We train a logistic regression model
for image classification over the CIFAR-10 [22] and
GISETTE [23] datasets, while the computation workload is
distributed to up to N = 50 machines over the cloud.
We demonstrate that CodedPrivateML can provide significant
speedup in the training time against the state-of-the-art MPC

baseline (up to 5.2x), while guaranteeing comparable lev-
els of accuracy. This is primarily due to conventional MPC
protocols’ reliance on extensive communication and coordi-
nation between the workers for private computing, and not
benefiting from parallelization. They can however guaran-
tee a higher privacy threshold (i.e., larger T) compared with
CodedPrivateML.

A. Other Related Works

Apart from the MPC-based schemes, one can consider
two other solutions to this problem. One is based on
Homomorphic Encryption (HE) [24] which allows for compu-
tations to be performed on encrypted data, and has been used
for privacy-preserving machine learning solutions [25]-[33].
The privacy guarantees of HE are based on computa-
tional assumptions, whereas CodedPrivateML provides strong
information-theoretic privacy. Moreover, HE requires compu-
tations to be performed on encrypted data which leads to
many orders of magnitude slow down in training. For exam-
ple, for image classification on the simple MNIST dataset,
HE takes 2 hours to learn a logistic regression model with
96% accuracy [33], whereas for the same training setup,
CodedPrivateML takes only 37 seconds. This is due to the fact
that, in CodedPrivateML there is no slow down in performing
coded computations which allows for a faster implementation.
As a trade-off, HE allows collusions between a larger num-
ber of workers whereas in CodedPrivateML this number is
determined by other system parameters such as the number of
workers and the computation load assigned per worker.

Another possible solution is based on differential privacy
(DP), which is a noisy release mechanism that preserves
the privacy of personally identifiable information, in that the
removal of any single element from the dataset does not
change the computation outcomes significantly [34]. In the
context of machine learning, DP is mainly used for training
when the model parameters are to be released for public use,
to ensure that the individual data points from the dataset can-
not be identified from the released model [35]-[41]. The main
difference between these approaches and our work is that our
focus is on ensuring strong information-theoretic privacy (that
leaks no information about the dataset) during training, while
preserving the accuracy of the model. We note, however, that
if the intention is to publicly release the model after train-
ing, it is in principle possible to compose the techniques of
CodedPrivateML with differential privacy to obtain the best of
both worlds.

II. SYSTEM MODEL

We study the problem of training a logistic regression
model. The training dataset is represented by a matrix X €
R™*4 consisting of m data points with d features and a label
vector y € {0, 1}". The model parameters (weights) w € R4
are obtained by minimizing the cross entropy function,

m

1
Cow) = — 3 (=yilogyi — (1 =y log(1 = 5), (1)

i=1

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

SO et al.: CODEDPRIVATEML: FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 443

-
master _Z_:u ‘Q

Dataset: X

worker 1

T colluding workers

Fig. 1.
nodes.

The distributed training setup consisting of a master and N worker

where y; = s(x; - w) € (0,1) is the estimated probability
of label i being equal to 1, x; is the i" row of X, and s(+)
is the sigmoid function s(z) = 1/(1 + e7%). The problem
in (1) can be solved via gradient descent, through an iterative
process that updates the model parameters in the opposite
direction of the gradient. The gradient for (1) is given by
VC(w) = %XT (s(X'x w)—y). Accordingly, model parameters
are updated as,

with — w® _ QXT(S(X x wiy — Y, @)
m

where w¥ holds the estimated parameters from iteration #, n
is the learning rate, and function s(-) operates element-wise
over the vector given by X x w.

We consider the master-worker distributed computing archi-
tecture shown in Figure 1, in which the master offloads
the computationally-intensive operations to N workers. For
the training problem, these operations correspond to gradient
computations in (2).

In doing so, the master wishes to protect the privacy of the
dataset X against any potential collusions between up to T
workers, where T is the privacy parameter of the system.

In this work, we consider strong information-theoretic pri-
vacy, where any subset of 7' colluding workers can not learn
any information about the original dataset X. Formally, for
every subset of workers 7 C [N] of size at most 7, we
require /(X; Z7) = 0 for any distribution on X, where [is
the mutual information, and Z7 represents the collection of
all the information received by the workers in set 7 during
training. The distribution of X may be known to the workers.
We refer to a protocol that guarantees privacy against 7' collud-
ing workers as a T-private protocol. In the sequel, we present a
novel protocol, CodedPrivateML, to solve (1) while preserving
the information-theoretic privacy of the dataset against up to
T colluding workers.

Remark 1: Although our presentation is based on logistic
regression, CodedPrivateML can also be applied to the simpler
linear regression model with minor modifications.

III. THECODEDPRIVATEML PROTOCOL

CodedPrivateML consists of four main components:
1) quantization, 2) encoding, 3) polynomial approximation and
gradient computation, and 4) decoding the gradient and model

| Quantization (dataset) |

| Encoding (dataset) |

l

| Encoding (model parameters) l

|

Polynomial Approximation and
Gradient Computation

I Decoding the gradient and model update

Until
convergence

Fig. 2. Flowchart of CodedPrivateML.

update. Figure 2 shows the flowchart of CodedPrivateML. In
the first component, the master quantizes the dataset from the
real domain to the domain of integers, and then embeds it in
a finite field. In the second component, the master encodes
the quantized dataset and sends them to the workers. At each
iteration, the master also quantizes and encodes the model
parameters. In the third component, given the encoded dataset
and model parameters, each worker performs the gradient
computations by using polynomial approximation to substi-
tute the sigmoid function. In the last component, the master
decodes the gradient computations and converts them from the
finite field to real domain, and updates the model parameters
in the real domain. This process is iterated until the model
parameters converge.
We now provide the details of each component.

