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A B S T R A C T   

Background: Brain MRI is a promising technique for Parkinson’s disease (PD) biomarker development. Its anal
ysis, however, is hindered by the high-dimensional nature of the data, particularly when the sample size is 
relatively small. 
New Method: This study introduces a folded concave penalized machine learning scheme with spatial coupling 
fused penalty (fused FCP) to build biomarkers for PD directly from whole-brain voxel-wise MRI data. The 
penalized maximum likelihood estimation problem of the model is solved by local linear approximation. 
Results: The proposed approach is evaluated on synthetic and Parkinson’s Progression Marker Initiative (PPMI) 
data. It achieves good AUC scores, accuracy in classification, and biomarker identification with a relatively small 
sample size, and the results are robust for different tuning parameter choices. On the PPMI data, the proposed 
method discovers over 80 % of large regions of interest (ROIs) identified by the voxel-wise method, as well as 
potential new ROIs. 
Comparison with Existing Methods: The fused FCP approach is compared with L1, fused-L1, and FCP method using 
three popular machine learning algorithms, logistic regression, support vector machine, and linear discriminant 
analysis, as well as the voxel-wise method, on both synthetic and PPMI datasets. The fused FCP method 
demonstrated better accuracy in separating PD from controls than L1 and fused-L1 methods, and similar per
formance when compared with FCP method. In addition, the fused FCP method showed better ROI identification. 
Conclusions: The fused FCP method can be an effective approach for MRI biomarker discovery in PD and other 
studies using high dimensionality data/low sample sizes.   

1. Introduction 

Brain magnetic resonance imaging (MRI) is a promising technique 
for identifying biomarkers for diseases such as Parkinson’s disease (PD). 
Performing analyses on MRI images without pre-defined regions of in
terest (ROIs) typically involves voxel numbers ≥106 that are input 
variables on the voxel level. The number of human subjects, however, is 
small relative to the data dimension of MRI images (n<<p) Casanova 
et al. (2011); Fan et al. (2008); and Yasui et al. (2003). Reconstruction 

and selection of useful biomarkers from such high-dimensional data 
using limited sample sizes is challenging. Thus, there is a need in the 
biomedical research field for statistical learning methods that efficiently 
analyze such data. 

Analysis of high dimensional data poses a non-trivial challenge to 
traditional approaches in statistical learning. It is common to assume 
data sparsity, meaning that only a small number of variables are relevant 
to the scientific problem under investigation even though there are a 
large number of variables available at the initial stage of modeling. 
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Under the sparsity assumption, Lasso-type regularization has been pro
posed and successfully applied to many biomarker identification prob
lems [e.g., Gu et al. (2013); and Wu et al. (2012)], and these methods 
have become the gold standard for high-dimensional learning Mein
shausen and Bühlmann (2006); Meinshausen and Yu (2009); Van de 
Geer (2008); and Zhang and Huang (2008). A rich literature is devoted 
to exposing conditions under which the Lasso entails a theoretical 
guarantee of performance Bickel et al. (2009); Bunea et al. (2007); Cai 
et al. (2010); Candes and Tao (2007); Van De Geer and Bühlmann 
(2009); and Wainwright (2009). One of the main advantages of 
Lasso-type regularizations is that they allow efficient computation 
schemes to solve for the solution with global optimality. Lasso-type 
regularizations, however, can lead to extra estimation bias due to its 
statistical properties. 

To address the drawback of Lasso-type approaches, a regularized 
method with folded concave penalty was proposed [FCP, Fan and Lv 
(2011)]. This later method enjoys desirable theoretical properties such 
as the unbiasedness and strong oracle property for high-dimensional 
sparse estimation. It has been shown to require weaker conditions and 
entail better statistical properties than Lasso Fan et al., 2014; Mein
shausen and Bühlmann (2006); and Zou (2006). Two mainstream FCP 
functions are developed, i.e. the smoothly clipped absolute deviation 
[SCAD, Fan and Li (2001)] and minimax concave penalty [MCP, Zhang 
(2010)]. The FCP regularization method also has been applied success
fully to many biomarker identification problems [e.g., Liu et al. (2016a, 
b)]. 

Another major challenge in extracting biomarkers from MRI data is 
the spatial correlation among adjacent voxels. The most popular 
approach to this problem has been univariate analysis (voxel-wise 
analysis) [e.g., Haynes and Rees (2006)]. Over the last several decades, 
however, multivariate statistical learning approaches have been applied 
in an increasing number of neuroimaging studies to model effects across 
multiple voxels Friston et al. (1995); Hanke et al. (2009). Compared to 
classic univariate analysis, these multivariate statistical learning ap
proaches have shown better predictive performance. Spatial correlation 
also can be useful in guiding the construction of regions of interest 
(ROIs) [e.g., Friston et al. (1996)]. The classic methods usually separate 
ROI construction and model estimation, which may introduce extra 
noise in the model Tohka et al. (2016). As such, creating a unified model 
to simultaneously construct ROIs and estimate coefficients may improve 
analysis methods. Tibshirani et al. (2005) proposed using fused Lasso to 
explore a model with features that can be ordered in some meaningful 
way. The authors applied this method to analyses of protein mass 
spectroscopy and gene expression data with favorable results. And Lee 
et al. (2014) proposed a fused Lasso logistic regression approach to 
analyze corpus callosum thickness in early Alzheimer’s disease. 

