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Abstract— Federated learning enables training a global model
from data located at the client nodes, without data sharing
and moving client data to a centralized server. Performance
of federated learning in a multi-access edge computing (MEC)
network suffers from slow convergence due to heterogeneity and
stochastic fluctuations in compute power and communication
link qualities across clients. We propose a novel coded com-
puting framework, CodedFedL, that injects structured coding
redundancy into federated learning for mitigating stragglers
and speeding up the training procedure. CodedFedL enables
coded computing for non-linear federated learning by efficiently
exploiting distributed kernel embedding via random Fourier fea-
tures that transforms the training task into computationally
favourable distributed linear regression. Furthermore, clients
generate local parity datasets by coding over their local datasets,
while the server combines them to obtain the global parity
dataset. Gradient from the global parity dataset compensates
for straggling gradients during training, and thereby speeds up
convergence. For minimizing the epoch deadline time at the MEC
server, we provide a tractable approach for finding the amount
of coding redundancy and the number of local data points that
a client processes during training, by exploiting the statistical
properties of compute as well as communication delays. We also
characterize the leakage in data privacy when clients share their
local parity datasets with the server. Additionally, we analyze the
convergence rate and iteration complexity of CodedFedL under
simplifying assumptions, by treating CodedFedL as a stochastic
gradient descent algorithm. Finally, for demonstrating gains
that CodedFedL can achieve in practice, we conduct numerical
experiments using practical network parameters and benchmark
datasets, in which CodedFedL speeds up the overall training time
by up to 15× in comparison to the benchmark schemes.
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I. INTRODUCTION

MASSIVE amounts of data are generated each day by
the Internet of Things comprising billions of devices

including autonomous vehicles, cell phones, and personal
wearables [3]. This big data has the potential to power a
wide range of statistical machine learning based applications
such as predicting health events like a heart attack from
wearable devices [4]. To enable low-latency and efficient
computing capabilities close to the user traffic, there have
been significant efforts recently to develop multi-access edge
computing (MEC) platforms [5]–[9].

In classical MEC settings, client data is transferred to an
underlying centralized computational infrastructure for fur-
ther processing. However, client data can be of a person-
alized nature due to which there is an increasing privacy
concern in moving the client data to a central location for
any model training. For example, a person may want to
use a machine learning application to predict health events
like low sugar, but may not be willing to share the health
records.

Federated learning framework has been recently developed
to carry out machine learning tasks from data distributed at
the client nodes, while the raw data is kept at the clients
and never uploaded to the central server [10], [11]. As first
formulated in [10], federated learning proceeds in two major
steps. First, every client carries out a local gradient update
on its local dataset. Second, a central server collects and
aggregates the updates from the clients, updates the global
model, and transmits it to the clients. The iterative procedure
is carried out until convergence.

Implementation of federated learning in MEC networks
suffers from some fundamental bottlenecks. The heterogeneity
of compute and communication resources across clients makes
the client selection a difficult task as the overall gradient
aggregation at the MEC server can be significantly delayed
by the straggling computations and communication links
(see Figure 1). Additionally, federated learning suffers from
wireless link failures during transmission. Re-transmission
of messages can be done for failed communications, but
it may drastically prolong the training time. Furthermore,
the data distribution across clients in MEC networks is non-IID
(non-independent and identically distributed), i.e. data stored
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Fig. 1. Illustration of the federated learning paradigm over multi-access edge
computing (MEC) networks with n client devices and an MEC server. During
each training round, client Ej receives the latest model from server M, com-
putes a local gradient update over its local dataset Dj , and communicates the
gradient update to the server. Training performance is critically bottlenecked
by the presence of straggling nodes and communication links.

locally on a device does not represent the population distri-
bution [12]. Thus, missing out updates from clients leads to
poor convergence.

CodedFedL Overview: To overcome the aforementioned
challenges, we propose CodedFedL, a novel coded computing
framework that leverages coding theoretic ideas to inject
structured redundancy in federated learning for mitigating
straggling clients and communication links, and improving
performance of federated learning with non-IID data. In the
following, we summarize the key aspects of our proposal.

• Coded Computation at the MEC Server: CodedFedL
leverages the compute power of the federated learn-
ing server. Particularly, for distributed linear regression,
we propose to generate masked parity data locally at
each client at the start of the training procedure, by tak-
ing linear combinations of features and labels in the
local dataset. The encoding coefficients are locally gen-
erated by the clients, and along with the raw client
data, the encoding coefficients are not shared with the
server. The local parity datasets are shared with the
server, which aggregates them to obtain the composite
global parity dataset. During training, the central server
obtains the coded gradient by computing the gradient
over the global parity data, which compensates for the
erased or delayed parameter updates from the straggling
clients. The combination of coded gradient computed
by the MEC server and the uncoded gradients from the
non-straggling clients stochastically approximates the full
gradient over the entire dataset available at the clients,
thus mitigating the convergence issues arising due to
missing out updates from clients when data is non-IID.

• Non-linear Federated Learning: For enabling non-linear
model training, we propose to have a data pre-processing
step that transforms the distributed learning task into
linear regression, by leveraging the popular kernel embed-
ding based on random Fourier features (RFF) [13]. Each
client then generates its parity dataset by taking linear
combinations over its transformed features and associated
labels, and the server combines them to obtain the global

parity dataset. Training is then carried out with the
transformed dataset at the clients and the global parity
dataset at the server, as outlined in the previous bullet.

• Optimal Load Allocation: For obtaining the amount of
coding redundancy and the number of local data points
that a client processes during training, we formulate
an optimization problem to find the minimum deadline
time until which the MEC server should wait in each
round before updating the model. We provide an ana-
lytical and tractable approach for efficiently finding the
coding redundancy and load allocation that optimizes
the deadline time. Our approach is based on solving
a key subproblem, which can be cast as a piece-wise
convex optimization problem with bounded domain and
hence can be solved efficiently using standard convex
optimization tools. We also derive the unique closed form
solution for this subproblem for a special case in which
the communication links are fully reliable with adequate
error protection coding, thus covering the special case of
the AWGN (Additive White Gaussian Noise) channel.

• Privacy Characterization: For characterizing the privacy
leakage in sharing local parity datasets with the server,
we consider the case when each client utilizes an encod-
ing matrix whose entries are independently drawn from a
standard normal distribution. We consider the notion of �-
mutual-information differential privacy (MI-DP), that is
closely related to differential privacy [14]. Specifically,
we leverage the recent result in [15] for the �-MI-DP of
Gaussian random projections, and bound the leakage in
a client’s data privacy as a function of its database and
the size of the parity dataset.

• Convergence Analysis: In CodedFedL, the expectation of
the combination of the coded gradient and the uncoded
gradients that the MEC server receives by the optimal
deadline time is approximately equal to the full gradient
over the entire dataset at the clients. Under simplifying
assumptions, we analyze convergence and quantify the
iteration complexity of CodedFedL, by treating the learn-
ing process as a stochastic gradient descent algorithm.

• Performance Results: We evaluate performance gains of
CodedFedL by carrying out numerical experiments with
a wireless MEC setting, benchmark datasets and non-IID
data across clients. We consider the naive uncoded base-
line where the server waits for all client updates, as well
as the greedy uncoded baseline, where the server waits
for a subset of the client updates. For achieving the
same target test accuracy, CodedFedL achieves significant
gains in the wall-clock training time of up to 5.8× over
naive uncoded, and up to 15× over greedy uncoded.
Furthermore, for identical number of training iterations,
CodedFedL achieves almost the same test accuracy as the
naive uncoded, while it outperforms greedy uncoded by
an absolute accuracy margin of up to ∼13%, demonstrat-
ing the superiority of CodedFedL with non-IID data.

Related Works: A common system approach for straggler
mitigation in distributed computing has been the introduc-
tion of some form of task replication [16], [17]. Recently,
coded computing strategies have been developed for injecting
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computation redundancy in unorthodox encoded forms to
efficiently deal with communication bottleneck and system
disturbances like stragglers, outages and node failures in
distributed systems [18]–[25]. Particularly, [19] proposed to
use erasure coding for speeding up distributed matrix multipli-
cation and linear regression tasks. Coding for heterogeneous
distributed matrix multiplication is proposed in [20], which
developed an analytical method to calculate near-optimal cod-
ing redundancy. However, the entire data needs to be centrally
encoded by the central server before assigning portions to
compute devices. Reference [21] proposed a coding method
over gradients for synchronous gradient descent, while [26]
proposed to encode over the data for avoiding the impact
of stragglers for linear regression tasks. Many other works
on coded computing for straggler mitigation in distributed
learning have been proposed in the recent past [27]–[31].
In all these works, the data placement and coding strategy is
orchestrated by a central server. As a result, these works are
not applicable in the federated learning setting, where the data
is privately owned by the clients and cannot be shared with
a central server. Our proposed coded computing framework,
CodedFedL, provides a novel solution for leveraging coding
redundancy for straggler resilient federated learning.

