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Background: Brain MRI is a promising technique for Parkinson’s disease (PD) biomarker development. Its anal-
ysis, however, is hindered by the high-dimensional nature of the data, particularly when the sample size is
relatively small.

New Method: This study introduces a folded concave penalized machine learning scheme with spatial coupling
fused penalty (fused FCP) to build biomarkers for PD directly from whole-brain voxel-wise MRI data. The
penalized maximum likelihood estimation problem of the model is solved by local linear approximation.
Results: The proposed approach is evaluated on synthetic and Parkinson’s Progression Marker Initiative (PPMI)
data. It achieves good AUC scores, accuracy in classification, and biomarker identification with a relatively small
sample size, and the results are robust for different tuning parameter choices. On the PPMI data, the proposed
method discovers over 80 % of large regions of interest (ROIs) identified by the voxel-wise method, as well as
potential new ROIs.

Comparison with Existing Methods: The fused FCP approach is compared with L1, fused-L1, and FCP method using
three popular machine learning algorithms, logistic regression, support vector machine, and linear discriminant
analysis, as well as the voxel-wise method, on both synthetic and PPMI datasets. The fused FCP method
demonstrated better accuracy in separating PD from controls than L1 and fused-L1 methods, and similar per-
formance when compared with FCP method. In addition, the fused FCP method showed better ROI identification.
Conclusions: The fused FCP method can be an effective approach for MRI biomarker discovery in PD and other
studies using high dimensionality data/low sample sizes.

1. Introduction and selection of useful biomarkers from such high-dimensional data

using limited sample sizes is challenging. Thus, there is a need in the

Brain magnetic resonance imaging (MRI) is a promising technique
for identifying biomarkers for diseases such as Parkinson’s disease (PD).
Performing analyses on MRI images without pre-defined regions of in-
terest (ROIs) typically involves voxel numbers >10° that are input
variables on the voxel level. The number of human subjects, however, is
small relative to the data dimension of MRI images (n<<p) Casanova
et al. (2011); Fan et al. (2008); and Yasui et al. (2003). Reconstruction

biomedical research field for statistical learning methods that efficiently
analyze such data.

Analysis of high dimensional data poses a non-trivial challenge to
traditional approaches in statistical learning. It is common to assume
data sparsity, meaning that only a small number of variables are relevant
to the scientific problem under investigation even though there are a
large number of variables available at the initial stage of modeling.
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Under the sparsity assumption, Lasso-type regularization has been pro-
posed and successfully applied to many biomarker identification prob-
lems [e.g., Gu et al. (2013); and Wu et al. (2012)], and these methods
have become the gold standard for high-dimensional learning Mein-
shausen and Biihlmann (2006); Meinshausen and Yu (2009); Van de
Geer (2008); and Zhang and Huang (2008). A rich literature is devoted
to exposing conditions under which the Lasso entails a theoretical
guarantee of performance Bickel et al. (2009); Bunea et al. (2007); Cai
et al. (2010); Candes and Tao (2007); Van De Geer and Biihlmann
(2009); and Wainwright (2009). One of the main advantages of
Lasso-type regularizations is that they allow efficient computation
schemes to solve for the solution with global optimality. Lasso-type
regularizations, however, can lead to extra estimation bias due to its
statistical properties.

To address the drawback of Lasso-type approaches, a regularized
method with folded concave penalty was proposed [FCP, Fan and Lv
(2011)]. This later method enjoys desirable theoretical properties such
as the unbiasedness and strong oracle property for high-dimensional
sparse estimation. It has been shown to require weaker conditions and
entail better statistical properties than Lasso Fan et al., 2014; Mein-
shausen and Biihlmann (2006); and Zou (2006). Two mainstream FCP
functions are developed, i.e. the smoothly clipped absolute deviation
[SCAD, Fan and Li (2001)] and minimax concave penalty [MCP, Zhang
(2010)]. The FCP regularization method also has been applied success-
fully to many biomarker identification problems [e.g., Liu et al. (2016a,
b)1.

Another major challenge in extracting biomarkers from MRI data is
the spatial correlation among adjacent voxels. The most popular
approach to this problem has been univariate analysis (voxel-wise
analysis) [e.g., Haynes and Rees (2006)]. Over the last several decades,
however, multivariate statistical learning approaches have been applied
in an increasing number of neuroimaging studies to model effects across
multiple voxels Friston et al. (1995); Hanke et al. (2009). Compared to
classic univariate analysis, these multivariate statistical learning ap-
proaches have shown better predictive performance. Spatial correlation
also can be useful in guiding the construction of regions of interest
(ROIs) [e.g., Friston et al. (1996)]. The classic methods usually separate
ROI construction and model estimation, which may introduce extra
noise in the model Tohka et al. (2016). As such, creating a unified model
to simultaneously construct ROIs and estimate coefficients may improve
analysis methods. Tibshirani et al. (2005) proposed using fused Lasso to
explore a model with features that can be ordered in some meaningful
way. The authors applied this method to analyses of protein mass
spectroscopy and gene expression data with favorable results. And Lee
et al. (2014) proposed a fused Lasso logistic regression approach to
analyze corpus callosum thickness in early Alzheimer’s disease.