We propose a fused MCP penalized approach to address the two 
major challenges in MRI data analysis: high-dimensionality and spatial 
correlation amongst voxels. In this paper, we aim to develop the novel 
approach as a reliable and improved method for identifying markers 
from high dimensional MRI data that also utilizes spatial correlations 
between adjacent voxels. In comparison with previous MRI biomarker 
studies using FCP penalized approaches such as Liu et al. (2016b), the 
newly proposed method does not rely on pre-defined ROIs but auto
matically constructs MRI metrics from the high-dimensional voxel-wise 
data by accommodating the fused penalty. This new penalty method also 
is compatible with many popular statistical/machine models [e.g., lo
gistic regression, support vector machine (SVM), and local discriminate 
analysis (LDA)]. We first tested the model using synthetic data to verify 
the proposed approach successfully can recover MRI image signal using 
a sample size typical for most MRI research. We then applied the model 
to a real dataset (Parkinson’s Progression Marker Initiative, PPMI) to 
determine its performance compared to other approaches. 

2. Methods 

We first propose a general classification framework for 3D MRI data 
using the fused MCP penalty (Section 2.1). We then introduce three 
popular classification methods, logistic regression, SVM, and LDA 
(Section 2.2), that can be used with the proposed fused MCP penalized 
method. 

2.1. Fused MCP penalized method for MRI data classification 

Suppose we have n MRI images mi,i = 1, 2,…,n. Each image contains 
three dimensional voxel data, where dx, dy, and dz are the digits in each 
dimension. Each image then can be represented by xl,dx,dy,dz. We assume 
a classification model f

(
xl,dx,dy,dz, βdx,dy,dz

)
for the factor (disease) of in

terest, where f is the classification function, βdx,dy,dz is the parameter of 
the classification model associated with voxels of the image, and l is the 
subject index. Note that the parameter βdx,dy,dz of the classification model 
can provide information regarding the biomarker(s) related to the factor 
(disease) of interest. Assume function q measures the difference between 
prediction of the classification model f

(
xl,dx,dy,dz, βdx,dy,dz

)
and the true 

label yl. The loss function L associated with the classification problem 
then is defined as follows: 

L
(
βdx,dy,dz

)
=

1
n

∑n

l=1
q
(
f
(
xl,dx,dy,dz, βdx,dy,dz

)
, yl

)
, (1)  

where yl is the indicator of the factor (disease) of interest for subject l, so 
yl = 1 for the patient, and yl = 0 for the control, and we want to find 
βdx,dy,dz that minimizes the loss function L. Many statistical/machine 
learning models (e.g., logistic regression, SVM, LDA, etc.) can be 
formulated under the framework of (1), and some popular classification 
models and the corresponding loss functions are provided in Section 2.2. 

To handle high-dimensional MR images, we need to add the regu
larization term. L1 and/or L2 regularization terms commonly are used in 
the literature [e.g., Tohka et al. (2016)]. However, L1 and/or L2 regu
larization terms will introduce extra estimation bias. For example, the 
classical L1 penalty penalizes all coefficients with the same amount of 
penalty. To achieve the variable selection consistency, the tuning 
parameter needs to surpass the order of root-n asymptotically, which can 
lead to an asymptotically noneligible bias in the estimation of the 
non-zero coefficients Zou, 2006. As a result, we proposed using MCP 
Zhang (2010) to address the bias issue. MCP is defined as follows: 

pλ(t) = λ
∫ |t|

0

(
1 −

x
aλ

)

+
dx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

aλ2, |t| > aλ,

λt −
1
2a

t2, otherwise,

(2)  

where a and λ are tuning parameters to control the shape of the penalty 
function. When the absolute value of t is large enough, pλ(t) becomes a 
constant. This means that the MCP approach does not penalize co
efficients with absolute values over a certain threshold, and we can 
attain asymptotical unbiasness via MCP. 

Besides the penalty for sparsity, we needed one more term to induce 
spatial constraints: 

fρ(β) = ρ
∑

dx,dy,dz

((
βdx,dy,dz − βdx±1,dy,dz

)2
+

(
βdx,dy,dz − βdx,dy±1,dz

)2
+

(
βdx,dy,dz 

−βdx,dy,dz±1
)2

)
(3)  

where ρ is a positive constant. (3) promotes the adjacent voxels to have 
similar weights in the classification parameter βdx,dy,dz. In our setting, 
this term works like a data-driven clustering function and automatically 
generates ROIs from the voxel-wise data. Our proposed method is to 
minimize: 
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min
βdx,dy,dz

{
(
L

(
βdx,dy,dz

) )
+

∑

i∈dx,j∈dy,k∈dz
pλ

(
βi,j,k

)
+ fρ

(
βdx,dy,dz

)
}

(4) 

The first term in (4) is a measure on how well the model distinguishes 
patients from controls. The second and third terms control the model 
complexity in sparsity and spatial similarity, respectively. Since brain 
has intrinsic substructures, it is common sense to assume that only parts 
of the whole brain associate with the target response and that adjacent 
voxels may have similar parameters in the classification model. In (4) we 
use the second and third terms to consider explicitly these assumptions 
when estimating the model in a data-driven manner. We use the tuning 
parameters a, λ, ρ to balance the trade-off between the goodness of fit 
and model complexity. 