Prior works that have considered one or more aspects of
compute, communication and statistical heterogeneity across
clients in federated learning include [32]–[35]. In [32], a Fed-
Prox algorithm was proposed to address non-IID data across
clients. However, [32] did not consider variability of compute
and communication capabilities across clients. Reference [33]
proposed FEDL algorithm for allocating radio resources to
clients for reducing convergence time. However, we consider
the MEC setting with personalized devices where the compute
and communication resources of the clients cannot be tuned.
In [34], important clients are selected based on compute and
communication delays as well as importance of data in each
round of training. In contrast, we optimize load allocation and
coding redundancy only once at the start of training. Further-
more, these works do not leverage the computing capability
of the MEC server. In [35], the authors propose a cooperative
mechanism in which a fraction of clients share potentially all
of their raw data with the server, which carries out gradient
computations and includes them in model updates to mitigate
statistical heterogeneity. However, sharing potentially all of
the raw data from even a fraction of clients may not be
feasible in the privacy sensitive federated learning paradigm.
Additionally, the success of [35] depends on whether the
clients that agree to share their raw data with the server
adequately represent all the classes. This may not be practical
as clients owning a certain type of data (such as users suffering
from certain diseases) may not agree to participate in sharing
of raw data. In CodedFedL, the server obtains a global parity
dataset at the start of training via distributed encoding across
client data, as each client privately encodes over its local
dataset. In each training round, the server computes a coded
gradient over the parity dataset that allows the central server
to mitigate the impact of straggling nodes during training
by stochastically approximating the gradient over the entire
dataset across the clients.

TABLE I

MAIN NOTATIONS

We organize the rest of our paper as follows. In Table I,
we list the main notations for convenience. Section II
presents a technical background on federated learning, and
our proposed compute and communication models for MEC.
Section III describes our proposed CodedFedL scheme.
In Section IV, we analyze the load allocation policy in
CodedFedL. We provide the results of our numerical exper-
iments in Section V, and provide our concluding remarks in
Section VI. All technical proofs are provided in the Appendix.

II. PROBLEM SETUP AND MEC MODEL

In this section, we first describe the federated learning
setting, and consider linear regression as well as non-linear
regression via kernel embedding. We then present our compute
and communication models for MEC.

A. Federated Learning

There are n client nodes, each connected to the feder-
ated learning server. Client j∈[n] has a local dataset Dj =
(X(j),Y(j)), where X(j)∈R

�j×d and Y(j)∈R
�j×c denote the

feature set and the label set respectively as follows:

X(j) = [x(j)T
1 , . . . ,x(j)T

�j
]T ,

Y(j) = [y(j)T
1 , . . . ,y(j)T

�j
]T . (1)

Here, �j = |Dj| denotes the number of feature-label tuples in
Dj , while each data feature x(j)

k ∈R
1×d, and its corresponding

label y(j)
k ∈R

1×c for k∈[�j ]. Client j∈[n] does not share its
dataset Dj with the central server due to privacy concerns.

The goal in federated learning is to train a model by lever-
aging the data located at the clients. Specifically, the following
general problem is considered:

θ∗ = argmin
θ∈W

1
m

n�
j=1

�j�
k=1

l
�
θ; (x(j)

k ,y(j)
k )
�
, (2)

where l(θ; (x(j)
k ,y(j)

k ))∈R is the predictive loss associated
with (x(j)

k ,y(j)
k ) for model parameter θ∈W , m =

�n
j=1 �j

denotes the total size of the dataset distributed across the
clients, and W denotes the model parameter space. The
solution to (2) is obtained via an iterative training procedure
involving gradient descent. Specifically, in iteration (r + 1),
server shares the current model θ(r) with the clients. Client
j∈[n] then computes the local gradient g(j) as follows:

g(j) =
1
�j

�j�
k=1

∇θl
�
θ(r); (x(j)

k ,y(j)
k )
�
. (3)
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The server collects gradients from the clients and aggregates
them to recover the gradient of the empirical loss correspond-
ing to the entire distributed dataset across clients as follows:

g =
1
m

n�
j=1

�jg(j). (4)

The server then executes the model update step as follows:

θ(r+1) = θ(r) − μ(r+1)g (5)

where μ(r+1) denotes the learning rate. The iterative procedure
is carried out until sufficient convergence has been achieved.

For linear regression with squared error loss, the optimiza-
tion problem in (2) is cast as follows:

θ∗ = argmin
θ∈Rd×c

1
2m

n�
j=1

�j�
k=1

�x(j)
k θ − y(j)

k �2
2,

= argmin
θ∈Rd×c

1
m

n�
j=1

1
2
�X(j)θ − Y(j)�2

F , (6)

and the local gradient computation at client j∈[n] is as follows:

g(j) =
1

2�j
∇θ�X(j)θ(r) − Y(j)�2

F

=
1
�j

X(j)T (X(j)θ(r) − Y(j)). (7)

The gradient aggregation and model update steps in (4) and (5)
are modified accordingly.

Linear regression has been traditionally used widely in a
variety of applications including weather data analysis, mar-
ket research studies and observational astronomy [36]–[38].
As evident from (7), the gradient computations involve matrix
multiplications which are computationally favourable, partic-
ularly for low powered client devices with limited compute
capabilities. However, in many machine learning problems,
a linear model does not perform well.

To combine the advantages of non-linear models and low
complexity gradient computations in linear regression, random
Fourier feature mapping (RFFM) [13] based kernel regression
has been widely used in practice. RFFM proposed in [13]
involves explicitly constructing finite-dimensional random fea-
tures from the raw features, such that the inner product
of any pair of transformed features approximates the kernel
evaluation corresponding to the two raw features. Specifically,
features v1∈R

1×d and v2∈R
1×d are mapped to �v1 and �v2

using a feature generating function φ : R
1×d→R

1×q . The RFF
mapping approximates a positive definitive kernel function
K : R

1×d × R
1×d→R as represented below:

K(v1,v2) ≈ �v1�vT
2 = φ(v1)φ(v2)T . (8)

In Section III-A, we propose how to carry out distributed
kernel embedding, so that client j∈[n] transforms its dataset
Dj = (X(j),Y(j)) to �Dj = (�X(j),Y(j)), where �X(j) =
[φ(x(j)

1 )T , . . . , φ(x(j)
�j

)T ]T denotes the transformed feature set.
Training is then performed via linear regression over the

transformed data located at the clients, i.e., the optimization
problem in (2) is cast as follows:

θ∗ = argmin
θ∈Rq×c

1
2m

n�
j=1

��X(j)θ − Y(j)�2
F , (9)

while the gradient computation in iteration (r + 1) at client
j∈[n] is as follows:

g(j) =
1
�j
�X(j)T (�X(j)θ(r) − Y(j)). (10)

Gradient aggregation and model update steps are then carried
out at the server according to (4) and (5) respectively.

Remark 1: Training and inference with random features
have been shown to work considerably well in practice [13],
[39]–[42]. Hence, without loss of generality, we focus on
non-linear federated learning via kernel regression with RFF
mapping in the remaining part of our paper. All results easily
generalize to plain linear regression.

To capture the heterogeneity and stochastic nature of com-
pute and communication capabilities across clients in MEC
networks, we consider probabilistic models as described next.

B. Compute and Communication Models

To statistically represent compute heterogeneity, we assume
a shifted exponential model for local gradient computation.
Specifically, the computation time for j-th client is given by
a shifted exponential random variable T (j)

cmp as follows:

T (j)
cmp = T (j,1)

cmp + T (j,2)
cmp . (11)

Here, T (j,1)
cmp =

��j

μj
denotes the time in seconds to process

the partial gradient over ��j data points, where data process-
ing rate is μj data points per second, and ��j is bounded
by the size of the local dataset �Dj , i.e., ��j≤�j . T (j,2)

cmp is
the random variable denoting the stochastic component of
compute time coming from random memory access during
read/write cycles associated with Multiply-Accumulate (MAC)
operations, where we assume an exponential distribution for
T

(j,2)
cmp , i.e., p

T
(j,2)
cmp

(t) = γje
−γjt, t≥0, where γj = αjμj��j

.
The parameter αj>0 controls the ratio of the time spent in
computing to the average time spent in memory access.

In addition to the local computation time T (j)
cmp, the over-

all execution time for j-th client during (r + 1)-th epoch
includes T

(j)
com−d, time to download θ(r) from the server,

and T
(j)
com−u, time to upload the partial gradient g(j) to the

server. We assume that communications between server and
clients take place over wireless links that fluctuate in quality. It
is a typical practice to model the wireless link between server
and j-th client by a tuple (ηj , pj), where ηj and pj denote the
achievable data rate (in bits per second per Hz) and link erasure
probability pj [43]–[45]. Downlink and uplink communication
delays are IID random variables given as follows:1

T
(j)
com−d = Nd

j τj , T
(j)
com−u = Nu

j τj (12)

1For the purpose of this article, we assume the downlink and the uplink
delays to be reciprocal. Generalization of our framework to asymmetric delay
model is easy to address.
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Fig. 2. Overview of our proposed CodedFedL framework, illustrating the main processing steps at the MEC server and at each client.