We propose a fused MCP penalized approach to address the two
major challenges in MRI data analysis: high-dimensionality and spatial
correlation amongst voxels. In this paper, we aim to develop the novel
approach as a reliable and improved method for identifying markers
from high dimensional MRI data that also utilizes spatial correlations
between adjacent voxels. In comparison with previous MRI biomarker
studies using FCP penalized approaches such as Liu et al. (2016b), the
newly proposed method does not rely on pre-defined ROIs but auto-
matically constructs MRI metrics from the high-dimensional voxel-wise
data by accommodating the fused penalty. This new penalty method also
is compatible with many popular statistical/machine models [e.g., lo-
gistic regression, support vector machine (SVM), and local discriminate
analysis (LDA)]. We first tested the model using synthetic data to verify
the proposed approach successfully can recover MRI image signal using
a sample size typical for most MRI research. We then applied the model
to a real dataset (Parkinson’s Progression Marker Initiative, PPMI) to
determine its performance compared to other approaches.
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2. Methods

We first propose a general classification framework for 3D MRI data
using the fused MCP penalty (Section 2.1). We then introduce three
popular classification methods, logistic regression, SVM, and LDA
(Section 2.2), that can be used with the proposed fused MCP penalized
method.

2.1. Fused MCP penalized method for MRI data classification

Suppose we have n MRI images m;,i =1,2,...,n. Each image contains
three dimensional voxel data, where dx, dy, and dz are the digits in each
dimension. Each image then can be represented by x; 4. 4y ¢;- We assume
a classification model f (xl,dx,dy,dm ﬂdx,dy,dz) for the factor (disease) of in-
terest, where f is the classification function, f 4y 4, is the parameter of
the classification model associated with voxels of the image, and [ is the
subject index. Note that the parameter Sy, 4, 4, Of the classification model
can provide information regarding the biomarker(s) related to the factor
(disease) of interest. Assume function g measures the difference between
prediction of the classification model f (xl‘dx_dy‘dz,ﬂdx‘dy‘dz) and the true
label y;. The loss function L associated with the classification problem
then is defined as follows:

1<
L (ﬂdx.dy.dz) = ; Z q (f(xl.dx.dy,dz ) ﬂdx.dy,d:) » Vi ) ) (1)
=1

where y; is the indicator of the factor (disease) of interest for subject [, so
y; =1 for the patient, and y; = O for the control, and we want to find
Paxay.q that minimizes the loss function L. Many statistical/machine
learning models (e.g., logistic regression, SVM, LDA, etc.) can be
formulated under the framework of (1), and some popular classification
models and the corresponding loss functions are provided in Section 2.2.
To handle high-dimensional MR images, we need to add the regu-
larization term. L1 and/or L2 regularization terms commonly are used in
the literature [e.g., Tohka et al. (2016)]. However, L1 and/or L2 regu-
larization terms will introduce extra estimation bias. For example, the
classical L1 penalty penalizes all coefficients with the same amount of
penalty. To achieve the variable selection consistency, the tuning
parameter needs to surpass the order of root-n asymptotically, which can
lead to an asymptotically noneligible bias in the estimation of the
non-zero coefficients Zou, 2006. As a result, we proposed using MCP
Zhang (2010) to address the bias issue. MCP is defined as follows:

1
Ealz, ] > aa,

il .
p,l(t):ﬂ/o (1 —a>+dx: @

1 .
At — 2—t2, otherwise,
a

where a and ) are tuning parameters to control the shape of the penalty
function. When the absolute value of t is large enough, p,(t) becomes a
constant. This means that the MCP approach does not penalize co-
efficients with absolute values over a certain threshold, and we can
attain asymptotical unbiasness via MCP.

Besides the penalty for sparsity, we needed one more term to induce
spatial constraints:

HB) =p Z ((ﬂdx,zly.dz - ﬁzlxil‘dv,dz)z + (Bicaya: — ﬁdx,dyil.d:)2 + (Bixaya:

dx.dy.dz

—Paxaydz-1 )2 ) 3

where p is a positive constant. (3) promotes the adjacent voxels to have
similar weights in the classification parameter B, g, ;- In our setting,
this term works like a data-driven clustering function and automatically
generates ROIs from the voxel-wise data. Our proposed method is to
minimize:
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min {(L(ﬁdx,dy.dz) )+

Paxdydz
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The first term in (4) is a measure on how well the model distinguishes
patients from controls. The second and third terms control the model
complexity in sparsity and spatial similarity, respectively. Since brain
has intrinsic substructures, it is common sense to assume that only parts
of the whole brain associate with the target response and that adjacent
voxels may have similar parameters in the classification model. In (4) we
use the second and third terms to consider explicitly these assumptions
when estimating the model in a data-driven manner. We use the tuning
parameters a, ), p to balance the trade-off between the goodness of fit
and model complexity.

