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Abstract

Measuring conditional dependence is an important topic in econometrics with

broad applications including graphical models. Under a factor model setting, a new

conditional dependence measure based on projection is proposed. The correspond-

ing conditional independence test is developed with the asymptotic null distribution

unveiled where the number of factors could be high-dimensional. It is also shown

that the new test has control over the asymptotic type I error and can be calculated

efficiently. A generic method for building dependency graphs without Gaussian as-

sumption using the new test is elaborated. Numerical results and real data analysis

show the superiority of the new method.
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1 Introduction

Rapid development in technology continuously floods us with high-dimensional data nowa-

days. One interesting question we wish to answer is their conditional dependency struc-

ture. Mathematically, let z = (z(1), . . . , z(d)) be a d-dimensional random vector, which

represents our data. We would like to know whether z(i) ⊥⊥ z(j)|z \ {z(i), z(j)} for i 6= j ∈
{1, . . . , d} or if there are other factors f associated with z, then whether z(i) ⊥⊥ z(j)|f . For

visualization, a graph is often used to represent such a conditional dependence structure:

vertices represent observed variables and edges indicate conditional dependence. Produc-

ing such a graph can help us understand data and has been an important topic in fields

including economics, finance, signal processing, bioinformatics and network modeling

(Wainwright & Jordan, 2008).

Intrinsically, if we look at the nodes pair by pair, this is a testing problem. In general,

we can write our goal as testing whether x and y are independent given f , i.e.,

H0 : x ⊥⊥ y|f , (1)

where x, y and f are random vectors with possibly different dimensions. For such condi-

tional independence tests, there has been abundant literature, especially in econometrics.

Linton & Gozalo (1997) proposed two nonparametric tests based on a generalization of

the empirical distribution function; however, a complicated bootstrap procedure is needed

to calculate critical values of the test, which limits its applications. Su & White (2007,

2008, 2014) and Wang et al. (2015) proposed conditional independence tests based on

Hellinger distance, empirical likelihood, conditional moments and conditional characteris-

tic function, respectively. However, as many of the recently available datasets are of high-

dimension, the computation for these tests becomes prohibitive. Another related work is

Sen & Sen (2014), where the focus is on testing the independence between the error and

the predictor variables in the linear regression problem.

Our starting point is a relatively “general” model on {x,y, f}. In particular, suppose

{(xi,yi, fi, ǫi,x, ǫi,y), i = 1, . . . , n} are i.i.d. realizations of (x,y, f , ǫx, ǫy), which are gen-

erated from the following model:

x = Gx(f) + ǫx, y = Gy(f) + ǫy, (2)
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where f is the K-dimensional common factors, Gx and Gy are general mappings from

R
K to R

p and R
q, respectively. The observed data are {(xi,yi, fi), i = 1, . . . , n}. Here,

for simplicity and tractability, we assume independence between (ǫx, ǫy) and f . Such kind

of models shed light for another route to solve the issues, nonparametric regression. The

idea is intuitive: to test (1) is the same as testing ǫx ⊥⊥ ǫy under (2), which naturally leads

to a two-step procedure. Since {(ǫi,x, ǫi,y), i = 1, . . . , n} are not observed, in Step 1, we

estimate the residuals. In this regard, we assume the dimensions p and q to be fixed while

the number of factors K could diverge to infinity. Step 2, we apply an independence test on

the estimated residuals. These two steps constitute our new conditional independence test

and we will unveil the asymptotic properties for this new test statistic. Let’s briefly preview

the procedure in the following two paragraphs.

In Step 1, ideally, a fully nonparametric projection on f (e.g., local linear regression

(Fan, 1992)) would consistently recover the random errors asymptotically under certain

smoothness assumptions on Gx and Gy, when K is fixed. However, it becomes challenging

when K diverges due to the curse of dimensionality if no structural assumptions are made

on Gx and Gy. As a result, in this paper, we will study two cases where Gx and Gy are

linear functions (factor models) in Section 2.2 and where Gx and Gy are additive functions

in Section 2.5 when K diverges. Further relaxed models might be available for future work,

but we don’t focus on them in this paper.

To complete our proposal, after estimating the residuals in Step 1, we still need to

find a suitable measure of dependence between random variables/vectors in Step 2. In

this regard, many different measures of dependence have been proposed. Some of them

rely heavily on Gaussian assumptions, such as Pearson correlation, which measures linear

dependence and the uncorrelatedness is equivalent to independence only when the joint

distribution is Gaussian; or Wilks Lambda (Wilks, 1935), where normality is adopted to

calculate the likelihood ratio. To deal with non-linear dependence and non-Gaussian distri-

bution, statisticians have proposed rank-based correlation measures, including Spearman’s

ρ and Kendall’s τ , which are more robust than Pearson correlation against deviations from

normality. However, these correlation measures are usually only effective for monotonic

types of dependence. In addition, under the null hypothesis that two variables are inde-

pendent, no general statistical distribution of the coefficients associated with these mea-
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sures has been derived. Other related works include Hoeffding (1948), Blomqvist (1950),

Blum et al. (1961), and some methods described in Hollander et al. (2013) and Anderson

(1962). Taking these into consideration, distance covariance (Székely et al., 2007) was in-

troduced to address these deficiencies. The major benefits of distance covariance are: first,

zero distance covariance implies independence, and hence it is a true dependence measure.