A. Quantization

In order to guarantee information-theoretic privacy, one has
to mask the dataset and weights in a finite field! F using uni-
formly random matrices, so that the added randomness can
make each data point appear equally likely. In contrast, the
dataset and weights for the training task are defined in the
domain of real numbers. Our solution to handle the conver-
sion between the real and finite domains is through the use
of stochastic quantization. Accordingly, in the first component
of our system, master quantizes the dataset and weights from
the real domain to the domain of integers, and then embeds
them in a field [, of integers modulo a prime p. The quan-
tized version of the dataset X is given by X. The quantization
of the weight vector w'), on the other hand, is represented
by a matrix W(Z), where each column holds an independent
stochastic quantization of w®. This structure will be important
for the convergence of the model.

We consider an element-wise lossy quantization scheme for
the dataset and weights. For quantizing the dataset X € R"*4,
we use a simple deterministic rounding technique:

[x] if x—|x] <0.5
[x] +1 otherwise

where |x| is the largest integer less than or equal to x. We
define the quantized dataset as

X2 ¢(Round(21x : X)),)

Round(x) = {) 3)

'We need a finite field instead of a ring as our encoding and decoding
schemes based on Lagrange coding, which we explain in Sections III-B
and III-D, require division (or inverse multiplication) which the ring does
not have in general.

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

444 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

where the rounding function from (3) is applied element-wise
to the elements of matrix X and I, is an integer parameter
that controls the quantization loss. Function ¢ : R — [, is a
mapping defined to represent a negative integer in the finite
field by using two’s complement representation,

ifx>0
o0 = {p+x ifx<0)
Note that the domain of (4) is [—2&%11), Z‘ZY;JU] To avoid a

wrap-around which may lead to an overflow error, prime p
should be large enough, i.e., p > 25! max{|X;;|} + 1. The
value of p also depends on the bitwidth of the machine as
well as the number of features d. For instance, in our exper-
iments presented in Section V, we select p = 225 _37ina
64-bit implementation with the GISETTE dataset whose num-
ber of features is d = 5000. This is the largest prime to avoid
an overflow on intermediate multiplications. More specifically,
we do a modular operation after the inner product of vectors
instead of doing a modular operation per product of each ele-
ment in order to speed up the running time of matrix-matrix
multiplication. To avoid an overflow on this, p should satisfy
dip — 1> <20 —1.

At each iteration ¢, master also quantizes the weight vector
w from real domain to the finite field. This proves to be a
challenging task as it should be performed in a way to ensure
the convergence of the model. Our solution to this is a quan-
tization technique inspired by [42], [43]. Initially, we define a
stochastic quantization function:

ox; I, & d)(Roundsmc (21“’ -x)), (6)

where [,, is an integer parameter to control the quantization
loss. Roundss,e : R — R is a stochastic rounding function:

[x] with prob. 1 — (x — ij)
[x] +1 with prob. x — |x]

The probability of rounding x to |x] is proportional to the
proximity of x to |x] so that stochastic rounding is unbiased
(i.e., E[Roundgc(x)] = x).

For quantizing the weight vector w®, the master creates r
independent quantized vectors:

Roundgoc (x) = {

Wi & Qj(w“); lw) e P for jerl, 7

where the quantization function (6) is applied element-wise
to the vector w'”) and each Q;(+; -) denotes an independent
realization of (6). To avoid a wrap-around which may lead
to an overflow error, prime p should be large enough, i.e.,
p > 2kt max{|w(t) |} + 1. The number of quantized vectors r
is equal to the degree of the polynomial approximation for the
sigmoid function, which we will describe later in Section III-C.
The intuition behind creating r independent quantizations is
to ensure that the gradient computations performed using the
quantized weights are unbiased estimators of the true gradi-
ents. As detailed in Section IV, this property is fundamental for
the convergence analysis of our model. The specific values of
parameters I and [, provide a trade-off between the rounding
error and overflow error. In particular, a larger value reduces

the rounding error while increasing the chance of an overflow.
We denote the quantization of the weight vector w as

W [WUM W(””], ®

by arranging the quantized vectors from (7) in matrix form.

B. Encoding the Dataset and the Model

In the second component, the master partitions the quantized
dataset X €]F;;’Xd into K submatrices and encodes them using
Lagrange codlng [8] It then sends to worker i € [N] a coded

submatrix X €]FK . This encoding enables two salient
features of CodedPrlvateML, parallelization and information-
theoretic privacy guarantees. First, parameter K is related to
the computation load at each worker (i.e., what fraction of
the dataset is processed at each worker) because the size
of encoded dataset is 1/K-th of the size of original dataset
X. As we will show later, we can increase the parameter K
as N increases, which reduces the computation overhead of
each worker and communication overhead between the mas-
ter and workers. This property enables our approach to scale
to a significantly larger number of workers than state-of-the-
art privacy preserving machine learning approaches. Second,
this encoding ensures that the coded matrices do not leak any
information about the original dataset X even if T workers
collude, which will be showed in Section IV. In addition, the
master has to ensure the weight estimations sent to the work-
ers at each iteration do not leak information about the dataset.
This is because the weights updated via (2) carry information
about the whole training set, and sending them directly to
the workers may breach privacy. In order to prevent this, at
iteration ¢, the master also quantizes the current weight vector
w® to the finite field and encodes it again using Lagrange
coding.

