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Recovering low-rank structures via eigenvector perturbation anal-
ysis is a common problem in statistical machine learning, such as in
factor analysis, community detection, ranking, matrix completion,
among others. While a large variety of bounds are available for aver-
age errors between empirical and population statistics of eigenvectors,
few results are tight for entrywise analyses, which are critical for a
number of problems such as community detection.

This paper investigates entrywise behaviors of eigenvectors for
a large class of random matrices whose expectations are low-rank,
which helps settle the conjecture in Abbe et al. (2014b) that the spec-
tral algorithm achieves exact recovery in the stochastic block model
without any trimming or cleaning steps. The key is a first-order ap-
proximation of eigenvectors under the ℓ∞ norm:

uk ≈
Au∗

k

λ∗
k

,

where {uk} and {u∗
k} are eigenvectors of a random matrix A and its

expectation EA, respectively. The fact that the approximation is both
tight and linear in A facilitates sharp comparisons between uk and
u∗
k. In particular, it allows for comparing the signs of uk and u∗

k even if
‖uk−u∗

k‖∞ is large. The results are further extended to perturbations
of eigenspaces, yielding new ℓ∞-type bounds for synchronization (Z2-
spiked Wigner model) and noisy matrix completion.

1. Introduction. Many estimation problems in statistics involve low-
rank matrix estimators that are NP-hard to compute, and many of these
estimators are solutions to nonconvex programs. This is partly because of
the widespread use of maximum likelihood estimation (MLE) which, while
enjoying good statistical properties, often poses computational challenges
due to nonconvex or discrete constraints inherent in the problems.

∗The research was supported by NSF CAREER Award CCF-1552131, ARO grant
W911NF-16-1-0051, NSF CSOI CCF-0939370.

†The research was supported by NSF grants DMS-1662139 and DMS-1712591, NIH
grant R01-GM072611-11 and ONR grant N00014-19-1-2120.

MSC 2010 subject classifications: Primary 62H25; secondary 60B20, 62H12
Keywords and phrases: eigenvector perturbation, spectral analysis, synchronization,

community detection, matrix completion, low-rank structures, random matrices

1



2 E. ABBE ET AL.

Fortunately, computationally efficient algorithms using eigenvectors often
afford good performance. The eigenvectors either directly lead to final esti-
mates (Shi and Malik, 2000; Ng et al., 2002), or serve as warm starts followed
by further refinements (Keshavan et al., 2010a; Jain et al., 2013; Candès
et al., 2015). Such algorithms mostly rely on computation of leading eigen-
vectors and matrix-vector multiplications, which are easily implemented.

While various heuristics abound, theoretical understanding remains scarce
on the entrywise analysis, and on when refinements are needed or can be
avoided. In particular, it remains open in various cases to determine whether
a vanilla eigenvector-based method without preprocessing steps (e.g., trim-
ming of outliers) or without refinement steps (e.g., cleaning with local im-
provements) enjoys the same optimality results as the MLE (or SDP) does.
A crucial missing step is a sharp entrywise perturbation analysis of eigen-
vectors. This is party because the ℓ∞ distance between the eigenvectors of
a random matrix and their expected counterparts may not be the correct
quantity to look at; errors per entry can be asymmetrically distributed, as
we shall see in this paper.

This paper investigates entrywise behaviors of eigenvectors and more gen-
erally, eigenspaces, for random matrices with low expected rank using the
following approach. Let A be a random matrix, A∗ = EA, and E = A−A∗

be the ‘error’ of A. In many cases, A∗ is a symmetric matrix with low rank
determined by the structure of a statistical problem, such as low-rank with
blocks in community detection.

Consider for now the case of symmetric A, and let uk, resp. u
∗
k, be the

eigenvector corresponding to the k-th largest eigenvalue of A, resp. A∗.
Roughly speaking, if E is moderate, our first-order approximation reads

uk =
Auk
λk

≈ Au∗k
λ∗
k

= u∗k +
Eu∗k
λ∗
k

.

While uk is a nonlinear function of A (or equivalently E), the approximation
is linear in A, which greatly facilitates the analysis. Under certain conditions,
the maximum entrywise approximation error ‖uk −Au∗k/λ

∗
k‖∞ can be much

smaller than ‖u∗k‖∞, allowing us to study uk through Au∗k/λ
∗
k. To obtain such

results, a key part in our theory is to characterize concentration properties
of A and structural assumptions on its expectation A∗.

This perturbation analysis leads to new and sharp theoretical guaran-
tees. In particular, we find that for the exact recovery problem in stochastic
block model, the vanilla spectral algorithm (without trimming or cleaning)
achieves the information-theoretic limit, and it coincides with the MLE es-
timator whenever the latter succeeds. This settles in particular a conjecture
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left open in Abbe et al. (2014b, 2016). Therefore, MLE and SDP do not have
advantage over the spectral method in terms of exact recovery, if the model
is correct. SDP may be preferred in some applications for its robustness and
optimality certificates, but that is beyond the scope of this paper.

1.1. A sample problem. Let us consider a network model that has re-
ceived widespread interest in recent years: the stochastic block model (SBM).
Suppose that we have a graph with vertex set {1, 2, · · · , n}, and assume for
simplicity that n is even. There is an unknown index set J ∈ {1, 2, · · · , n}
with |J | = n/2 such that the vertex set is partitioned into two groups J
and Jc. Within groups, there is an edge between each pair of vertices with
probability p, and between groups, there is an edge with probability q. Let
x ∈ R

n be the group membership vector with xi = 1 if i ∈ J and xi = −1
otherwise. The goal is to recover x from the observed edges of the graph.

This random-graph-based model was first proposed for social relationship
networks (Holland et al., 1983), and many more realistic models have been
developed based on the SBM since then. Given its fundamental importance,
there are a plurality of papers addressing statistical properties and algorith-
mic efficiencies; see Abbe (2017) for a survey.

Under the regime p = a logn
n , q = b logn

n where a > b > 0 are constants,
Abbe et al. (2016) and Mossel et al. (2014) proved that exact recovery is
possible if and only if

√
a −

√
b >

√
2, and that the limit can be achieved

by efficient algorithms. They used two-round procedures (with a clean-up
phase) to achieve the threshold. Semidefinite relaxations are also known to
achieve the threshold (Abbe et al., 2016; Hajek et al., 2016; Agarwal et al.,
2015; Bandeira, 2015), as well as spectral methods with local refinements
(Abbe and Sandon, 2015; Yun and Proutiere, 2016; Gao et al., 2015). We
will discuss more in Sections 1.5 and 3.2.

While existing works tackle exact recovery rather successfully, some fun-
damental questions remain unsolved: how do the simple statistics—top
eigenvectors of the adjacency matrix—behave? Are they informative enough
to reveal the group structure under very challenging regimes?

To study these questions, we start with the eigenvectors of A∗ = EA. By
definition, Aij is a Bernoulli random variable, and P(Aij = 1) depends on
whenever i and j are from the same groups. The expectation EA must be a
block matrix of the following form:

EA =
log n

n

(

a1n
2
×n

2
b1n

2
×n

2

b1n
2
×n

2
a1n

2
×n

2

)

,

where 1m×m is the m×m all-one matrix. Here, for convenience, we represent
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Fig 1: The second eigenvector and its first-order approximation in SBM.
Left: The histogram of coordinates of

√
nu2 computed from a single re-

alization of adjacency matrix A, where n is 5000, a is 4.5 and b is 0.25.
Exact recovery is expected as coordinates form two well-separated clus-
ters. Right: boxplots showing three different distance/errors (up to sign)
over 100 realizations: (i)

√
n ‖u2 − u∗2‖∞, (ii)

√
n ‖Au∗2/λ∗

2 − u∗2‖∞, (iii)√
n ‖u2−Au∗2/λ

∗
2‖∞. Au∗2/λ

∗
2 is a good approximation of u2 under ℓ∞ norm

even though ‖u2 − u∗2‖∞ may be large.

EA as if J = {1, 2, · · · , n/2}. But in general J is unknown, and there is a
permutation of indices {1, · · · , n} in the matrix representation.