Second, distance covariance can measure the dependence between any two vectors which

potentially are of different dimensions. Recently, Huo & Székely (2016) proposed a fast

computation method for distance covariance. Due to these advantages, we will focus on

distance covariance in this paper as our measure of dependence.

So far, we complete a rough description of the newly proposed conditional dependence

measure; and we are able to build conditional dependency graphs by conducting this test

edge by edge. We would like to make two remarks here to help readers connect the dots

between our work and some other existing related topics/works.

First, let us look at the connection to undirected graphical models. Undirected graphical

models (UGM) has been a popular topic in econometrics in the past decade. It studies the

“internal” conditional dependency structure of a multivariate random vector. To be more

explicit, again let z = (z(1), . . . , z(d)) be the d-dimensional random vector of interest. We

denote the undirected graph corresponding to z by (V,E), where vertices V correspond to

components of z and edges E = {eij, 1 ≤ i 6= j ≤ d} indicate whether node z(i) and z(j)

are conditionally independent given the remaining nodes. In particular, the edge eij is ab-

sent if and only if z(i) ⊥⊥ z(j)|z \ {z(i), z(j)}. Therefore, UGM is a nature application of our

measure if we take f = z\{z(i), z(j)} in our test. One intensively studied sub-field is GGM

(Gaussian graphical model) where z is assumed to follow a multivariate Gaussian distribu-

tion with mean µ and covariance matrix Σ. This extra assumption is desirable since then

the precision matrix Ω = (wij)d×d = Σ−1 captures exactly the conditional dependency

graph; that is, wij = 0 if and only if eij is absent (Lauritzen, 1996; Edwards, 2000). There-

fore, under the Gaussian assumption, this problem reduces to the estimation of precision

matrix, where a rich literature on model selection and parameter estimation can be found

in both low-dimensional and high-dimensional settings, including Dempster (1972), Drton

& Perlman (2004), Meinshausen & Bühlmann (2006), Friedman et al. (2008), Fan et al.

(2009), Cai et al. (2011), Liu (2013), Chen et al. (2014), Ren et al. (2015), Jankova & Van
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De Geer (2015) and Yu & Bien (2017). With simple derivations, it’s easy to check that

GGM fits into our framework with G being linear and ǫ having Gaussian distributions.

Therefore, with linear projection in Step 1 and distance covariance in Step 2, our proposed

conditional measure solves GGM. It’s worth noting that, indeed, in Step 2, choosing Pear-

son correlation will solve GGM as well; choosing distance covariance gives more flexibility

since we don’t assume normality on ǫ and potentially we can solve non-Gaussian UGMs.

Another interesting work is Voorman et al. (2013), where a semi-parametric method was

introduced for graph estimation.

Second, we examine the link to factor models. As explained in the last paragraph, UGM

is a case with f being internal factors, in other words, part of the interested vector z. An-

other scenario of our framework is the case when f are external, and this is closely related

to factor models. As an example, in the Fama-French three factors model, the excessive

return of each stock can be considered as one node in the graph we want to build and f

are the chosen three-factors. This example will be further elaborated in Section 5. There-

fore, the factors f are considered as external since they are not part of the individual stock

returns. Another interesting application is discussed in Stock & Watson (2002), where ex-

ternal factors are aggregated macroeconomic variables, and the nodes are disaggregated

macroeconomic variables.

With the above two remarks, we see our proposed test cover some of the existing top-

ics as by-products. We summarize the main contribution of this paper here. First, under

model (2), we propose a computationally efficient conditional independence test. Both the

response vectors and the common factors can be of different dimensions and the number

of the factors could grow to infinity with sample size. Second, we apply this test to build

conditional dependency graph (internal factors) and covariates-adjusted dependency graph

(external factors).

The rest of this paper is organized as follows. In Section 2, we present our new proce-

dure for testing conditional independence via projected distance covariance (P-DCov) and

describe how to construct conditional dependency graphs based on the proposed test. Sec-

tion 3 gives theoretical properties including the asymptotic distribution of the test statistic

under the null hypothesis as well as the type I error guarantee. Section 4 contains extensive

numerical studies and Section 5 demonstrates the performance of P-DCov via a financial
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data set. We conclude the paper with a short discussion in Section 6. Several technical

lemmas and all proofs are relegated to the appendix.

2 Methods

2.1 A brief review of distance covariance

First, we introduce some notations. For a random vector z, ‖z‖ and ‖z‖1 represent its

Euclidean norm and ℓ1 norm, respectively. A collection of n i.i.d. observations of z is

denoted as {z1, . . . , zn}, where zk = (z
(1)
k , . . . , z

(d)
k )T represents the k-th observation. For

any matrix M, ‖M‖F , ‖M‖ and ‖M‖max denote its Frobenius norm, operator norm and

max norm, respectively. ‖M‖a,b is the (a, b) norm defined as the ℓb norm of the vector

consisting of column-wise ℓa norm of M. Furthermore, a ∧ b represents min{a, b} and

a ∨ b represents max{a, b}.