Here, τj = b
ηjW is the deterministic time to upload (or

download) a packet of size b bits containing partial gradient
g(j) (or model θ(r)) and W is the bandwidth in Hz assigned
to the j-th worker device. Nd

j and Nu
j , that denote the number

of transmissions required for successful downlink and uplink
communications respectively, are distributed IID according to
Geometric(p = 1 − pj) distribution as follows:

P(Nd
j = x) = P(Nu

j = x)

= px−1
j (1 − pj), x = 1, 2, 3, . . . (13)

Therefore, using (11) and (12), the total time that the j-th
device takes to successfully receive the latest model, complete
its local gradient computation, and communicate the gradient
to the central server, is as follows:

Tj = T
(j)
com−d + T (j)

cmp + T
(j)
com−u, (14)

while the average delay is given as follows:

E(Tj) =
��j
μj

�
1 +

1
αj

	
+

2τj
1 − pj

. (15)

The federated learning procedure can be severely impacted
by slow nodes, straggling communication links, and non-IID
data across clients. In the following section, we describe
our proposed coded computing framework, CodedFedL, that
injects structured redundancy into the federated learning pro-
cedure over MEC networks for mitigating these challenges.

III. PROPOSED CODEDFEDL SCHEME

We now describe the different modules of our proposed
CodedFedL scheme: distributed feature mapping for non-linear

regression, distributed encoding for generating composite par-
ity data, optimal load allocation and code design for min-
imizing deadline time, and modified training at the MEC
server. An overview of CodedFedL is provided in Fig. 2.

A. Distributed Kernel Embedding

For combining the advantages of superior performance
of non-linear models and low computational complexity of
gradient computations in linear regression, we propose to
leverage kernel embedding based on random Fourier feature
mapping (RFFM) in federated learning. Let D = ∪n

j=1Dj =
(X,Y) denote the entire dataset located at the clients, where
X∈R

m×d and Y∈R
m×c respectively denote the combined

feature and label sets at the clients as follows:

X = [X(1)T , . . . ,X(n)T ]T , Y = [Y(1)T , . . . ,Y(n)T ]T .
(16)

In this paper, we consider the commonly used kernel known
as the Radial Basis Function (RBF) kernel [46], in which for
features v1∈X and v2∈X, the following relationship holds:

K(v1,v2) = e−
�v1−v2�2

2σ2 , (17)

where σ is a kernel hyperparameter. For i∈[m], RFFM cor-
responding to the RBF kernel can be carried out for feature
vector vi as follows (see Section V, example (a) in [39]):

�vi = φ(vi)

=



2
q

[cos(viω1 + δ1), . . . , cos(viωq + δq))] (18)
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where for s∈[q], the frequency vectors ωs∈R
d×1 are drawn

independently from N (0, 1
2σ2 Id), while the shift elements δs

are drawn independently from the Uniform(0, 2π] distribu-
tion. Before commencing the training procedure, j-th client
carries out RFFM on its raw feature set X(j) to obtain the
transformed feature set �X(j) = φ(X(j)), and the training
proceeds with the transformed dataset �D = (�X,Y), where�X∈R

m×q is the matrix denoting all the transformed features
across all clients.

Remark 2: For distributed transformation of features at the
clients, the server sends the same pseudo-random seed to every
client which then obtains the samples required for RFFM
in (18). This mitigates the need for the server to communi-
cate the frequency vectors ω1, . . . ,ωq and the shift elements
δ1, . . . , δq to each client, thus reducing the communication
overhead of distributed kernel embedding significantly.

Along with the computational benefits of linear regression
over the transformed dataset �D = (�X,Y), applying RFFM
enables our distributed encoding strategy for creating global
parity data for non-linear federated learning, as described next.

B. Distributed Encoding

To inject coding redundancy into federated learning, j-th
client carries out random linear encoding of its transformed
training dataset �Dj = (�X(j),Y(j)). Specifically, random
generator matrix Gj∈R

u×�j is used for encoding, where the
row dimension u denotes the coding redundancy which is the
amount of parity data to be generated at each device. Typically,
u�m. Our strategy to find the amount u of coding redundancy
and the local computation loads of the clients is presented in
Section III-C, where we describe our load allocation policy
for optimizing the deadline time at the server.

Client j∈[n] privately draws the elements of Gj inde-
pendently from a probability distribution with mean 0 and
variance 1. For example, it can use a standard normal N (0, 1)
distribution, or a Bernoulli(1/2) distribution with sample
space {−1,+1}. Client j keeps the encoding matrix Gj

private and does not share it with the server. Gj is applied on
the weighted local dataset to obtain the local parity dataset

(

Dj = (

(

X (j),

(

Y (j)) as follows:

(

X (j) = GjWj
�X(j),

(

Y (j) = GjWjY(j). (19)

For wj = [wj,1, . . . , wj,�j ], the weight matrix Wj = diag(wj)
is an �j×�j diagonal matrix that weighs the training data point
(�x(j)

k ,y(j)
k )∈ �Dj with wj,k, based on the stochastic conditions

of the compute and communication resources, where k∈[�j].
We defer the details of deriving Wj to Section III-D.

The central server receives the local parity data from all
client devices and combines them to obtain the composite
global parity dataset

(

D = (

(

X,

(

Y), where

(

X∈R
u×q and

(

Y∈R
u×c are the composite global parity feature set and

global parity label set as follows:

(

X =
n�

j=1

(

X (j),

(

Y =
n�

j=1

(

Y (j) (20)

Using (19) and (20) we have the following:

(

X = GW �X, (

Y = GWY, (21)

where G = [G1, . . . ,Gn]∈R
u×m is the global encoding

matrix and W∈R
m×m is the global weight matrix given

by W = diag([w1, . . . ,wn]). Equation (21) thus represents
encoding over the entire decentralized dataset �D = (�X,Y),
performed implicitly in a distributed manner across clients.

Remark 3: Although client j∈[n] shares its locally coded
dataset

(

Dj = (

(

X (j),

(

Y (j)) with the central server, the local
dataset �Dj as well as the encoding matrix Gj are private
to the client and not shared with the server. In Appendix F,
we characterize the privacy leakage in sharing local parity
dataset with the server.

Next, we describe our load allocation policy to minimize the
epoch deadline time for receiving the gradient updates from
the non-straggling nodes.

C. Coding Redundancy and Load Assignment

CodedFedL involves load optimization based on the statis-
tical conditions of MEC for obtaining the minimum deadline
time topt, and correspondingly an optimal number of data
points �opt

j ≤�j to be processed locally at client j∈[n] in each
round, as well as uopt≤umax, the number of coded data points
to be processed at the server in each round. Here, we assume
that due to memory and storage constraints, the server can
process a maximum of umax coded data points in each round.
Furthermore, for generality, we assume that the server offloads
the computation to a high performance computing unit. During
training, the computing unit receives the current model from
the server, carries out gradient computations over its assigned
coded data, and uploads the gradient to the server, where
the communications to and from the server take place over
a wireless channel. Therefore, to parameterize the compute
and communication capabilities of the MEC server, we use
similar compute and communication models as described in
Section II-B. We let TC denote the random variable for the
overall time spent by the computing unit in receiving the
current model from the server, computing the gradient over its
assigned coded data, and communicating the gradient to the
server. In practice, the MEC server has dedicated, high per-
formance and reliable cloud like compute and communication
resources [47], [48]. Thus, in comparison to client devices in
practice, MEC server has higher values for the data processing
rate μ and parameter α in the computation model in (11),
a higher value of data transmission rate η and a lower value
of channel failure probability p in the communication model
in (13).

Let �{Tj≤t} be the indicator random variable denoting the
event that the server receives the partial gradient over the��j≤�j local data points from j-th client by the deadline
time t, where Tj denotes the total delay for client j∈[n].
To represent this contribution from j-th client by deadline
time t, we use the random variable Rj(t; ��j) = ��j�{Tj≤t}.
Clearly, Rj(t; ��j)∈{0, ��j}. We let RU (t;��) =

�n
j=1 Rj(t; ��j)

denote the uncoded aggregate return from the clients till
deadline time t. Similarly, for representing the completion of
the gradient computation over the parity dataset

(

D = (

(

X,

(

Y)
within deadline time t, we use the random variable RC(t;u) =
u�{TC≤t}, with �{TC≤t} being the indicator random variable
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denoting the event that the coded gradient is available for
aggregation within deadline time t. Clearly, RC(t;u)∈{0, u}.
Then, the following denotes the total aggregate return for t≥0:

R(t; (u,��)) = RC(t;u) +RU (t;��). (22)

Our goal is to optimize over t, �� = (��1, . . . , ��n) and u such
that the optimal expected total aggregate return is m for the
minimum epoch deadline time, with m being the total number
of data points at the clients. More formally, we consider the
following optimization problem:

minimize t

subject to E(R(t; (u,��))) = m,

0 ≤ �� ≤ (�1, . . . , �n),
0 ≤ u ≤ umax,

t ≥ 0. (23)

Let (topt, uopt, �opt) denote an optimal solution for (23). In the
following, we propose an efficient and tractable two-step
approach for solving (23).