From the matrix representation it is clear that EA has rank 2, with two
nonzero eigenvalues λ∗

1 = a+b
2 log n and λ∗

2 = a−b
2 log n. Simple calculations

give the corresponding (normalized) eigenvectors: u∗1 = 1√
n
1n, and (u∗2)i =

1/
√
n if i ∈ J and (u∗2)i = −1/

√
n if i ∈ Jc. Since u∗2 perfectly aligns with

the group assignment vector x, we hope to show its counterpart u2, i.e., the
second eigenvector of A, also has desirable properties.

The first reassuring fact is that, the top eigenvalues preserve proper or-
dering: by Weyl’s inequality, the deviation of any eigenvalue λi (i ∈ [n])
from λ∗

i is bounded by ‖A−A∗‖2, which is O(
√
log n) with high probability;

see supplementary materials (Abbe et al., 2018). The Davis-Kahan sinΘ
theorem asserts that u1 and u2 are weakly consistent estimators for u∗1 and

u∗2 respectively, in the sense that |〈uk, u∗k〉|
P−→ 1 for k = 1, 2. However, this

is not helpful for understanding their entrywise behaviors in the uniform
sense, which is crucial for exact recovery. Nor can it explain the sharp phase
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transition phenomenon. This makes entrywise analysis both interesting and
challenging.

This problem motivates some simulations about the coordinates of top
eigenvectors of A. In Figure 1, we calculate the rescaled second eigenvector√
nu2 of one typical realization A, and make a histogram plot of its coor-

dinates. (Note the first eigenvector is aligned with the all-one vector 1n,
which is uninformative.) The parameters we choose are n = 5000, a = 4.5
and b = 0.25, for which exact recovery is possible with high probability. Vis-
ibly, the coordinates of

√
nu2 form two clusters around ±1 which, marked

by red dashed lines, are coordinates of
√
nu∗2. Intuitively, the signs of the

former should suffice to reveal the group structure.
To probe into the second eigenvector u2, we expand the perturbation

u2 − u∗2 as follows:

(1.1) u2 − u∗2 =

(

Au∗2
λ∗
2

− u∗2

)

+

(

u2 −
Au∗2
λ∗
2

)

.

The first term is exactly Eu∗2/λ
∗
2, which is linear in E and can be viewed

as the first-order perturbation. The second term is nonlinear in general,
representing the error of higher order. Figure 1 shows boxplots of the infin-
ity norm of rescaled perturbation errors over 100 realizations (see (i)-(iii)),
which illustrates that ‖u2−Au∗2/λ

∗
2‖∞ is much smaller than ‖u2−u∗2‖∞ and

‖Au∗2/λ∗
2 − u∗2‖∞. Indeed, we will see in Theorem 1.1 that

(1.2) ‖u2 −Au∗2/λ
∗
2‖∞ = oP

(

min
i

|(u∗2)i|
)

= oP
(

1/
√
n
)

.

The result holds ‘up to sign’, i.e. can choose an appropriate sign for the
eigenvector u2 as it is not uniquely defined; see Theorem 1.1 for its precise
meaning. Therefore, the entrywise behavior of u2 − u∗2 is captured by its
first-order term, which is much more amenable to analysis. This observation
will finally lead to sharp eigenvector results in Section 3.2.

We remark that it is also possible to study the top eigenvector (denoted as

ū) of the centered adjacency matrix Ā = A− d̂
n1n1

T
n , where d̂ =

∑

i,j Aij/n

is the average degree of all vertices. The top eigenvector of EĀ is exactly
u∗2, and its empirical counterpart ū is very similar to u2. In fact, the same
reasoning and analysis applies to ū, and one obtains similar plots as Figure 1
(omitted here).

1.2. First-order approximation of eigenvectors. Now we present a sim-
pler version of our result that justifies the intuitions above. Consider a gen-
eral symmetric random matrix (more precisely, this should be a sequence
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of random matrices with growing dimensions) A ∈ R
n×n with independent

entries on and above its diagonal. Suppose its expectation A∗ = EA ∈ R
n×n

is low-rank and has r nonzero eigenvalues. Let us assume that

(a) r = O(1), these r eigenvalues are positive and in descending order
(λ∗

1 ≥ λ∗
2 ≥ · · · ≥ λ∗

r > 0), and λ∗
1 ≍ λ∗

r .

Their corresponding eigenvectors are denoted by u∗1, · · · , u∗r ∈ R
n. In other

words, we have spectral decomposition A∗ =
∑r

j=1 λ
∗
ju

∗
j (u

∗
j )

T .
We fix k ∈ [r] and study the k-th eigenvector uk. Define the eigen-gap

(or spectral gap) as ∆∗ = min{λ∗
k−1 − λ∗

k, λ
∗
k − λ∗

k+1}, where we adopt the
convention λ∗

0 = +∞ and λ∗
n+1 = −∞. Assume that

(b) A concentrates under the spectral norm, i.e., there is a suitable
γ = γn = o(1) such that ‖A − A∗‖2 ≤ γ∆∗ holds with probability
1− o(1).

A direct yet important implication is that, the fluctuation of λk is much
smaller than the gap ∆∗, since Weyl’s inequality forces |λk−λ∗

k| ≤ ‖A−A∗‖2.
Thus, λk is well separated from other eigenvalues, including the ‘bulk’ n− r
eigenvalues whose magnitudes are at most ‖E‖2.

In addition, we assume that A concentrates in a row-wise sense:

(c) there exists a continuous non-decreasing function ϕ : R+ → R+

that possibly depends on n, such that ϕ(0) = 0, ϕ(x)/x is non-
increasing, and that for any m ∈ [n], w ∈ R

n, with probability
1− o(n−1),

|(A−A∗)m·w| ≤ ∆∗‖w‖∞ ϕ
( ‖w‖2√

n‖w‖∞

)

.

Here, the notation (A−A∗)m· means the m-th row vector of A−A∗.
For the Gaussian case where Aij ∼ N(A∗

ij , σ
2), we can simply choose

a linear function ϕ(x) = c(∆∗)−1σ
√
n log nx where c > 0 is some proper

constant. The condition then reads

P

(

|(A−A∗)m·w| ≤ cσ
√

log n‖w‖2
)

= 1− o(n−1),

which directly follows from Gaussian tail bound since (A − A∗)m·w ∼
N(0, σ2‖w‖22). The tail of (A − A∗)m·w is completely determined by ‖w‖2.
For Bernoulli variables, we will use Bernstein-type inequalities to study
(A − A∗)m·w, which will inevitably involve both ‖w‖2 and ‖w‖∞. Hence
the function ϕ(x) can no longer be linear. It turns out that ϕ(x) ∝
(1∨ log(1/x))−1, shown in Figure 2, is a suitable choice. More details can be
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x

ϕ(x)
Gaussian

Bernoulli

Fig 2: Typical choices of ϕ for Gaussian noise and Bernoulli noise.

found in Section 2.1 and the supplementary material Abbe et al. (2018). In
both cases we have ϕ(1) = O(1) under suitable signal-to-noise conditions.

Theorem 1.1 (Simpler form of Theorem 2.1). Let k ∈ [r] = {1, 2, · · · , r}
be fixed. Suppose that Assumptions (a), (b) and (c) hold, and ‖u∗k‖∞ ≤ γ.
Then, with probability 1− o(1),

(1.3) min
s∈{±1}

‖uk − sAu∗k/λ
∗
k‖∞ = O

(

(γ + ϕ(γ))‖u∗k‖∞
)

= o
(

‖u∗k‖∞
)

,

where the notations O(·) and o(·) hide dependencies on ϕ(1).

On the left-hand side, we are allowed to choose a suitable sign s as eigen-
vectors are not uniquely defined. The second bound is a consequence of the
first one, since γ = o(1) and limγ→0 ϕ(γ) = 0 by continuity. We hide de-
pendency on ϕ(1) in the above bound, since ϕ(1) is bounded by a constant
under suitable signal-to-noise ratio. More details can be found in Theorem
2.1. Therefore, the approximation error ‖uk − Au∗k/λ

∗
k‖∞ is much smaller

than ‖u∗k‖∞. This rigorously confirms the intuitions in Section 1.1.
Here are some remarks. (1) This theorem enables us to study uk via its lin-

earization Au∗k/λ
∗
k, since the approximation error is usually small order-wise.

(2) The conditions of the theorem are fairly mild. For SBM, the theorem is
applicable as long as we are in the logn

n regime (p = a logn
n and q = b lognn ),

regardless of the relative sizes of a and b.