2.1.1. Solution scheme 
Problem (4) is non-convex. Solving it globally can be very difficult 

Liu et al. (2016a). To deal with this issue, we first obtain an initial so
lution using the Lasso method, and then adopt the Local Linear 
Approximation (LLA) method from Zou and Li (2008); Fan et al. (2014) 
to obtain a one-step sparse estimate based on the initial Lasso solution. 
In sum, we have a two-step approximation scheme (2sAS) for the 
problem (4). More specifically, we first solve the following problem: 

min
βdx,dy,dz

{

L
(
βdx,dy,dz

)
+ λ

∑

i∈dx,j∈dy,k∈dz

⃒
⃒βi,j,k

⃒
⃒ + fρ

(
βdx,dy,dz

)
}

(5) 

Denote the first step solution as β(1)

dx,dy,dz, and we then go on to solve 
the second step: 

min
βdx,dy,dz

{

L
(
βdx,dy,dz

)
+

∑

i∈dx,j∈dy,k∈dz
p’

λ

(
β(1)

i,j,k

)⃒
⃒βi,j,k

⃒
⃒ + fρ

(
βdx,dy,dz

)
}

, (6)  

where p’
λ(.) is the first order derivative of pλ(.). One may view the 2sAS as 

a refining procedure. In the first step, we approximate the FCP penalty 
function by the L1 penalty and solve only the L1 regularized problem. In 
the second step, we approximate the FCP penalty by the weighted L1 
penalty and solve the weighted L1 regularized problem. The objective 
functions in both steps are convex and can be solved efficiently. The 
tuning parameter of the L1 regularization is changed adaptively ac
cording to the solution resulted from the first step. Recall that the ab
solute value of the first order derivative is correlated negatively with the 
magnitude of the input in the MCP case. If we use the value of the first 
order derivative of the previous step’s solution, we will set a smaller 
penalty for more significant parts in the previous step’s solution and vice 
versa. Hence, the 2sAS procedure will correct the bias in the initial 
Lasso-type solution. Fan et al. (2014) established the oracle optimality of 
the 2sAS procedure for the FCP penalized estimation. 

2.1.2. Tuning parameter selection 
In the proposed method, we introduce tuning parameters to control 

sparsity and spatial similarity. We used cross-validation for tuning 
parameter selection. Specifically, the dataset is separated randomly into 
two parts, a training set to train the model and a test dataset to test it. We 
repeat this procedure multiple times, and the average test accuracy is 
used to rank the tuning parameter choices. The one with the highest 
rank will be selected. Besides the cross-validation, the bootstrap and 
Bayesian error estimation approaches also can be applied in our method. 
Readers interested in those ideas can refer to Meinshausen and Bühl
mann (2010) and Huttunen and Tohka (2015) for more details. 

2.2. Classification methods 

In this section, we introduce three popular classification methods: 
logistic regression, SVM, and LDA. The three methods need loss func
tions L, and the proposed fused MCP penalized method can be used as 
the loss function in all three methods for high dimensional data 

classification. 

2.2.1. Logistic regression 
Logistic regression has been popular for modeling the relationship 

between a binary response variable and a set of input (explanatory) 
variables. It can be used further for the prediction of binary responses 
based on newly observed input variables. Logistic regression has been 
applied to the study of disease diagnosis by Alkan et al. (2005) and 
Kennedy et al. (1996), among others. The current approach is distin
guished from these prior studies, however, in that we deal with the issue 
of high dimensionality, given a large number of input variables but a 
small number of samples. Liao and Chin (2007) considered an 
under-sampled logistic regression and proposed a parametric bootstrap 
to reduce the model prediction error. In contrast, this study presents a 
substantially different statistical learning approach to handle the issue of 
high dimensionality. We assume the logistic model: 

pl =
1

1 + exp

(

−
∑

i∈dx,j∈dy,k∈dz
xl,i,j,kβi,j,k

),
(7)  

where pl is the probability that l-th MRI subject is associated with PD and 
the log-likelihood function is 

L(βdx,dy,dz) =
∑

l
yllog(pl) +

∑

l
(1 − yl)log(1 − pl), (8)  

where pl is from (7). We then plug (8) back into (6) to fit the model. 

2.2.2. Support vector machine (SVM) 
SVM is another popular machine learning classification approach 

that has been applied successfully to many real-world neuroimaging 
problems [e.g., Othman et al. (2011) and Singh and Kaur (2012)]. 
Original SVM suffers from the high-dimensionality issue. In this section, 
we verify our approach also is capable of being used in the SVM method. 
We assume the loss function as follow: 

L
(
βdx,dy,dz, b

)
=

1
n
∑n

l=1
max

(

0, 1 − y’
l

[
∑

i∈dx,j∈dy,k∈dz
xl,i,j,kβi,j,k − b

] )

, (9)  

where y’
l = −1 if yl = 0, otherwise y’

l = 1. Once the model is learned, we 
may use the sign of 

∑
i∈dx,j∈dy,k∈dzxl,i,j,kβi,j,k − b to predict y’

l . 