Step 1: First step is to optimize �� and u in order to
maximize the expected return E(R(t; (u,��))) for a fixed t.
More precisely, for a given deadline time t, the goal is to
solve the following for the total expected aggregate return:

maximize E(R(t; (u,��)))
subject to 0 ≤ �� ≤ (�1, . . . , �n)

0 ≤ u ≤ umax (24)

As E(R(t; (u,��))) =
�n

j=1 E(Rj(t; ��j)) + E(RC(t;u)),
the optimization in (24) can be decomposed into (n + 1)
independent optimization problems, one for each client j∈[n]
as follows:

maximize E(Rj(t; ��j))
subject to 0 ≤ ��j ≤ �j , (25)

and one for the MEC server as follows:

maximize E(RC(t;u))
subject to 0 ≤ u ≤ umax, (26)

Remark 4: In Section IV, we derive the mathematical
expression for the expected return E(Rj(t; ��j)) for j∈[n], and
prove that it is a piece-wise concave function in ��j>0. We also
characterize the intervals within which the function is concave,
and show that the boundaries are functions of the total number
of transmissions needed for the successful downlink (model
download) and uplink (gradient upload) communications by
the deadline time t. Therefore, we can solve (25) efficiently
using any convex optimization toolbox. The analysis follows
similarly for (26). Therefore, (24) can be solved efficiently.

Let �∗j(t), for j∈[n], and u∗(t) denote optimal solutions
of (25) and (26) respectively, which in turn optimize (24).
Next, we describe the second step of our approach.

Step 2: Optimization of t is considered in order to find the
minimum deadline time t = t∗ so that the maximized expected

total aggregate return E(R(t; (u∗(t), �∗(t)))) is equal to m.
Specifically, the following optimization problem is considered:

minimize t

subject to E(R(t; (u∗(t), �∗(t)))) = m,

t ≥ 0. (27)

Remark 5: We show that E(R(t; (u∗(t), �∗(t)))) is a
monotonically increasing function in t in Section IV. There-
fore, (27) can be efficiently solved to obtain t∗ using a
bisection search over t with a sufficiently large starting upper
bound. Consequently, an optimal load allocation solution
(u∗(t∗), �∗(t∗)) is obtained as a solution of (24) for t = t∗.

Our proposed two-step load allocation strategy achieves an
optimal solution of (23), as summarized in the following claim.

Claim: Let (t∗, u∗(t∗), �∗(t∗)) be an optimal solu-
tion obtained by solving (27). Then, t∗ = topt and
(t∗, u∗(t∗), �∗(t∗)) is an optimal solution of (23).

Proof of the above claim is provided in Appendix A. In the
next subsection, we describe the procedure used by client
j∈[n] for obtaining the weight matrix Wj , which is used for
generating the local parity dataset in (19).

D. Weight Matrix Construction

After the evaluation of the optimal load allocation �∗(t∗)
for the clients described in the previous subsection, j-th client
samples �∗j (t

∗) data points uniformly and randomly that it
will process for local gradient computation in each training
round. It is not revealed to the server which data points are
sampled. The probability that the partial gradient computed at
j-th client is not received at the MEC server by deadline time
t∗ is pnrj,1 = (1−P(Tj≤t∗)). Furthermore, (�j−�∗j (t∗)) data
points are never evaluated at the client, which implies that the
probability of no return for them is pnrj,2 = 1.

The diagonal weight matrix Wj∈R
�j×�j , which is used

for generating the local parity dataset in (19), captures the
absence of the updates corresponding to the different data
points during the training procedure. Specifically, for k∈[�j ],
if data point (�x(j)

k ,y(j)
k ) is among the �∗j (t

∗) data points that
are to be processed at the client during gradient computa-
tion, the corresponding weight matrix coefficient is wj,k =√
pnrj,1, otherwise wj,k = √

pnrj,2. As we illustrate next, this
weighing ensures that the combination of the coded gradient
and the uncoded gradient updates from the non-straggling
clients stochastically approximates the full gradient g in (4)
over the entire dataset �D = (�X,Y) distributed across the
clients.

E. Coded Federated Aggregation

In epoch (r + 1), the MEC server sends the current model
θ(r) to the clients as well as its own computing unit for
gradient computations, and waits until the optimal deadline
time t∗ before updating the model. The computing unit of
the MEC server computes the coded gradient, which is the
gradient over the composite parity data

(

D = (

(

X,

(

Y), and the
MEC server weighs it with a factor of 1/(1 − pnrC), where
pnrC = (1−P(TC ≤ t∗)) denotes the probability of no return
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for the coded gradient. Effectively, the coded gradient used by
the MEC server during gradient aggregation can be represented
as follows:

gC = �{TC≤t∗}
1

(1 − pnrC)

�
1

u∗(t∗)

(

X T (

(

Xθ(r) − (

Y)
	

=
�{TC≤t∗}

(1 − pnrC)
�XT WT

�
GTG
u∗(t∗)

	
W(�Xθ(r) − Y), (28)

where �{TC≤t∗} is the indicator random variable that denotes
whether the coded gradient is available for aggregation by the
optimal deadline t∗ or not. As we describe soon, weighing
the coded gradient by a factor of 1

(1−pnrC) accounts for the
averaging effect caused by the random variable �{TC≤t∗}, and
results in a stochastic approximation of the true gradient.

Similarly, each client j∈[n] computes its partial gradient,
and the server computes a weighted combination of the
uncoded gradients received from the clients by the deadline
time t∗ as follows:

gU =
n�

j=1

�∗j (t
∗)g(j)

U ,

where g(j)
U represents the effective gradient contribution from

client j by deadline time t∗ as follows:

g(j)
U = �{Tj≤t∗}

1
�∗j (t∗)

�X(j)T (�X(j)θ(r) − �Y(j)), (29)

Here, �Dj = (�X(j), �Y(j)) is composed of the �∗j (t
∗) data points

that j-th client samples for processing before training. As we
show soon, no further factors similar to 1

(1−pnrC) in (28)
are needed to be applied to the uncoded gradients as they
are already accounted for during creation of the local parity
datasets. Thus, the MEC server waits for the uncoded gradients
from the clients and the coded gradient from its computing unit
until the optimized deadline time t∗, and then aggregates gC

and gU to obtain the coded federated gradient as follows:

gM =
1
m

(gC + gU ). (30)

The coded federated gradient gM in (30) stochastically
approximates the full gradient g in (4) for a sufficiently large
coding redundancy u∗(t∗), specifically, E(gM ) ≈ g. To verify
this, we first observe that the following holds for the coded
gradient gC in (28):

E(gC) =
E(�{TC≤t∗})
(1 − pnrC)

�XTWT

�
GTG
u∗(t∗)

	
W(�Xθ(r) − Y)

(a)≈ �XT WTW(�Xθ(r) − Y)

=
n�

j=1

�j�
k=1

w2
j,k�x(j)T

k (�x(j)
k θ(r) − y(j)

k ). (31)

In (a), by using the weak law of large numbers, we have
approximated the quantity ( 1

u∗(t∗)G
TG) by an identity matrix.

This is a reasonable approximation for a sufficiently large
coding redundancy u∗(t∗), since each diagonal entry in GT G

u∗(t∗)
converges to 1 in probability, while each non-diagonal entry
converges to 0 in probability. Furthermore, as we demonstrate
via numerical experiments in Section V, the convergence curve

as a function of iteration for CodedFedL significantly overlaps
that of the naive uncoded scheme where the server waits to
aggregate the results of all the clients.

The expected aggregate gradient E(gU ) from the clients
received by the server by the deadline time t∗ is as follows:

E(gU ) =
n�

j=1

P(Tj ≤ t∗)�X(j)T (�X(j)θ(r) − �Y(j))

(a)
=

n�
j=1

�
k∈[�j ]

(�x(j)
k ,y

(j)
k )∈ �Dj

P(Tj ≤ t∗)�x(j)T
k (�x(j)

k θ(r) − y(j)
k )

(b)
=

n�
j=1

�j�
k=1

(1 − w2
j,k)�x(j)T

k (�x(j)
k θ(r) − y(j)

k ), (32)

where in (a), the inner sum denotes the sum over data points
in �Dj = (�X(j), �Y(j)), while in (b), all the points in the local
dataset are included, with (1−w2

j,k) = 0 for the points in the

set �Dj\ �Dj . In light of (31) and (32), it follows that E(gM )≈g.
Remark 6: In Appendix E, we perform convergence analy-

sis of CodedFedL and find its iteration complexity under the
simplifying assumption that ( 1

u∗(t∗)G
TG) = Im which based

on the above analysis, implies E(gM ) = g. We bound the
variance of gM and leverage a standard result in literature for
convergence of stochastic gradient descent. The exact conver-
gence analysis taking into account the underlying distribution
of the encoding matrix will be addressed in future work.