We now state the details of our second component. The
master first partltlons the quantized dataset X into K subma-

trices X = [Xl) XK] , where X; €]F}f xd for i € [K].
We assume that m is divisible by K. Next, the master selects
K + T distinct elements B, ..., Bx+r from I, and employs
Lagrange coding [8] to encode the dataset. To do so, the mas-
. 2 xd

ter forms a polynomial u : F, — F5 " of degree at most
K + T — 1 such that u(8;) = X; for i € [K], and u(8;) =
forie {K+1,. K + T}, where R;’s are chosen umformly
at random from IE‘K (the role of R;’s is to mask the dataset
and provide privacy against up to T colluding workers). This
can be accomplished by letting u be the respective Lagrange
interpolation polynomial,

e =B | =P
“(Z)éZXJ' 1_[ﬁ—ﬂ + Z R’ 1_[,B—ﬁ : (9)
jelkl kelk+TNGY T~ PR ekt kelk+rn T PR

The master then selects N distinct elements {o;};c[v) from F),

such that {gi}ie[N] N {Bj}jerx1 = 9, and encodes the dataset

by letting X; = u(w;) for i € [N]. By defining an encoding

matrix U = [uy...uy] € IF,(,KJFT)XN whose (i,j)”’ element is
. o oi—Pe

given by uj = [[ycixmn i 7i—p,» One can also represent the

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

SO et al.: CODEDPRIVATEML: FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 445

encoding of the dataset as

Xi = u(e) = (Xh X Rgyrn RK+T) -u;. (10)

. . . . =—={}
At iteration ¢, the quantized weights W are also encoded

using a Lagrange interpolation polynomial,

=Bk
e T 5

JelK1 ke[K+TI\{j}

K+T

+)V,

j=K+1

Y

l_[72— B
ke[K+TI\{j} Bi—Pr

where V; for j € [K + 1, K + T are chosen uniformly at ran-
dom from szr . The coefficients By, ..., Bx+r are the same

as in (9), and we have the property v(8;) = Wm for i € [K].
The master then encodes the quantized weight vector by using
the same evaluation points {o;};cn]. Accordingly, the weight
vector is encoded as

WO = () = (w". W(’)VK+1,...,VK+T)-u,~, (12)

for i € [N], using the encoding matrix U from (10). The degree
of the polynomials u(z) and v(z) are both K + 7 — 1.

C. Polynomial Approximation and Gradient Computation

Upon receiving the encoded (and quantized) dataset and
weights, workers should proceed with gradient computa-
tions. However, a major challenge is that Lagrange coding
is originally designed for polynomial computations, while the
gradient computations are not polynomials due to the sigmoid
function. Our solution is to use a polynomial approximation
of the sigmoid function,

r

E ¢z,

i=0

5(z) = 13)
where r and ¢; denotes the degree and coefficients of the poly-
nomial, respectively. The coefficients are obtained by fitting
the sigmoid function via least squares estimation. Using this
polynomial approximation we can rewrite (2) as

DI (5(X 6 w)),

where X is the quantized version of X, and 5(-) operates
element-wise over the vector X x w.

Another challenge is to ensure the convergence of weights.
As we detail in Section IV, this necessitates the gradient
estimations to be unbiased using the polynomial approxima-
tion with quantized weights. We solve this by utilizing the
computation technique from [43, Sec. 4.1] using the quan-
tized weights formed in Section III-A. Specifically, given a
degree r polynomial from (13) and r independent quantizations
from (8), we define a function

((I)) Zc, H(X x Wi J)

J=i

witDh — (14)

15)

where the product [;; operates element-wise over the vectors
(X x W) for_j < i. Lastly, we note that (15) is an unbiased
estimator of 5(X x w?),

= §(X X w(’)),

Al (x.)]

(16)

where 5(-) acts element-wise over the vector X x w®, and
the result follows from the independence of quantizations.
Using (15), we rewrite the update equations from (14) using

quantized weights,
IR ((X W) -
m

CodedPrivateML guarantees the convergence to the optimal
loss function C(w*) where C is the cross entropy function
defined in (1), even though we use the polynomial approx-
imation to substitute the sigmoid function in the update
equation (2), which will be demonstrated in Section IV.
Computations are then performed at each worker locally.
At each iteration, worker i € [N] locally computes

f: 1FK xIFdX’—>IE‘d

wiTD — w® _

). (17)

F(X W) =X 5(% W), (18)
using ii and VNVf-t) and sends the result back to the master.
This computation is a polynomial function evaluation in finite

field arithmetic and the degree of f is deg(f) = 2r + 1.

D. Decoding the Gradient and Model Update

After receiving the evaluation results in (18) from a suf-
ficient number of workers, master decodes {f (ik, W(t))}ke[lq
over the finite field. The minimum number of workers needed
for the decoding operation to be successful, which we call the
recovery threshold of the protocol, is equal to 2r + 1)(K +
T — 1) + 1 as we demonstrate in Section IV.

We now proceed to the details of decoding. By construction
of the Lagrange polynomials in (9) and (11), one can define
a univariate polynomial A(z) = f(u(z), v(z)) such that

n) = Fu vy = F(X W) =X/5(X. W), 9)

for i € [K]. On the other hand, from (18), the computation
result from worker i equals to

h@i) = fluten), vien) = £(RXi W) =X 5(X0 W), 20)

The main intuition behind the decoding process is to use the
computations from (20) as evaluation points z(¢;) to interpo-
late the polynomial h(z). Specifically, the master can obtain
all coefficients of h(z) from (2r+1)(K+T — 1)+ 1 evaluation
results as the degree of the polynomial A(z) is less than or
equal to (2r+1)(K+T —1). After h(z) is recovered, the mas-
ter can recover (19) by computing A(B;) for i € [K]. To do so,
the master performs polynomial interpolation in a finite field.
Upon receiving the local computation f ()?,-, \TV,Q)) in (20) from
at least 2r+ 1)(K+ T — 1) 4+ 1 workers, the master computes

(X W) 2 Zf(x,,w“’) I1 ﬂk:z{

jezvy ¥ T

2

for k € [K], where Z C [N] denotes the set of the first
2r+ DK+T— 1) + 1 workers who send their local compu-
tations f (X,, W) to the master. The master then aggregates

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

446 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

Algorithm 1 CodedPrivateML

input Dataset X,y
output Model parameters w) where J is the number of iterations
Master: .

1: Compute the quantized dataset X using (4).

2: Form the encoded matrices {X;}ie[n] in (10).

3: Send X; to worker i € [N].

4: Initialize the weights w(®) € RIx1,
5: for iteration t =0,...,J — 1 do
6
7
8

Find the quantized weights W(I) from (8).
Encode W(t) into {W;I)}ie[/v] using (12).
Send VNVEI) to worker i € [N].