2.2.3. Linear discriminant analysis (LDA) 
In addition to logistic regression and SVM, LDA is another popular 

classification method in statistics learning. LDA solves for the linear 
decision boundary in the underlying space that has the best discriminant 
ability among classes. In a low dimension classification problem, LDA 
performs well [e.g., Adeli et al. (2016)]. In the high dimensional setting, 
however, vanilla LDA leads to poor results Fan et al., 2012. We will 
explore the performance of a penalized LDA with our proposed pen
alties. The loss function of LDA is: 

L
(
βdx,dy,dz

)
=

1
n
∑n

l=1

(
∑

i∈dx,j∈dy,k∈dz
xl,i,j,kβi,j,k

)2

, (10)  

subject to 
∑

i∈dx,j∈dy,k∈dzμi,j,kβi,j,k = 1, where μi,j,k =

1
n

∑n
l=1

[(
xl,i,j,kyl = 1

)
−

(
xl,i,j,kyl = 0

) ]
. Problem (10) requires solving for 

a constrained learning problem but one also may consider the penalized 
version suggested in Fan et al. (2012). 

3. Experiments 

We first validated the proposed approach using synthetic datasets. 
The proposed procedure then was applied to real-world PPMI data that 
contains different types of MRI maps to separate PD patients from 
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controls. 

3.1. Synthetic data 

We generated a 2D plane (60 × 60) and set each point in the plane 
with a parameter βI,j. The ROIs are characterized via βI,j ∕= 0. The subject 
is represented by a 60 × 60 matrix X. We considered two mechanisms for 
the generation of X. 

• The first row and column are generated via a standard normal dis
tribution and the remaining parts follow a linear relationship 
xi+1,j+1 = 0.3xi+1,j + 0.3xi,j+1 − 0.2xi,j + ε, where ε is the random 
error from a standard normal distribution, and xi,j is the element in 
matrix X induced by i-th row and j-th column.  

• The first row and column are generated via the Rician distribution 
Gudbjartsson and Patz (1995), and the remaining parts follow a non- 
linear relationship xi+1,j+1 = 0.1x2

i+1,j + 0.1x2
i,j+1 − 0.05x2

i,j + ε, where 
ε is also from the Rician distribution. The probability density func
tion of the Rician distribution is 

f
(

x|v, σ
)

=
x
σ2 exp

(
−(x2 + v2)

2σ2

)

I0

(xv
σ2

)
,

where I0(z) is the modified Bessel function of the first kind with order 
zero, and v, σ are two non-negative parameters of the Rician distribu
tion. In this paper, we use the Rician distribution with v = 2 and σ = 1. 

We used logistic regression to construct the label for every subject. 
After generating the synthetic data, we then compared the prediction 
accuracy, ROI recovery, and ROI stability with respect to the tuning 
parameters of the proposed method (the fused MCP logistic model) 
against the L1\fused-L1\MCP models and voxel-wise analysis method. 

3.2. Distinguishing PD patients from control subjects 

After examining the performance of the proposed method on syn
thetic data, we compared the current approach with several popular 
methods in identifying PD patients in the PPMI dataset (Trojanowski, 
2013). Details of the PPMI dataset are provided in subsections 3.2.1, 
3.2.2, and 3.2.3. We selected eight different MRI feature maps including 
tensor-based morphometry (TBM), voxel-based morphometry (VBM), 
regional analysis of volumes examined in normalized space (RAVENS), 
and 5 diffusion tensor imaging (DTI) scalars: fractional anisotropy (FA), 
mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and 
free-water diffusion (FD). We assessed the performance of the proposed 
method by using three classification models: logistic regression, SVM, 
and LDA. For each model, we compared the Receiver Operating Char
acteristic (ROC) area under the curve (AUC) and accuracy scores of our 
method with L1/fused-L1/MCP penalties. In the experimental stage, we 
first randomly selected 155 of the 225 subjects as the training dataset. 
On each training dataset, we used 5-fold cross-validation for tuning 
parameter selection and fitted models with the selected tuning param
eters on the training dataset. We propose a grid search for tuning pa
rameters λ and ρ while fixing the value of a to reduce computation 
complexity. Here we fixed a = 0.01 and obtained relatively good nu
merical results, and we refer readers to Zhang (2010) and Kim et al. 
(2018) for guidance and heuristics for the selection of tuning parame
ters. Then we calculated AUC and accuracy scores using the test dataset 
that included the remaining 70 subjects. This procedure was replicated 
1000 times. Mean AUC and classification accuracy scores are reported. 
We also compared the stability with respect to the tuning parameters of 
the proposed method against the L1\fused-L1\MCP methods. 

3.3. Subjects 

One hundred fifty-two PD patients and 73 controls (225 subjects in 
total) with high resolution T1-weighted and diffusion MRI data obtained 

using Siemens 3 T (TrioTim) scanners were downloaded from the PPMI 
website, along with demographic information including age, gender, 
and education (details in Table 1). 

3.4. MRI acquisition and image processing 

T1-weighted (T1w) images were obtained with isotropic 1 mm 
spatial resolution. The DTI images were obtained with isotropic 2 mm 
spatial resolution (see https://www.ppmi-info.org/ for detailed MRI 
acquisition methods). 