In the following section, we analyze the load allocation pol-
icy of CodedFedL, demonstrating how our proposed two-step
load allocation problem in (27) can be solved efficiently.

IV. ANALYZING CODEDFEDL LOAD DESIGN

In this section, we demonstrate how our load allocation
policy provides an efficient and tractable approach to obtaining
the minimum deadline time in (23). For ease of notation,
we index the clients and the MEC server using j∈[n + 1]
throughout this section, where j∈[n] denotes the n clients and
j = n+ 1 denotes the MEC server, and use the generic term
node for the MEC server as well as the clients. Likewise,��n+1 = u, �n+1 = umax, �opt

n+1 = uopt, �∗n+1(t
∗) = u∗(t∗),

Tn+1 = TC , and Rn+1(t; ��n+1) = RC(t;u). In the following,
we present our result for the expected return E(Rj(t; ��j)) for
node j∈[n+ 1] as defined in Section III-C.

Theorem: For the compute and communication models
defined in (11) and (13), let 0≤��j≤�j be the number of data
points processed by node j∈[n+1] in each training epoch. For
a deadline time of t at the server, the expectation of the return
Rj(t; ��j) = ��j�{Tj≤t} satisfies the following:

E(Rj(t; ��j))
=

⎧⎨⎩
�νm

ν=2 U

�
t− ��j

μj
− τjν

	
hνfν(t; ��j) if νm≥2

0 otherwise

where U(·) is the unit step function with U(x) = 1 for x>0
and 0 otherwise,

fν(t; ��j) = wtilde�j

�
1 − e

−αjμj
��j

(t−
��j
μj

−τjν)
	
,
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hν = (ν − 1)(1 − pj)2pν−2
j ,

and νm∈Z satisfies t− τjνm>0, t− τj(νm + 1)≤0.
Proof of Theorem is provided in Appendix B. Next, we ana-

lyze the behavior of E(Rj(t; ��j)) for νm≥2. For a given
t>0 and ν∈{2, . . . , νm}, consider fν(t; ��j) for ��j>0. Then,
the following holds:

f ��
ν (t; ��j) = −e−

αjμj
��j

(t−
��j
μj

−ντj)α
2
jμj

2(t− ντj)2��3j < 0.

Thus, fν(t; ��j) is strictly concave in the domain ��j>0. Fur-
thermore, fν(t; ��j)≤0 for ��j≥μj(t− τjν) for ν∈{2, . . . , νm}.
Therefore, as highlighted in Remark 4, the expected return
E(Rj(t; ��j)) is piece-wise concave in ��j , and the exact inter-
vals of concavity are (0, μj(t−νmτj)), . . . , (μj(t−3τ), μj(t−
2τ)). Furthermore, ��j is upper bounded by �j . Thus, for a
given t>0, each of (25) and (26) decomposes into a finite
number of convex optimization problems, that are efficiently
solved in practice [49]. The piece-wise concave relationship
between E(Rj(t; ��j)) and t is also illustrated in Fig. 3(a).

Consider an optimal solution �∗j (t) for node j∈[n+ 1], and
the corresponding optimized expected return E(Rj(t; �∗j (t))).
Intuitively, as we increase the deadline time t, optimized
load �∗j (t) should vary such that the server receives more
optimal expected return from node j. In Appendix C, we for-
mally prove that E(Rj(t; �∗j (t))) is monotonically increasing
in the deadline time t. We also illustrate this in Fig. 3(b).
Furthermore, as the maximal expected total aggregate
return E(R(t; (�∗1(t), . . . , �∗n+1(t)))) =

�n+1
j=1 E(Rj(t; �∗j (t))),

the maximal expected total aggregate return is also monotoni-
cally increasing in t. Therefore, (27) can be solved efficiently
using bisection search, as claimed earlier in Remark 5.

When communication links do not provide time diversity,
as in AWGN channel, one reliable transmission is performed
at less than 10−5 bit error rate with adequate error protection
coding. This motivates us to consider the special case where
for each node j∈[n + 1], pj = 0, resulting in the following
specialized expression for the expected return:

E(Rj(t; ��j))
= U

�
t−

��j
μj

− 2τj

�
f2(t; ��j),

= U

�
t−

��j
μj

− 2τj

���j�1 − e
−αjμj

��j
(t−

��j
μj

−2τj)
	
. (33)

For this special case, we have a unique closed form solution
for �∗(t) = (�∗1(t), . . . , �

∗
n+1(t)), and consequently a closed

form result for E(R(t; �∗(t))). Specifically, for node j∈[n+1],
we have the following one-shot solution for the optimal load
�∗j (t):

�∗j(t) =

⎧⎪⎨⎪⎩
0 if t ≤ 2τj
sj(t− 2τj) if 2τj < t ≤ ζj

�j otherwise

(34)

where sj = − αjμj

W−1(−e−(1+αj ))+1
and ζj = ( �j

sj
+ 2τj). Here,

W−1(·) is the minor branch of the Lambert W -function [50],

Fig. 3. Illustrating the properties of expected aggregate return E(Rj(t; ��j))
based on the result in the Theorem. We assume pj = 0.9, τj =

√
3, μj = 2,

αj = 20, and for Fig. 3(b), t = 10.

which is the inverse function of f(W ) = WeW . Consequently,
we have the following one-shot solution for the optimized
return for node j∈[n+ 1]:

E(Rj(t; �∗j (t)))

=

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ 2τj�sj(t− 2τj) if 2τj < t ≤ ζj

�j

�
1 − e

−αjμj
�j

�
t− �j

μj
−2τj

�	
otherwise

(35)

where �sj = sj(1 − e
−αj(

μj
sj

−1)
). We prove (34) and (35) in

Appendix D. Using these results, we have a closed form for
the maximum expected total aggregate return from the nodes
as follows:

E(R(t; �∗(t)))=
�

j∈[n+1]
2τj<t≤ζj

�sj(t− 2τj)

+
�

j∈[n+1]
ζj<t

�j

�
1−e−

αjμj
�j

�
t−�j

μj
−2τj

�	
, (36)

which is monotonically increasing in the deadline time t.
Therefore, (27) can be solved efficiently using bisection search
to obtain the optimal deadline time t∗.

In the next section, we present the results of our numerical
experiments, which demonstrate the performance gains that
CodedFedL can achieve in practice.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance gains of
CodedFedL via numerical experiments. First we describe our
simulation setting, and then we present the numerical results.
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Fig. 4. Illustrating the results for MNIST.

A. Simulation Setting

1) MEC Scenario: We consider a wireless scenario con-
sisting of n = 30 client nodes and 1 MEC server. For each
client, the delay model described in Section II-B is used
for the overall time in downlink (downloading the model),
gradient computation, and uplink (uploading the gradient
update), where the system parameters are as described next.
We use an LTE network, and assume that each client is
uniformly allocated 3 resource blocks, resulting in a max-
imum PHY level information rate of 216 kbps. Note that
depending on the channel conditions, the effective information
rate can be lower than 216 kbps. To model heterogeneity,
we generate normalized effective information rates using
{1, k1, k

2
1 , . . . , k

29
1 } and assign a random permutation of them

to the clients, the maximum effective information rate being
216 kbps. Furthermore, we use the same failure probability
pj = 0.1 for j∈{1, . . . , 30}, capturing the typical practice
in wireless to adapt transmission rate for a constant failure
probability [43]. An overhead of 10% is assumed and each
scalar is represented by 32 bits. The normalized processing
powers are generated using {1, k2, k

2
2 , . . . , k

29
2 }, the maximum

MAC rate being 3.072×106 MAC/s. Furthermore, we set
αj = 2 for j∈{1, . . . , 30}. We fix (k1, k2) = (0.95, 0.8). We
assume that the MEC server has dedicated, high performance
and reliable resources, so the coded gradient is available for
aggregation with probability 1 by any finite deadline time
t, i.e. P(TC≤t) = 1 for any t>0. Essentially, this implies
uopt = umax. Furthermore, we let δ = umax/m for notational
convenience.