2.1.1. Solution scheme

Problem (4) is non-convex. Solving it globally can be very difficult
Liu et al. (2016a). To deal with this issue, we first obtain an initial so-
lution using the Lasso method, and then adopt the Local Linear
Approximation (LLA) method from Zou and Li (2008); Fan et al. (2014)
to obtain a one-step sparse estimate based on the initial Lasso solution.
In sum, we have a two-step approximation scheme (2sAS) for the
problem (4). More specifically, we first solve the following problem:

min {L(Bd,x.dy.d:) +2 Z

Bax dy,dz iedxjedykedz

1B ji| +fo (Bavatyate) } ©

Denote the first step solution as ﬂf,i)_dy_dz, and we then go on to solve
the second step:

Z p;u (ﬁx(,;)k ) |Bi:f,k| +fIJ (ﬁ11X-,d)‘-d:) }7 (6)

iedx jedy kedz

min {L(de.dy.d:) +

Bax.dy.dz

where p)(.) is the first order derivative of p;(.). One may view the 2sAS as
a refining procedure. In the first step, we approximate the FCP penalty
function by the L1 penalty and solve only the L1 regularized problem. In
the second step, we approximate the FCP penalty by the weighted L1
penalty and solve the weighted L1 regularized problem. The objective
functions in both steps are convex and can be solved efficiently. The
tuning parameter of the L1 regularization is changed adaptively ac-
cording to the solution resulted from the first step. Recall that the ab-
solute value of the first order derivative is correlated negatively with the
magnitude of the input in the MCP case. If we use the value of the first
order derivative of the previous step’s solution, we will set a smaller
penalty for more significant parts in the previous step’s solution and vice
versa. Hence, the 2sAS procedure will correct the bias in the initial
Lasso-type solution. Fan et al. (2014) established the oracle optimality of
the 2sAS procedure for the FCP penalized estimation.

2.1.2. Tuning parameter selection

In the proposed method, we introduce tuning parameters to control
sparsity and spatial similarity. We used cross-validation for tuning
parameter selection. Specifically, the dataset is separated randomly into
two parts, a training set to train the model and a test dataset to test it. We
repeat this procedure multiple times, and the average test accuracy is
used to rank the tuning parameter choices. The one with the highest
rank will be selected. Besides the cross-validation, the bootstrap and
Bayesian error estimation approaches also can be applied in our method.
Readers interested in those ideas can refer to Meinshausen and Biihl-
mann (2010) and Huttunen and Tohka (2015) for more details.

2.2. Classification methods

In this section, we introduce three popular classification methods:
logistic regression, SVM, and LDA. The three methods need loss func-
tions L, and the proposed fused MCP penalized method can be used as
the loss function in all three methods for high dimensional data
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classification.

2.2.1. Logistic regression

Logistic regression has been popular for modeling the relationship
between a binary response variable and a set of input (explanatory)
variables. It can be used further for the prediction of binary responses
based on newly observed input variables. Logistic regression has been
applied to the study of disease diagnosis by Alkan et al. (2005) and
Kennedy et al. (1996), among others. The current approach is distin-
guished from these prior studies, however, in that we deal with the issue
of high dimensionality, given a large number of input variables but a
small number of samples. Liao and Chin (2007) considered an
under-sampled logistic regression and proposed a parametric bootstrap
to reduce the model prediction error. In contrast, this study presents a
substantially different statistical learning approach to handle the issue of
high dimensionality. We assume the logistic model:

1

pi )
L+exp| — > XuabBijx
i€dx jedykedz

where p; is the probability that I-th MRI subject is associated with PD and
the log-likelihood function is

L(Bacaya:) = ZyIIOg(Pl) + Z(l —y)log(1 —py), ®)

)

where p; is from (7). We then plug (8) back into (6) to fit the model.

2.2.2. Support vector machine (SVM)

SVM is another popular machine learning classification approach
that has been applied successfully to many real-world neuroimaging
problems [e.g., Othman et al. (2011) and Singh and Kaur (2012)].
Original SVM suffers from the high-dimensionality issue. In this section,
we verify our approach also is capable of being used in the SVM method.
We assume the loss function as follow:

1 n B
L(Bovayarb) = ZZ[:lmax (0-, L—y |:

icdx.jedykedz

Z xl.i.j.,k/’)[l,',k - b:| > 5 (9)

wherey, = —1ify; =0, otherwisey, = 1. Once the model is learned, we

may use the sign of 37y jedy keasX1ijkPijk — b to predict y,.

2.2.3. Linear discriminant analysis (LDA)

In addition to logistic regression and SVM, LDA is another popular
classification method in statistics learning. LDA solves for the linear
decision boundary in the underlying space that has the best discriminant
ability among classes. In a low dimension classification problem, LDA
performs well [e.g., Adeli et al. (2016)]. In the high dimensional setting,
however, vanilla LDA leads to poor results Fan et al., 2012. We will
explore the performance of a penalized LDA with our proposed pen-
alties. The loss function of LDA is:

2
I—=n
L(Buaya:) = 221:1 < Z x/,i,j.kﬂi__/‘,k) ) 10)

icdx jedy kedz

subject to Y icdxjedykedtijiBijk = 1, where Hijk =
LS [(eaijayt = 1) — (x145ky1 = 0) ]. Problem (10) requires solving for
a constrained learning problem but one also may consider the penalized

version suggested in Fan et al. (2012).
3. Experiments
We first validated the proposed approach using synthetic datasets.

