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Turbo-Aggregate: Breaking the Quadratic
Aggregation Barrier in Secure Federated Learning

Jinhyun So ™, Bagsak Giiler

Abstract—Federated learning is a distributed framework for
training machine learning models over the data residing at
mobile devices, while protecting the privacy of individual users.
A major bottleneck in scaling federated learning to a large
number of users is the overhead of secure model aggregation
across many users. In particular, the overhead of the state-of-the-
art protocols for secure model aggregation grows quadratically
with the number of users. In this article, we propose the first
secure aggregation framework, named Turbo-Aggregate, that in
a network with N users achieves a secure aggregation overhead
of O(NlogN), as opposed to O(N?), while tolerating up to a user
dropout rate of 50%. Turbo-Aggregate employs a multi-group
circular strategy for efficient model aggregation, and leverages
additive secret sharing and novel coding techniques for injecting
aggregation redundancy in order to handle user dropouts while
guaranteeing user privacy. We experimentally demonstrate that
Turbo-Aggregate achieves a total running time that grows almost
linear in the number of users, and provides up to 40x speedup
over the state-of-the-art protocols with up to N = 200 users.
Our experiments also demonstrate the impact of model size and
bandwidth on the performance of Turbo-Aggregate.

Index Terms—Federated learning, privacy-preserving machine
learning, secure aggregation.

I. INTRODUCTION

EDERATED learning is an emerging approach that
Fenables model training over a large volume of decen-
tralized data residing in mobile devices, while protecting the
privacy of the individual users [1]-[4]. This is achieved by
two key design principles. First, the training data is kept on the
user device rather than sending it to a central server, and users
locally perform model updates using their individual data.
Second, local models are aggregated in a privacy-preserving
framework, either at a central server (or in a distributed man-
ner across the users) to update the global model. The global

Manuscript received August 15, 2020; revised December 3, 2020
and January 21, 2021; accepted January 21, 2021. Date of publication
January 26, 2021; date of current version March 16, 2021. This work was sup-
ported in part by the Defense Advanced Research Projects Agency (DARPA)
under Contract HR0O01117C0053; in part by the Army Research Office under
Award WI11NF1810400; in part by NSF under Grant CCF-1703575 and
Grant CCF-1763673; in part by the Office of Naval Research under Award
NO00014-16-1-2189; and in part by Intel. (Corresponding author: Jinhyun So.)

Jinhyun So and A. Salman Avestimehr are with the Department of Electrical
and Computer Engineering, University of Southern California, Los Angeles,
CA 90089 USA (e-mail: jinhyuns@usc.edu; avestimehr@ee.usc.edu).

Bagak Giiler is with the Department of Electrical and Computer
Engineering, University of California at Riverside, Riverside, CA 92521 USA
(e-mail: bguler@ece.ucr.edu).

Digital Object Identifier 10.1109/JSAIT.2021.3054610

, Member, IEEE, and A. Salman Avestimehr, Fellow, IEEE

secure aggregation

updated global model
x(t+1)

server

local updates
x1(t)

user 2

user 1 user N

x(t) x(t) x(t)

Fig. 1. Federated learning framework. At iteration ¢, the central server sends
the current version of the global model, x(¢), to the mobile users. User i € [N]
updates the global model using its local data, and computes a local model
x;(7). The local models are then aggregated in a privacy-preserving manner.
Using the aggregated models, the central server updates the global model
x(t + 1) for the next round, and pushes it back to the mobile users.

model is then pushed back to the mobile devices for inference.
This process is demonstrated in Figure 1.

The privacy of individual models in federated learning is
protected through what is known as a secure aggregation pro-
tocol [2], [3]. In this protocol, each user locally masks its own
model using pairwise random masks and sends the masked
model to the server. The pairwise masks have a unique prop-
erty that once the masked models from all users are summed
up at the server, the pairwise masks cancel out. As a result,
the server learns the aggregate of all models, but no individual
model is revealed to the server during the process. This is a key
property for ensuring user privacy in secure federated learning.
In contrast, conventional distributed training setups that do not
employ secure aggregation may reveal extensive information
about the private datasets of the users, which has been recently
shown in [5]-[7]. To prevent such information leakage, secure
aggregation protocols ensure that the individual update of each
user is kept private, both from other users and the central
server [2], [3]. A recent promising implementation of feder-
ated learning, as well as its application to Google keyboard
query suggestions is demonstrated in [8]. Several other works
have also demonstrated that leveraging the information that
is distributed over many mobile users can increase the train-
ing performance dramatically, while ensuring data privacy and
locality [9]-[11].

The overhead of secure model aggregation, however, creates
a major bottleneck in scaling secure federated learning to a
large number of users. More specifically, in a network with
N users, the state-of-the-art protocols for secure aggregation
require pairwise random masks to be generated between each
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pair of users (for hiding the local model updates), and therefore
the overhead of secure aggregation grows quadratically in the
number of users (i.e., O(N?)) [2], [3]. This quadratic growth
of secure aggregation overhead limits its practical applications
to hundreds of users while the scale of current mobile systems
is in the order of tens of millions [10].

Another key challenge in model aggregation is the dropout
or unavailability of the users. Device availability and con-
nection quality in mobile networks change rapidly, and users
may drop from federated learning systems at any time due to
various reasons, such as poor connectivity, making a phone
call, low battery, etc. The design protocol hence needs to be
robust to operate in such environments, where users can drop
at any stage of the protocol execution. Furthermore, dropped
or delayed users can lead to privacy breaches [3], and pri-
vacy guarantees should hold even in the case when users are
dropped or delayed.

In this article, we introduce a novel secure aggregation
framework for federated learning, named Turbo-Aggregate,
with four salient features:

1) Turbo-Aggregate reduces the overhead of secure aggre-

gation to O(N log N) from O(N?);

2) Turbo-Aggregate has provable robustness guarantees
against up to a user dropout rate of 50%;

3) Turbo-Aggregate protects the privacy of the local
model updates of each individual user, in the strong
information-theoretic sense;

4) Turbo-Aggregate experimentally achieves a total running
time that grows almost linear in the number of users,
and provides up to 40x speedup over the state-of-the-
art with N = 200 users, in distributed implementation
over Amazon EC2 cloud.