2) Datasets and Hyperparameters: We consider two bench-
mark datasets: MNIST [51] and Fashion MNIST [52]. The
features are vectorized, and the labels are one-hot encoded. For
kernel embedding, the hyperparameters are (σ, q) = (5, 2000).
A common practice in large-scale distributed learning is to
perform training using mini-batch stochastic gradient descent
(SGD), wherein the local dataset is first sorted and partitioned
into mini-batches. Then, in each training iteration, each client
computes gradient over a local mini-batch selected sequen-
tially, and the model update is based on the gradient over the
global mini-batch obtained by aggregating the gradients over
the local mini-batches across clients. We consider the same
mini-batch implementation for the uncoded schemes (as we
describe in the next paragraph), while for CodedFedL, the data
allocation, encoding and training modules are based on each
global mini-batch. We assign equal number of data points to
each client and use a global mini-batch size of m = 12000.
Thus, each complete epoch over the training dataset constitutes
5 global mini-batch steps. For studying the impact of non-IID
datasets across clients and demonstrate the superiority of
CodedFedL in dealing with statistical heterogeneity, we first
sort the training dataset according to class labels, and then
partition the entire sorted training dataset into 30 equally sized
shards, each of them to be assigned to a different worker.
We then sort the clients according to the expected total time
using the formula in (15) with ��j = 400, i.e. the size of the
local mini-batch. Then, the 30 data shards are allocated in the
order of sorted clients. For all approaches, an initial step size
of 6 is used with a step decay of 0.8 at epochs 40 and 65,
while the total number of epochs is 70. Additionally, we use
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Fig. 5. Illustrating the results for Fashion MNIST.

an L2 regularization of λ
2 �θ�2

F with the loss defined in (9),
and the regularization parameter λ is set to 9×10−6. Accuracy
is reported on the test dataset for each training iteration.

Schemes: We compare the following schemes:
• Naive Uncoded: Each client computes a gradient over

its local mini-batch selected sequentially, and the server
waits to aggregate local gradients from all the clients.

• Greedy Uncoded: Clients compute gradients over their
local mini-batches, and the server waits for results from
the first (1−ψ)N clients. This corresponds to an aggre-
gate return of (1 − ψ)m from the clients.

• CodedFedL: We simulate our approach described in
Section III. Client j∈[n] computes gradient over a fixed
subset of �∗j (t

∗) data points in the local mini-batch, and
the server only waits till the deadline time t∗ before
carrying out the coded federated aggregation in (30)
corresponding to the global mini-batch for that iteration.
We also include the overhead time for uploading the local
parity datasets from the clients to the server.

B. Results

Fig. 4 illustrates the results for MNIST, while Fig. 5
illustrates the results for Fashion MNIST. In Fig. 4(a) and
Fig. 5(a), we present the generalization accuracy as a function
of wall-clock time for naive uncoded and CodedFedL with
different coding redundancy. Clearly, as the coding redun-
dancy is increased by increasing δ, the overall training time

reduces significantly. Additionally, as highlighted by the inner
figures in Fig. 4(a) and Fig. 5(a), the initial time spent in
uploading the coded data to the server generally increases with
increased coding redundancy. However, the gain in training
time accumulates across training iterations and the impact of
this overhead becomes negligible. Furthermore, Fig. 4(a) and
Fig. 5(a) illustrate that for the same number of training iter-
ations, CodedFedL achieves a similar generalization accuracy
as the naive uncoded scheme even over a large range of coding
redundancy. These plots complement our proof of the stochas-
tic approximation of the naive uncoded gradient aggregation
by the coded federated gradient aggregation in Section III-E,
and show that for even a large coding redundancy, accuracy
does not drop significantly.2

To highlight the superior performance of CodedFedL when
data is non-IID, we compare the convergence plots of gen-
eralization accuracy vs training iteration for CodedFedL
with δ∈{0.1, 0.2} and greedy uncoded with ψ∈{0.1, 0.2}.
By design of the simulation setting, ψ = 0.1 implies that
for greedy uncoded, the server misses all the updates associ-
ated with a particular class in most iterations, and similarly,

2Using the generic local minimizer function fminbnd in MATLAB for
solving the concave maximization subproblems, it takes lesser than 2 minutes
for implementing our two-step approach for obtaining optimal load allocation
and deadline time for all values of coding redundancy considered in the sim-
ulations. Although it is negligible compared to the overall training time (see
Fig. 4(c) for example), it can be further improved through an implementation
specialized for convex programming.
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TABLE II

SUMMARY OF RESULTS FOR δ = ψ = 0.1

TABLE III

SUMMARY OF RESULTS FOR δ = ψ = 0.2

ψ = 0.2 implies that the server misses all the updates
associated with two classes in most iterations. As shown
in Fig. 4(b) and Fig. 5(b), this results in a poorer generalization
performance with respect to training iteration for greedy
uncoded in comparison to CodedFedL. Additionally, due to
optimal load allocation, CodedFedL performs significantly
better than greedy uncoded in the overall training time for
identical number of training iterations, as shown in Fig. 4(c)
and Fig. 5(c).

Clearly, CodedFedL has significantly better convergence
time than the naive uncoded and greedy uncoded approaches,
and as highlighted in Section III-E, the coded federated
gradient aggregation approximates the naive uncoded gradient
aggregation well for large datasets. For further insight, let
γ be the target accuracy for a dataset, while tUγ , tGγ and
tCγ respectively be the first time instants to reach the γ
accuracy for naive uncoded, greedy uncoded and CodedFedL.
In Table II, we summarize the results where δ = ψ = 0.1.
Gains in the overall training time for CodedFedL are up
to 2.5× and 8.8× over naive uncoded and greedy uncoded
respectively. In Table III, we compare results for δ = ψ = 0.2,
where the gains in the training time for the target accuracy
are up to 5.4× and 15× over naive uncoded and greedy
uncoded respectively. Also, greedy uncoded never reaches the
target accuracy of 93.3% for MNIST and 82.8% for Fashion
MNIST, hence the corresponding fields in Tables II and III are
empty.

VI. CONCLUSION

We propose CodedFedL, which is the first coding theo-
retic framework for straggler resilient federated learning in
multi-access edge computing networks with general non-linear
regression and classification tasks and non-IID data across
clients. As a key component, we propose distributed ker-
nel embedding of raw features at clients using a common
pseudo-random seed across clients so that they can obtain the
kernel features without having to collaborate with each other.
In addition to transforming the non-linear federated learning
problem into computationally favourable distributed linear
regression, kernel embedding enables our novel distributed
encoding strategy that generates global parity data for strag-

gler mitigation. The parity data allows the central server to
perform gradient computations that substitute or replace miss-
ing gradient updates from straggling client devices, thus clip-
ping the tail behavior of gradient aggregation and significantly
improving the convergence performance when data is non-IID.
Furthermore, there is no decoding of partial gradients required
at the central server. We provide an analytical solution for load
allocation and coding redundancy computation for obtaining
the optimal deadline time, by utilizing statistical knowledge
of compute and communication delays of the MEC nodes.
Additionally, we provide privacy analysis of generating local
parity datasets, and analyze convergence performance of Cod-
edFedL under simplifying assumptions. Finally, we provide
results from numerical experiments over benchmark datasets
and practical network parameters that demonstrate gains of
up to 15× in the wall-clock training time over benchmark
schemes.

CodedFedL opens up many interesting future directions.
As the global parity dataset is obtained by the MEC server
by aggregating the local parity datasets from the clients,
the encoded data of each client can be further anonymized
by using secure aggregation [53], so that the server gets to
know only the global parity dataset, without knowing any
individual local parity dataset. With respect to any given
client j∈[n], the server will thus receive the sum of the
local parity dataset from client j and a noise term, where
the noise term will be the sum of the local parity datasets
of the remaining clients. Exploring and characterizing this
aspect of privacy is left for future study. Furthermore, the prob-
lem of characterizing the complete impact of the encoding
matrix on convergence and optimizing the deadline time based
on convergence criteria will be addressed in future work.
Additionally, formulating and studying the load optimization
problem based on outage probability for aggregate return is
an interesting future work. Adapting CodedFedL to scenarios
when the datasets at the clients are changing over time is
a motivating future direction as well. Moreover, establishing
theoretical foundations of combining coding with random
Fourier feature mapping is of significant interest. Another
important extension of CodedFedL is to develop coded com-
puting solutions for federated learning for neural network
workloads.