As an important tool, distance covariance is briefly reviewed in this section with further

details available in Székely et al. (2007). We introduce several definitions as follows.

Definition 1. (w-weighted L2 norm) Let cd = π(d+1)/2

Γ((d+1)/2)
, for any positive integer d, where

Γ is the Gamma function. Then for function γ defined on R
p×R

q, the w-weighted L2 norm

of γ is defined by

‖γ(τ ,ρ)‖2w =

∫

Rp+q

|γ(τ ,ρ)|2w(τ ,ρ)dτdρ, where w(τ ,ρ) = (cpcq‖τ‖1+p‖ρ‖1+q)−1.

Definition 2. (Distance covariance) The distance covariance between random vectors x ∈
R

p and y ∈ R
q with finite first moments is the nonnegative number V(x,y) defined by

V2(x,y) = ‖gx,y(τ ,ρ)− gx(τ )gy(ρ)‖2w,

where gx, gy and gx,y represent the characteristic functions of x, y and the joint charac-

teristic function of x and y, respectively.

Suppose we observe random sample {(xk,yk) : k = 1, . . . , n} from the joint distribu-

tion of (x,y). We denote X = (x1,x2, . . . ,xn) and Y = (y1,y2, . . . ,yn).
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Definition 3. (Empirical distance covariance) The empirical distance covariance between

samples X and Y is the nonnegative random variable Vn(X,Y) defined by

V2
n(X,Y) = S1(X,Y) + S2(X,Y)− 2S3(X,Y),

where

S1(X,Y) =
1

n2

n∑

k,l=1

‖xk − xl‖‖yk − yl‖, S2(X,Y) =
1

n2

n∑

k,l=1

‖xk − xl‖
1

n2

n∑

k,l=1

‖yk − yl‖,

S3(X,Y) =
1

n3

n∑

k=1

n∑

l,m=1

‖xk − xl‖‖yk − ym‖.

With above definitions, Lemma 1 depicts the consistency of Vn(X,Y) as an estimator

of V(x,y). Lemma 2 shows the asymptotic distribution of Vn(X,Y) under the null hy-

pothesis that x and y are independent. Corollary 1 reveals properties of the test statistic

nV2
n/S2 proposed in Székely et al. (2007).

Lemma 1. (Theorem 2 in Székely et al. (2007)) Assume that E(‖x‖ + ‖y‖) < ∞, then

almost surely

lim
n→∞

Vn(X,Y) = V(x,y).

Lemma 2. (Theorem 5 in Székely et al. (2007)) Assume that x and y are independent, and

E(‖x‖+ ‖y‖) < ∞, then as n → ∞,

nV2
n(X,Y)

D→ ‖ζ(τ ,ρ)‖2w,

where
D→ represents convergence in distribution and ζ(·, ·) denotes a complex-valued cen-

tered Gaussian random process with covariance function

R(u,u0) = (gx(τ − τ 0)− gx(τ )gx(τ 0))(gy(ρ− ρ0)− gy(ρ)gy(ρ0)),

in which u = (τ ,ρ), u0 = (τ 0,ρ0).

Corollary 1. (Corollary 2 in Székely et al. (2007)) Assume that E(‖x‖+ ‖y‖) < ∞.

1. If x and y are independent, then as n → ∞, nV2
n(X,Y)/S2(X,Y)

D→ Q with Q
D
=

∑∞
j=1 λjZ

2
j , where Zj

i.i.d∼ N (0, 1) and {λj} are non-negative constants depending

on the distribution of (x,y); E(Q) = 1.

2. If x and y are dependent, then as n → ∞, nV2
n(X,Y)/S2(X,Y)

P→ ∞.
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2.2 Conditional independence test via projected distance covariance

(P-DCov)

Here, we consider the case where Gx and Gy are linear in (2), which leads to the following

factor model setup:

x = Bxf + ǫx, y = Byf + ǫy, (3)

where Bx and By are factor loading matrices of dimension p×K and q ×K respectively,

and f is the K-dimensional vector of common factors. Here, we assume p and q are fixed,

the number of common factors K could grow to infinity and the matrices Bx and By are

sparse to reflect that x and y only depend on several important factors. As a result, we will

impose regularization on the estimation of Bx and By. Now, we are in the position to pro-

pose a test for problem (1). We first provide an estimate for the idiosyncratic components

ǫx and ǫy, and then calculate distance covariance between the estimates. More generally,

we project x and y onto the space orthogonal to the linear space spanned by f and eval-

uate the dependency between the projected vectors. The conditional independence test is

summarized in the following steps.

Step 1: Estimate factor loading matrices Bx and By by the penalized least square (PLS)

estimators B̂x and B̂y defined as follows.

B̂x = argmin
B

1

2
‖X−BF‖2F +

∑

j,k

pλ1(|Bjk|), (4)

B̂y = argmin
B

1

2
‖Y −BF‖2F +

∑

j,k

pλ2(|Bjk|), (5)

where X = (x1,x2, . . . ,xn), Y = (y1,y2, . . . ,yn), F = (f1, f2, . . . , fn), pλ(·) is the

penalty function with penalty level λ.