The proposed procedure then was applied to real-world PPMI data that
contains different types of MRI maps to separate PD patients from
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controls.

3.1. Synthetic data

We generated a 2D plane (60 x 60) and set each point in the plane
with a parameter f;;. The ROIs are characterized via f; # 0. The subject
is represented by a 60 x 60 matrix X. We considered two mechanisms for
the generation of X.

e The first row and column are generated via a standard normal dis-
tribution and the remaining parts follow a linear relationship
Xir1j+1 = 0.3x31+ 0.3x;5,1 — 0.2x;; + &, where ¢ is the random
error from a standard normal distribution, and X;; is the element in
matrix X induced by i-th row and j-th column.

The first row and column are generated via the Rician distribution
Gudbjartsson and Patz (1995), and the remaining parts follow a non-
linear relationship xi;1j11 = 0.1x%, i+ 0‘1xizj - 0.05x§j + ¢, where
¢ is also from the Rician distribution. The probability density func-
tion of the Rician distribution is

x —(x?+? xv

) = 2en(5E )

where Iy (2) is the modified Bessel function of the first kind with order
zero, and v,c are two non-negative parameters of the Rician distribu-
tion. In this paper, we use the Rician distribution withv =2 and o = 1.

We used logistic regression to construct the label for every subject.
After generating the synthetic data, we then compared the prediction
accuracy, ROI recovery, and ROI stability with respect to the tuning
parameters of the proposed method (the fused MCP logistic model)
against the L1\fused-L1\MCP models and voxel-wise analysis method.

3.2. Distinguishing PD patients from control subjects

After examining the performance of the proposed method on syn-
thetic data, we compared the current approach with several popular
methods in identifying PD patients in the PPMI dataset (Trojanowski,
2013). Details of the PPMI dataset are provided in subsections 3.2.1,
3.2.2, and 3.2.3. We selected eight different MRI feature maps including
tensor-based morphometry (TBM), voxel-based morphometry (VBM),
regional analysis of volumes examined in normalized space (RAVENS),
and 5 diffusion tensor imaging (DTI) scalars: fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and
free-water diffusion (FD). We assessed the performance of the proposed
method by using three classification models: logistic regression, SVM,
and LDA. For each model, we compared the Receiver Operating Char-
acteristic (ROC) area under the curve (AUC) and accuracy scores of our
method with L1/fused-L1/MCP penalties. In the experimental stage, we
first randomly selected 155 of the 225 subjects as the training dataset.
On each training dataset, we used 5-fold cross-validation for tuning
parameter selection and fitted models with the selected tuning param-
eters on the training dataset. We propose a grid search for tuning pa-
rameters A and p while fixing the value of a to reduce computation
complexity. Here we fixed a = 0.01 and obtained relatively good nu-
merical results, and we refer readers to Zhang (2010) and Kim et al.
(2018) for guidance and heuristics for the selection of tuning parame-
ters. Then we calculated AUC and accuracy scores using the test dataset
that included the remaining 70 subjects. This procedure was replicated
1000 times. Mean AUC and classification accuracy scores are reported.
We also compared the stability with respect to the tuning parameters of
the proposed method against the L1\fused-L1\MCP methods.

3.3. Subjects

One hundred fifty-two PD patients and 73 controls (225 subjects in
total) with high resolution T1-weighted and diffusion MRI data obtained
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Table 1
Demographic data for subjects included from the PPMI dataset.
Control(n =73) PD(n=152) P-values
Age, years (SD) 60.6 (10.8) 60.8 (9.7) 0.864
Sex, F/M 27/46 55/97 0.907
Education, years (SD) 15.6 (3.3) 15.4 (3.0) 0.587

using Siemens 3 T (TrioTim) scanners were downloaded from the PPMI
website, along with demographic information including age, gender,
and education (details in Table 1).

3.4. MRI acquisition and image processing

T1-weighted (T1w) images were obtained with isotropic 1 mm
spatial resolution. The DTI images were obtained with isotropic 2 mm
spatial resolution (see https://www.ppmi-info.org/ for detailed MRI
acquisition methods).

3.5. Generating whole brain voxel-wise MRI features

T1lw images were processed for morphometric features. All images
first were inspected visually to ensure that the image quality was suffi-
cient for further analysis. The field inhomogeneity of T1w images was
removed using the N4 algorithm (Tustison et al, 2010). A
cohort-specific unbiased template was built on Tlw images from all
subjects using the buildtemplate script in ANTs v2.1. Three different
morphometric features (VBM, TBM, and RAVENS) then were extracted
using SPM 12, ANTs v2.1, and DRAMMS 1.4.1, respectively, following
published methods Ashburner and Friston (2000); Ou et al. (2011); and
Tustison et al. (2014). DTIPrep (Neuro Image Research and Analysis
Laboratory, University of North Carolina, Chapel Hill, NC) was used for
DTI image processing and feature extraction (Oguz et al., 2014). Frac-
tional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and
radial diffusivity (RD) maps then were estimated. A two-pool diffusion
model was built to estimate a free-water diffusion component (FD map)
to represent free water of the interstitial fluid and non-directional
diffusion components of cellular structure (Pasternak et al., 2009). DTI
maps were co-registered to the Tlw template using the FA map as a
moving image through a non-rigid warping with ANTs v2.1 (Avants
et al., 2008).