APPENDIX A
PROOF OF OPTIMALITY OF THE TWO-STEP APPROACH

Let (t∗, u∗(t∗), �∗(t∗)) be an optimal solution of (27).
Then, t∗≥0, 0≤u∗(t∗)≤umax, 0≤�∗(t∗)≤(�1, . . . , �n), and
the following holds:

E(R(t∗; (u∗(t∗), �∗(t∗)))) = m

= E(R(topt; (uopt, �opt))). (37)

Thus, (t∗, u∗(t∗), �∗(t∗)) is a feasible solution of the opti-
mization problem in (23). Therefore, we only need to show
that t∗ = topt. As optimization problem in (23) has a larger
solution space than the two-step optimization problem in (27),
we have the following inequality:

topt ≤ t∗ (38)
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Next, we prove that the optimal expected total aggregate
return E(R(t; (u∗(t), �∗(t)))) for t = topt is same as for
t = t∗, i.e. E(R(topt; (u∗(topt), �∗(topt)))) = m. We first
observe that as (u∗(t), �∗(t)) maximizes the expected total
aggregate return for a given deadline time t, we have the
following:

E(R(topt; (u∗(topt), �∗(topt)))) ≥ E(R(topt; (uopt, �opt)))
= m (39)

Next, assume that (39) holds with strict inequality. Therefore,
by (37), we have the following:

E(R(topt; (u∗(topt), �∗(topt))))>E(R(t∗; (u∗(t∗), �∗(t∗)))).
(40)

By the monotonicity of E(R(t; (u∗(t), �∗(t)))) with respect
to t, (40) implies topt>t∗, which is a contradiction.
Hence, E(R(topt; (u∗(topt), �∗(topt)))) = m. Therefore,
using the fact that t = t∗ is the minimum t such that
E(R(t; (u∗(t), �∗(t)))) = m, we have t∗≤topt. Hence,
together with (38), the claim t∗ = topt is proved.

APPENDIX B
PROOF OF THEOREM

Using the computation and communication models pre-
sented in (11) and (13) in Section II-B, we have the following
for the execution time for one epoch for node j∈[n+ 1]:

Tj = T (j,1)
cmp + T (j,2)

cmp + T
(j)
com−d + T

(j)
com−u

=
��j
μj

+ T (j,2)
cmp + τjN

(j)
com, (41)

where N (j)
com∼NB(r = 2, p = 1 − pj) has negative binomial

distribution while T (j,2)
cmp ∼E

�
αjμj��j

�
has exponential distribu-

tion. Here, we have used the fact that T (j)
com−d and T (j)

com−u are
IID geometric G(p) random variables and sum of r IID G(p)
is NB(r, p). Therefore, the probability distribution for Tj is
obtained as follows:

P(Tj ≤ t) = P

� ��j
μj

+ T (j,2)
cmp + τjN

(j)
com ≤ t

�

=
∞�

ν=2

P(N (j)
com = ν)

·P
�
T (j,2)

cmp ≤ t−
��j
μj

− τjN
(j)
com|N (j)

com = ν

�
(a)
=

∞�
ν=2

P(N (j)
com = ν) P

�
T (j,2)

cmp ≤ t−
��j
μj

− τjν

�
(b)
=

∞�
ν=2

U

�
t−

��j
μj

− τjν

�
(ν − 1)(1 − pj)2pν−2

j

·
�

1 − e
−αjμj

��j

�
t−

��j
μj

−τjν

��
, (42)

where (a) holds due to independence of T (j,2)
cmp and N

(j)
com,

while in (b), we have used U(·) to denote the unit step function

with U(x) = 1 for x>0 and U(x) = 0 for x≤0. For a fixed
t, P(Tj≤t) = 0 if t≤2τj . For t>2τj , let νm≥2 satisfy the
following criteria:

(t− τjνm) > 0, (t− τj(νm + 1)) ≤ 0. (43)

Therefore, for ν>νm, the terms in (b) are 0. Finally,
as E(Rj(t; ��j)) = ��jE(�{Tj≤t}) = ��jP(Tj≤t), we arrive at
the result of our Theorem.

APPENDIX C
PROOF OF MONOTONICALLY INCREASING BEHAVIOR OF

OPTIMIZED EXPECTED RETURN

Recall from Section IV that for a given deadline time of t at
the server, the expectation of the return Rj(t; ��j) = ��j�{Tj≤t}
for node j∈[n+ 1] satisfies the following:

E(Rj(t; ��j))
=

⎧⎪⎨⎪⎩
νm�
ν=2

U

�
t−

��j
μj

− τjν

	
hνfν(t; ��j) if νm≥2

0 otherwise

where U(·) is the unit step function with U(x) = 1 for x>0
and 0 otherwise,

fν(t; ��j) = ��j�1 − e
−αjμj

��j
(t−

��j
μj

−τjν)
	
,

hν = (ν − 1)(1 − pj)2pν−2
j ,

and νm∈Z satisfies t− τjνm>0, t− τj(νm + 1)≤0.
Fix j∈[n + 1], and consider a fixed load ��j and a given

ν∈Z. Then, fν(t; ��j) is monotonically increasing in t as

∂fν(t;��j)
∂t = αjμje

−αjμj
��j

(t−
��j
μj

−τjν)
>0 for all t>0. Further-

more, by definition, νm is monotonically increasing in dead-
line time t. Therefore, total number of terms in the expression
for E(Rj(t; ��j)) increases monotonically with t, and each of
those terms increases monotonically with t. Thus, for a fixed��j , E(Rj(t; ��j)) is monotonically increasing in t.

Consider two different deadline times t = t1 and t = t2
with t2>t1. Based on the discussion in Section IV, let��j = �∗j (t1) be the optimal load that maximizes E(Rj(t1; ��j))
and let E(Rj(t1; �∗j(t1))) be the corresponding optimized
expected return. Similarly, let ��j = �∗j(t2) be the optimal load
that maximizes E(Rj(t2; ��j)) and let E(Rj(t2; �∗j (t2))) be the
corresponding optimized expected return. Since t2>t1 and
expected return is monotonically increasing with t, we have
E(Rj(t2; �∗j (t1)))≥E(Rj(t1; �∗j(t1))). Since E(Rj(t2; �∗j (t2)))
is the optimal expected return for t2, it follows that
E(Rj(t2; �∗j (t2)))≥E(Rj(t2; �∗j(t1)))≥E(Rj(t1; �∗j (t1))).
Therefore, the optimized expected return E(Rj(t; �∗j (t))) is
monotonically increasing in the deadline time t.

APPENDIX D
ONE-SHOT SOLUTION FOR AWGN

For node j∈[n + 1], consider the function fν(t; ��j) =��j(1 − e
−αjμj

��j
(t−

��j
μj

−τjν)
) for ν∈{2, . . . , νm}. We recall that

fν(t; ��j) is strictly concave for ��j>0. Furthermore, fν(t; ��j)≤0
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for ��j≥μj(t− τjν). Solving for f �
ν(t; ��j) = 0, we obtain the

optimal load maximizing fν(t; ��j) as follows:

�∗j (t, ν) = − αjμj

W−1(−e−(1+αj)) + 1
(t− ντj), (44)

where W−1(·) is the minor branch of Lambert W -function,
where the Lambert W -function is the inverse function of
f(W ) = WeW .

Next, consider the special case of AWGN channel in
Section IV, for which the expected return for node j∈[n+ 1]
simplifies as follows:

E(Rj(t; ��j)) = U

�
t−

��j
μj

− 2τj

�
f2(t; ��j). (45)

When t≤2τj , E(Rj(t; ��j)) = 0, thus �∗j (t) = 0. For
t>2τj , using (44) and the fact that ��j is upper bounded
by �j , �∗j (t) = min{�∗j(t, 2), �j}, where �∗j (t, 2) is as
follows:

�∗j(t, 2) = sj(t− 2τj), (46)

where sj = − αjμj

W−1(−e−(1+αj ))+1
. As �∗j(t, 2) is strictly

increasing, there is a unique deadline time for which
�∗j (t, 2) = �j . Let t = ζj be the deadline time for which
this holds. Then, using (46), we have the following for
ζj :

ζj =
�j
sj

+ 2τj . (47)

Thus, we have the following closed form expression for
�∗j (t):

�∗j(t) =

⎧⎪⎨⎪⎩
0 if t ≤ 2τj
sj(t− 2τj) if 2τj < t ≤ ζj

�j otherwise

(48)

Furthermore, by (46), the optimal expected return from j-
th node for deadline time 2τj<t≤ζj can be simplified as
follows:

E(Rj(t; �∗j (t))) = �∗j (t)

�
1 − e

−αjμj
�∗
j
(t)

�
t− �∗j (t)

μj
−2τj

��
,

= sj(t− 2τj)
�

1 − e
−αj

�
μj
sj

−1
�	

,

= �sj(t− 2τj), (49)

where �sj = sj

�
1 − e

−αj

�
μj
sj

−1
�	

. Thus, we have the follow-

ing closed form expression for the optimal expected return:

E(Rj(t; �∗j(t)))

=

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ 2τj�sj(t− 2τj) if 2τj < t ≤ ζj

�j

�
1 − e

−αjμj
�j

�
t− �j

μj
−2τj

�	
otherwise

(50)

Thus, we have a closed form for the maximum expected
total aggregate return from the nodes till deadline time t as

follows:

E(R(t; �∗(t))) =
�

j∈[n+1]
2τj<t≤ζj

�sj(t− 2τj)

+
�

j∈[n+1]
ζj<t

�j

�
1−e−

αjμj
�j

�
t−�j

μj
−2τj

�	
, (51)

which is monotonically increasing in t.