Step 2: Estimate the error vectors ǫi,x and ǫi,y by

ǫ̂i,x = xi − B̂xfi = (Bx − B̂x)fi + ǫi,x,

ǫ̂i,y = yi − B̂yfi = (By − B̂y)fi + ǫi,y, i = 1, . . . , n.

Step 3: Define the estimated error matrices Êx = (ǫ̂1,x, . . . , ǫ̂n,x) and Êy = (ǫ̂1,y, . . . , ǫ̂n,y).

Calculate the empirical distance covariance between Êx and Êy as

V2
n(Êx, Êy) = S1(Êx, Êy) + S2(Êx, Êy)− 2S3(Êx, Êy).
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Step 4: Define the P-DCov test statistic as T (x,y, f) = nV2
n(Êx, Êy)/S2(Êx, Êy).

Step 5: With a predetermined significance level α, we reject the null hypothesis when

T (x,y, f) > (Φ−1(1− α/2))2.

Theoretical properties of the proposed conditional independence test will be studied in

Section 3. In the above method, we implicitly assume that the number of variables K is

large so that the penalized least-squares methods are used. When the number of variables

K is small, we can take λ1 = λ2 = 0 so that no penalization is imposed.

We would like to point out that after getting the estimated error matrices Êx and Êy, one

could apply other dependency measures including Hilbert Schmidt independence criterion

(Gretton et al., 2005) and Heller-Heller-Gorfine test (Heller et al., 2012).

2.3 Building graphs via conditional independence test

Now we explore a specific application of our conditional independence test to graphical

models. To identify the conditional independence relationship in a graphical model, i.e.,

z(i) ⊥⊥ z(j)|z \ {z(i), z(j)}, we assume

z
(i)
k = β⊤

1,ijfk + ǫ
(i)
k , z

(j)
k = β⊤

2,ijfk + ǫ
(j)
k , k = 1, . . . , n, (6)

where fk = (z
(−i,−j)
k )⊤ represents all coordinates of zk other than z

(i)
k and z

(j)
k , and β1,ij and

β2,ij are d − 2 dimensional regression coefficients. Under model (6), we decide whether

edge eij will be drawn through directly testing z(i) ⊥⊥ z(j)|L(z(−i,−j)), where L(f) is the

linear space spanned by f .

More specifically, for each node pair {(i, j) : 1 ≤ i < j ≤ d}, we define T (i,j) =

T (z(i), z(j), z(−i,−j)) using the same steps as in Section 2.2 as the test for the current null

hypothesis:

H0,ij : ǫ
(i) ⊥⊥ ǫ(j). (7)

We now summarize the testing results by a graph in which nodes represent variables in z

and the edge eij between node i and node j is drawn only when H0,ij is rejected at level α.

In (6), the factors are created internally via the observations on remaining nodes z \
{z(i), z(j)}. In financial applications, it is often desirable to build graphs when conditioning
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on external factors. In such cases, it is straightforward to change the factors in (6) to

external factors.

We will demonstrate the two different types of conditional dependency graphs via ex-

amples in Sections 4 and 5.

2.4 Graph estimation with FDR control

Through the graph building process described in Section 2.3, we can carry out d̄ = d(d −
1)/2 P-DCov tests simultaneously and we wish to control the false discovery rate (FDR) at

a pre-specified level 0 < α < 1. Let RF and R be the number of falsely rejected hypotheses

and the number of total rejections, respectively. The false discovery proportion (FDP) is

defined as RF/max{1, R} and the FDR is the expectation of FDP.

In the literature, various procedures have been proposed for conducting large-scale mul-

tiple hypothesis testing via FDR control. Liu (2013) proposed a procedure for estimating

large Gaussian graphical models with FDR control. Fan et al. (2018) proposed factor-

adjusted tests by estimating the latent factors that drive the dependency of these tests. In

this work, we will follow the most commonly used Benjamini and Hochberg (BH) proce-

dure developed in the seminal work of Benjamini & Hochberg (1995), where P-values of

all marginal tests are compared. More specifically, let P(1) ≤ P(2) ≤ · · · ≤ P(d̄) be the

ordered P-values of the d̄ hypotheses given in (7). Let s = max{0 ≤ i ≤ d̄ : P(i) ≤ αi/d̄},

and we reject the s hypotheses H0,ij with the smallest P-values. We will demonstrate the

performance of this strategy via the real data example in Section 5.

2.5 Extension to functional projection

In the P-DCov described in Section 2.2, we assume the conditional dependency of x and y

given factor f is expressed via a linear form of f . In other words, we are projecting x and

y onto the space orthogonal to L(f) and evaluate the dependence between the projected

vectors. Although this linear projection assumption makes the theoretical development

easier and delivers the main idea of this work, a natural extension is to consider a nonlinear

projection. In particular, we consider the following additive generalization (Stone, 1985)
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of the factor model setup:

x =
K∑

j=1

gx
j (fj) + ǫx,y =

K∑

j=1

g
y
j (fj) + ǫy, (8)

where {gx
j (·),gy

j (·), j = 1, . . . , K} are unknown vector-valued functions we would like to

estimate. In (8), we consider the additive space spanned by factor f . By this extension, we

could identify more general conditional dependency structures between x and y given f .

This is a special case of (2), but avoids the issue of curse of dimensionality.