1.3. MLE, spectral algorithm, and strong consistency. Once we obtain
the approximation result (1.3), the analysis of entrywise behavior of eigen-
vectors boils down to that of Au∗k/λ

∗
k. In the SBM example, suppose we

have (1.2) and with probability 1− o(1), sgn(Au∗2/λ
∗
2) = sgn(u∗2) and all the

entries of Au∗2/λ
∗
2 are bounded away from zero by an order of 1/

√
n. Then
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sgn(u2) = sgn(Au∗2/λ
∗
2) holds with probability 1 − o(1). Here sgn(·) de-

notes the entrywise sign function. The eigenvector-based estimator sgn(u2)
for block membership can be conveniently analyzed through Au∗2/λ

∗
2, whose

entries are just linear combinations of Bernoulli variables.
We remark on a subtlety of our result: our central analysis is a good

control of ‖uk −Au∗k/λ
∗
k‖∞, not necessarily of ‖uk − u∗k‖∞. For example, in

SBM, an inequality such as ‖u2 − u∗2‖∞ < ‖u∗2‖∞ is not true in general. In
Figure 1, the second boxplot shows that

√
n ‖u2 − u∗2‖∞ may well exceed

1 even if sgn(u2) = sgn(u∗2). This suggests that the distributions of the
coordinates of the two clusters, though well separated, have asymmetric
tails. Our Theorem 3.3 asserts that it is in vain to seek a good bound for
‖u2−u∗2‖∞. Instead, one should resort to the central quantity Au∗2/λ

∗
2. This

may partly explain why the conjecture has remained open for long.
The vector Au∗k/λ

∗
k also plays a pivotal role in the information-theoretic

lower bound for exact recovery in SBM, established in Abbe et al. (2016).
It is necessary to ensure (Au∗2/λ

∗
2)i > 0, ∀i ∈ J to hold with probability at

least 1/3. Otherwise, by symmetry and the union bound, with probability
at least 1/3 we can find some i ∈ J and i′ ∈ Jc with (Au∗2/λ

∗
2)i < 0 and

(Au∗2/λ
∗
2)i′ > 0. Elementary calculation shows that in that case, a swap of

group assignments of i and i′ increases the likelihood. Thus the MLE x̂MLE

fails to exactly recover J . With a uniform prior on group assignments, the
MLE is equivalent to the maximum a posteriori estimator, which is opti-
mal for exact recovery. Therefore, we must eliminate such local refinements
to make exact recovery possible. This forms the core argument in Abbe
et al. (2016). The analysis above suggests an interesting property about the
eigenvector-based estimator x̂eig(A) := sgn(u2):

Corollary 1.1. Suppose we are given a > b > 0 such that
√
a 6=√

b +
√
2, i.e., we exclude the regime where (a, b) is at the boundary of the

phase transition. Then, whenever the MLE is successful, in the sense that
x̂MLE = x (up to sign) with probability 1− o(1), we have

x̂eig(A) = x̂MLE(A) = x

with probability 1−o(1). Here x is the signed indicator of true communities.

This is because the success of x̂MLE hinges on sgn(Au∗2/λ
∗
2) = sgn(u∗2),

which also guarantees x̂eig to work. See Section 3.2 for details. Such phe-
nomenon appears in two applications considered in this paper.

1.4. An iterative perspective: power iterations. In the SBM, a key obser-
vation is that ‖u2 − Au∗2/λ

∗
2‖∞ is small. Here we give some intuitions from
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an iterative (or algorithmic) perspective. For simplicity, we will focus on the

top eigenvector ū of the centered adjacency matrix Ā = A− d̂
n1n1

T
n .

It is well known that the top eigenvector of a symmetric matrix can be
computed via the power method. For almost any possible initialization u0,
the iterations ut+1 = Āut/‖Āut‖2 converge to ū. Suppose we set u0 = u∗2,
the top eigenvector of EĀ. Although this is not a real algorithm due to the
initialization, it helps us gain theoretical insights.

The first iterate after initialization is u1 = Āu∗2/‖Āu∗2‖2. Standard con-
centration inequalities show that ‖Āu∗2‖2 ≈ λ̄∗, the top eigenvalue of EĀ.
Therefore, u1 is approximately Āu∗2/λ̄

∗, which coincides with our first-order
approximation. If ut converges to ū sufficiently fast, u1 can already be good
enough. This is similar to the rationale of one-step estimator (Bickel, 1975):
a single, carefully designed iterate may improve the precision of a good ini-
tialization to the desired level. Figure 3 helps illustrate this idea.

!"#$/&'∗

#$ = #*
∗

#+

#"

#*

Fig 3: Error decay in power iterations. The larger and smaller squares repre-
sent ℓ∞ balls centered at ū with radii ‖u0− ū‖∞ and ‖u1− ū‖∞, respectively.

The iterative perspective has been explored in recent works (Zhong, 2017;
Zhong and Boumal, 2018), where the latter studied both the eigenvector
estimator and the MLE of a nonconvex problem. We are not going to show
any proof with iterations or induction. Instead, we resort to the Davis-Kahan
sinΘ theorem, combined with a “leave-one-out” technique. Nevertheless,
we believe the iterative perspective is helpful to many other (nonconvex)
problems where a counterpart of Davis-Kahan theorem is absent.

1.5. Related works. The study of eigenvector perturbation dates back
to Rayleigh (Rayleigh, 1896) and Schrödinger (Schrödinger, 1926), in which
asymptotic expansions were obtained. Later, Davis and Kahan (1970) devel-
oped elegant nonasymptotic perturbation bounds for eigenspaces gauged by
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unitary-invariant norms. These were extended to general rectangular ma-
trices in Wedin (1972). See Stewart and Sun (1990) for a comprehensive
investigation. Recently, O’Rourke et al. (2018) showed significant improve-
ments of classical, deterministic bounds when the perturbation is random.
Norms that depend on the choice of basis, such as the ℓ∞ norm, are not
addressed in these works but are of great interest in statistics.

There are several recent papers related to the study of entrywise perturba-
tion. Fan et al. (2016) obtained ℓ∞ eigenvector perturbation bounds. Their
results were improved by Cape et al. (2017), in which the authors focused on
2 → ∞ norm bounds for eigenspaces. Eldridge et al. (2017) developed an ℓ∞
perturbation bound by expanding the eigenvector perturbation into infinite
series. These results are deterministic by nature, and thus yield suboptimal
bounds under challenging stochastic regimes with small signal-to-noise ratio.
By taking advantage of randomness, Koltchinskii et al. (2016) and Koltchin-
skii and Xia (2016) studied bilinear forms of singular vectors, leading to a
sharp bound on ℓ∞ error that was later extended to tensors (Xia and Zhou,
2017). Zhong (2017) characterized entrywise behaviors of eigenvectors and
explored their connections with Rayleigh-Schrödinger perturbation theory.
Zhong and Boumal (2018) worked on a related but slighted more complicated
problem named “phase synchronization”, and analyzed entrywise behaviors
of both the spectral estimator and MLE under a near-optimal regime. Chen
et al. (2017) used similar ideas to derive the optimality of both the spectral
estimator and MLE in top-K ranking problem.

There is a rich literature on the three applications in this paper. The
synchronization problems (Singer, 2011; Cucuringu et al., 2012) aim at es-
timating unknown signals (usually group elements) from their noisy pair-
wise measurements, and have attracted much attention in optimization and
statistics community recently (Bandeira et al., 2016; Javanmard et al., 2016).
They are very relevant models for cryo-EM, robotics (Singer, 2011; Rosen
et al., 2016) and more.

The stochastic block model has been studied extensively in the past
decades, with renewed activity in the recent years (Coja-Oghlan, 2006; De-
celle et al., 2011; Massoulié, 2014; Mossel et al., 2013; Krzakala et al., 2013;
Abbe et al., 2016; Guédon and Vershynin, 2016; Amini and Levina, 2014;
Abbe and Sandon, 2015; Montanari and Sen, 2016; Bordenave et al., 2015;
Abbe and Sandon, 2017; Banks et al., 2016), see Abbe (2017) for further ref-
erences, and in particular McSherry (2001), Vu (2014), Yun and Proutiere
(2014), Lelarge et al. (2015), Chin et al. (2015) and Yun and Proutiere
(2016), which are closest to this paper in terms of regimes and algorithms.
The matrix completion problems (Candès and Recht, 2009; Candès and
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Plan, 2010; Keshavan et al., 2010b) have seen great impacts in many areas,
and new insights and ideas keep flourishing in recent works (Ge et al., 2016;
Sun and Luo, 2016). These lists are only a small fraction of the literature
and are far from complete.