Workers:
9: for worker i =~1, N do
10: Compute f(X;, Wl@) from (18) and send the result back to
the master.
11: end for
Master:
12: if Results received from at least (2r+1)(K+7—1)+1 workers
then
13: Decode {f(Xj. W(I))}kE[K] via polynomial interpolation
from the received results.
14: end if

15: Compute YK | #(X, W) in (22) and convert it from finite
field to real domain using (23).

16: Update the weights via (17) to obtain wir D,

17: end for

18: return w')

the decoded computations (X, W(t)) to compute the desired
gradient as,

if(Xk, W(’)) — éxzjﬁ(xk! W(t)) _ XTE(X, W(I)>. 22)

Lastly, master converts (22) from the finite field to the real
domain and updates the weights according to (17) in the real
domain. This conversion is attained by the function

oy @D =2"¢"". (23)

where we let [= Li+r(lc+1,), and ¢~ : F, — R is defined as,

¢~ @ =

=l =l

—p if &9

The overall procedure of CodedPrivateML is given in
Algorithm 1.

IV. THEORETICAL RESULTS

Consider the cost function (1) when the dataset X is replaced
with the quantized dataset X. Also, denote w* as the optimal
weight vector that minimizes (1) when y; = s(X; - w), where X;
is row i of X. In this section, we prove that CodedPrivateML
guarantees convergence to the optimal model parameters (i.e.,
w*) while maintaining the privacy of the dataset against col-
luding workers. Recall that the model update at the master
follows from (17), which is

witD — wo 1T (s(i, W(’)) _ y). (25)

m

We first state a lemma, which shows that the gradi-
ent estimation of CodedPrivateML is unbiased and variance
bounded.

Lemma 1: Let p@® £ %XT(E(X, W(Z)) —y) denote the
gradient computation using the quantized weights W(t) in
CodedPrivateML. Then, we have

« (Unbiasedness) Vector p is an asymptotically unbiased

estimator of the true gradient. E[p’] = VC(w®) +€(r),
and €(r) — 0 as r — oo where r is the degree of
the polynomial in (13) and the expectation is taken with
respect to the quantization errors,

« (Variance bound) E[|p® — E[p?]|3] < 55— X} £

o2 where || - ||» and || - || are the I, and Frobenius norms,

respectively.
Proof: The proof of Lemma 1 is presented in Appendix A
in the supplementary material. |

We also need the following basic lemma, which describes
the L-Lipschitz property of the gradient of the cost function.

Lemma 2: The gradient of the cost function from (1) eval-
uated on the quantized dataset X is L-Lipschitz with L £
1IX3, that is, [|[VC(w) — VC(W)|| < L|w — w/| for all
w,w e RY.

Proof: The proof of Lemma 2 is presented in Appendix B
in the supplementary material. |

We now state our main result for the theoretical performance
guarantees of CodedPrivateML.

Theorem 1: Consider the training of a logistic regres-
sion model in a distributed system with N workers using
CodedPrivateML with the dataset X = (Xi, ..., Xg), initial
weight vector w©, and constant step size n = 1/L (where L
is defined in Lemma 2). Then, CodedPrivateML guarantees,

« (Convergence) IE[C(} Z;J:o wih] — Cw" <

2
Hw(0)2+1w*|| + no? in J iterations, where o2 is given in
Lemma 1,
o (Privacy) X remains information-theoretically
private against any 7T colluding workers, i.e.,

IX: X7, (WP}epp) = 0 for any distribution on X
and any set 7 C [N] with |T] < T,
forany N > 2r+ 1)(K+ T — 1) + 1, where r is the degree
of the polynomial from (13).

Remark 2: Theorem 1 reveals an important trade-off
between privacy and parallelization in CodedPrivateML.
Parameter K reflects the amount of parallelization in
CodedPrivateML, since the computation load at each worker
node is proportional to 1/K-th of the dataset. Parameter T
reflects the privacy threshold in CodedPrivateML. Theorem 1
shows that, in a cluster with N workers, we can achieve any
K and T as long as N > 2r+ 1)(K + T — 1) 4+ 1. This
condition further implies that, as the number of workers N
increases, the parallelization (K) and privacy threshold (7T’
of CodedPrivateML can also increase linearly, leading to a
scalable solution.

Remark 3: There are two terms in the bound on the dis-
tance between the loss function to the optimum in the first
equation of Theorem 1, i.e., IE[C(} Z{:o wi)] — C(w*) <

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

SO et al.: CODEDPRIVATEML: FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 447

Lw® —w*®
2nJ
1/L, the first term I goes to zero as
the number of iterations J increases, hence CodedPrivateML
has the convergence rate of O(1/J). The second term no? =
% is a residual error in the training as it does not go to zero
as J increases. By using an adaptive (decreasing) learning rate,

this term can be made arbitrarily small.

Remark 4: The convergence rate of CodedPrivateML is
the same as that of conventional logistic regression. This
follows from Theorem 1 where the convergence rate of
CodedPrivateML is found as O(}) where J is the iteration
index, which is the same as the convergence rate of conven-
tional logistic regression, which follows from [44, Sec. 9.3]
and [44, Sec. 7.1.1].

Remark 5: Theorem 1 applies also to (simpler) linear
regression. The proof follows the same steps.

Proof: The proof of Theorem 1 1is presented in
Appendix C in the supplementary material. |

+no?. When we use a constant learning rate 1 =

WO I _ Lw® —w
2nJ 2J

A. Complexity Analysis

In this section, we analyze the asymptotic complexity of
CodedPrivateML with respect to the number of workers N,
parallelization parameter K, privacy parameter 7, number of
samples m, number of features d, and number of iterations J.