4. Results and discussion

In the current work, we proposed the fused MCP penalized method to
identify biomarkers from MRI images that effectively address the chal-
lenge of high-dimensionality and spatial correlation amongst voxels. To
assess whether the proposed method provides an advantage, we
compared its performance to that of other methods using both synthetic
data and real data from the PPMI study. We first tested the accuracy,
biomarker identification, and stability with respect to tuning parameters
of the proposed method using synthetic data. These analyses demon-
strated the proposed method had good accuracy in group classification
and biomarker identification with a relatively small sample size. We
then applied our method to PPMI imaging data to test its classification
accuracy and stability with respect to tuning parameters using different
classification models and MRI maps. The results indicated that the
proposed method had higher/comparable mean AUCs compared to the
L1, fused-L1, and MCP classification models regardless of whether
logistical regression (Table 2), SVM (Table 4), or LDA (Table 6) was
used. In addition, mean accuracy also was higher/comparable using the
proposed method (Tables 3, 5, and 7), and it performed better/compa-
rably across the different MRI maps (Tables 2-7, Fig. 7). The classifi-
cation performance of the proposed method also was robust with respect
to the tuning parameter A (Fig. 8), p (Fig. 9), and a (Fig. 10) in the PPMI
imaging dataset.
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Table 2
Mean AUC scores for the classification methods using logistic regression (LR) on the PPMI dataset.
VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD
L1-LR 0.608(0.0024) 0.898(0.0005) 0.782(0.0029) 0.910(0.0006) 0.606(0.0018) 0.609(0.0018) 0.607(0.0018) 0.859(0.0015)
Fused L1-LR 0.761(0.0038) 0.900(0.0005) 0.826(0.0007) 0.913(0.0005) 0.624(0.0019) 0.626(0.0019) 0.623(0.0019) 0.854(0.0008)
MCP-LR 0.882(0.0007) 0.942 (0.0003) 0.923(0.0004) 0.953(0.0003) 0.812(0.001) 0.814(0.001) 0.817(0.001) 0.933(0.0004)
Fused MCP-LR 0.884(0.0007) 0.942(0.0003) 0.923(0.0004) 0.953(0.0003) 0.811(0.001) 0.814(0.001) 0.815(0.001) 0.933(0.0004)

Mean AUC scores from 1000 replicates, with standard deviation listed in parenthesis. Bold text indicates the best achieved results.

Table 3
Mean classification accuracy for the classification methods using logistic regression (LR) on the PPMI dataset.
VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD
L1-LR 0.567(0.0018) 0.790(0.0006) 0.681(0.0026) 0.809(0.0007) 0.586(0.0016) 0.590(0.0015) 0.585(0.0016) 0.735(0.0013)
Fused L1-LR 0.674(0.0032) 0.786(0.0006) 0.719(0.0008) 0.809(0.0006) 0.595(0.0015) 0.599(0.0014) 0.596(0.0015) 0.719(0.0009)
MCP-LR 0.824(0.0005) 0.811(0.0004) 0.817(0.0004) 0.813(0.0004) 0.684(0.0002) 0.685(0.0003) 0.684(0.0002) 0.813(0.0004)
Fused MCP-LR 0.826(0.0005) 0.811(0.0004) 0.818(0.0004) 0.813(0.0004) 0.684(0.0002) 0.685(0.0003) 0.683(0.0002) 0.813(0.0004)

Mean classification accuracy from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results.

Table 4
Mean AUC scores for the classification methods using SVM on the PPMI dataset.
VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD
L1-SVM 0.571(0.0016) 0.647(0.0012) 0.626(0.0016) 0.697(0.0009) 0.717(0.0008) 0.718(0.0008) 0.721(0.0008) 0.592(0.0013)
Fused L1-SVM 0.553(0.0015) 0.607(0.0011) 0.604(0.0016) 0.650(0.0009) 0.698(0.0008) 0.697(0.0007) 0.700(0.0007) 0.564(0.001)
MCP-SVM 0.879(0.0008) 0.909(0.0005) 0.891(0.0006) 0.930(0.0004) 0.846(0.0006) 0.848(0.0006) 0.850(0.0006) 0.909(0.0005)
Fused MCP-SVM 0.879(0.001) 0.908(0.0006) 0.895(0.001) 0.934(0.0006) 0.847(0.0007) 0.848(0.0007) 0.852(0.0007) 0.910(0.0008)

Mean AUC scores from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results.