We organize our paper as follows: we present our main theorems of eigen-
vector and eigenspace perturbation in Section 2, which are rigorous state-
ments of the intuitions introduced in Section 1. In Section 3, we apply the
theorems to three problems: Z2-synchronization, SBM, and matrix comple-
tion from noisy entries. In Section 4, we present simulation results to verify
our theories. Finally, we conclude and discuss future works in Section 5.

1.6. Notations. We use the notation [n] to refer to {1, 2, · · · , n} for n ∈
Z+, and let R+ = [0,+∞). For any real numbers a, b ∈ R, we denote a∨ b =
max{a, b} and a ∧ b = min{a, b}. For nonnegative an and bn that depend
on n (e.g., problem size), we write an . bn to mean an ≤ Cbn for some
constant C > 0. The notation ≍ is similar, hiding two constants in upper

and lower bounds. For any vector x ∈ R
n, we define ‖x‖2 =

√

∑n
i=1 x

2
i

and ‖x‖∞ = maxi |xi|. For any matrix M ∈ R
n×d, Mi· refers to its i-th

row, which is a row vector, and M·i refers to its i-th column, which is a
column vector. The matrix spectral norm is ‖M‖2 = max‖x‖2=1 ‖Mx‖2, the
matrix max-norm is ‖M‖max = maxi,j |Mij |, and the matrix 2 → ∞ norm
is ‖M‖2→∞ = max‖x‖2=1 ‖Mx‖∞ = maxi ‖Mi·‖2. The set of n× r matrices
with orthonormal columns is denoted by On×r.

2. Main results.

2.1. Random matrix ensembles. Suppose A ∈ R
n×n is a symmetric ran-

dom matrix and A∗ = EA. Denote the eigenvalues of A by λ1 ≥ · · · ≥ λn,
and their associated eigenvectors by {uj}nj=1. Analogously for A∗, the eigen-
values and eigenvectors are λ∗

1 ≥ · · · ≥ λ∗
n and {u∗j}nj=1, respectively. We also

adopt the convention λ0 = λ∗
0 = +∞ and λn+1 = λ∗

n+1 = −∞. We allow
some eigenvalues to be identical. Thus, some eigenvectors may be defined
up to rotations.

Suppose r and s are two integers satisfying 1 ≤ r ≤ n and 0 ≤ s ≤ n− r.
Let U = (us+1, · · · , us+r) ∈ R

n×r, U∗ = (u∗s+1, · · · , u∗s+r) ∈ R
n×r and Λ∗ =

diag(λ∗
s+1, · · · , λ∗

s+r) ∈ R
r×r. We are interested in the eigenspace span(U).

To this end, we assume there is an eigen-gap ∆∗ seperating {λ∗
s+j}rj=1 from

0 and other eigenvalues (see Figure 4), i.e.,

(2.1) ∆∗ = (λ∗
s − λ∗

s+1) ∧ (λ∗
s+r − λ∗

s+r+1) ∧min
i∈[r]

|λ∗
s+i|.
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Compared with the usual eigen-gap (Davis and Kahan, 1970), our definition
also takes the distances between eigenvalues and 0 into consideration. When
A∗ is rank-deficient, 0 is itself an eigenvalue.

We define κ := maxi∈[r] |λ∗
s+i|/∆∗, which is always bounded from below

by 1. In our applications, κ is usually bounded from above by a constant,
i.e., ∆∗ is comparable to {λ∗

s+j}rj=1 in terms of magnitude.
The concentration property is characterized by a parameter γ ≥ 0, and a

function ϕ(x) : R+ → R+. Roughly speaking, γ−1 resembles the signal-to-
noise ratio, and γ typically vanishes as n tends to infinity. ϕ(x) is chosen
according to the distribution of A, and is typically bounded by a constant
for x ∈ [0, 1]. In particular, we take ϕ(x) ∝ x for Gaussian matrices and
ϕ(x) ∝ (1 ∨ log(1/x))−1 for Bernoulli matrices —see Figure 2. In addition,
we will also make a mild structural assumption: ‖A∗‖2→∞ ≤ γ∆∗. In many
applications involving low-rank structure, the eigenvalues of interest (and
thus ∆∗) typically scale with n, whereas ‖A∗‖2→∞ scales with

√
n.

Based on the quantities above, we make the following assumptions.

A1 (Incoherence) ‖A∗‖2→∞ ≤ γ∆∗.
A2 (Row- and column-wise independence) For any m ∈ [n], the

entries in the mth row and column of A are independent with others,
i.e. {Aij : i = m or j = m} are independent of {Aij : i 6= m, j 6= m}.

A3 (Spectral norm concentration) 32κmax{γ, ϕ(γ)} ≤ 1 and for some
δ0 ∈ (0, 1),

(2.2) P (‖A−A∗‖2 ≤ γ∆∗) ≥ 1− δ0.

A4 (Row concentration) Suppose ϕ(x) is continuous and non-
decreasing in R+ with ϕ(0) = 0, ϕ(x)/x is non-increasing in R+, and
δ1 ∈ (0, 1). For any m ∈ [n] and W ∈ R

n×r,
(2.3)

P

(

‖(A−A∗)m·W‖2 ≤ ∆∗‖W‖2→∞ ϕ
( ‖W‖F√

n‖W‖2→∞

)

)

≥ 1− δ1
n
.

Here are some remarks and intuitions. Assumption 1 requires that no row
of A∗ is dominant. To relate it to the usual concept of incoherence (Candès

λ∗
s+r+1 0 λ∗

s+r λ∗
s+2 λ∗

s+1 λ∗
s

∆∗

Fig 4: Eigen-gap ∆∗
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and Recht, 2009; Candès et al., 2011), we consider the case A∗ = U∗Λ∗(U∗)T

and let µ(U∗) = n
r maxi∈[n]

∑

k(U
∗
ik)

2 = n
r ‖U∗‖22→∞. Note that

‖U∗Λ∗(U∗)T ‖2→∞ ≤ ‖U∗‖2→∞‖Λ∗(U∗)T ‖2 = ‖U∗‖2→∞‖Λ∗‖2(2.4)

and κ = ‖Λ∗‖2/∆∗. Then Assumption 1 is satisfied as long as µ(U∗) ≤ nγ2

rκ2 ,
which is very mild.

Assumption 2 is a mild independence assumption, and it encompasses
common i.i.d. noise assumptions.

Assumption 3 requires the spectral norm of the noise matrix A − A∗

to be dominated by ∆∗, which can be interpreted as signal strength. In our
example of Z2 synchronization (see Section 3.1), we have ∆∗ = n, and A−A∗

have i.i.d. N(0, σ2) entries above the diagonal. Since ‖A − A∗‖2 . σ
√
n by

standard concentration results, we need to require σ = O(γ
√
n).

Assumption 4 is a generalization of the row concentration assumption in
Section 1.2, and the function ϕ is problem-dependent. Here we explain the
role of ϕ using a special case where r = 1 and A ∈ {0, 1}n×n has i.i.d.
Bernoulli entries with parameter p = pn on and above its diagonal. Then
∆∗ = np,

∑n
i=1A

∗
mi = np. If p is not too small, with high probability we

have
∑n

i=1Ami . np and thus

|(A−A∗)m·W | ≤ ‖W‖∞
n
∑

i=1

|(A−A∗)mi| . ‖W‖∞np = ∆∗‖W‖∞.

If many entries in W have magnitudes much less than ‖W‖∞, there should
be less fluctuation and better concentration. Indeed, Assumption 4 stipulates
a tighter bound by a factor of ϕ( ‖W‖2√

n‖W‖∞ ), where ‖W‖2√
n‖W‖∞ is typically much

smaller than 1 in this case. This delicate concentration bound turns out to
be crucial in the analysis of SBM, where A is a sparse binary matrix.