In the high-dimensional setup where K is large, we can use a sparse additive model

(Ravikumar et al., 2009; Fan et al., 2011) to estimate the unknown functions. The condi-

tional independence test described in Section 2.2 could be modified by replacing the linear

regression with the (penalized) additive model regression. We will investigate the P-DCov

method coupled with the sparse additive model (Ravikumar et al., 2009) in numerical stud-

ies.

Remark 1. (8) is the additive generalization of (3) with homoscedastic noises, i.e., the

covariance matrix of ǫx and ǫy are constant across different samples. Following Rigby

& Stasinopoulos (1996) and Rigby & Stasinopoulos (2005), we can further extend (8) to

accommodate heteroscedastic noises. In particular, we consider the following model

x =
K∑

j=1

gx
j (fj) + Σx(f)ǫx, y =

K∑

j=1

g
y
j (fj) + Σy(f)ǫy, (9)

where ǫx and ǫy are the idiosyncratic errors, Σx(f) = diag{σx1(f), · · · , σxp(f)}, and

Σy(f) = diag{σy1(f), · · · , σyq(f)}. Adapting the model described in (1a), (1b) and (1c)

in Rigby & Stasinopoulos (1996), we assume the standard deviation functions are modeled

via transformed additive models:

g1[σxj
(f)] =

K∑

k=1

hx
kj(fk), g2[σyj(f)] =

K∑

k=1

hy
kj(fk), (10)

where g1 and g2 are link functions, hx
kj(fk) and hy

kj(fk) are linear or non-parametric func-

tions of fk corresponding to σxj
or σyj , respectively.

We can then use the algorithms developed in Rigby & Stasinopoulos (1996) and Rigby

& Stasinopoulos (2005) to get a new set of error estimates, in place of Steps 1 and 2 of our
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original P-DCov test. Subsequently, we can follow Steps 3 to 5 of the P-DCov test on the

estimated errors. This leads to a generalized P-DCov test with heteroskedastic errors. We

skip the details to keep the paper concise.

3 Theoretical Results

In this section, we derive the asymptotic properties of our conditional independence test.

First, we introduce several assumptions on ǫx, ǫy and f .

Condition 1. Eǫx = Eǫy = 0, E‖ǫx‖2 < ∞, E‖ǫy‖2 < ∞.

Condition 2. Let us assume that the densities of ‖ǫ1,x−ǫ2,x‖ and ‖ǫ1,y−ǫ2,y‖ are bounded

on [0, C0], for some positive constant C0. In other words, there exists a positive constant

M ,

max
t∈[0,C0]

h‖ǫi,x−ǫj,x‖(t) ≤ M, max
t∈[0,C0]

h‖ǫi,y−ǫj,y‖(t) ≤ M,

where hu(·) represents the probability density function for random variable u.

Remark 2. Conditions 1 and 2 impose mild moment and distributional assumptions on

random errors ǫx and ǫy. We use the following two simple examples to provide some

intuitions regarding Condition 2. Assume ǫi,x ∼ N (0, Ip), for i = 1, 2, we have ǫ1,x −
ǫ2,x ∼ N (0, 2Ip) and hence ‖ǫ1,x − ǫ2,x‖2 ∼ 2χ2(p). Therefore,

h‖ǫi,x−ǫj,x‖(t) =
1

2p−1Γ(p/2)
tp−1e−

t2

4 .

It is easy to observe that, with C0 = 1 and M = 1, Condition 2 is satisfied. Now instead

of an identity covariance matrix, let us consider the other extreme case with all coordinates

copies or negative copies of one variable (the case where all correlations equal 1 or -1).

Then ‖ǫ1,x − ǫ2,x‖2 ∼ 2p · χ2(1). Therefore,

h‖ǫi,x−ǫj,x‖(t) =
1√

p · Γ(1/2)e
− t2

4p .

Again, with C0 = 1 and M = 1
Γ(1/2)

, Condition 2 is satisfied.

To better understand when the proposed projection method works, we give the follow-

ing high-level assumptions, whose justifications are noted below.
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Condition 3. There exist constants C1 > 1 and γ > 0, such that for any C2 > 1, with

probability greater than 1− C−C2
1 , we have for any n,

‖(Bx − B̂x)F‖2,∞ ≤ C2an, ‖(By − B̂y)F‖2,∞ ≤ C2an,

where the sequence an = o{n−1/4 ∧ (n(1+γ) log n)−1/3}.

Condition 4. Let Bx,l denote the l-th row of Bx, and similarly we define B̂x,l, By,l and

B̂y,l. We assume for any fixed l,

‖Bx,l − B̂x,l‖1 = Op(en), ‖By,l − B̂y,l‖1 = Op(en),

where sequences en and an in Condition 3 satisfy anen = o( 1√
n logK

).

Remark 3. Conditions 3 and 4 are mild. They are imposed to ensure the quality of the

projection and guarantee the theoretical properties regarding our conditional indepen-

dence test. For example, one could directly call the results from penalized least squares

for high-dimensional regression (Belloni et al., 2011; Bühlmann & Van De Geer, 2011;

Hastie et al., 2015) and robust estimation (Belloni & Chernozhukov, 2011; Wang, 2013;

Fan et al., 2017). We now discuss two special examples as follows.