At a high level, Turbo-Aggregate is composed of three
main components. First, Turbo-Aggregate employs a multi-
group circular strategy for model aggregation. In particular, the
users are partitioned into several groups, and at each aggrega-
tion stage, the users in one group pass the aggregated models
of all the users in the previous groups and current group to
users in the next group. We show that this structure enables
the reduction of aggregation overhead to O(NlogN) (from
O(N?)). However, there are two key challenges that need to
be addressed in the proposed multi-group circular strategy for
model aggregation. The first one is to protect the privacy of the
individual user, i.e., the aggregation protocol should not allow
the identification of individual model updates. The second one
is handling the user dropouts. For instance, a user dropped at
a higher group of the protocol may lead to the loss of the
aggregated model information from all the previous groups,
and collecting this information again from the lower groups
may incur a large communication overhead.

The second key component is to leverage additive secret
sharing [12], [13] to enable privacy and security of the users. In
particular, additive sharing masks each local model by adding
randomness in a way that can be cancelled out once the mod-
els are aggregated. Finally, the third component is to add
aggregation redundancy via Lagrange coding [14] to enable
robustness against delayed or dropped users. In particular,
Turbo-Aggregate injects redundancy via Lagrange polynomial

so that the added redundancy can be exploited to reconstruct
the aggregated model amidst potential dropouts.

Turbo-Aggregate allows the use of both centralized and
decentralized communication architectures. The centralized
architecture refers to the communication model used in the
conventional federated learning setup where all communica-
tion goes through a central server, i.e., the server acts as
an access point [1], [3], [4]. The decentralized architecture,
on the other hand, refers to the setup where mobile devices
communicate directly with each other via an underlay com-
munication network (e.g., a peer-to-peer network) [15], [16]
without requiring a central server for secure model aggrega-
tion. Turbo-Aggregate also allows additional parallelization
opportunities for communication, such as broadcasting and
multi-casting.

We theoretically analyze the performance guarantees of
Turbo-Aggregate in terms of the aggregation overhead, pri-
vacy protection, and robustness to dropped or delayed users. In
particular, we show that Turbo-Aggregate achieves an aggre-
gation overhead of O(N log N) and can tolerate a user dropout
rate of 50%. We then quantify the privacy guarantees of our
system. An important implication of dropped or delayed users
is that they may lead to privacy breaches [2]. Accordingly, we
show that the privacy-protection of our algorithm is preserved
in such scenarios, i.e., when users are dropped or delayed.

We also provide extensive experiments to numerically evalu-
ate the performance of Turbo-Aggregate. To do so, we imple-
ment Turbo-Aggregate for up to 200 users on the Amazon
EC2 cloud, and compare its performance with the state-of-
the-art secure aggregation protocol from [3]. We demonstrate
that Turbo-Aggregate can achieve an overall execution time
that grows almost linear in the number of users, and provides
up to 40x speedup over the state-of-the-art with 200 users.
Furthermore, the overall execution time of Turbo-Aggregate
remains stable as the user dropout rate increases, while for the
benchmark protocol, the overall execution time significantly
increases as the user dropout rate increases. We further study
the impact of communication bandwidth on the performance
of Turbo-Aggregate, by measuring the total running time
with various bandwidth constraints. Our experimental results
demonstrate that Turbo-Aggregate still provides substantial
gain in environments with more severe bandwidth constraints.

II. RELATED WORK

A potential solution for secure aggregation is to lever-
age cryptographic approaches, such as multiparty computa-
tion (MPC), homomorphic encryption, or differential privacy.
MPC-based techniques mainly utilize Yao’s garbled circuits
or secret sharing (e.g., [17]-[20]). Their main bottleneck is
the high communication cost, and communication-efficient
implementations require an extensive offline computation
part [19], [20]. A notable recent work is [21], which focuses
on optimizing MPC protocols for network security and mon-
itoring. Homomorphic encryption is a cryptographic secure
computation scheme that allows aggregations to be performed
on encrypted data [22]-[24]. However, the privacy guaran-
tees of homomorphic encryption depends on the size of the
encrypted data (more privacy requires a larger encrypted data
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size), and performing computations in the encrypted domain
is computationally expensive [25], [26]. Differential privacy
is a noisy release mechanism that preserves the privacy of
personally identifiable information, in that the removal of any
single element from the dataset does not affect the computation
outcomes significantly. As such, the computation outcomes
cannot be used to infer much about any single individual ele-
ment [27]. In the context of federated learning, differential
privacy is mainly used to ensure that individual data points
from the local datasets cannot be identified from the local
updates sent to the server, by adding artificial noise to the local
updates at the clients’ side [9], [28], [29]. This approach entails
a trade-off between convergence performance and privacy pro-
tection, i.e., stronger privacy guarantees lead to a degradation
in the convergence performance. On the other hand, our focus
is on ensuring that the server or a group of colluding users
can learn nothing beyond the aggregate of all local updates,
while preserving the accuracy of the model. This approach,
also known as secure aggregation [2], [3], does not sacrifice
the convergence performance.

A recent line of work has focused on secure aggregation
by additive masking [3], [30]. In [30], users agree on pairwise
secret keys using a Diffie-Hellman type key exchange protocol
and then each user sends the server a masked version of their
data, which contains the pairwise masks as well as an individ-
ual mask. The server can then sum up the masked data received
from the users to obtain the aggregated value, as the summa-
tion of additive masks cancel out. If a user fails and drops out,
the server asks the remaining users to send the sum of their
pairwise keys with the dropped users added to their individ-
ual masks, and subtracts them from the aggregated value. The
main limitation of this protocol is the communication over-
head of this recovery phase, as it requires the entire sum of the
missing masks to be sent to the server. Moreover, the protocol
terminates if additional users drop during this phase.