Complexity Analysis of the Master Node: Computation cost
of the master node can be broken into three parts: 1) encod-
ing the dataset by using X; = u(w;) from (9) for i € [N], 2)
encoding the weight vector by using Wl(t) = v(w;) from (11)
for i € [N],t € [J], and 3) decoding the gradient by recover-
ing h(B;) in (19) for i € [K]. For the first part, the encoded
dataset X; (i € [N]) from (9) is a weighted sum of K+ 7 matri-
ces where the size of each matrix is ¥ x d. The Lagrangian
coefficients can be calculated offline since the sets of {o;}icn]
and {B;}je(xy are public. Each encoding requires 0(%)
multiplications and we must perform N encodings, resulting in
a total computational cost of O(M). Decoding the gra-
dient computations from (21) can be performed via a weighted
sum of (2r+1)(K+T—1)41 = O(N) vectors where the size of
each vector is d. Each decoding requires O(dN) multiplications
and we require K decoded gradients, resulting in a total com-
putational cost of O(d/NK). Communication cost of the master
node to send the encoded dataset X; and the encoded weight
vector Wlm to worker i € [N] is 0(%) and O(drNJ), respec-
tively. Communication cost of the master to receive the local
computation f ()~(,~, Wl(t)) from worker i € [N] for t € [J] is
O(dJN).

Complexity Analysis_e of the Workers: Computation cost of
worker i to compute X X,, the dommant part of the local
computation f (X,, ~(t)) in (18), is O() This corresponds to
o(K)’h of the computation cost of conventlonal logistic regres-
sion, which requires the computation of X" s(X x w®) in (2).
This is due to the fact that the size of the encoded dataset
X; and original dataset X are % x d and m x d, respectively.
Communication cost of worker i to receive the encoded dataset
X and the encoded weight vector W() for t € [J] is O(md)

and O(drJ), respectively. Communlcatlon cost of worker i to

TABLE I
COMPLEXITY SUMMARY OF CODEDPRIVATEML

Computation Communication
Master O("4NKAT) 4 g gN(K +T)) O(24N 4+ 4rN)
Worker O(W’T‘lz) O(de +drlJ)

send the local computation f ()Ni,', VNVY)) to the master for t € [J]
is O(dJ).

We summarize the
CodedPrivateML in Table 1.

asymptotic ~ complexity of

V. EXPERIMENTS

We now experimentally demonstrate the performance of
CodedPrivateML compared to conventional MPC baselines.
Our focus is on training a logistic regression model for image
classification, while the computation load is distributed to
multiple machines on the Amazon EC2 Cloud Platform.

Experiment Setup: We train the logistic regression model
from (1) for binary image classification on the CIFAR-10 [22]
and GISETTE [23] datasets to experimentally examine two
things: the accuracy of CodedPrivateML and the performance
gain in terms of training time. The size of the CIFAR-
10 and GISETTE datasets are (m,d) = (9019, 3073)2 and
(6000, 5000), respectively. We implement the communication
phase using the MPI4Py [45] message passing interface on
Python. Computations are performed in a distributed man-
ner on Amazon EC2 clusters using m3.xlarge machine
instances.

We then compare CodedPrivateML with two MPC-based
benchmarks that we apply to our problem. In particular, we
implement two MPC constructions. The first one is based on
the well-known BGW protocol [10], whereas the second one
is a more recent protocol from [11], [12] that trade-offs offline
calculations for a more efficient implementation. Our choice
of these MPC benchmarks is due to their ability to be applied
to a large number of workers. While several more recent
works exist that have developed MPC-based training protocols
with information-theoretic privacy guarantees, their construc-
tions are limited to three or four parties [15], [20], [21].
For instance, [15] is a two-party protocol that requires two
non-colluding workers.

Both baselines utilize Shamir’s secret sharing scheme [19]
where the dataset is secret shared among the N workers. For
the (quantized) dataset X, this is achieved by creating a ran-
dom polynomial P(z) = i—i—zZ] + -+ 17y, where Z; for
Jj € [T] are i.i.d. uniformly distributed random matrices. This
guarantees privacy against LI%J colluding workers [10]-[12],
but requires a computation load at each worker that is as large
as processing the whole dataset at a single worker, leading to
slow training. Hence, in order to provide a fair comparison
with CodedPrivateML, we optimize (speed up) the bench-
mark protocols by partitioning the users into subgroups of size

2We select images with the label of “plane” and “car”, and the number of
these images in 50000 training samples is 9019. For the number of features,
we added a bias term, hence, we have 3072 + 1 = 3073 features.

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

448 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

2T 4+ 1. Then, we let each group compute the gradlent over

the partitioned dataset X € IFG xd , where X = [Xl .]T
and G is the number of subgroups For group i € [G] each
worker receives a share of the Partltloned dataset by using a
random polynomial Pj(z) = X;4+zZ;; + --- + 2 TZir, where
Z; for j € [T] and i € [G] are ii.d. unlformly distributed
random matrices. Workers then proceed with a multiround
protocol to compute the sub-gradient. We further incorpo-
rate our quantization and approximation techniques in our
benchmark implementations as conventional MPC protocols
are also bound to arithmetic operations over a finite field. In
our experiments, we set G = 3, hence the total amount of
data stored at each worker is equal to one third of the size
of the dataset X, which significantly reduces the total training
time of the two benchmarks, while providing a privacy thresh-
old of T = LNT_3J. The implementation details of the MPC
operations are provided in Appendix D in the supplementary
material.