3.5. Generating whole brain voxel-wise MRI features 

T1w images were processed for morphometric features. All images 
first were inspected visually to ensure that the image quality was suffi
cient for further analysis. The field inhomogeneity of T1w images was 
removed using the N4 algorithm (Tustison et al., 2010). A 
cohort-specific unbiased template was built on T1w images from all 
subjects using the buildtemplate script in ANTs v2.1. Three different 
morphometric features (VBM, TBM, and RAVENS) then were extracted 
using SPM 12, ANTs v2.1, and DRAMMS 1.4.1, respectively, following 
published methods Ashburner and Friston (2000); Ou et al. (2011); and 
Tustison et al. (2014). DTIPrep (Neuro Image Research and Analysis 
Laboratory, University of North Carolina, Chapel Hill, NC) was used for 
DTI image processing and feature extraction (Oguz et al., 2014). Frac
tional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and 
radial diffusivity (RD) maps then were estimated. A two-pool diffusion 
model was built to estimate a free-water diffusion component (FD map) 
to represent free water of the interstitial fluid and non-directional 
diffusion components of cellular structure (Pasternak et al., 2009). DTI 
maps were co-registered to the T1w template using the FA map as a 
moving image through a non-rigid warping with ANTs v2.1 (Avants 
et al., 2008). 

4. Results and discussion 

In the current work, we proposed the fused MCP penalized method to 
identify biomarkers from MRI images that effectively address the chal
lenge of high-dimensionality and spatial correlation amongst voxels. To 
assess whether the proposed method provides an advantage, we 
compared its performance to that of other methods using both synthetic 
data and real data from the PPMI study. We first tested the accuracy, 
biomarker identification, and stability with respect to tuning parameters 
of the proposed method using synthetic data. These analyses demon
strated the proposed method had good accuracy in group classification 
and biomarker identification with a relatively small sample size. We 
then applied our method to PPMI imaging data to test its classification 
accuracy and stability with respect to tuning parameters using different 
classification models and MRI maps. The results indicated that the 
proposed method had higher/comparable mean AUCs compared to the 
L1, fused-L1, and MCP classification models regardless of whether 
logistical regression (Table 2), SVM (Table 4), or LDA (Table 6) was 
used. In addition, mean accuracy also was higher/comparable using the 
proposed method (Tables 3, 5, and 7), and it performed better/compa
rably across the different MRI maps (Tables 2–7, Fig. 7). The classifi
cation performance of the proposed method also was robust with respect 
to the tuning parameter λ (Fig. 8), ρ (Fig. 9), and a (Fig. 10) in the PPMI 
imaging dataset. 

Table 1 
Demographic data for subjects included from the PPMI dataset.   

Control(n = 73) PD(n = 152) P-values 

Age, years (SD) 60.6 (10.8) 60.8 (9.7) 0.864 
Sex, F/M 27/46 55/97 0.907 
Education, years (SD) 15.6 (3.3) 15.4 (3.0) 0.587  
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Table 2 
Mean AUC scores for the classification methods using logistic regression (LR) on the PPMI dataset.   

VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD 

L1-LR 0.608(0.0024) 0.898(0.0005) 0.782(0.0029) 0.910(0.0006) 0.606(0.0018) 0.609(0.0018) 0.607(0.0018) 0.859(0.0015) 
Fused L1-LR 0.761(0.0038) 0.900(0.0005) 0.826(0.0007) 0.913(0.0005) 0.624(0.0019) 0.626(0.0019) 0.623(0.0019) 0.854(0.0008) 
MCP-LR 0.882(0.0007) 0.942 (0.0003) 0.923(0.0004) 0.953(0.0003) 0.812(0.001) 0.814(0.001) 0.817(0.001) 0.933(0.0004) 
Fused MCP-LR 0.884(0.0007) 0.942(0.0003) 0.923(0.0004) 0.953(0.0003) 0.811(0.001) 0.814(0.001) 0.815(0.001) 0.933(0.0004) 

Mean AUC scores from 1000 replicates, with standard deviation listed in parenthesis. Bold text indicates the best achieved results. 

Table 3 
Mean classification accuracy for the classification methods using logistic regression (LR) on the PPMI dataset.   

VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD 

L1-LR 0.567(0.0018) 0.790(0.0006) 0.681(0.0026) 0.809(0.0007) 0.586(0.0016) 0.590(0.0015) 0.585(0.0016) 0.735(0.0013) 
Fused L1-LR 0.674(0.0032) 0.786(0.0006) 0.719(0.0008) 0.809(0.0006) 0.595(0.0015) 0.599(0.0014) 0.596(0.0015) 0.719(0.0009) 
MCP-LR 0.824(0.0005) 0.811(0.0004) 0.817(0.0004) 0.813(0.0004) 0.684(0.0002) 0.685(0.0003) 0.684(0.0002) 0.813(0.0004) 
Fused MCP-LR 0.826(0.0005) 0.811(0.0004) 0.818(0.0004) 0.813(0.0004) 0.684(0.0002) 0.685(0.0003) 0.683(0.0002) 0.813(0.0004) 

Mean classification accuracy from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results. 

Table 4 
Mean AUC scores for the classification methods using SVM on the PPMI dataset.   

VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD 

L1-SVM 0.571(0.0016) 0.647(0.0012) 0.626(0.0016) 0.697(0.0009) 0.717(0.0008) 0.718(0.0008) 0.721(0.0008) 0.592(0.0013) 
Fused L1-SVM 0.553(0.0015) 0.607(0.0011) 0.604(0.0016) 0.650(0.0009) 0.698(0.0008) 0.697(0.0007) 0.700(0.0007) 0.564(0.001) 
MCP-SVM 0.879(0.0008) 0.909(0.0005) 0.891(0.0006) 0.930(0.0004) 0.846(0.0006) 0.848(0.0006) 0.850(0.0006) 0.909(0.0005) 
Fused MCP-SVM 0.879(0.001) 0.908(0.0006) 0.895(0.001) 0.934(0.0006) 0.847(0.0007) 0.848(0.0007) 0.852(0.0007) 0.910(0.0008) 

Mean AUC scores from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results. 