A novel technique is proposed in [3] to ensure that the pro-
tocol is robust if additional users drop during the recovery
phase. It also ensures that the additional information sent to the
server does not breach privacy. To do so, the protocol utilizes
pairwise random masks between users to hide the individual
models. The cost of reconstructing these masks, which takes
the majority of execution time, scales with respect to O(N2),
with N corresponding to the number of users. The execution
time of [3] increases as more users are dropped, as the protocol
requires additional information corresponding to the dropped
users. The recovery phase of our protocol does not require any
additional information to be shared between the users, which is
achieved by a coding technique applied to the additively secret
shared data. Hence, the execution time of our algorithm stays
almost the same as more and more users are dropped, the only
overhead comes from the decoding phase whose contribution
is very small compared to the overall communication cost.

Notable approaches to reduce the communication cost
in federated learning include reducing the model size via
quantization, or learning in a smaller parameter space [31].
In [32], a framework has been proposed for autotuning
the parameters in secure federated learning, to achieve
communication-efficiency. Another line of work has focused

on approaches based on decentralized learning [33], [34]
or edge-assisted hierarchical physical layer topologies [35].
Specifically, [35] utilizes edge servers to act as an intermediate
aggregator for the local updates from edge devices. The global
model is then computed at the central server by aggregating the
intermediate computations available at the edge servers. These
setups perform the aggregation using the clear (unmasked)
model updates, i.e., the aggregation is not required to pre-
serve the privacy of individual model updates. Our focus is
different, as we study the secure aggregation problem which
requires the server to learn no information about an individual
update beyond the aggregated values. Finally, approaches that
aim at alleviating the aggregation overhead by reducing the
model size (e.g., quantization [31]) can also be leveraged in
Turbo-Aggregate, which can be an interesting future direction.

Circular communication and training architectures have
been considered previously in the context of distributed
stochastic gradient descent on clear (unmasked) gradient
updates, to reduce communication load [36] or to model
data-heterogeneity [37]. Different from these setups, our
key challenge in this work is handling user dropouts while
ensuring user privacy, i.e., secure aggregation. Conventional
federated learning frameworks consider a centralized commu-
nication architecture in which all communication between the
mobile devices goes through a central server [1], [3], [4].
More recently, decentralized federated learning architectures
without a central server have been considered for peer-to-
peer learning on graph topologies [15] and in the context
of social networks [16]. Model poisoning attacks on feder-
ated learning architectures have been analyzed in [38], [39].
Differentially-private federated learning frameworks have been
studied in [28], [40]. A multi-task learning framework for fed-
erated learning has been proposed in [41], for learning several
models simultaneously. References [42], [43] have explored
federated learning frameworks to address fairness challenges
and to avoid biasing the trained model towards certain users.
Convergence properties of trained models are studied in [44].

III. SYSTEM MODEL

In this section, we first discuss the basic federated learning
model. Next, we introduce the secure aggregation protocol
for federated learning and discuss the key parameters for
performance evaluation. Finally, we present the state-of-the-art
for secure aggregation.

A. Basic Federated Learning Model

Federated learning is a distributed learning framework that
allows training machine learning models directly on the data
held at distributed devices, such as mobile phones. The goal
is to learn a single global model x with dimension d, using
data that is generated, stored, and processed locally at millions
of remote devices. This can be represented by minimizing a
global objective function,

N
min L(x) such that L(x) = ZwiLi(x), (1)
i=1
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where N is the total number of mobile users, L; is the local
objective function of user i, and w; > 0 is a weight parameter
assigned to user i to specify the relative impact of each user
such that ) ; w; = 1. One natural setting of the weight param-
eter is w; = % where m; is the number of samples of user i
and m= YN m;.!

To solve (1), conventional federated learning architectures
consider a centralized communication topology in which all
communication between the individual devices goes through
a central server [1], [3], [4], and no direct links are allowed
between the mobile users. The learning setup is as demon-
strated in Figure 1. At iteration ¢, the central server shares
the current version of the global model, x(), with the mobile
users. Each user then updates the model using its local data.
User i € [N] then computes a local model x;(#). To increase
communication efficiency, each user can update the local
model over multiple local epochs before sending it to the
server [1]. The local models of the N users are sent to the
server and then aggregated by the server. Using the aggre-
gated models, the server updates the global model x(¢+ 1) for
the next iteration. This update equation is given by

x(t+1) =Y x), )

ieU(r)

where U(7) denotes the set of participating users at iteration
t. Then, the server pushes the updated global model x(z + 1)
to the mobile users.

B. Secure Aggregation Protocol for Federated Learning and
Key Parameters

The basic federated learning model from Section III-A aims
at addressing the privacy concerns over transmitting raw data
to the server, by letting the training data remain on the user
device and instead requiring only the local models to be sent to
the server. However, as the local models still carry extensive
information about the local datasets stored at the users, the
server can reconstruct the private data from the local models
by using a model inversion attack, which has been recently
demonstrated in [5]-[7]. Secure aggregation has been intro-
duced in [3] to address such privacy leakage from the local
models. A secure aggregation protocol enables the computa-
tion of the aggregation operation in (2) while ensuring that
the server learns no information about the local models x;()
beyond their aggregated value Zf’: 1 Xi(#). In this article, our
focus is on the aggregation phase in (2) and how to make this
aggregation phase secure and efficient. In particular, our goal
is to evaluate the aggregate of the local models

=) xi 3)

ield
where we omit the iteration index ¢ for simplicity. As we
discuss in Section III-C and Appendix A in detail in the
supplementary material, secure aggregation protocols build
on cryptographic primitives that require all operations to be
carried out over a finite field. Accordingly, similar to prior

IFor simplicity, we assume that all users have equal-sized datasets i.e., a
weight parameter assigned to user i satisfies w; = % for all i € [N].

works [2], [3], we assume that the elements of xl@ and z are
from a finite field F, for some field size g.