1. (K is fixed) In this fixed dimensional case, it is straightforward to verify that the

projection based on ordinary least squares satisfies the two conditions.

2. (Sparse Linear Projection) Let Bx = (bT
1 ,b

T
2 , . . . ,b

T
p )

T and B̂x = (b̂T
1 , b̂

T
2 , . . . , b̂

T
p )

T .

Note that the graphical model case corresponds to p = 1. We apply the popu-

lar L1-regularized least squares for each dimension of x regressing on the factor

F. Here, we further assume the true regression coefficient bj is sparse for each j

with Sj = {k : (bj)k 6= 0}, Ŝj = {k : (b̂j)k 6= 0} and |Sj| = sj . From Theo-

rem 11.1, Example 11.1 and Theorem 11.3 in Hastie et al. (2015), and since {fi}ni=1

are i.i.d., we have with probability going to 1, ‖b̂j − bj‖ ≤ C
√

sj logK

n
, Ŝj = Sj

and maxi ‖(fi)Sj
‖ ≤ sj log n. Then, we have with probability going to 1, for each

i = 1, . . . , n and j = 1, . . . , p,

‖(b̂j − bj)
T fi‖ = ‖(b̂j − bj)

T
Sj
(fi)Sj

‖ ≤ ‖(b̂j − bj)Sj
‖‖(fi)Sj

‖

≤ Csmax log n

√
smax logK

n
, (11)
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where smax = maxj sj . It is now easy to verify that Conditions 3 and 4 are satisfied

even under the ultra-high-dimensional case where logK = o(na), 0 < a < 1/3.

We would like to omit the details here for brevity about the specification of various

constants.

Theorem 1. Under Conditions 1 and 3,

V2
n(ǫ̂x, ǫ̂y)

P→ V2(ǫx, ǫy).

In particular, when ǫx and ǫy are independent, V2
n(ǫ̂x, ǫ̂y)

P→ 0.

Theorem 1 shows that the sample distance covariance between the estimated residual

vectors converges to the distance covariance between the population error vectors. It en-

ables us to use the distance covariance of the estimated residual vectors to construct the

conditional independence test as described in Section 2.2.

Theorem 2. Under Conditions 1-4, and the null hypothesis that ǫx ⊥⊥ ǫy (or equivalently

x ⊥⊥ y|f ),

nV2
n(ǫ̂x, ǫ̂y)

D→ ‖ζ‖2,

where ζ is a zero-mean Gaussian process defined analogously as in Lemma 2.

Theorem 2 provides the asymptotic distribution of the test statistic T (x,y, f) under the

null hypothesis, which is the basis of Theorem 3.

Corollary 2. Under the same conditions of Theorem 2,

nV2
n(ǫ̂x, ǫ̂y)/S2(ǫ̂x, ǫ̂y)

D→ Q, where Q
D
=

∞∑

j=1

λjZ
2
j ,

where Zj
i.i.d∼ N (0, 1) and {λj} are non-negative constants depending on the distribution

of (x,y); E(Q) = 1.

Theorem 3. Consider the test that rejects conditional independence when

nV2
n(ǫ̂x, ǫ̂y)

S2(ǫ̂x, ǫ̂y)
> (Φ−1(1− α/2))2, (12)

where Φ(·) is the cumulative distribution function of N (0, 1). Let αn(x,y, f) denote its

associated type I error. Then under Conditions 1-4, for all 0 < α ≤ 0.215,

14



(i) limn→∞ αn(x,y, f) ≤ α,

(ii) sup
ǫx⊥⊥ǫy

limn→∞ αn(x,y, f) = α.

Part (i) of Theorem 3 indicates the proposed test with critical region (12) has an asymp-

totic significance error at most α. Part (ii) of Theorem 3 implies that there exists a pair

(ǫx, ǫy) such that the pre-specified significant level α is achieved asymptotically. In other

words, the size of testing H0 : ǫx ⊥⊥ ǫy is α.

Remark 4. When the sample size n is small, the theoretical critical value in (12) could

sometimes be too conservative in practice (Székely et al., 2007). Therefore, we recommend

using random permutation to get a reference distribution for the test statistic T (x,y, f)

under H0. Random permutation is used to decouple ǫi,x and ǫi,y so that the resulting pair

(ǫπ(i),x, ǫi,y) follows the null model, where {π(1), . . . , π(n)} are a random permutation of

indices {1, . . . , n}. Here, we set the number of permutations R(n) = ⌊200 + 5000/n⌋ as

in Székely et al. (2007). Consequently, we can also estimate the P-value associated with

the conditional independence test based on the quantiles of the test statistics over R(n)

random permutations.

4 Monte Carlo Experiments

In this section, we investigate the performance of P-DCov with five simulation examples.

In Example 4.1, we consider a factor model and test the conditional independence between

two vectors x and y given their common factor f , via P-DCov. In Examples 4.2, we in-

vestigate the classical Gaussian graphical model. In Example 4.3, we consider the case of

general graphical model without the Gaussian assumption. In Example 4.4, we consider

the case of dependency graph with the contribution of external factors. In Example 4.5, we

consider a general graphical model with external factors.