Table 5 
Mean classification accuracy for the classification methods using SVM on the PPMI dataset.   

VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD 

L1-SVM 0.555(0.0014) 0.589(0.001) 0.581(0.0014) 0.642(0.0011) 0.690(0.0004) 0.691(0.0005) 0.691(0.0005) 0.547(0.0011) 
Fused L1-SVM 0.537(0.0013) 0.550(0.0009) 0.558(0.0013) 0.596(0.001) 0.630(0.0013) 0.634(0.0013) 0.634(0.0013) 0.523(0.0009) 
MCP-SVM 0.823(0.0007) 0.830(0.0005) 0.822(0.0006) 0.844(0.0005) 0.724(0.001) 0.727(0.001) 0.727(0.001) 0.836(0.0005) 
Fused MCP-SVM 0.820(0.001) 0.834(0.0005) 0.816(0.0009) 0.845(0.0007) 0.680(0.0000) 0.680(0.0000) 0.680(0.0000) 0.837(0.0008) 

Clarification accuracy from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results. 

Table 6 
Mean AUC scores for the classification methods using LDA on the PPMI dataset.   

VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD 

L1-LDA 0.670(0.0011) 0.869(0.0009) 0.598(0.0018) 0.690(0.0039) 0.589(0.0036) 0.583(0.0037) 0.590(0.0036) 0.557(0.0037) 
Fused L1-LDA 0.671(0.001) 0.865(0.0009) 0.601(0.0019) 0.695(0.0038) 0.591(0.0037) 0.589(0.0038) 0.597(0.0037) 0.563(0.0038) 
MCP-LDA 0.693(0.0009) 0.501(0.0007) 0.499(0.0008) 0.499(0.0009) 0.569(0.0036) 0.569(0.0035) 0.570(0.0036) 0.500(0.0009) 
Fused MCP-LDA 0.681(0.0012) 0.890(0.0008) 0.740(0.0024) 0.803(0.0027) 0.592(0.0037) 0.587(0.0038) 0.597(0.0037) 0.687(0.0035) 

Mean AUC scores from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results. 

Table 7 
Mean classification accuracy for the classification methods using LDA on the PPMI dataset.   

VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD 

L1-LDA 0.685(0.0007) 0.715(0.0004) 0.580(0.0015) 0.658(0.0014) 0.693(0.0006) 0.693(0.0007) 0.692(0.0006) 0.549(0.0026) 
Fused L1-LDA 0.684(0.0007) 0.716(0.0004) 0.582(0.0016) 0.660(0.0014) 0.693(0.0006) 0.694(0.0007) 0.693(0.0006) 0.552(0.0027) 
MCP-LDA 0.676(0.0000) 0.501(0.0008) 0.499(0.0009) 0.499(0.0009) 0.550(0.0025) 0.550(0.0025) 0.550(0.0025) 0.500(0.0009) 
Fused MCP-LDA 0.692(0.0007) 0.692(0.0003) 0.683(0.0024) 0.672(0.0017) 0.693(0.0006) 0.694(0.0007) 0.693(0.0006) 0.644(0.003) 

Mean classification accuracy from 1000 replicates, with standard deviation listed in parenthesis. Bold indicates the best achieved results. 
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We then compared the ROIs identified by the proposed fused MCP 
penalized method and other penalized methods with ones identified by 
the voxel-wise method (Tables 8–10). Note that for each penalized 
method (L1, fused L1, MCP, and fused MCP), we combined ROIs iden
tified in the three classification methods (logistic regression, SVM, and 
LDA). The results indicated that the proposed method identifies larger 
ROIs on average than other penalized methods (Table 8), can identify a 
large proportion of ROIs identified by the voxel-wise method (Table 9), 
and can discover new ROIs (Table 10). Collectively, these empirical 
studies showed the advantage of the proposed fused MCP penalized 
method in accuracy of classification and biomarker identification under 
various situations. 

The classification accuracy results on the synthetic dataset for the 
proposed fused MCP method and other methods under finite sample 
sizes are summarized in Fig. 1. In many MRI imaging studies, the typical 
sample size is ~20 and thus it was necessary to test the finite sample size 
performance of our method. The proposed approach reaches its best 
performance among benchmarks in the sample size ranging from 10 to 
500 under both settings. Especially when the sample size is small 
(<100), the proposed approach is markedly better than the second-best 
method (on the order of 0.08−0.15 higher AUC scores). An interesting 
observation is that in the normal distribution setting, except for our 
proposed approach, the voxel-wise analysis attains the best performance 
when the sample size is <100; above this value, the voxel-wise analysis 
is surpassed by the fused-L1 method, and the fused-L1 method attains 
similar performance as the proposed fused-MCP method under the 
normal distribution setting with a large sample size of 500. We believe 
this phenomenon is due to the biasness issue of the fused-L1 estimator: 
under small sample sizes, the fused-L1 estimator has a large bias that 
significantly impairs the classification accuracy, whereas under larger 
sample sizes, the bias decreases and AUC scores eventually surpass the 

Fig. 1. AUC scores under different sample sizes using the synthetic dataset. The mean AUC scores of 1000 replicates are shown.  

Table 8 
Average ROI size identified by each penalized method in number of voxels.   