We evaluate the performance of a secure aggregation
protocol for federated learning through the following key
parameters.

1) Robustness Guarantee: We consider a network model in
which each user can drop from the network with a prob-
ability p € [0, 1], called the user dropout rate. In a real
world setting, the dropout rate varies between 0.06 and
0.1 [10]. The robustness guarantee quantifies the maxi-
mum user dropout rate that a protocol can tolerate with
a probability approaching to 1 as N — oo to correctly
evaluate the aggregate of the surviving user models.

2) Privacy Guarantee: We consider a security model where
the users and the server are honest but curious. We
assume that up to T users can collude with each other
as well as with the server for learning the models of
other users. The privacy guarantee quantifies the maxi-
mum number of colluding entities that the protocol can
tolerate for the individual user models to keep private.

3) Aggregation Overhead: The aggregation overhead,
denoted by C, quantifies the asymptotic time complex-
ity (i.e., runtime) with respect to the number of mobile
users, N, for aggregating the models of all users in the
network. Note that this includes both the computation
and communication time complexities.

C. State-of-the-Art for Secure Aggregation

The state-of-the-art for secure aggregation in federated
learning is the protocol proposed in [3]. In this protocol, each
mobile user locally trains a model. By using pairwise random
masking, the local models are securely aggregated through a
central server, who then updates the global model. We present
the details of the state-of-the-art in Appendix A in the supple-
mentary material. This protocol achieves robustness guarantee
to user dropout rate of up to p = 0.5, while providing privacy
guarantee toup to T = %’ colluding users. However, its aggre-
gation overhead is quadratic with the number of users (i.e.,
C = O(N?)). This quadratic aggregation overhead severely
limits the network size for real-world applications [10].

Our goal in this article is to develop a secure aggrega-
tion protocol that can provide comparable robustness and
privacy guarantees as the state-of-the-art, while achieving a
significantly lower (almost linear) aggregation overhead.

IV. THE TURBO-AGGREGATE PROTOCOL

We now introduce the Turbo-Aggregate protocol for secure
federated learning that can simultaneously achieve robustness
guarantee to a user dropout rate of up to p = 0.5, privacy
guarantee to up to T = % colluding users, and aggregation
overhead of C = O(NlogN). Turbo-Aggregate is composed
of three main components. First, it creates a multi-group circu-
lar aggregation structure for fast model aggregation. Second,
it leverages additive secret sharing by adding randomness in a
way that can be cancelled out once the models are aggregated,
in order to guarantee the privacy of the users. Third, it adds
aggregation redundancy via Lagrange polynomial in the model
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Fig. 2. Network topology with N users partitioned to L groups, with N;
users in group / € [L].

updates that are passed from one group to the next, so that the
added redundancy can be exploited to reconstruct the aggre-
gated model amidst potential user dropouts. We now describe
each of these components in detail. An illustrative example is
also presented in Appendix B in the supplementary material
to demonstrate the execution of Turbo-Aggregate.

A. Multi-Group Circular Aggregation

Turbo-Aggregate computes the aggregate of the individual
user models by utilizing a circular aggregation strategy. Given
a mobile network with N users, this is done by first partitioning
the users into L groups as shown in Figure 2, with N; users
in group ! € [L], such that ZIE[L] N; = N. We consider a
random partitioning strategy in which each user is assigned
to one of the available groups uniformly at random, by using
a bias-resistant public randomness generation protocol such
as in [45]. We use U; C [NV] to represent the set of users
that complete their part in the protocol (surviving users), and
D; = [N/]\U; to denote the set of dropped users.> We use xl@
to denote the local model of user i in group / € [L], which is
a vector of dimension d that corresponds to the parameters of
their locally trained model. Then, we can rewrite (3) as

2= > x. (4)

le[L] iel;

The elements of xgl) and z are from a finite field I, for some
field size g. All operations are carried out over the finite field
and we omit the modulo g operation for simplicity.

The dashed links in Figure 2 represent the commu-
nication links between the server and mobile users. In
our general description, we assume that all communication
takes place through a central server, via creating pairwise
secure keys using a Diffie-Hellman type key exchange pro-
tocol [46] as in [3]. Turbo-Aggregate can also use decentral-
ized communication architectures with direct links between

2For modeling the user dropouts, we focus on the worst-case scenario,
which is the case when a user drops during the execution of the corresponding
group, i.e., when a user receives messages from the previous group but fails
to propagate it to the next group.

devices, such as peer-to-peer communication, where users
can communicate directly through an underlay communication
network [15], [16]. Then, the aggregation steps are the same
as the centralized setting except that messages are now com-
municated via direct links between the users, and a random
election algorithm should be carried out to select one user (or
multiple users, depending on the application) to aggregate the
final sum at the final stage instead of the server. The detailed
process of the final stage will be explained in Section IV-D.

Turbo-Aggregate consists of L execution stages performed
sequentially. At stage [/ € [L], users in group [ encode their
inputs, including their trained models and the partial summa-
tion of the models from lower stages, and send them to users
in group /4 1. Next, users in group /4 1 recover (decode) the
missing information due to potentially dropped users, and then
aggregate the received messages. At the end of the protocol,
models of all surviving users will be aggregated.

The proposed coding and aggregation mechanism guaran-
tees that no party (mobile users or the server) can learn an
individual model, or a partial aggregate of a subset of models.
The server learns nothing but the final aggregated model of all
surviving users. This is achieved by leveraging additive secret
sharing to mask the individual models, which we describe in
the following.