CodedPrivateML Parameters: There are several system
parameters in CodedPrivateML that should be set. Given that
we have a 64-bit implementation, we select the field size to
be p = 225 — 37, which is the largest prime with 25 bits to
avoid an overflow on intermediate multiplications. We then
optimize the quantization parameters, /. in (4) and /,, in (7),
by taking into account the trade-off between the rounding
and overflow error. In particular, we choose (I, /) = (2, 6)
and (2,5) for the CIFAR-10 and GISETTE datasets, respec-
tively. We also need to set the parameter r, the degree of
the polynomial for approximating the sigmoid function. We
consider both r = 1 and r = 2 and as shown later empiri-
cally we observe that the degree one approximation achieves
good accuracy. We finally need to select T (privacy thresh-
old) and K (amount of parallelization) in CodedPrivateML.
As stated in Theorem 1, these parameters should satisfy N >
(2r4+1)(K+T—1)+1. Given our choice of r = 1, we consider
two cases:

e Case 1 (Maximum Parallelization): All resources allo-
cated for parallelization (faster training) by setting K =
1M =1,

o Case 2 (Equal Parallelization & Privacy): Resources split
almost equally between parallelization & privacy, i.e.,
T=|"2L K= "3 -T

Training Time: Initially, we measure the training time while
increasing the number of workers N gradually. Our results
are demonstrated in Figure 3, which shows the comparison
of CodedPrivateML with the [BHO8] protocol from [11], as
we have found it to be the faster of the two benchmarks. In
particular, we make the following observations.

o CodedPrivateML provides substantial speedup over the
MPC baselines, in particular, up to 4.4x and 5.2x with
the CIFAR-10 and GISETTE datasets, respectively, while
providing the same privacy threshold as the benchmarks
(T = LNT_3J for Case 2). Table II demonstrates the break-
down of the total runtime with the CIFAR-10 dataset for

3For N = 10, all schemes have similar performance because the total
amount of data stored at each worker is one third of the size of whole dataset
(K = 3 for CodedPrivateML and G = 3 for the benchmark).

18001 —¥— CodedPrivateML, case 1

—#— CodedPrivateML, case 2
—»— MPC based on [BH08] w/ group

1600 -

1400 4
1200 4

1000 A

Time (sec)

10 15 20 25 30 35 40 45 50
N (number of workers)

(a) CIFAR-10 (for accuracy 81.35% with 50 iterations)

—¥— CodedPrivateML, case 1
—— CodedPrivateML, case 2
—»— MPC based on [BH08] w/ group

3500 A

3000 -

N
u
o
o

2000 A

Time (sec)

1500 4

1000 A

500 A

10 15 20 25 30 35 40 45 50
N (number of workers)

(b) GISETTE (for accuracy 97.50% with 50 iterations)

Fig. 3. Performance gain of CodedPrivateML over the MPC baseline ([BHOS]
from [11]). The plot shows the total training time for different number of
workers N.

TABLE II
(CIFAR-10) BREAKDOWN OF TOTAL RUNTIME FOR N = 50

Protocol Enc. Comm. Comp. Total

time (s) time (s) time (s) time (s)

MPC using [BGWS88] 20278 31.02 7892.42 8127.07
MPC using [BHO8] 201.08 30.25 1326.03 1572.34
CodedPrivateML (Case 1) 59.93 4776 141.72 229.07
CodedPrivateML (Case 2) 91.53 830 235.18 361.08

N = 50 workers. In this scenario, CodedPrivateML pro-
vides significant improvement in all three categories of
dataset encoding and secret sharing; communication time
between the workers and the master; and the computation
time. Main reason for this is that, in the MPC baselines,
the size of the data processed at each worker is one
third of the original dataset, while in CodedPrivateML
it is 1/K-th of the dataset. This reduces the computa-
tional overhead of each worker while computing matrix
multiplications as well as the communication overhead
between the master and workers. We also observe that a
higher amount of speedup is achieved as the dimension
of the dataset becomes larger (CIFAR-10 vs. GISETTE
datasets), suggesting CodedPrivateML to be well-suited
for data-intensive training tasks where parallelization is
essential.

o The total runtime of CodedPrivateML decreases as the
number of workers increases. This is again due to the
parallelization gain of CodedPrivateML (i.e., increasing K
while N increases). This is not achievable in conventional
MPC baselines, since the size of data processed at each
worker is constant for all N

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

SO et al.: CODEDPRIVATEML: FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 449

JONIIvY HH
80 4 o o e i e e i s S i s .
757

& 70 4

>

8 65

2

Q

2 60
55 1 —¥— CodedPrivateML
504 —»— Conventional logistic regression

0 10 20 30 40 50
Iterations

(a) CIFAR-10 dataset, binary classification between car and

plane images (using 9019 samples for the training set and

2000 samples for the test set).

90 +

80 A

70 A

Accuracy (%)

60 -

—%¥— CodedPrivateML
—»— Conventional logistic regression

50 A

0 10 20 30 40 50
Iterations

(b) GISETTE dataset, binary classification between the images
of digits 4 and 9 (using 6000 samples for the training set and
1000 samples for the test set).

Fig. 4. Comparison of the accuracy of CodedPrivateML (demonstrated for
Case 2 and N = 50 workers) vs conventional logistic regression that uses the
sigmoid function without quantization.

o Increasing N in CodedPrivateML has two major impacts
on the total training time. The first one is reducing the
computation load per worker, as each new worker can be
used to increase the parameter K. This in turn reduces the
computation load per worker as the amount of work done
by each worker is scaled with respect to 1/K. The second
one is that increasing the number of workers increases
the encoding time at the master node. Hence, the gain
from increasing the number of workers beyond a certain
point may be minimal and the system may saturate. In
those cases, increasing the number of workers cannot fur-
ther reduce the training time, as the computation will be
dominated by the encoding overhead.

o CodedPrivateML provides up to 22.5x speedup over the
BGW protocol [10], as shown in Table II for the CIFAR-
10 dataset with N = 50 workers. This is due to the fact
that BGW requires additional communication between the
workers to execute a degree reduction phase for every
multiplication operation.