VBM TBM REVANS DTI-FA DTI-MD DTI-AD DTI-RD DTI-FD 

L1 20.5 1.3 46.1 3.0 1.0 1.0 1.0 2.7 
Fused L1 122.2 4.1 75.4 3.3 1.0 1.0 1.0 9.1 
MCP 52.1 17.1 39.2 15.8 886.7 910.8 730.2 16.7 
Fused MCP 367.5 24.8 69.7 21.9 942.7 921.7 954.9 100.2  

Table 9 
Proportion of ROIs detected by the voxel-wise method that is larger than 12 
voxels and also was identified by each penalized method.   

VBM TBM REVANS DTI- 
FA 

DTI- 
MD 

DTI- 
AD 

DTI- 
RD 

DTI- 
FD 

L1 22/ 
33 

2/70 59/81 0/94 0/86 0/97 0/85 2/87 

Fused 
L1 

33/ 
33 

7/70 67/81 5/94 0/86 0/97 0/85 23/ 
87 

MCP 25/ 
33 

58/ 
70 

53/81 84/ 
94 

84/ 
86 

94/ 
97 

81/ 
85 

58/ 
87 

Fused 
MCP 

33/ 
33 

62/ 
70 

66/81 86/ 
94 

84/ 
86 

94/ 
97 

81/ 
85 

71/ 
87  

Table 10 
Number of ROIs detected by the penalized methods that were >12 voxels and 
not identified by the voxel-wise method.   

VBM TBM REVANS DTI- 
FA 

DTI- 
MD 

DTI- 
AD 

DTI- 
RD 

DTI- 
FD 

L1 2 0 8 0 0 0 0 0 
Fused 

L1 
2 0 5 1 0 0 0 13 

MCP 128 148 66 225 15 14 17 124 
Fused 

MCP 
2 176 80 232 16 17 13 154  
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classic voxel-wise analysis approach. Another observation is that the 
penalized and voxel-wise methods behave worse under the Rician dis
tribution setting than the normal setting, especially the voxel-wise 
analysis. This suggests that the voxel-wise method is not as robust as 
the penalized method regarding the distribution of noise. 

The accuracies of biomarker identification for the proposed method 
using the synthetic dataset under limited sample sizes are reported in 
Fig. 2 (for the normal distribution) and Fig. 3 (for the Rician distribu
tion). We again chose a samples size (n = 25) that reasonably approxi
mates MRI studies. Our proposed method successfully recovered all 
three ROIs under both distributions and was superior to the other ap
proaches, which produced more ambiguous results. The proposed 
method also provided the highest biomarker identification accuracy 

(>70 %) compared to the other methods (47–59 %). 
We next tested the stability of the proposed method with respect to 

tuning parameters. As shown in Fig. 4, the λ parameter ranged from 1/ 
32 to 32 in a ratio of 2. The results indicated that the proposed method 
achieves the highest AUC values in this range of λ except for the cases of 
λ ≥16 under the normal distribution. The proposed method also has a 
quite stable performance with λ ≤1, and its performance only starts to 
decrease when λ >1. The performance of the fused-L1 method also starts 
to decrease with large λ, and the decrease starts earlier than the pro
posed fused-MCP method. L1, MCP, and voxel-wise approaches are quite 
stable but attain lower AUC scores under most cases than the proposed 
method. To understand this, note that the L1 penalized method yields 
biased estimates. More specifically, every non-zero coefficient in the L1 

Fig. 2. Parameter recovery with 25 samples using the synthetic dataset generated using a normal distribution.  

Fig. 3. Parameter recovery with 25 samples using the synthetic dataset generated using the Rician distribution.  
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Fig. 5. AUC Scores vs ρ using the synthetic dataset. Methods in each block from left to right are L1, fused-L1, MCP, fused-MCP (the proposed method), and voxel-wise 
methods. The mean AUC scores of 1000 replicates are reported. 95 % confidence intervals are presented by error bars. 

Fig. 4. AUC scores vs λ using the synthetic dataset. Methods in each block from left to right are L1, fused-L1, MCP, fused-MCP (the proposed method), and voxel-wise 
methods. The mean AUC scores of 1000 replicates are reported. 95 % confidence intervals are presented by error bars. 

Fig. 6. AUC Scores vs a using the synthetic dataset. Methods in each block from left to right are L1, fused-L1, MCP, fused-MCP (the proposed method), and voxel-wise 
methods. The mean AUC scores of 1000 replicates are reported. 95 % confidence intervals are presented by error bars. 
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Fig. 7. Comparison of the best statistical performance among three classification models (logistic regression, SVM, and LDA) for each combination of MRI maps and 
penalized methods. Methods in each block from left to right are L1, fused-L1, MCP, and fused-MCP (the proposed method). The mean AUC scores of 1000 replicates 
are reported. 95 % confidence intervals are presented by error bars. 
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Fig. 8. Comparison of the statistical performance on SVM of different penalized method for each combination of MRI maps and tuning parameter λ. Methods in each 
block from left to right are L1, fused-L1, MCP, and fused-MCP (the proposed method). The mean AUC scores of 1000 replicates are reported. Error bars represent 95 
% confidence intervals. 
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Fig. 9. Comparison of the statistical performance on SVM of different penalized method for each combination of MRI maps and tuning parameter ρ. Methods in each 
block from left to right are L1, fused-L1, MCP, and fused-MCP (the proposed method). The mean AUC scores of 1000 replicates are reported. Error bars represent 95 
% confidence intervals. 
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Fig. 10. Comparison of the statistical performance on SVM of different penalized method for each combination of MRI maps and tuning parameter a. Methods in 
each block from left to right are L1, fused-L1, MCP, and fused-MCP (the proposed method). The mean AUC scores of 1000 replicates are reported. Error bars represent 
95 % confidence intervals. 
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method is subject to the bias caused by λ. Since the fused-L1 method 
generally yields more non-zero coefficients than the non-fused L1 
method, the fused-L1 method has a much larger bias in total than the 
non-fused L1 method. The performance of the fused-L1 also is affected 
by λ more than the non-fused L1 method. Since the MCP method solves 
the bias issue in the L1 method asymptotically, the fused-MCP method is 
not as sensitive as the fused-L1 method to the change in tuning 
parameter λ. 