B. Masking With Additive Secret Sharing

Turbo-Aggregate hides the individual user models using
additive masks to protect their privacy against potential col-
lusions between the interacting parties. This is done by a
two-step procedure. In the first step, the server sends a random
mask to each user, denoted by a random vector ul@ for user
i € [N;] at group [ € [L]. Each user then masks its local model
XEZ) as xl([) + uf[). Since this random mask is known only by
the server and the corresponding user, it protects the privacy
of each user against potential collusions between any subset
of the remaining users, as long as the server is honest. On the
other hand, privacy may be breached if the server is adver-
sarial and colludes with a subset of users. The second step of
Turbo-Aggregate aims at protecting user privacy against such
scenarios. In this second step, users generate additive secret
sharing of the individual models for privacy protection against
potential collusions between the server and the users. To do
s0, user i in group / sends a masked version of its local model
to each user j in group [+ 1, given by

<D U] O] O]

]

for j € [Ny1], where r, j is a random vector such that

Zje[N1+1] rl(lj) = 0 for all i € [N;]. The role of additive secret
sharing is not only to mask the model to provide privacy
against collusions between the server and the users, but also
to maintain the accuracy of aggregation by making the sum
of the received data over the users in each group equal to the
original data, as the vectors rl(’l? cancel out.

In addition, each user holds a variable corresponding to the
aggregated masked models from the previous group. For user i
in group /, this variable is represented by Efl). At each stage of
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Turbo-Aggregate, users in the active group update and prop-
agate these variables to the next group. Aggregation of these
masked models is defined via the recursive relation,

S %D
DI BRI

- ]E [Ni—1] JeU—1

%1) ©6)

at user 7 in group [ > 1, whereas the initial aggregation at
group [ = 1 is set as Efl) = 0, for i € [N1]. While com-
puting (6), any missing values in {§j(-l_1) }jev,_,1 (due to the
users dropped in group /— 1) is reconstructed via the recovery
technique presented in Section IV-C.

User i in group [/ then sends the aggregated value in (6)
to each user in group / 4+ 1. The average of the aggregated
values from the users in group ! consists of the models of the
users up to group / — 1, masked by the randomness sent from
the server. This can be observed by defining the following
partial summation, which can be computed by each user in
group [+ 1,

1
U+ — v Z Ef[)
liE[Nz]
I AR SR S
e jeli_y jeldi—1
S SIS S ®
jel—y Jjel—y

ri’"" = 0. With the initial

. . (2) _ 1
partial summation s = a7 > V] S

where (7) follows from ). e 11 ¥
11) = 0, one can show

that s¢+1 is equal to the aggregation of the models of all
surviving users in up to group /— 1, masked by the randomness
sent from the server,

SHD = 3 K S S,

me(l—1] jely, mell—1]jel,,

©))

At the final stage, the server obtains the final aggregate value
from (9) and removes the random masks ZmE[L] Z,/eu,,, u;m)
This approach works well if no user drops out during the
execution of the protocol. On the other hand, if any user in
group [+ 1 drops out, the random vectors masking the models
of the /-th group in the summation (7) cannot be cancelled
out. In the following, we propose a recovery technique that is
robust to dropped or delayed users, based on coding theory
principles.

C. Adding Redundancies to Recover the Data of Dropped or
Delayed Users

The main intuition behind our recovery strategy is to encode
the additive secret shares (masked models) in a way that guar-
antees secure aggregation when users are dropped or delayed.
To do so, we leverage Lagrange coding [14], which has been
applied to other problems such as offloading or collaborative
machine learning in the privacy-preserving manner [47], [48].
The primary benefits of Lagrange coding over alternative
codes that may also be used for introducing redundancy,
such as other error-correcting codes, is that Lagrange cod-
ing enables us to perform the aggregation operation on the

encoded models, and that the final result can be decoded from
the computations performed on the encoded models. This is
not necessarily true for other error-correcting codes, as they
do not guarantee the recovery of the original computation
results (i.e., the computations performed on the true values
of the model parameters) from the computations performed
on the encoded models. It encodes a given set of K vectors
(v1,...,Vg) by using a Lagrange interpolation polynomial.
One can view this as embedding a given set of vectors on
a Lagrange polynomial, such that each encoded value rep-
resents a point on the polynomial. The resulting encoding
enables a set of users to compute a given polynomial function
h on the encoded data in a way that any individual compu-
tation {h(v;)}ic[k] can be reconstructed using any subset of
deg(h)(K — 1) + 1 other computations. The reconstruction
is done through polynomial interpolation. Therefore, one can
reconstruct any missing value as long as a sufficient number of
other computations are available, i.e., enough number of points
are available to interpolate the polynomial. In our problem of
gradient aggregation, the function of interest, 4, would be lin-
ear and accordingly have degree 1, since it corresponds to the
summation of all individual gradient vectors.
Turbo-Aggregate utilizes Lagrange coding for recovery
against user dropouts, via a novel strategy that encodes the
secret shared values to compute secure aggregation. More
specifically, in Turbo-Aggregate, the encoding is performed as
follows. Initially, user i in group / forms a Lagrange interpo-
lation polynomial f-(l) :Fy— Fd of degree N;y1 — 1 such that
f,-(l) (a;lﬂ)) N(l) for j € [N+1], where oej( *1D s an evaluation
point allocated t0 user j in group [+ 1. This is accomplished
by letting
~(l)

2. %

JEIN1]

Doy
fit@) = I +n _ (D"
kelN\G) % Y
of NH_]

allocated

Then, another set distinct evaluation points

{ﬂj(l“)}jew[“] are from F, such that

I4+1 I+1 . .
B e N e e, = 2. Next, user i € [N] in
group / generates the encoded model,

=10 D) ( pU+1)
Xy =£"(8"").

and sends f(@ to user j in group (I + 1). In addition, user i €

(10)

[NV] in group [ aggregates the encoded models { = 1)}161,1,_1
received from the previous stage, with the partial summation

s® from (7) as
h_ g0 Z )-(J(ll—l)

jeli—

(1)

The summation of the masked models in (6) and the summa-
tion of the coded models in (11) can be viewed as evaluations
of a polynomial g such that

30 = g0 (“i(l))’
= !
s = g(’)<ﬁl.()>,

for i € [Nj], where gP(z) = s? + Ze U lf(l ])(z) is a
polynomial function with degree at most Nl — 1. Then, user

12)

13)
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(l) ¥ %l)

X; ;S 51)} to user j

i € [Ny] sends the set of messages {x
in group [+ 1.