2.2. Entrywise perturbation of general eigenspaces. In this section, we
generalize Theorem 1.1 from individual eigenvectors to eigenspaces under
milder conditions that are characterized by additional parameters. Note that
neither U nor U∗ is uniquely defined, and they can only be determined up
to a rotation if the eigenvalues are identical. For this reason, our result has
to involve an r× r orthogonal matrix. Beyond asserting our result holds up
to a suitable rotation, we give an explicit form of such orthogonal matrix.

Let H = UTU∗ ∈ R
r×r, and its singular value decomposition be H =

Ū Σ̄V̄ T , where Ū , V̄ ∈ R
r×r are orthonormal matrices, and Σ̄ ∈ R

r×r is a
diagonal matrix. Define an orthonormal matrix sgn(H) ∈ R

r×r as

(2.5) sgn(H) := Ū V̄ T .
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This orthogonal matrix is called the matrix sign function (Gross, 2011). Now
we are able to extend the results in Section 1.2 to general eigenspaces.

Theorem 2.1. Under Assumptions A1–A4, with probability at least 1−
δ0 − 2δ1 we have

‖U‖2→∞ . (κ+ ϕ(1)) ‖U∗‖2→∞ + γ‖A∗‖2→∞/∆∗,

‖Usgn(H)−AU∗(Λ∗)−1‖2→∞ . κ(κ+ ϕ(1))(γ + ϕ(γ))‖U∗‖2→∞ + γ‖A∗‖2→∞/∆∗,

‖Usgn(H)− U∗‖2→∞ ≤ ‖Usgn(H)−AU∗(Λ∗)−1‖2→∞ + ϕ(1)‖U∗‖2→∞.

Here the notation . only hides absolute constants.

The third inequality is derived by simply writing Usgn(H) − U∗ as a
sum of the first-order error EU∗(Λ∗)−1 and higher-order error Usgn(H) −
AU∗(Λ∗)−1, and bounding EU∗(Λ∗)−1 by the row concentration Assumption
A4. It will be useful for the noisy matrix completion problem. It is worth
pointing out that Theorem 2.1 is applicable to any eigenvector of A that is
not necessarily the leading one. This is particularly powerful in SBM (Section
3.2) where we need to analyze the second eigenvector. In addition, we do not
need A∗ to have low rank, although the examples to be presented have such
structure. For low-rank A∗, estimation errors of all the eigenvectors can be
well controlled by the following corollary of Theorem 2.1.

Corollary 2.1. Let Assumptions A1–A4 hold, and suppose that A∗ =
U∗Λ∗(U∗)T . With probability at least 1− δ0 − 2δ1, we have

‖U‖2→∞ . (κ+ ϕ(1)) ‖U∗‖2→∞,

‖Usgn(H)−AU∗(Λ∗)−1‖2→∞ . κ(κ+ ϕ(1))(γ + ϕ(γ))‖U∗‖2→∞,

‖Usgn(H)− U∗‖2→∞ ≤ ‖Usgn(H)−AU∗(Λ∗)−1‖2→∞ + ϕ(1)‖U∗‖2→∞.

Here the notation . only hides absolute constants.

Corollary 2.1 directly follows from Theorem 2.1, inequality (2.4) and the
fact that κ ≥ 1. Below we use a simple example to illustrate the results above.
Let A∗ = λ∗u∗(u∗)T be a rank-one matrix with λ∗ > 0 and ‖u∗‖2 = 1. Set
r = 1 and s = 0. This structure implies ∆∗ = λ∗ and κ = 1. Suppose A has
independent entries on and above the diagonal. Such A is usually called a
spiked Wigner matrix in statistics and random matrix theory.

Let Assumptions A1-A4 hold. The first two inequalities in Corollary 2.1
are simplified as

‖u‖∞ . (1 + ϕ(1)) ‖u∗‖∞,(2.6)

‖u−Au∗/λ∗‖∞ . (γ + ϕ(γ))(1 + ϕ(1))‖u∗‖∞.(2.7)
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In many applications, ϕ(1) . 1 and γ = o(1) as n goes to infinity. Then (2.6)
controls the magnitude of the empirical eigenvector u by that of the true
eigenvector u∗ in the ℓ∞ sense. Furthermore, (2.7) has the same form as the
main result in Theorem 1.1, stating that Au∗/λ∗ is an ℓ∞ approximation of
u with error much smaller than ‖u∗‖∞. Therefore, it is possible to study u
via its linearization Au∗/λ∗, which usually makes analysis much easier.

The regularity conditions in Theorem 1.1 imply our Assumptions A1-A4.
In particular, the condition ‖u∗‖∞ ≤ γ there is equivalent to Assumption
A1. As a result, Theorem 1.1 with r = 1 is a special case of Corollary 2.1
and hence of Theorem 2.1. It is not hard to generalize to r = O(1).

3. Applications.

3.1. Z2-synchronization and spiked Wigner model. The problem of Z2-
synchronization is to recover n unknown labels ±1 from noisy pairwise
measurements. This is a prototype of more general SO(d)-synchronization
problems including phase synchronization and SO(3)-synchronization, in
which one wishes to estimate the phases of signals or rotations of cam-
eras/molecules, etc. Such problems arise in time synchronization of dis-
tributed networks (Giridhar and Kumar, 2006), calibration of cameras (Tron
and Vidal, 2009), and cryo-EM (Shkolnisky and Singer, 2012).

Consider an unknown signal x ∈ {±1}n. Suppose we have independent
measurements of the form Yij = xixj + σWij , where i < j, Wij ∼ N(0, 1)
and σ > 0. We can define Wii = 0 and Wij = Wji for simplicity, and write
our model into a matrix form as follows:

(3.1) Y = xxT + σW, x ∈ {±1}n.

This is sometimes called the Gaussian Z2-synchronization problem, in con-
trast to the one with Z2-noise, also known as the censored block model (Abbe
et al., 2014a). This problem can be further generalized: each entry xj is a
unit-modulus complex number eiθj , if the goal is to estimate unknown an-
gles from pairwise measurements; or, each entry xj is an orthogonal matrix
from SO(3), if the goal is to estimate unknown orientations of molecules,
cameras, etc. Here we focus on the simplest case xj ∈ {±1}.

Note that in (3.1), both Y and W are symmetric matrices in R
n×n, and

the data matrix Y has a noisy rank-one decomposition. This falls into the
spiked Wigner model. The quality of an estimator x̂ is usually gauged ei-
ther by its correlation with x, or by the proportion of labels xi it correctly
recovers. It has been shown that the information-theoretic threshold for a
nontrivial correlation is σ =

√
n (Javanmard et al., 2016; Deshpande et al.,
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2015; Lelarge and Miolane, 2016; Perry et al., 2016), and the threshold for

exact recovery (i.e., x̂ = ±x with probability tending to 1) is σ =
√

n
2 logn

(Bandeira et al., 2016).

When σ ≤
√

n
(2+ε) logn (ε > 0 is any constant), it was proved by Bandeira

et al. (2016) that semidefinite programming (SDP) finds the maximum like-
lihood estimator and achieves exact recovery. We are going to show that a
very simple method, both conceptually and computationally, also achieves
exact recovery. This method is outlined as follows:

1. Compute the leading eigenvector of Y , denoted by u;
2. Take the estimate x̂ = sgn(u).

Our next theorem asserts that the eigenvector-based method above suc-

ceeds in finding x consistently under σ ≤
√

n
(2+ε) logn . Thus, under any

regime where the MLE achieves exact recovery, our eigenvector estimator x̂
equals the MLE with high probability. This phenomenon also holds for the
stochastic block model.

Theorem 3.1. Suppose σ ≤
√

n
(2+ε) logn for some ε > 0. With probabil-

ity 1− o(1), the leading eigenvector of Y with unit ℓ2 norm satisfies

√
n min

i∈[n]
{sxiui} ≥ 1−

√

2

2 + ε
+

C√
log n

,

for a suitable s ∈ {±1}, where C > 0 is an absolute constant. As a conse-
quence, our eigenvector-based method achieves exact recovery.