Table 5
Mean classification accuracy for the classification methods using SVM on the PPMI dataset.
VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD
L1-SVM 0.555(0.0014) 0.589(0.001) 0.581(0.0014) 0.642(0.0011) 0.690(0.0004) 0.691(0.0005) 0.691(0.0005) 0.547(0.0011)
Fused L1-SVM 0.537(0.0013) 0.550(0.0009) 0.558(0.0013) 0.596(0.001) 0.630(0.0013) 0.634(0.0013) 0.634(0.0013) 0.523(0.0009)
MCP-SVM 0.823(0.0007) 0.830(0.0005) 0.822(0.0006) 0.844(0.0005) 0.724(0.001) 0.727(0.001) 0.727(0.001) 0.836(0.0005)
Fused MCP-SVM 0.820(0.001) 0.834(0.0005) 0.816(0.0009) 0.845(0.0007) 0.680(0.0000) 0.680(0.0000) 0.680(0.0000) 0.837(0.0008)

Clarification accuracy from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results.

Table 6
Mean AUC scores for the classification methods using LDA on the PPMI dataset.
VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD
L1-LDA 0.670(0.0011) 0.869(0.0009) 0.598(0.0018) 0.690(0.0039) 0.589(0.0036) 0.583(0.0037) 0.590(0.0036) 0.557(0.0037)
Fused L1-LDA 0.671(0.001) 0.865(0.0009) 0.601(0.0019) 0.695(0.0038) 0.591(0.0037) 0.589(0.0038) 0.597(0.0037) 0.563(0.0038)
MCP-LDA 0.693(0.0009) 0.501(0.0007) 0.499(0.0008) 0.499(0.0009) 0.569(0.0036) 0.569(0.0035) 0.570(0.0036) 0.500(0.0009)

Fused MCP-LDA 0.681(0.0012) 0.890(0.0008) 0.740(0.0024) 0.803(0.0027) 0.592(0.0037) 0.587(0.0038) 0.597(0.0037) 0.687(0.0035)

Mean AUC scores from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results.

Table 7
Mean classification accuracy for the classification methods using LDA on the PPMI dataset.
VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD
L1-LDA 0.685(0.0007) 0.715(0.0004) 0.580(0.0015) 0.658(0.0014) 0.693(0.0006) 0.693(0.0007) 0.692(0.0006) 0.549(0.0026)
Fused L1-LDA 0.684(0.0007) 0.716(0.0004) 0.582(0.0016) 0.660(0.0014) 0.693(0.0006) 0.694(0.0007) 0.693(0.0006) 0.552(0.0027)
MCP-LDA 0.676(0.0000) 0.501(0.0008) 0.499(0.0009) 0.499(0.0009) 0.550(0.0025) 0.550(0.0025) 0.550(0.0025) 0.500(0.0009)

Fused MCP-LDA 0.692(0.0007) 0.692(0.0003) 0.683(0.0024) 0.672(0.0017) 0.693(0.0006) 0.694(0.0007) 0.693(0.0006) 0.644(0.003)

Mean classification accuracy from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results.
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Table 8
Average ROI size identified by each penalized method in number of voxels.
VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD
L1 20.5 1.3 46.1 3.0 1.0 1.0 1.0 2.7
Fused L1 122.2 4.1 75.4 3.3 1.0 1.0 1.0 9.1
MCP 52.1 17.1 39.2 15.8 886.7 910.8 730.2 16.7
Fused MCP 367.5 24.8 69.7 21.9 942.7 921.7 954.9 100.2
Table 9 We then compared the ROIs identified by the proposed fused MCP
able

Proportion of ROIs detected by the voxel-wise method that is larger than 12
voxels and also was identified by each penalized method.

VBM TBM REVANS DTI- DTI- DTI- DTI- DTI-
FA MD AD RD FD
L1 22/ 2/70 59/81 0/94 0/86 0/97 0/85 2/87
33
Fused 33/ 7/70 67/81 5/94 0/86 0/97 0/85 23/
L1 33 87
MCP 25/ 58/ 53/81 84/ 84/ 94/ 81/ 58/
33 70 94 86 97 85 87
Fused 33/ 62/ 66/81 86/ 84/ 94/ 81/ 71/
MCP 33 70 94 86 97 85 87
Table 10

Number of ROIs detected by the penalized methods that were >12 voxels and
not identified by the voxel-wise method.

penalized method and other penalized methods with ones identified by
the voxel-wise method (Tables 8-10). Note that for each penalized
method (L1, fused L1, MCP, and fused MCP), we combined ROIs iden-
tified in the three classification methods (logistic regression, SVM, and
LDA). The results indicated that the proposed method identifies larger
ROIs on average than other penalized methods (Table 8), can identify a
large proportion of ROIs identified by the voxel-wise method (Table 9),
and can discover new ROIs (Table 10). Collectively, these empirical
studies showed the advantage of the proposed fused MCP penalized
method in accuracy of classification and biomarker identification under
various situations.