Accuracy: We also examine the accuracy and convergence
of CodedPrivateML. Figure 4(a) illustrates the test accu-
racy of the binary classification problem between plane and
car images for the CIFAR-10 dataset. With 50 iterations,
the accuracy of CodedPrivateML with degree one polyno-
mial approximation and conventional logistic regression are
81.35% and 81.75%, respectively. Figure 4(b) shows the test
accuracy for binary classification between digits 4 and 9
for the GISETTE dataset. With 50 iterations, the accuracy

0.71 —¥— CodedPrivateML

0.6 —— Conventional logistic regression
0.5 A
0.4

0.3 4

Cross Entropy

0.2 1

0.1+

vvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv

0.0

Iterations

Fig. 5. Convergence of CodedPrivateML (demonstrated for Case 2 and N =
50 workers) vs conventional logistic regression (using the sigmoid function
without polynomial approximation or quantization).

of CodedPrivateML with degree one polynomial approxima-
tion and conventional logistic regression has the same value
of 97.5%. Hence, CodedPrivateML has comparable accu-
racy to conventional logistic regression while being privacy
preserving.

Figure 5 presents the cross entropy loss for CodedPrivateML
versus the conventional logistic regression model for the
GISETTE dataset. The latter setup uses the sigmoid function
and no polynomial approximation, in addition, no quantization
is applied to the dataset or the weight vectors. We observe
that CodedPrivateML achieves convergence with comparable
rate to conventional logistic regression, while being privacy
preserving.

VI. CONCLUSION AND DISCUSSION

In this article, we considered a distributed training scenario
in which a data-owner wants to train a logistic regression
model by off-loading the computationally-intensive gradient
computations to multiple workers, while preserving the pri-
vacy of the dataset. We proposed a privacy-preserving training
framework, CodedPrivateML, that distributes the computation
load effectively across multiple workers, and reduces the per-
worker computation load as more and more workers become
available. We demonstrated the theoretical convergence guar-
antees and the fundamental trade-offs of our framework, in
terms of the number of workers, privacy protection, and scal-
ability. Our experiment results demonstrate significant speed-
up in the training time compared to conventional baseline
protocols.

This work focuses on a logistic regression model mainly
with the goal of demonstrating how CodedPrivateML can
be utilized to scale and speed up logistic regression train-
ing under privacy and convergence guarantees, which is a
first step towards more complex models. To the best of
our knowledge, even for this setup, no other system has
been able to efficiently scale beyond 3—4 workers while
achieving information-theoretic privacy. Our work is the first
privacy-preserving machine learning approach that reduces the
communication and computation load per worker as the num-
ber of workers increases, which we hope will open up further
research. Future directions include extending CodedPrivateML
to deeper neural networks by leveraging an MPC-friendly (i.e.,
polynomial) activation function or extending CodedPrivateML
to collaborative learning setting such as [46].

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

450 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021

In this article, in order to provide information-theoretic
privacy, we utilize quantization to convert the dataset and
model to the finite field F,. Doing so has two inherent chal-
lenges: 1) determining a proper value for p and 2) potential
performance degradation caused by quantization or overflow
error. This has inspired a new line of works, such as analog
coded computing [47], [48], which uses floating-point num-
bers instead of fixed-point numbers to represent the finite field
and provides a fundamental trade-off between the accuracy
and privacy level. Leveraging such techniques to address these
challenges is another interesting future direction.

ACKNOWLEDGMENT

The authors would like to thank helpful comments and
discussions with Dr. Payman Mohassel on this problem.
The views, opinions, and/or findings expressed are those of
the author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the
U.S. Government.

REFERENCES

[1] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Commun. Surveys
Tuts., vol. 22, no. 1, pp. 38-67, Ist Quart., 2019.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get

off of my cloud: Exploring information leakage in third-party com-

pute clouds,” in Proc. ACM Conf. Comput. Commun. Security, 2009,

pp. 199-212.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side

channels and their use to extract private keys,” in Proc. ACM Conf.

Comput. Commun. Security, 2012, pp. 305-316.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant side-

channel attacks in PaaS clouds,” in Proc. ACM Conf. Comput. Commun.

Security, 2014, pp. 990-1003.

[5]1 Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-
bandwidth and reliable covert channel attacks inside the cloud,”
IEEE/ACM Trans. Netw., vol. 23, no. 2, pp. 603-615, Apr. 2015.

[6] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift, “A placement

vulnerability study in multi-tenant public clouds,” in Proc. 24th USENIX

Security Symp., 2015, pp. 913-928.

K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,

“Flip Feng Shui: Hammering a needle in the software stack,” in

Proc. 25th USENIX Security Symp., 2016, pp. 1-18.

Q. Yu et al., “Lagrange coded computing: Optimal design for resiliency,

security and privacy,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS),

2019, pp. 1215-1225.

[9]1 A. C. Yao, “Protocols for secure computations,” in Proc. IEEE Annu.
Symp. Found. Comput. Sci., 1982, pp. 160-164.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in Proc.
ACM Symp. Theory Comput., 1988, pp. 1-10.

[11] Z. Beerliova-Trubiniova and M. Hirt, “Perfectly-secure MPC with lin-
ear communication complexity,” in Proc. Theory Cryptol. Conf., 2008,
pp- 213-230.

[12] I Damgérd and J. B. Nielsen, “Scalable and unconditionally secure mul-
tiparty computation,” in Proc. Int. Cryptol. Conf., 2007, pp. 572-590.

[13] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions of
records,” in Proc. IEEE Symp. Security Privacy, 2013, pp. 334-348.

[14] A. Gascon et al., “Privacy-preserving distributed linear regression on
high-dimensional data,” in Privacy Enhancing Technologies. Heidelberg,
Germany: Springer, 2017, pp. 345-364.

[15] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Security Privacy,
2017, pp. 19-38.

[16] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Proc.
Annu. Int. Cryptol. Conf., 2000, pp. 36-54.

[2

—

[3

=

[4

=

[7

—

[8

=

[17] M. Dahl et al., “Private machine learning in TensorFlow using secure
computation,” 2018. [Online]. Available: arXiv:1810.08130.

[18] V. Chen, V. Pastro, and M. Raykova, “Secure computation for machine
learning with SPDZ,” 2019. [Online]. Available: arXiv:1901.00329.