Note that our approach does not utilize the structural constraints |xi| =
1, ∀ i ∈ [n]; whereas such constraints appear in the SDP formulation (Ban-
deira et al., 2016). A natural question is an analysis of both methods with an
increased noise level σ. A seminal work by Javanmard et al. (2016) comple-
ments our story: the authors showed via non-rigorous statistical mechanics
arguments that when σ is on the order of

√
n, the SDP-based approach

outperforms the eigenvector approach. Nevertheless, with a slightly larger
signal strength, there is no such advantage of the SDP approach.

When σ ≍ √
n, general results for spiked Wigner models (Baik et al.,

2005; Féral and Péché, 2007; Benaych-Georges and Nadakuditi, 2011) imply
that 1

n |uTx|2 → 1− σ2/n for σ/
√
n < 1− ε with any small constant ε > 0.

Deshpande et al. (2015) proved that non-trivial correlation with x cannot
be obtained by any estimator if σ/

√
n > 1 + ε.
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3.2. Stochastic Block Model. As is briefly discussed in Section 1, we focus
on the symmetric SBM with two equally-sized groups. (Though the second
eigenvector of A∗ depends on relative sizes of the groups, our analysis only
requires slight modification if groups have different sizes.) For simplicity, we
allow for self-loops (i.e. edges from vertices to themselves) in the random
graph, and it makes no much difference if they are excluded. In that case,
the expectation of the adjacency matrix changes by a negligible quantity
O(log n/n) under the spectral norm and moreover, Assumptions A1–A4 still
hold with the same parameters.

Definition 3.1. Let n be even, 0 ≤ q ≤ p ≤ 1, and J ⊆ [n] with
|J | = n/2. SBM(n, p, q, J) is the ensemble of n× n symmetric random ma-
trices A = (Aij)i,j∈[n] where {Aij}1≤i≤j≤n are independent Bernoulli random
variables, and

(3.2) P(Aij = 1) =

{

p, if i ∈ J, j ∈ J or i ∈ Jc, j ∈ Jc

q, otherwise
.

The community detection problem aims at finding the bi-partition (J, Jc)
given only one realization of A. Let zi = 1 if i ∈ J and zi = −1 otherwise. We
want to find an estimator ẑ for the unknown labels z ∈ {±1}n. Intuitively,
the task is more difficult when p is close to q, and when the magnitudes
of p, q are small. It is impossible, for instance, to produce any meaningful
estimator when p = q. The task is also impossible when p and q are as small
as o(n−2), since A is a zero matrix with high probability.

As is already discussed in Section 1, under the regime p = a logn
n , q = b logn

n
where a and b are constants independent of n, it is information theoretically
impossible to achieve exact recovery (the estimate ẑ equals z or −z with
probability tending to 1) when

√
a−

√
b <

√
2. In contrast, when

√
a−

√
b >√

2, the goal is efficiently achievable. Further, it is known that SDP succeeds
down to the threshold. Under the regime p = a

n , q = b
n , it is impossible to

obtain nontrivial correlation (i.e. the correlation between ẑ and z is at least
some positive constant ε, as a random guess gets roughly half the signs
correct and almost zero correlation with z) between any estimator ẑ and z
if (a − b)2 < 2(a + b), and when (a − b)2 > 2(a + b), nontrivial correlation
can efficiently be obtained (Massoulié, 2014; Mossel et al., 2013).

Here we focus on the regime where p = a logn
n , q = b lognn and a > b > 0 are

constants. Note that EA, or equivalently A∗, is a rank-2 matrix. Its nonzero
eigenvalues are λ∗

1 = (p + q)n/2 and λ∗
2 = (p − q)n/2, whose associated

eigenvectors are u∗1 =
1√
n
1n and u∗2 =

1√
n
1J − 1√

n
1Jc . As u∗2 is aligned with
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z and perfectly reveals the desired partition, the following vanilla spectral
method is a natural candidate:

1. Compute u2, the eigenvector of A corresponding to its second largest
eigenvalue λ2;

2. Set ẑ = sgn(u2).

It has been empirically observed and conjectured that as soon as the signal
strength

√
a−

√
b exceed the information threshold

√
2, the vanilla spectral

method achieves exact recovery (Abbe et al., 2014b). Moreover, in regimes
where exact recovery is impossible, Zhang and Zhou (2016) established the
following minimax result. It has not been clear whether the vanilla spectral
method achieves the minimax misclassification rate.

If we define the misclassification rate as

(3.3) r(ẑ, z) = min
s∈{±1}

n−1
n
∑

i=1

1{ẑi 6=szi},

then the results of Zhang and Zhou (2016) imply that

(3.4) inf
ẑ
supEr(ẑ, z) = exp

(

−(1 + o(1)) · (
√
a−

√
b)2

log n

2

)

,

where the supremum is taken over approximately equal-sized SBM with
2-blocks. Note that this parameter space is slightly different from our Def-
inition 3.1, but as explained before, we can modify our proofs accordingly
such that the same conclusions still hold. See the supplementary materials
(Abbe et al., 2018) for further explanation of (3.4).

Here we prove that the vanilla spectral method indeed succeeds in exact
recovery whenever it is information-theoretic possible, which resolves the
conjecture of (Abbe et al., 2014b); and if it is not, vanilla spectral method
achieves the optimal misclassification rate.

Theorem 3.2. (i) If
√
a −

√
b >

√
2, then there exists η = η(a, b) > 0

and s ∈ {±1} such that with probability 1− o(1),

√
n min

i∈[n]
szi(u2)i ≥ η.

As a consequence, our spectral method achieves exact recovery.
(ii) Let the misclassification rate r(ẑ, z) be defined in (3.3). If

√
a −

√
b ∈

(0,
√
2], then

Er(ẑ, z) ≤ n−(1+o(1))(
√
a−

√
b)2/2.

This upper bound matches the minimax lower bound.
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The first part implies that, under the regime where the MLE achieves
exact recovery, our eigenvector estimator is exactly the MLE with high
probability. This proves Corollary 1.1 in the introduction. Moreover, the
second part asserts that for more challenging regime where exact recovery is
impossible, the eigenvector estimator has the optimal misclassification rate.

Before further explaining our results, we give a brief review of previ-
ous endeavors and an analysis of difficulties. Various papers have investi-
gated this algorithm and its variants such as McSherry (2001), Coja-Oghlan
(2006), Rohe et al. (2011), Sussman et al. (2012), Vu (2014), Lelarge et al.
(2015), Yun and Proutiere (2014), Yun and Proutiere (2016), Lei and Ri-
naldo (2015), Gao et al. (2015), among others. However, it is not known if
the simple algorithm above achieves exact recovery down to the information-
theoretic threshold, nor the optimal misclassification rate studied in Zhang
and Zhou (2016) while below the threshold. An important reason for the
unsettlement of this question is that the entrywise behavior of u2 is not
fully understood. In particular, people have been focusing on the ℓ∞ error
‖u2 − u∗2‖∞, which may well exceed ‖u∗2‖∞ (see Theorem 3.3), suggesting
that the algorithm may potentially fail by rounding on the incorrect sign.
This is not necessarily the case—as errors could have larger magnitudes on
the ‘good side’ of the signal range—but ‖u2 − u∗2‖∞ cannot capture this.
To avoid suboptimal theoretical results, multi-round algorithms are popu-
lar choices in the literature (Coja-Oghlan, 2006; Vu, 2014), which typically
have a preprocessing step of trimming and/or a postprocessing step refin-
ing the initial solution. Yun and Proutiere (2014) and Yun and Proutiere
(2016) showed that such variants can achieve the exact recovery threshold.
We are going to prove that the vanilla spectral algorithm alone achieves the
threshold and the minimax lower-bound in one shot.

The key to proving Theorem 3.2 is the following first-order approximation
result for u2 under the ℓ∞ norm, which is a consequence of Theorem 2.1.

Corollary 3.1. If A ∼ SBM(n, a logn
n , b lognn , J), then with probability

1−O(n−3) we have

(3.5) min
s∈{±1}

‖u2 − sAu∗2/λ
∗
2‖∞ ≤ C√

n log log n
.

where C = C(a, b) is some constant depending only on a and b.

The above result holds for any constants a and b, and does not depend on
the gap

√
a−

√
b. This fact will be useful for analyzing the misclassification

rate. By Corollary 3.1, the ℓ∞ approximation error is negligible, and thus
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the analysis of vanilla spectral algorithm boils down to analyzing the entries
in Au∗2/λ

∗
2, which are just weighted sums of Bernoulli random variables.