Upon receiving the messages, user j in group / + 1 recon-
structs the missing terms in {Efl)},-e[N,] (caused by the dropped
users in group [), computes the partial sum s‘+1 from (7),

and updates the terms {'§<l+1) _(IH)} as in (6) and (11). Users

in group /+ 1 can reconstruct each term in {‘f }iernv, as long
as they receive at least N; evaluations out of 2N; evaluations
from the users in group /. This is because {EED, 551)},-6[1\/,] are
evaluation points of the polynomial g whose degree is at
most N; — 1. As a result, the model can be aggregated at each
stage as long as at least half of the users at that stage are not
dropped. As we will demonstrate in the proof of Theorem 1, as
long as the drop rate of the users is below 50%, the fraction
of dropped users at all stages will be below half with high
probability, hence Turbo-Aggregate can proceed with model
aggregation at each stage.

D. Final Aggregation and the Overall Turbo-Aggregate
Protocol

For the final aggregation, we need a dummy stage to
securely compute the aggregation of all user models, espe-
cially for the privacy of the local models of users in group L.
To do so, we arbitrarily select a set of users who will receive
and aggregate the models sent from the users in group L. They
can be any surviving user who has participated in the protocol,
and will be called user j € [Nguq] in the final stage, where
Nfinar is the number of users selected.

During this phase, users in group L mask their own model
with additive secret sharing by using (5), generate the encoded
data by using (10), and aggregate the models received from
the users in group (L — 1) by using (6) and (11). Then, user i
from group L sends {x,( j), xiﬁ),EfL), §,(L)} to user j in the final
stage.

Upon receiving the set of messages, user j € [Nfq] in
the final stage recovers the missing terms in {§§L)}ie[NL], and
aggregates them with the masked models,

I L <L
TP D ILLES 3 (T
le[NL] ielUy,
glfinal) _ ) <L
= Y as)
IEINLI ieldy,
and sends the resulting {8 {"(ﬁ nal) '(ﬁ"”l)} to the server.
The server then recovers the summations {"(ﬁ YieNpnarl»

by reconstructing any missing terms in (14) usmg the set of
received values (14) and (15). Finally, the server computes
the average of the summations from (14) and removes the
random masks }_,.c11) D iers, U ™ from the aggregate, which,
as can be observed from (7)- (9) is equal to the aggregate of
the individual models of all surviving users,

IDDICELED IDIULED D DL

Ninal .
Final eIl melL jel melL] jelhy

(16)

Having all above steps, the overall Turbo-Aggregate protocol
is presented in Algorithm 1.

Algorithm 1 Turbo-Aggregate
0]

input Local models x; of users i € [N/] in group [ € [L].

output Aggregated model Dole[L] 2iel; XEI).

1: for group [ =1,...,L do

2: foruseri=1,...,N;do

3: Compute the masked model {"z,(?}le[N, +1] from (5).

4: Generate the encoded model {ig} }jelN, ] from (10).

5: if /=1 then | |

6: Initialize Ef ) = §§ ) —0.

7: else

8: Reconstruct the missing values in {'§< }ke [N,_] due to

the dropped users in group / — 1.

9: Update the aggregate value Efl) from (6).

10: Compute the coded aggregate value 5(1) from (11).
11: Send {X(l) _(l) N(l) (l)} to user j € [Nyy1] in group [+ 1

G € Nl Wik,
12: for user i =1, ..., Nfyq do
13:  Reconstruct the missing values in {AsiL)}ke[NL] due to the
dropped users in group L.
14:  Compute E'(ﬁna) from (14) and §(ﬁna1) from (15).
15:  Send ffﬁ mll), -gﬁ ml[)} to the server.
16: Server computes the final aggregated model from (16).

V. THEORETICAL GUARANTEES OF TURBO-AGGREGATE

In this section, we formally state our main theoretical result.

Theorem 1: Turbo-Aggregate can simultaneously achieve:

1) robustness guarantee to any user dropout rate p < 0.5,
with probability approaching to 1 as the number of
users N — oo,

2) privacy guarantee against up to 7 = (0.5—¢€)N colluding
users, with probability approaching to 1 as the number
of users N — oo, and for any € > 0,

3) aggregation overhead of C = O(NlogN).

Remark 1: Theorem 1 states that Turbo-Aggregate can tol-
erate up to 50% user dropout rate and %’ collusions between
the users, simultaneously. Turbo-Aggregate can guarantee
robustness against an even higher number of user dropouts by
sacrificing the privacy guarantee as a trade-off. Specifically,
when we generate and communicate k set of evaluation points
during Lagrange coding, we can recover the partial aggrega-
tions by decoding the polynomial in (12) as long as each user
receives N; evaluations, i.e., (1 + k)(N; — pN;) > N;. As a
result, Turbo-Aggregate can tolerate up to a p < ﬁ user
dropout rate. On the other hand, the individual models will be
revealed whenever 7T'(k + 1) > N. In this case, one can guar-
antee privacy against up to (ﬁ —€)N colluding users for any
€ > 0. This demonstrates a trade-off between robustness and
privacy guarantees achieved by Turbo-Aggregate, that is, one
can increase the robustness guarantee by reducing the privacy
guarantee and vice versa.

Proof: The proof of Theorem 1 is presented in Appendix C
in the supplementary material. |

As we showed in the proof of Theorem 1, Turbo-Aggregate
achieves its robustness and privacy guarantees by choos-
ing a group size of N; = %logN for all / € [L] where
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c 2 min{D(O.Sllp),D(O.Sll%)} and D(al|b) is the Kullback-
Leibler (KL) distance between two Bernoulli distributions with
parameter a and b [49]. We can further reduce the aggregation
overhead if we choose a smaller group size N;. However, we
cannot further reduce the group size beyond O(log N) because
when 0 < D(0.5|lp) <1 (1 > 1) and N; = logN, the prob-
ability that Turbo-Aggregate guarantees the accuracy of full
model aggregation goes to 0 with sufficiently large number of
users, which is stated in Theorem 2.