Example 4.1. [High-dimensional factor model] Let p = 5, q = 10 and K = 1000. The

rows of Bx and rows of By are drawn independently from zK = (zT1 , z
T
2 )

T , where z1 is

a 3-dimensional vector with elements i.i.d. from Unif [2, 3] and z2 = 0K−3. {fi}ni=1 are

i.i.d. from N (0, IK). We generate n i.i.d. copies {ri}ni=1 from log-normal distribution

15



lnN (0,Σ) (heavy-tail) where Σ is an equal correlation matrix of size (p + q) × (p + q)

with Σjk = ρ when j 6= k and Σjj = 1. ǫi,x and ǫi,y are the centered version of the first

p coordinates and the last q coordinates of ri. Then, {xi}ni=1 and {yi}ni=1 are generated

according to xi = Bxfi + ǫi,x and yi = Byfi + ǫi,y correspondingly.

In Example 4.1, we consider a high-dimensional factor model with sparse structure.

Note that the errors are generated from a heavy tail distribution to demonstrate the proposed

test works beyond Gaussian errors. We assume each coordinate of x and y only depends on

the first three factors. We calculate T (x,y, f) in the P-DCov test, and T0(x,y, f) in which

we replace ǫ̂i,x and ǫ̂i,y by the true ǫi,x and ǫi,y as an oracle test to compare with. To get ref-

erence distributions of T (x,y, f) and T0(x,y, f), we follow the permutation procedure as

described in Section 3. In this example, we set the significance level α = 0.1. We vary the

sample size from 100 to 300 with increment of 20 and show the empirical power based on

2000 repetitions for both T (x,y, f) and T0(x,y, f) in Figure 1 for ρ ∈ {0.1, 0.2, 0.3, 0.4}.

In the implementation of penalized least squares in Step 1, we use R package glmnet with

the default tuning parameter selection method (10-fold cross-validation) and perform least

square on the selected variables to reduce estimation bias of these estimated parameters

(Belloni et al., 2013). It is worth mentioning that an alternative approach to reduce the

estimation bias is the de-biased lasso method (Zhang & Zhang, 2014; Van de Geer et al.,

2014). Here, we decided to use the least square post model selection approach due to its

simplicity and computational efficiency.

From Figure 1, it is clear that as the sample size or ρ increases, the empirical power

also increases in general. Also, comparing the panels (A) and (B) in Figure 1, we see

that when the sample size is small, the P-DCov test has smaller power than the oracle test,

however, the difference between them becomes negligible as the sample size increases.

This is consistent with our theory regarding the asymptotic distribution of the test statistics.

When ρ = 0, Table 1 reports the empirical type I error for both P-DCov as well as the oracle

version. It is clear that the type I error of P-DCov is under good control as the sample size

increases.

Example 4.2. [Gaussian graphical model] We consider a Gaussian graphical model with

precision matrix Ω = Σ−1, where Ω is a tridiagonal matrix of size d×d, and is associated
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Table 1: Type I error of Example 1

Test based on ǫ̂x and ǫ̂y

n 100 120 140 160 180 200 220 240 260 280 300

0.119 0.114 0.116 0.100 0.098 0.097 0.092 0.102 0.094 0.091 0.096

Test based on ǫx and ǫy

n 100 120 140 160 180 200 220 240 260 280 300

0.086 0.102 0.104 0.094 0.092 0.091 0.096 0.103 0.098 0.092 0.095

Figure 1: Power-sample size graph of Example 1
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with the autoregressive process of order one. We set d = 100 and the (i, j)-element in Σ to

be σi,j = exp(−|si − sj|), where 0 = s1 < s2 < · · · < sd. In addition,

si − si−1
i.i.d∼ Uniform (1, 3), i = 2, . . . , d.

In this example, we would like to compare the proposed P-DCov with the state-of-the-

art approaches for recovering Gaussian graphical models. In terms of recovering structure

Ω, we compare lasso.dcov (projection by lasso followed by distance covariance), sam.dcov

(projection by sparse additive model followed by distance covariance), lasso.pearson (pro-

jection by lasso followed by Pearson correlation), sam.pearson (projection by sparse addi-

tive model followed by Pearson correlation) with three popular estimators corresponding

to the lasso, adaptive lasso and scad penalized likelihoods (called graphical.lasso, graphi-
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Figure 2: ROC curves for Gaussian graphical models with AUCs in legends.
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cal.alasso and graphical.scad on the graph) for the precision matrix (Friedman et al., 2008;

Fan et al., 2009). Here, lasso.dcov and sam.dcov are two examples of our P-DCov methods.

We use R package SAM to fit the sparse additive model. To evaluate the performances, we

construct receiver operating characteristic (ROC) curves for each method with sample sizes

n = 100 and n = 300. The process of constructing the ROC curves involves conducting

the P-DCov test for each pair of nodes and record the corresponding P-values. In each of

the ROC curve, true positive rates (TPR) are plotted against false positive rates (FPR) at

various thresholds of those P-values (“TP” means the true entry of the precision matrix is

nonzero and estimated as nonzero; “FP” means the true entry of the precision matrix is

zero but estimated as nonzero). We follow the implementation in Fan et al. (2009) for the

three penalized likelihood estimators. The average results over 100 replications of different

methods are reported in Figure 2. The associated AUC (Area Under the Curve) for each

method is also displayed in the legend of the figure.