As a by-product, we can show that entrywise analysis through ‖u2−u∗2‖∞
is not a good strategy. As is mentioned earlier, our sharp result for the
eigenvector estimator stems from careful analysis of the linearized version
Au∗2/λ

∗
2 of u2, and the approximation error ‖u2−Au∗2/λ

∗
2‖∞. This is superior

to direct analysis of the ℓ∞ perturbation ‖u2 − u∗2‖∞, as the next theorem
implies that ‖u2 − u∗2‖∞ > ‖u∗2‖∞ is possible even if sgn(u2) = sgn(u∗2).

Theorem 3.3 (Asymptotic lower bound for eigenvector perturbation).
Let J = [n/2] and A ∼ SBM(n, a logn

n , b lognn , J), where a > b > 0 are con-
stants and n → ∞. For any fixed η > 1 with η log η − η + 1 < 2/a, with
probability 1− o(1) we have

√
n‖u2 − u∗2‖∞ ≥ a(η − 1)

a− b
.

Now let us consider the case in Figure 1, where a = 4.5 and b = 0.25. On
the one hand, exact recovery is achievable since

√
a−

√
b > 1.62 >

√
2. On

the other hand, by taking η = 2 we get h(η) = 2 log 2 − 2 + 1 < 4/9 = 2/a

and a(η−1)
a−b > 1.05. Theorem 3.3 implies

lim
n→∞

P(‖u2 − u∗2‖∞ > 1.05/
√
n) = 1.

In words, the size of fluctuation is consistently larger than the signal
strength. As a result, by merely looking at ‖u2 − u∗2‖∞ we cannot expect
sharp analysis of the spectral method in exact recovery.

Finally, we point out that it is not straightforward to develop a simple
spectral method to achieve the information threshold for exact recovery in
SBM withK > 2 blocks. Spectral methods in this scenario (Rohe et al., 2011;
Lei and Rinaldo, 2015) typically start with r > 1 eigenvectors {vj}rj=1 ⊆ R

n

of some data matrix (e.g. the adjacency matrix or Laplacian matrix). Then,
the n rows of V = (v1, · · · , vr) ∈ R

n×r are treated as embeddings of the
n nodes into R

r, from which one infers block memberships using clustering
techniques. In our vanilla spectral method for 2 blocks, we only look at
a single eigenvector and return the blocks based on signs of coordinates.
This method always returns the same memberships (up to a global swap),
even though the eigenvector is identifiable only up to a sign. When K > 2
and r > 1, due to possible multiplicity of eigenvalues, the embeddings of n
nodes may be identifiable only up to an orthonormal transform in R

r. Such
ambiguity causes trouble for effective clustering, although we can still study
the embedding using Theorem 2.1. Due to space constraints, we put a brief
discussion in the supplementary material Abbe et al. (2018).
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3.3. Matrix completion from noisy entries. Matrix completion based on
partial observations has wide applications including collaborative filtering,
system identification, global positioning, remote sensing, etc., see Candès
and Plan (2010). A popular version is the “Netflix problem”, where one is
given a incomplete table of customer ratings and wants to predict the miss-
ing entries. This could be useful for targeted recommendation in the future.
Since it has been intensively studied in the past decade, our brief review be-
low is by no means exhaustive. Candès and Recht (2009), Candès and Tao
(2010), and Gross (2011) focused on exact recovery of low-rank matrices
based on noiseless observations. More realistic models with noisy observa-
tions were studied in Candès and Plan (2010), Keshavan et al. (2010b),
Koltchinskii et al. (2011), Jain et al. (2013) and Chatterjee (2015).

As an application of Theorem 2.1, we are going to study a model simi-
lar to the one in Chatterjee (2015) where both sampling scheme and noise
are random. It can be viewed as a statistical problem with missing values.
Suppose we have an unknown signal matrix M∗ ∈ R

n1×n2 . For each entry
of M∗, we have a noisy observation M∗

ij + εij with probability p, and have

no observation otherwise. Let Mobs ∈ R
n1×n2 record our observations, with

missing entries treated as zeros. We consider the rescaled partial observation
matrix M = Mobs/p for simplicity. It is easy to see that M is an unbiased
estimator for M∗, and hence a popular starting point for further analysis.
The definition of our model is formalized below.

Definition 3.2. Let M∗ ∈ R
n1×n2, p ∈ (0, 1] and σ ≥ 0. We de-

fine NMC(M∗, p, σ) to be the ensemble of n1 × n2 random matrices M =
(Mij)i∈[n1],j∈[n2] with Mij = (M∗

ij + εij)Iij/p, where {Iij , εij}i∈[n1],j∈[n2] are

jointly independent, P(Iij = 1) = p = 1− P(Iij = 0) and εij ∼ N(0, σ2).

Let r = rank(M∗) and M∗ = U∗Σ∗V ∗ be its singular value decomposition
(SVD), where U∗ ∈ On1×r, V

∗ ∈ On2×r, Σ
∗ = diag(σ∗

1, · · · , σ∗
r ) is diagonal,

and σ∗
1 ≥ · · · ≥ σ∗

r . We are interested in estimating U∗, V ∗, and M∗. The
rank r is assumed to be known, which is usually easily estimated otherwise,
see Keshavan and Oh (2009) for example. We work on a very simple spectral
algorithm that often serves as an initial estimate of M∗ in iterative methods.

1. Compute the r largest singular values σ1 ≥ · · · ≥ σr of M , and
their associated left and right singular vectors {uj}rj=1 and {vj}rj=1.
Define Σ = diag(σ1, · · · , σr), U = (u1, · · · , ur) ∈ On1×r and V =
(v1, · · · , vr) ∈ On2×r.

2. Return U , V and UΣV T as estimators for U∗, V ∗, and M∗, respec-
tively.
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Note that the matrices in Definition 3.2 are asymmetric in general, due
to the rectangular shape and independent sampling. Hence, Theorem 2.1
is not directly applicable. Nevertheless, it could be tailored to fit into our
framework by a “symmetric dilation” trick. See the supplementary materials
(Abbe et al., 2018) for details. Below we present our results.

Theorem 3.4. Let M ∼ NMC(M∗, p, σ), n = n1 + n2, κ = σ∗
1/σ

∗
r ,

H = 1
2(U

TU∗ + V TV ∗), and η = (‖U∗‖2→∞ ∨ ‖V ∗‖2→∞). There exist con-

stants C and C ′ such that the followings hold. Suppose p ≥ 6 logn
n and

κn(‖M∗‖max+σ)
σ∗
r

√

logn
np ≤ 1/C. With probability at least 1− C/n, we have

(‖U‖2→∞ ∨ ‖V ‖2→∞) ≤ C ′κη,

(‖Usgn(H)− U∗‖2→∞ ∨ ‖V sgn(H)− V ∗‖2→∞) ≤ C ′ηκ2
n(‖M∗‖max + σ)

σ∗
r

√

log n

np
,

‖UΣV T −M∗‖max ≤ C ′η2κ4(‖M∗‖max + σ)

√

n log n

p
.

To our best knowledge, the results for singular vectors are the first of
this type for the spectral algorithm. Our bound on ‖UΣV T −M∗‖max is a
by-product of that, and a similar result was derived by Jain and Netrapalli
(2015) using a different approach.

There are two reasons why entrywise type bounds are important. First,
in applications such as recommender systems, it is often desirable to have
uniform guarantees for all individuals. If we directly use existing ℓ2-type
inequalities to control entrywise errors, the resulting bounds can be highly
sub-optimal in high dimensions. Thus new results are needed. Second, in
algorithms based on non-convex optimization (Keshavan et al., 2010b; Sun
and Luo, 2016; Jain and Netrapalli, 2015), entrywise bounds are critical
for the analysis of initializations and iterations. After the first draft of this
paper came out, the entrywise bounds on singular subspaces were applied
by Ma et al. (2017) as a guarantee for spectral intialization. The relevance
of entrywise bounds goes well beyond matrix completion; see Section 1.5.

For the rest of this subsection, we will illustrate the results in Theorem 3.4
by comparing them with existing ones based on Frobenius norm.