Theorem 2 (Converse): When 0 < D(0.5||p) < 1 and N; =
log N for all [ € [L], the probability that Turbo-Aggregate
achieves the robustness guarantee to any user dropout rate
p < 0.5 goes to 0 as the number of users N — oo.

Proof: The proof of Theorem 2 is presented in Appendix D
in the supplementary material. |

A. Generalized Turbo-Aggregate

Theorem 1 states that the privacy of each individual model
is guaranteed against any collusion between the server and up
to %’ users. On the other hand, a collusion between the server
and a subset of users can reveal the partial aggregation of a
group of honest users. For instance, a collusion between the
server and a user in group / can reveal the partial aggregation
of the models of all users up to group [ — 2, as the colluding
server can remove the random masks in (9). However, the
privacy protection can be strengthened to guarantee the privacy
of any partial aggregation, i.e., the aggregate of any subset of
user models, with a simple modification.

The modified protocol follows the same steps in
Algorithm 1 except that the random mask ul@ in (5) is
generated by each user individually, instead of being gen-
erated by the server. At the end of the aggregation phase,
the server learns » 11 > icus,, (X;m) +u}'")). Simultaneously,
the protocol executes an additional random partitioning strat-
egy to aggregate the random masks ugm), at the end of

(m)

which the server obtains ) ,.c/; > ey, W, and recovers

domell] 2jetd,, x](m). In this second partitioning, N users are
randomly allocated into L groups with a group §ize of Nj.
User i in group I' € [L] then secret shares u}” with the
users in group !’ + 1, by generating and sending a secret
share denoted by [ul(l/)]j to user j in group ! + 1. For secret
sharing, we utilize Shamir’s %-out-of-Nl secret sharing pro-
tocol [18]. Let U, denote the surviving users in group /' in
the second partitioning. User i in group /' then aggregates

. (I'=1)7. L.
the received secret shares Ejeu;/_] [uj ];, which in turn
/_
)

. , and sends the sum to

is a secret share of ZJGU[/,I

. @
the server. Finally, the server reconstructs Zjeu// u; for all
I' € [L] and recovers the aggregate of the individual models of
.. . %)
all surviving users by subtracting {Zjeul/, u; }reqry from the

aggregate Y., e, (X](-m) + u;m)).

In this generalized version of Turbo-Aggregate, the privacy
of any partial aggregation, i.e., the aggregate of any subset of
user models, can be protected as long as a collusion between
the server and the users does not reveal the aggregation of

TABLE I
SUMMARY OF SIMULATION PARAMETERS

Variable Definition Value
N number of users 4 ~ 200
d model size (32 bit entries) 100000
p dropout rate 10%, 30%, 50%
q field size 2325

maximum bandwidth constraint  100Mbps ~ 1Gbps

the random masks, » ./ u

j in (9) for any [ € [L]. Since
there are at least %’ unknown random masks generated by
honest users and the server only knows L = % equations,

5

jel j
for any / € [L]. Therefore, a collusion between the server and
users cannot reveal the partial aggregate as they cannot remove
the random masks in (9). We now formally state the privacy
guarantee, robustness guarantee, and aggregation overhead of
the generalized Turbo-Aggregate protocol in Theorem 3.

Theorem 3: Generalized Turbo-Aggregate simultaneously
achieves 1), 2), and 3) from Theorem 1. In addition, it provides
privacy guarantee for the partial aggregate of any subset of
user models, against any collusion between the server and up
to T = (0.5 — ¢)N users for any € > 0, with probability
approaching to 1 as the number of users N — oo.

Proof: The proof of Theorem 3 is presented in Appendix E
in the supplementary material. |

ie., {Zjel/{’ u]@}le[u, the server cannot calculate

VI. EXPERIMENTS

In this section, we evaluate the performance of Turbo-
Aggregate by experiments over up to N = 200 users for
various user dropout rates and bandwidth conditions.

A. Experiment Setup

Platform: In our experiments, we implement Turbo-
Aggregate on a distributed platform by using FedML
library [50], and examine its total running time with respect
to the state-of-the-art [3]. Computation is performed in
a distributed network over the Amazon EC2 cloud using
m3 .medium machine instances. Communication is imple-
mented using the MPI4Py [51] message passing interface
on Python. The default setting for the maximum bandwidth
constraint of m3 .medium machine instances is 1Gbps. The
model size, d, is fixed to 100,000 with 32 bit entries, and the
field size, g, is set as the largest prime within 32 bits. We
summarize the simulation parameters in Table I.

Modeling User Dropouts: To model the dropped users in
Turbo-Aggregate, we randomly select pN; users out of N; users
in group ! € [L] where p is the dropout rate. We consider
the worst case scenario where the selected users drop after
receiving the messages sent from the previous group (users
in group [/ — 1) and do not send their messages to users in
group [ + 1. To model the dropped users in the benchmark
protocol, we follow the scenario in [3]. We randomly select
PN users out of N users, which artificially drop after sending
their masked models. In this case, the server has to reconstruct
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Fig. 3. Example networks with N = 24, N; = 3 and L = 8. An arrow
represents that users in one group generate and send messages to the users in
the next group.
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Fig. 4. Total running time of Turbo-Aggregate versus the benchmark

protocol [3] as the number of users increases, for various user dropout rates.

the pairwise seeds of the dropped users and execute a pseudo
random generator using the reconstructed seeds to remove the
random masks (the details are provided in Appendix A in the
supplementary material).

Implemented Schemes: We implement the following
schemes for performance evaluation. For the schemes with
Turbo-Aggregate, we use N; = logN.

1) Turbo-Aggregate: For our first implementation, we
directly implement Turbo-Aggregate as described in
Section IV, where the L execution stages are performed
sequentially.

2) Turbo-Aggregate+: We can speed up Turbo-Aggregate
by parallelizing the L execution stages. To do so, we
again utilize the circular aggregation topology but lever-
age a tree structure for flooding the information between
different groups across the network, which reduces the
required number of execution stages from L—1 to log L.