[19] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

[20] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: Efficient and private
neural network training,” Cryptol. ePrint Archive, Rep. 2018/442, 2018.
[Online]. Available: https://eprint.iacr.org/2018/442.

[21] P. Mohassel and P. Rindal, “ABY 3: A mixed protocol framework for
machine learning,” in Proc. ACM Conf. Comput. Commun. Security,
2018, pp. 35-52.

[22] A. Krizhevsky and G. Hinton,
from tiny images,” Rep., 2009.

[23] 1. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of
the NIPS 2003 feature selection challenge,” in Proc. Adv. Neural Inf.
Process. Syst., 2005, pp. 545-552.

[24] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
Stanford Univ., Stanford, CA, USA, 2009.

[25] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201-210.

[26] E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep
neural networks over encrypted data,” 2017. [Online]. Available:
arXiv:1711.05189.

[27] T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine learn-
ing on encrypted data,” in Proc. Int. Conf. Inf. Security Cryptol., 2012,
pp. 1-21.

[28] J. Yuan and S. Yu, “Privacy preserving back-propagation neural network
learning made practical with cloud computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 212-221, Jan. 2014.

[29] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network,” in Proc.
IACR Cryptol. ePrint Arch., vol. 2017, 2017, p. 35.

[30] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen,
“Privacy-preserving outsourced classification in cloud computing,”
Clust. Comput., vol. 21, pp. 277-286, Apr. 2017.

[31] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regres-
sion model training based on the approximate homomorphic encryption,”
BMC Med. Genom., vol. 11, no. 4, pp. 23-55, Oct. 2018.

[32] Q. Wang et al., “Privacy-preserving collaborative model learning: The
case of word vector training,” IEEE Trans. Knowl. Data Eng., vol. 30,
no. 12, pp. 2381-2393, Dec. 2018.

[33] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression on
homomorphic encrypted data at scale,” in Proc. Annu. Conf. Innov. Appl.
Artif. Intell., 2019, pp. 9466-9471.

[34] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Proc. Theory Cryptol. Conf.,
2006, pp. 265-284.

[35] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 289-296.

[36] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proc.
ACM Conf. Comput. Commun. Security, 2015, pp. 1310-1321.

[37] M. Abadi, “Deep learning with differential privacy,” in Proc. ACM Conf.
Comput. Commun. Security, 2016, pp. 308-318.

[38] M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via
aggregation of locally trained classifiers,” in Proc. Adv. Neural Inf.
Process. Syst., 2010, pp. 1876-1884.

[39] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning dif-
ferentially private recurrent language models,” in Proc. Int. Conf. on
Learn. Rep., 2018.

[40] A.Rajkumar and S. Agarwal, “A differentially private stochastic gradient
descent algorithm for multiparty classification,” in Proc. Int. Conf. Artif.
Intell. Stat. (AISTATS), 2012, pp. 933-941.

[41] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning
without distress: Privacy-preserving empirical risk minimization,” in
Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 6346—-6357.

[42] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang, “ZipML:
Training linear models with end-to-end low precision, and a little bit
of deep learning,” in Proc. Int. Conf. Mach. Learn., Sydney, NSW,
Australia, Aug. 2017, pp. 4035-4043.

[43] H.Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang, “The ZipML
framework for training models with end-to-end low precision: The cans,
the cannots, and a little bit of deep learning,” 2016. [Online]. Available:
arXiv:1611.05402.

“Learning multiple layers of features

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

SO et al.: CODEDPRIVATEML: FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 451

[44] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[45] L. Dalcin, R. Paz, and M. Storti, “MPI for Python,” J. Parallel Distrib.
Comput., vol. 65, no. 9, pp. 1108-1115, 2005.

[46] J. So, B. Guler, and A. S. Avestimehr, “A scalable approach for privacy-
preserving collaborative machine learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2020.

[47] M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Analog lagrange
coded computing,” 2020. [Online]. Available: arXiv:2008.08565.

[48] M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Privacy-
preserving distributed learning in the analog domain,” 2020. [Online].
Available: arXiv:2007.08803.

Jinhyun So received the B.S. and M.S. degrees in
electrical and computer engineering from KAIST.
He is currently pursuing the Ph.D. degree in electri-
cal and computer engineering with the University
of Southern California. His research interests
include information theory, large-scale distributed
machine learning, and secure and private comput-
ing. He received the Annenberg Graduate Fellowship
in 2017.

Basak Giiler (Member, IEEE) received the Ph.D.
degree from the Pennsylvania State University in
2017, and was a Postdoctoral Scholar with the
University of Southern California from 2018 to
2020. She is an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of California Riverside, Riverside, CA,
USA. Her research interests include machine learn-
ing in wireless networks, information theory, dis-
tributed computing, and signal processing.

A. Salman Avestimehr (Fellow, IEEE) received the
B.S. degree in electrical engineering from the Sharif
University of Technology in 2003, the M.S. and
Ph.D. degrees in electrical engineering and computer
science from the University of California Berkeley,
Berkeley, CA, USA, in 2005 and 2008, respectively.

He is a Professor and the Director of the
Information Theory and Machine Learning Research
Lab with the Electrical and Computer Engineering
Department, University of Southern California. His
research interests include information theory and
coding theory, and large-scale distributed computing and machine learning,
secure and private computing, and blockchain systems. He has received a
number of awards for his research, including the James L. Massey Research
& Teaching Award from IEEE Information Theory Society, an Information
Theory Society, and the Communication Society Joint Paper Award, the
Presidential Early Career Award for Scientists and Engineers from the White
House (President Obama), the Young Investigator Program Award from the
U.S. Air Force Office of Scientific Research, the National Science Foundation
CAREER Award, the David J. Sakrison Memorial Prize, and several Best
Paper Awards at Conferences. He has been an Associate Editor for IEEE
TRANSACTIONS ON INFORMATION THEORY and the General Co-Chair of
the 2020 International Symposium on Information Theory.

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:19:30 UTC from IEEE Xplore. Restrictions apply.