In Fig. 5, the ρ parameter also was varied from 1/32 to 32 in a ratio of 
2. The proposed method achieved the highest AUC values when ρ ≥2 
under the normal distribution setting or ρ ≥1/8 under the Rician dis
tribution setting. The proposed method also attains a quite stable per
formance with ρ ≥8. The fused methods, including fused-L1 and fused- 
MCP, need to use ρ large enough to utilize the spatial information, and 
the proposed fused-MCP approach utilized spatial information better 
than the fused-L1 approach as ρ increases. 

In Fig. 6, the a parameter was varied from 1/1024 to 1 in a ratio of 2. 
The proposed method attains a stable performance with a ≤1/32. This 
agrees with the fact that larger a may increase the finite sample bias of 
the MCP estimator (Zhang, 2010). A similar phenomenon also was 
present in the PPMI data (Fig. 10). Collectively, Figs. 4–6 show that the 
performance of the proposed approach is quite robust regarding the 
choice of tuning parameters within appropriate ranges. 

When applying the proposed method to the PPMI data using logis
tical regression, our approach attained significant improvements over 
the L1/fused L1 methods and had a similar performance with the MCP 
logistic regression both in AUC scores and classification accuracy 
because of the bias of the L1/fused L1 methods (Tables 2 and 3). Note 
that this classification accuracy comparison of fused MCP versus non- 
fused MCP is different in the PPMI data from that in the synthetic 
data, where the fused MCP had markedly higher classification accuracy 
than the non-fused MCP. This may be due to different signal-to-noise 
ratios and different spatial structures of coefficient vectors in the syn
thetic and PPMI datasets. Similar results were observed when using SVM 
or LDA and in each case, the proposed approach achieved the best 
performance in most of the maps both in AUC and classification accu
racy (Tables 4–7). The results of the proposed method were quite robust 
regarding tuning parameters λ, ρ, and small a, and Figs. 8–10 present the 
robustness of the proposed method on the SVM model as examples. 

Regarding biomarker identification in the PPMI data, the fused 
methods identified larger ROIs on average than the corresponding non- 
fused methods because of the spatial information incorporated by the 
fused term. Also, with less bias than the L1 and fused L1 methods, the 
MCP and fused MCP methods can recover more signals and identify 
larger ROIs on average. In the PPMI MRI data, 12 voxels give a total 
volume of ~96 mm3, which is close to a commonly used threshold for 
significant clusters (large ROIs) in neuroimaging studies. Compared to 
the voxel-wise method, the proposed fused MCP method identified >80 
% of the large ROIs (>12 voxels) discovered by the voxel-wise method 
for all MRI maps, and the proportion was highest among the penalized 
methods in most of the MRI maps. This implies that both the proposed 
and classical voxel-wise methods discovered important ROIs in the PD 
group. Whereas the voxel-wise method treats each voxel individually 
and ignores any spatial information from the MRI maps, the proposed 
fused MCP method is based on classification models using all voxels and 
incorporates spatial information into the model through the fused term. 
Hence, it was expected that the proposed method would have different 
biomarker identification results from the classical voxel-wise method. It 
is also worth exploring the clinical meaning of the new ROIs discovered 
by the proposed fused MCP method. 

MRI biomarker identification for PD, together with other biomarker 
development challenges, suffers from high-dimensionality issues: the 
subject number can be much smaller than the number of the voxels and 
there can be very little information on the shape of the biomarkers. 
Traditional statistical learning approaches become invalid facing high 
dimensionality. In this paper, we implemented for the first time the 

fused MCP penalized method for MRI biomarker discovery in PD. We 
demonstrated that it outperformed non-fused and fused L1 penalized 
methods and had comparable classification accuracy performance with 
the non-fused MCP penalized method for various classification models 
including SVM, PCA, and LDA. We also demonstrated the biomarker 
identification accuracy of the proposed method using a synthetic data
set. Furthermore, we compared the biomarker identification of the 
proposed method with the classical voxel-wise method using the PPMI 
dataset and found that the proposed method recovered >80 % of the 
large ROIs identified by the voxel-wise method, as well as some new 
ROIs. There may be great interest in the future for comparing the fused- 
MCP penalized method and other penalized methods together with deep 
learning regularization approaches for biomarker identification, such as 
deep neural networks using dropout (Srivastava et al., 2014). Further 
studies also are needed to validate the fused-MCP method in larger PD 
datasets and determine its applicability for biomarker discovery in other 
diseases. 
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