We refer to this implementation as Turbo-Aggregate+.
Figure 3 demonstrates the difference between Turbo-
Aggregate+ and Turbo-Aggregate through an example
network of N = 24 users and L = 8 groups. Turbo-
Aggregate+ requires only 3 stages to complete the pro-
tocol while Turbo-Aggregate carries out each execution
stage sequentially and requires 7 stages.

3) Benchmark: We implement the benchmark protocol [3]
where a server mediates the communication between
users to exchange the information required for key
agreements (rounds of advertising and sharing keys) and
users send their masked models to the server (masked
input collection). One can also speed up the rounds of
advertising and sharing keys by allowing users to com-
municate in parallel. However, this has minimal effect
on the total running time of the protocol, as the total
running time is dominated by the overhead when the
server generates the pairwise masks [3].

B. Performance Evaluation

For performance analysis, we measure the total running time
for a single round of secure aggregation with each protocol
while increasing the number of users N gradually for differ-
ent user dropout rates. We use synthesized vectors for locally
trained models and do not include the local training time in
the total running time. One can also consider the entire learn-
ing process and since all other steps remain the same for the
three schemes, we expect the same speedup in the aggregation
phase. Our results are demonstrated in Figure 4. We make the
following key observations.

o Total running time of Turbo-Aggregate and Turbo-
Aggregate+ are almost linear in the number of users,
while for the benchmark protocol, the total running time
is quadratic in the number of users.

o Turbo-Aggregate and Turbo-Aggregate+ provide a sta-
ble total running time as the user dropout rate increases.
This is because the encoding and decoding time of
Turbo-Aggregate do not change significantly when the
dropout rate increases, and we do not require additional
information to be transmitted from the remaining users
when some users are dropped or delayed. On the other
hand, for the benchmark protocol, the running time sig-
nificantly increases as the dropout rate increases. This
is because the total running time is dominated by the
reconstruction of pairwise masks at the server, which
substantially increases as the number of dropped users
increases.

o Turbo-Aggregate and Turbo-Aggregate+ provide a
speedup of up to 5.8x and 40x over the benchmark,
respectively, for a user dropout rate of up to 50% with
N = 200 users. This gain is expected to increase further
as the number of users increases.

To illustrate the impact of user dropouts, we present the
breakdown of the total running time of the three schemes
and the corresponding observations in Appendix F1 in the
supplementary material. We further study the impact of the
bandwidth, by measuring the total running time with various
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communication bandwidth constraints. Turbo-Aggregate pro-
vides substantial gain over the state-of-the-art in environments
with more severe bandwidth constraints. The details of these
additional experiments are presented in Appendix F2 in the
supplementary material.

In this section, we have primarily focused on the aggre-
gation phase and measured a single round of the secure
aggregation phase with synthesized vectors for the locally
trained models. This is due to the fact that these vectors can
be replaced with any trained model using the real world fed-
erated learning setups. We further investigate the performance
of Turbo-Aggregate in real world federated learning setups
by implementing both training phase and aggregation phase.
Turbo-Aggregate still provides substantial speedup over the
benchmark, which is detailed in Appendix F3 in the supple-
mentary material.

VII. CONCLUSION

This article presents the first secure aggregation frame-
work that theoretically achieves an aggregation overhead of
O(NlogN) in a network with N users, as opposed to the prior
O(N?) overhead, while tolerating up to a user dropout rate
of 50%. Furthermore, via experiments over Amazon EC2, we
demonstrated that Turbo-Aggregate achieves a total running
time that grows almost linearly in the number of users, and
provides up to 40x speedup over the state-of-the-art scheme
with N = 200 users.

Turbo-Aggregate is particularly suitable for wireless topolo-
gies, in which network conditions and user availability can
vary rapidly, as Turbo-Aggregate can provide a resilient
framework to handle such unreliable network conditions.
Specifically, if some users cause unexpected delays due to
unstable connection, Turbo-Aggregate can simply treat them as
user dropouts and can reconstruct the information of dropped
or delayed users in the previous groups as long as half of the
users remain. One may also leverage the geographic hetero-
geneity of wireless networks to better form the communication
groups in Turbo-Aggregate. An interesting future direction
would be to explore how to optimize the multi-group com-
munication structure of Turbo-Aggregate based on the specific
topology of the users, as well as the network conditions.

In this work, we have focused on protecting the privacy of
individual models against an honest-but-curious server and up
to T colluding users so that no information is revealed about
the individual models beyond their aggregated value. If one
would like to further limit the information that may be revealed
from the aggregated model, differential privacy can be utilized
to ensure that the individual data points cannot be identified
from the aggregated model. All the benefits of differential pri-
vacy could be applied to our approach by adding noise to the
local models before the aggregation phase in Turbo-Aggregate.
Combining these two techniques is another interesting future
direction.

Finally, the implementation of Turbo-Aggregate in a
real-world large-scale distributed system would be another
interesting future direction. This would require addressing the
following three challenges. First, the computation complexity
of implementing the random grouping strategy may increase

as the number of users increases. Second, Turbo-Aggregate
currently focuses on protecting the privacy against honest-
but-curious adversaries. In settings with malicious (Byzantine)
adversaries who wish to manipulate the global model by
poisoning their local datasets, one may require additional
strategies to protect the resilience of the trained model. One
approach is combining secure aggregation with an outlier
detection algorithm as proposed in [52], which has a com-
munication cost of O(N?) that limits its scalability to large
federated learning systems. It would be an interesting direc-
tion to leverage Turbo-Aggregate to address this challenge, i.e.,
develop a communication-efficient secure aggregation strategy
against Byzantine adversaries. Third, communication may still
be a bottleneck in severely resource-constrained systems since
users need to exchange the masked models with each other,
whose size is as large as the size of the global model. To over-
come this bottleneck, one may leverage model compression
techniques or group knowledge transfer [53].
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