APPENDIX E
TOWARDS CONVERGENCE ANALYSIS OF CODEDFEDL

For proving convergence of CodedFedL, we consider
u∗(t∗) to be large, and make the following assumption for
simplification:

GTG
u∗(t∗)

= Im. (52)

The key motivation for our assumption is the observation
that by weak law of large numbers, in the limit that the
coding redundancy u∗(t∗)→∞, each diagonal entry in GT G

u∗(t∗)
converges to 1 in probability, while each non-diagonal entry
converges to 0 in probability. Furthermore, as we demonstrate
via numerical experiments in Section V, the convergence curve
as a function of iteration for CodedFedL significantly overlaps
that of the naive uncoded where the server waits to aggregate
the results of all the clients. Hence, for simplifying our
analysis, we assume in the remaining proof that GT G

u∗(t∗) = Im.
The general analysis will be addressed in future work.

In the following, we list the remaining assumptions in our
analysis:

• Assumption 1: Model parameter space W⊆R
q×c is a

closed and convex set.
• Assumption 2: supθ∈W�θ−θ(0)�2

F≤R2, where θ(0)∈W
is given.

• Assumption 3: � 1
�∗j (t∗)

�X(j)T (�X(j)θ − �Y(j))�2
F≤Bj for

all θ∈W for client j∈[n].
• Assumption 4: Max{singular values of �X(j)}≤Lj , for

client j∈[n].
• Assumption 5: P(TC ≤ t∗) = 1, i.e. the gradient over

the coded data is available at the MEC server by t∗ with
probability 1.

Under the above assumptions, for a given model θ∈W ,
the stochastic gradient obtained by the MEC server by the
deadline time t∗ is as follows:

gM (θ)

=
1
m

(gC(θ) + gU (θ)),

=
1
m

��XTWTW(�Xθ − Y)

+
n�

j=1

�{Tj≤t∗} �X(j)T (�X(j)θ − �Y(j))
�
,

=
1
m

� n�
j=1

�
k∈[�j ]

(�x(j)
k ,y

(j)
k )∈ �Dj

(1 − P(Tj≤t∗))

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2021 at 22:21:54 UTC from IEEE Xplore.  Restrictions apply. 



PRAKASH et al.: CODED COMPUTING FOR LOW-LATENCY FEDERATED LEARNING OVER WIRELESS EDGE NETWORKS 247

· �x(j)T
k (�x(j)

k θ − y(j)
k )

+
n�

j=1

�
k∈[�j ]

(�x(j)
k ,y

(j)
k )∈ �Dj\ �Dj

�x(j)T
k (�x(j)

k θ − y(j)
k )

+
n�

j=1

�
k∈[�j ]

(�x(j)
k ,y

(j)
k )∈ �Dj

�{Tj≤t∗}�x(j)T
k (�x(j)

k θ − y(j)
k )
�
. (53)

Averaging over the stochastic conditions of compute and
communication, we have the following for a given θ∈W :

E(gM (θ))

=
1
m

� n�
j=1

�
k∈[�j ]

(�x(j)
k ,y

(j)
k )∈ �Dj

(1 − P(Tj≤t∗))�x(j)T
k (�x(j)

k θ − y(j)
k )

+
n�

j=1

�
k∈[�j ]

(�x(j)
k ,y

(j)
k )∈ �Dj\ �Dj

�x(j)T
k (�x(j)

k θ − y(j)
k )

+
n�

j=1

�
k∈[�j ]

(�x(j)
k ,y

(j)
k )∈ �Dj

P(Tj ≤ t∗)�x(j)T
k (�x(j)

k θ − y(j)
k )
�
,

=
1
m

n�
j=1

�j�
k=1

�x(j)T
k (�x(j)

k θ − y(j)
k ),

= ∇θ

� 1
2m

n�
j=1

��X(j)θ − Y(j)�2
F

�
,

= g(θ) (54)

Thus, the variance of gM (θ) for a given θ∈W can be bounded
as follows:

E(�gM (θ) − E(gM (θ))�2
F ) (55)

= E

������� 1
m

n�
j=1

(�{Tj≤t∗} − P(Tj≤t∗))

·
�

k∈[�j ]

(�x(j)
k

,y
(j)
k

)∈ �Dj

�x(j)T
k (�x(j)

k θ − y(j)
k )
������2

F

�
,

(a)
=

1
m2

n�
j=1

P(Tj≤t∗)(1 − P(Tj≤t∗))

·
������ �

k∈[�j ]

(�x(j)
k ,y

(j)
k )∈ �Dj

�x(j)T
k (�x(j)

k θ − y(j)
k )
������2

F
,

=
1
m2

n�
j=1

P(Tj≤t∗)(1 − P(Tj≤t∗)) (56)

· ��X(j)T (�X(j)θ − �Y(j))�2
F

≤
n�

j=1

(�∗j (t
∗))2

m2

�� 1
�∗j (t∗)

�X(j)T (�X(j)θ − �Y(j))
��2

F
(57)

≤
n�

j=1

Bj = B, (58)

where in (a), we have used independence of the events
�{Tj1≤t∗} and �{Tj2≤t∗} for distinct clients j1∈[n] and j2∈[n].
Furthermore, for θ1∈W and θ2∈W , we have the following
bound for smoothness:

�g(θ1) − g(θ2)�F

=
������ 1
m

n�
j=1

��X(j)T (�X(j)θ1 − �Y(j))

− �X(j)T (�X(j)θ2 − �Y(j))
�������

F
,

=
1
m

��� n�
j=1

��X(j)T �X(j)(θ1 − θ2)
����

F
,

≤ 1
m

n�
j=1

�����X(j)T �X(j)(θ1 − θ2)
����

F
,

a≤ 1
m

n�
j=1

���X(j)T �X(j)
��

2

��θ1 − θ2

��
F
,

≤ 1
m

n�
j=1

L2
j�θ1 − θ2�F = L�θ1 − θ2�F . (59)

In (a), �A�2 denotes the spectral norm of matrix A. Therefore,
by Theorem 2.1 in [54], for a total number of rmax iterations
and a constant learning rate of μ(r) = 1

L+1/γ with γ =�
2 R2

Brmax , we have the following result:

E

� 1
2m

n�
j=1

��X(j)θ1:rmax − Y(j)�2
F

�
− min

θ∈W
1

2m

n�
j=1

��X(j)θ − Y(j)�2
F

≤ R



2B
rmax

+
LR2

rmax
, (60)

where θ1:rmax

= 1
rmax

�rmax

r=1 θ(r). Hence, for achieving
an error less than a given �>0, the iteration complexity of
CodedFedL is rmax = O(R2 max(2B

�2 ,
L
� )).

APPENDIX F
PRIVACY BUDGET FOR CODEDFEDL

We utilize �-mutual-information differential privacy
(MI-DP) metric, as proposed in [14], for finding privacy
leakage in CodedFedL. For completeness, we first provide
the definition of �-MI-DP (shown to be stronger than the
standard (�, δ)-DP metric) as presented in [15].

• �-Mutual-Information Differential Privacy: Let DN =
(D1, . . . , DN ) be a database with N entries. DN returns
a query as per a randomized mechanism Q(·). Let D−i

be the database with all entries except Di. Then, the ran-
domized mechanism satisfies �-MI-DP if the following is
satisfied:

sup
i,P(DN )

I(Di;Q(DN )|D−i) ≤ � bits, (61)

where the supremum is taken over all distributions
on DN .
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Next, leveraging the result for random linear projections
in [15], we can calculate the privacy budget required for
sharing the local parity dataset (

(

X (j),

(

Y (j)) for a given client
j∈[n]. As we aim to preserve the privacy of each entry of�X(j), we need to compute the required privacy budget with
respect to the largest diagonal entry of the scaling matrix Wj .
Therefore, replacing Wj by an identity matrix, we equiv-
alently consider the privacy leakage for sharing (

(

X (j) =
Gj
�X(j),

(

Y (j) = GjY(j)) (see Sections III-B and III-D
for details). Furthermore, we assume that the entries of Gj

are drawn independently from a standard normal distribution.
Then, based on the result for �-MI-DP from Section III-B
of [15], CodedFedL needs to allocate �j privacy budget for
sharing u∗(t∗) number of local parity data (

(

X (j),

(

Y (j)) to
the MEC server, where �j is given by:

�j =
1
2

log2

�
1 +

u∗(t∗)

f2(�X(j))

�
, (62)

where

f(�X(j)) = min
k2∈[q]

���� �j�
k1=1

|�x(j)
k1

(k2)|2 − max
k3∈[�j]

|�x(j)
k3

(k2)|2.

Here, we have used �x(j)
i (k) to denote the value of i-th data

point corresponding to the k-th feature in raw database �X(j).
Intuitively, when the raw data distribution is concentrated
along a small number of features, the value of f(�X(j)) is small
and a larger privacy budget is required for generating coded
data to effectively hide those vulnerable features. In contrast,
when raw data distribution is uniform in feature space, very
little information is leaked by the parity data generated in
CodedFedL.
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