Suppose p > c lognn for some large constant c > 0. By Theorems 1.1 and 1.3
of Keshavan et al. (2010b), an upper bound for the root-mean squared error
(RMSE) gives:

1

n
‖UΣV T −M∗‖F . (‖M∗‖max + σ)

√

r

np
.(3.6)
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This implies that the spectral algorithm is rate-optimal when σ & ‖M∗‖max,

as Candès and Plan (2010) established a lower bound 1
n‖M̂−M∗‖F & σ

√

r
np

for any estimator M̂ . On the other hand, our Theorem 3.4 asserts that

‖UΣV T −M∗‖max .κ,r,η (‖M∗‖max + σ)

√

log n

np
.

where .κ,r,η hides a factor O(κ, r, η
√

n/r) that is not large if certain matrix
incoherence structure is assumed; see Candès and Recht (2009) for example.
Note that our result recovers (3.6) up to a factor of

√
log n, since ‖X‖F ≤√

n1n2‖X‖max always holds for any X of size n1 × n2.
We also compare the estimation errors of singular vectors under the Frobe-

nius norm and the max-norm. On the one hand, the perturbation inequality
in Wedin (1972) and spectral norm concentration yield the following.

max{‖Usgn(H)− U∗‖F , ‖V sgn(H)− V ∗‖F } .
√
r‖M −M∗‖2/σ∗

r

.

√

rn/p(‖M∗‖max + σ)

σ∗
r

.
n‖M∗‖max

σ∗
r

(

1 +
σ

‖M∗‖max

)
√

r

np
.(3.7)

On the other hand, by our entry-wise bound in Theorem 3.4 we have

√
n max{‖Usgn(H)− U∗‖2→∞, ‖V sgn(H)− V ∗‖2→∞}

.κ,r,η
n‖M∗‖max

σ∗
r

(

1 +
σ

‖M∗‖max

)

√

r log n

np
.(3.8)

where, as before, .κ,r,η hides a factor O(κ, r, η
√

n/r) that is usually not
large. Therefore, we also recover (3.7) up to a factor of

√
log n, since ‖X‖F ≤√

nr ‖X‖max holds for any X of size n × r. Note that our goal is to derive
good max-norm bounds rather than improving Frobenius-norm bounds. The
comparisons above demonstrate that our bounds have the ‘correct’ order.
To a certain extent, our results better portrait the behavior of spectral
algorithm and provide more information than their Frobenius counterparts.

4. Numerical experiments.

4.1. Z2-synchronization. We present our numerical results for the
phase transition phenomenon of Z2-synchronization—see Figure 5. Fix
q1 = 5001/50 and q2 = 21/10. For each n in the geometric sequence
{2, 2q1, 2q21, · · · , 2q501 } (rounded to the nearest integers), and each σ in the
geometric sequence {q−32

2 , q−31
2 , · · · , q502 }, we compare our eigenvector-based
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estimator x̂ with the unknown signal x, and report the proportion of success
(namely x̂ = ±x) out of 100 independent runs in the heat map.

A theoretical curve σ =
√

n
2 logn is added onto the heat map. It is clear

that below the curve, the eigenvector approach almost always recovers the
signal perfectly; and above the curve, it fails to recover the signal.
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Fig 5: Phase transition of Z2-synchronization: the x-axis is the dimension n,
and the y-axis is σ. Lighter pixels refer to higher proportions of runs that x̂

recovers x. The red curve shows the theoretical boundary σ =
√

n
2 logn .

4.2. Stochastic Block Model. Now we present our simulation results for
exact recovery and misclassification rates of SBM. The phase transition phe-
nomenon of SBM is exhibited on the left of Figure 6. In this simulation, n
is fixed as 300, and parameters a (y-axis) and b (x-axis) vary from 0 to 30
and 0 to 10, with increments 0.3 and 0.1 respectively. We compare the la-
bels returned by our eigenvector-based method with the true cluster labels,
and report the the proportion of success (namely ẑ = ±z) out of 100 inde-
pendent runs. As before, lighter pixels represent higher chances of success.
Two theoretical curves

√
a−

√
b = ±

√
2 are also added onto the heat map.

Clearly, theoretical predictions match numerical results.
The right plot of Figure 6 shows misclassification rates of our eigenvector

approach with a fixed parameter b and a varying parameter a, where a is not
large enough to reach the exact recovery threshold. We fix b = 2, and increase
a from 2 to 8 by 0.2 for three different choices of n from {100, 500, 5000}.
Then we calculate the mean misclassification rates Er(ẑ, z) averaged over
100 independent runs, and plot logEr(ẑ, z)/ log n against varying b. We also
add a theoretical curve (with no markers), whose y-coordinates are −(

√
a−√

b)2/2; see Theorem 3.2 (ii). It is clear that with n tending to infinity, the
curves of mean misclassification rates move closer to the theoretical one.
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Fig 6: Vanilla spectral method for SBM. Left: phase transition of exact
recovery. The x-axis is b, the y-axis is a, and lighter pixels represent higher
chances of success. Two red curves

√
a −

√
b = ±

√
2 represent theoretical

boundaries for phase transtion, matched by numerical results. Right: mean
misclassification rates on the logarithmic scale with b = 2. The x-axis is
a, varying from 2 to 8, and the y-axis is logEr(ẑ, z)/ log n. No marker:
theoretical curve; circles: n = 5000; crosses: n = 500; squares: n = 100.

4.3. Matrix completion from noisy entries. Finally we come to exper-
iments of matrix completion from noisy entries. The performance of the
spectral algorithm in terms of root-mean squared error (RMSE) has already
been demonstrated in Keshavan et al. (2010b), among others. In this part,
we focus on the comparison between the maximum entrywise errors and
RMSEs, for both the singular vectors and the matrix itself. The settings are
mainly adopted from Candès and Plan (2010) and Keshavan et al. (2010b).
Each time we first create a rank-r matrix M∗ ∈ R

n×n using the product
MLM

T
R , where ML,MR ∈ R

n×r have i.i.d. N(0, 20/
√
n) entries. Then, each

entry of M∗ is picked with probability p and contaminated by random noise
drawn from N(0, σ2), independently of others. While increasing n from 500
to 5000 by 500, we choose p = 10 logn

n , fix r = 5 and σ = 1. All the data
presented in the plot are averaged over 100 independent experiments.

In support of our discussions in Section 3.3, Figure 7 shows that the
following two ratios

Rmat =
‖UΣV T −M∗‖max

η2
√
log n · ‖UΣV T −M∗‖F

,

Rvec =
max{‖Usgn(H)− U∗‖2→∞, ‖V sgn(H)− V ∗‖2→∞}

η
√
log n ·max{‖Usgn(H)− U∗‖F , ‖V sgn(H)− V ∗‖F }

,

approximately remain constant as n grows. Here the RMSEs n−1‖UΣV T −
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Fig 7: Rmat and Rvec in matrix completion from noisy entries. The x-axis is
n, varying from 500 to 5000 by 500, and the y-axis is the ratio. Crosses and
circles stand for Rmat and Rvec, respectively.

M∗‖F and n−1/2max{‖Usgn(H)− U∗‖F , ‖V sgn(H)− V ∗‖F } are scaled by
(
√
nη)2

√
log n and (

√
nη)

√
log n, respectively. Hence our analysis is sharp,

and the perturbations are obviously delocalized among the entries.

5. Discussions. We have developed first-order approximations for
eigenvectors and eigenspaces with small ℓ∞ errors under random perturba-
tions. These results lead to sharp guarantees for three statistical problems.

Several future directions deserve exploration. First, the main perturbation
theorems are currently stated only for symmetric matrices. We think it may
be possible to extend the current analysis to SVD of general rectangular
matrices, which has broader applications such as principal component anal-
ysis. Second, there are many other graph-related matrices beyond adjacency
matrices, including graph Laplacians and non-backtracking matrices, which
are important both in theory and in practice. Third, we believe our assump-
tion of row- and column-wise independence can be relaxed to block-wise
independence, which is relevant to cryo-EM and other problems.

Finally, in our examples, the spectral algorithm is strongly consistent if
and only if the MLE is, though the latter can be NP-hard to compute in
general. It would be interesting to see how general this phenomenon is, in
view of better understanding the statistical and computational tradeoffs.

SUPPLEMENTARY MATERIAL

Supplementary A: proofs
(link). We provide detailed proofs of all stated results.
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