The classification accuracy results on the synthetic dataset for the
proposed fused MCP method and other methods under finite sample
sizes are summarized in Fig. 1. In many MRI imaging studies, the typical
sample size is ~20 and thus it was necessary to test the finite sample size
performance of our method. The proposed approach reaches its best
performance among benchmarks in the sample size ranging from 10 to

VBM TBM REVANS DTI- DTI- DTl DTl  DTI 500 under both settings. Especially when the sample size is small
FA MD AD RD FD (<100), the proposed approach is markedly better than the second-best
L1 2 0 8 0 0 0 0 0 method (on the order of 0.08—0.15 higher AUC scores). An interesting
Fused 2 0 5 1 0 0 0 13 observation is that in the normal distribution setting, except for our
L1 proposed approach, the voxel-wise analysis attains the best performance
MCP 128 148 66 225 15 14 17 124 hen th le size is <100: ab his value. th Lowi Ivsi
Fused 5 176 80 232 16 17 13 154 when the sample size is <100; above this value, the voxel-wise ana ysis
MCP is surpassed by the fused-L1 method, and the fused-L1 method attains
similar performance as the proposed fused-MCP method under the
normal distribution setting with a large sample size of 500. We believe
this phenomenon is due to the biasness issue of the fused-L1 estimator:
under small sample sizes, the fused-L1 estimator has a large bias that
significantly impairs the classification accuracy, whereas under larger
sample sizes, the bias decreases and AUC scores eventually surpass the
Method L1 ---- Fused-L1 —==: MCP - — Fused-MCP Voxel-wise
Gaussian
0.9+ e mmmmmmm == e - T T LTI TR
0.8+ -
0.7 4 ’ L iabimieit
D
o6 o eemmmmmTTTTE
0.5 —
[S]
3 Rician
T
0.7 -7 T T
0.6 e mmmmmmmmmmmmmm oS T
05{ =
0 100 200 300 400 500
Sample size

Fig. 1. AUC scores under different sample sizes using the synthetic dataset. The mean AUC scores of 1000 replicates are shown.
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Fig. 2. Parameter recovery with 25 samples using the synthetic dataset generated using a normal distribution.
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Fig. 3. Parameter recovery with 25 samples using the synthetic dataset generated using the Rician distribution.

classic voxel-wise analysis approach. Another observation is that the
penalized and voxel-wise methods behave worse under the Rician dis-
tribution setting than the normal setting, especially the voxel-wise
analysis. This suggests that the voxel-wise method is not as robust as
the penalized method regarding the distribution of noise.

The accuracies of biomarker identification for the proposed method
using the synthetic dataset under limited sample sizes are reported in
Fig. 2 (for the normal distribution) and Fig. 3 (for the Rician distribu-
tion). We again chose a samples size (n = 25) that reasonably approxi-
mates MRI studies. Our proposed method successfully recovered all
three ROIs under both distributions and was superior to the other ap-
proaches, which produced more ambiguous results. The proposed
method also provided the highest biomarker identification accuracy

(>70 %) compared to the other methods (47-59 %).

We next tested the stability of the proposed method with respect to
tuning parameters. As shown in Fig. 4, the A parameter ranged from 1/
32 to 32 in a ratio of 2. The results indicated that the proposed method
achieves the highest AUC values in this range of A except for the cases of
A >16 under the normal distribution. The proposed method also has a
quite stable performance with A <1, and its performance only starts to
decrease when X >1. The performance of the fused-L1 method also starts
to decrease with large A, and the decrease starts earlier than the pro-
posed fused-MCP method. L1, MCP, and voxel-wise approaches are quite
stable but attain lower AUC scores under most cases than the proposed
method. To understand this, note that the L1 penalized method yields
biased estimates. More specifically, every non-zero coefficient in the L1
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Fig. 4. AUC scores vs ) using the synthetic dataset. Methods in each block from left to right are L1, fused-L1, MCP, fused-MCP (the proposed method), and voxel-wise
methods. The mean AUC scores of 1000 replicates are reported. 95 % confidence intervals are presented by error bars.
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Fig. 5. AUC Scores vs p using the synthetic dataset. Methods in each block from left to right are L1, fused-L1, MCP, fused-MCP (the proposed method), and voxel-wise
methods. The mean AUC scores of 1000 replicates are reported. 95 % confidence intervals are presented by error bars.
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Fig. 6. AUC Scores vs a using the synthetic dataset. Methods in each block from left to right are L1, fused-L1, MCP, fused-MCP (the proposed method), and voxel-wise
methods. The mean AUC scores of 1000 replicates are reported. 95 % confidence intervals are presented by error bars.



C. Lietal Journal of Neuroscience Methods 357 (2021) 109157

Method —— L1 —— Fused-L1 —— MCP —— Fused-MCP
DTI-AD DTI-FA DTI-FD
0.9
= —_—
0.8 1
0 7 A —
DTI-MD DTI-RD REVANS
0.9
I2) ES o ———— —_—
2 0.8
<0 N
0.7' —— ——
T T T T
L1 Fused-L1 MCP Fused-MCP
TBM VBM
0.9 1
0.8 1
———
0.7
T T T T T T T T
L1 Fused-L1 MCP Fused-MCP L1 Fused-L1 MCP Fused-MCP
Method

Fig. 7. Comparison of the best statistical performance among three classification models (logistic regression, SVM, and LDA) for each combination of MRI maps and
penalized methods. Methods in each block from left to right are L1, fused-L1, MCP, and fused-MCP (the proposed method). The mean AUC scores of 1000 replicates
are reported. 95 % confidence intervals are presented by error bars.
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method is subject to the bias caused by A. Since the fused-L1 method
generally yields more non-zero coefficients than the non-fused L1
method, the fused-L1 method has a much larger bias in total than the
non-fused L1 method. The performance of the fused-L1 also is affected
by A more than the non-fused L1 method. Since the MCP method solves
the bias issue in the L1 method asymptotically, the fused-MCP method is
not as sensitive as the fused-L1 method to the change in tuning
parameter A.

In Fig. 5, the p parameter also was varied from 1/32 to 32 in a ratio of
2. The proposed method achieved the highest AUC values when p >2
under the normal distribution setting or p >1/8 under the Rician dis-
tribution setting. The proposed method also attains a quite stable per-
formance with p >8. The fused methods, including fused-L1 and fused-
MCP, need to use p large enough to utilize the spatial information, and
the proposed fused-MCP approach utilized spatial information better
than the fused-L1 approach as p increases.

In Fig. 6, the a parameter was varied from 1/1024 to 1 in a ratio of 2.
The proposed method attains a stable performance with a <1/32. This
agrees with the fact that larger a may increase the finite sample bias of
the MCP estimator (Zhang, 2010). A similar phenomenon also was
present in the PPMI data (Fig. 10). Collectively, Figs. 4-6 show that the
performance of the proposed approach is quite robust regarding the
choice of tuning parameters within appropriate ranges.

When applying the proposed method to the PPMI data using logis-
tical regression, our approach attained significant improvements over
the L1/fused L1 methods and had a similar performance with the MCP
logistic regression both in AUC scores and classification accuracy
because of the bias of the L1/fused L1 methods (Tables 2 and 3). Note
that this classification accuracy comparison of fused MCP versus non-
fused MCP is different in the PPMI data from that in the synthetic
data, where the fused MCP had markedly higher classification accuracy
than the non-fused MCP. This may be due to different signal-to-noise
ratios and different spatial structures of coefficient vectors in the syn-
thetic and PPMI datasets. Similar results were observed when using SVM
or LDA and in each case, the proposed approach achieved the best
performance in most of the maps both in AUC and classification accu-
racy (Tables 4-7). The results of the proposed method were quite robust
regarding tuning parameters A, p, and small a, and Figs. 8-10 present the
robustness of the proposed method on the SVM model as examples.

Regarding biomarker identification in the PPMI data, the fused
methods identified larger ROIs on average than the corresponding non-
fused methods because of the spatial information incorporated by the
fused term. Also, with less bias than the L1 and fused L1 methods, the
MCP and fused MCP methods can recover more signals and identify
larger ROIs on average. In the PPMI MRI data, 12 voxels give a total
volume of ~96 mm?, which is close to a commonly used threshold for
significant clusters (large ROIs) in neuroimaging studies. Compared to
the voxel-wise method, the proposed fused MCP method identified >80
% of the large ROIs (>12 voxels) discovered by the voxel-wise method
for all MRI maps, and the proportion was highest among the penalized
methods in most of the MRI maps. This implies that both the proposed
and classical voxel-wise methods discovered important ROIs in the PD
group. Whereas the voxel-wise method treats each voxel individually
and ignores any spatial information from the MRI maps, the proposed
fused MCP method is based on classification models using all voxels and
incorporates spatial information into the model through the fused term.
Hence, it was expected that the proposed method would have different
biomarker identification results from the classical voxel-wise method. It
is also worth exploring the clinical meaning of the new ROIs discovered
by the proposed fused MCP method.

MRI biomarker identification for PD, together with other biomarker
development challenges, suffers from high-dimensionality issues: the
subject number can be much smaller than the number of the voxels and
there can be very little information on the shape of the biomarkers.
Traditional statistical learning approaches become invalid facing high
dimensionality. In this paper, we implemented for the first time the
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fused MCP penalized method for MRI biomarker discovery in PD. We
demonstrated that it outperformed non-fused and fused L1 penalized
methods and had comparable classification accuracy performance with
the non-fused MCP penalized method for various classification models
including SVM, PCA, and LDA. We also demonstrated the biomarker
identification accuracy of the proposed method using a synthetic data-
set. Furthermore, we compared the biomarker identification of the
proposed method with the classical voxel-wise method using the PPMI
dataset and found that the proposed method recovered >80 % of the
large ROIs identified by the voxel-wise method, as well as some new
ROIs. There may be great interest in the future for comparing the fused-
MCP penalized method and other penalized methods together with deep
learning regularization approaches for biomarker identification, such as
deep neural networks using dropout (Srivastava et al., 2014). Further
studies also are needed to validate the fused-MCP method in larger PD
datasets and determine its applicability for biomarker discovery in other
diseases.
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