We observe that lasso.pearson and sam.pearson perform similarly to the penalized like-

lihood methods when n = 100. On the other hand, lasso.dcov and sam.dcov lead to slightly

smaller AUC value due to the use of the distance covariance, which is expected for the

Gaussian model. This shows that we do not pay a big price for using the more complicated

distance covariance and sparse additive model.
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Example 4.3. [A general graphical model] We consider a general graphical model with

a combination of multivariate t distribution and multivariate Gaussian distribution. The

dimension of x is d = 100. In detail, x = (xT
1 ,x

T
2 ,x

T
3 )

T where x1 follows a 20 dimensional

multivariate t distribution with degrees of freedom 5, location parameter 0 and identity

covariance matrix, x2 follows the same Gaussian graphical model as in Example 4.2 except

the dimension is now 10, and x3 ∼ N (0, I70). In addition, x1, x2, and x3 are mutually

independent.

To generate a multivariate t-distribution, we first generate a random vector w20 from the

standard multivariate Gaussian distribution and an independent random variable τ ∼ χ2(5)

and then set x1 = w/
√
τ . One important fact about the multivariate t distribution is that the

zero element in the precision matrix does not imply conditional independence like the case

of Gaussian graphical models (Finegold & Drton, 2009). Indeed, for x1, we actually have

the fact that x
(i)
1 and x

(j)
1 are dependent given x

(−i,−j)
1 for any pair 1 ≤ i 6= j ≤ 20. On the

contrary, the Gaussian likelihood based methods will falsely claim that all the components

of x1 are independent, because the corresponding elements in Ω are 0.

The average ROC curve results are rendered in Figure 3. As expected, by using the

new projection based distance covariance method for testing conditional independence,

lasso.dcov outperforms all the other methods in terms of AUC, with a more evident advan-

tage when n = 300. One interesting observation is that: in the region where FPR is very

low, the likelihood based methods actually outperform P-DCov methods. One possible

reason is that the likelihood based methods are more capable of capturing the conditional

dependency structure within x2 as it follows a Gaussian graphical model.

Example 4.4. [Dependency graph with external factors] We consider a dependency graph

with the contribution of external factors. In particular, we generate u ∼ N (0,Ω), where

Ω is the same tridiagonal matrix used in Example 4.2 except the dimension is now 30

and f ∼ N (0, I300), then the observation x = u + Qg(f) where Q30×300 is a sparse

coefficient matrix that dictates how each dimension of x depends on the factor g(f). In

particular, we let Q = [Q̃30×15,030×285] with the generation of Q̃ follows the setting in

Cai et al. (2013). For each element Q̃ij , we first generate a Bernoulli distribution with

success probability 0.2 to determine whether Q̃ij is 0 or not. If Q̃ij is not 0, we then
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Figure 3: ROC curves for a general graphical model with AUCs in legends.
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generate Q̃ij ∼ Uniform (0.5, 1). Here we consider two forms of g(·), namely g(f) = f

and g(f) = f2.

Now, we report results regarding the average ROC curves for lasso.pearson, lasso.dcov,

sam.pearson and sam.dcov. The results for both g(f) = f and g(f) = f2 are depicted in

Figure 4. Note that we are not building a conditional dependency graph among x, but a

dependency graph of x conditioning on the external factor f . There are some insightful

observations from the figure. First of all, by looking at the first case when g(f) = f , it

is clear that lasso.pearson is the best as it takes advantage of the sparse linear structure

paired with the Gaussian distribution of the residual. By using the distance covariance as

a dependency measure, or by using the sparse additive model as a projection method, it is

reassuring that we do not lose much efficiency. Second, for the case when g(f) = f2 and

n = 300, we can see a substantial advantage of the sparse additive model based methods as

they can capture this nonlinear contribution of the factors to the dependency structure of x.

Example 4.5. [A general graphical model with external factors] We consider a general

conditional dependency graph with the contribution of external factors by combining the

ingredients of Examples 4.3 and 4.4. In particular, we generate u = (xT
1 ,x

T
2 ) with x1 and

x2 generated from Example 4.3 and f ∼ N (0, I300), then set x = u +Qg(f) where Q is

the same as Example 4.4. We also consider g(f) = f and g(f) = f2.

20



Figure 4: ROC curves for factor based dependency graph with AUCs in legends.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

lasso.pearson−0.64

lasso.dcov−0.619

sam.pearson−0.579

sam.dcov−0.573

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

lasso.pearson−0.836

lasso.dcov−0.816

sam.pearson−0.766

sam.dcov−0.749

(A) n = 100, g(f) = f (B) n = 300, g(f) = f

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

lasso.pearson−0.59

lasso.dcov−0.59

sam.pearson−0.572

sam.dcov−0.577

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

lasso.pearson−0.612

lasso.dcov−0.591

sam.pearson−0.743

sam.dcov−0.739
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In this example, we would like to investigate the performance of a two-step projection

method. In particular, we first project x onto the space spanned by f and denote the residual

by û. Then we explore the conditional dependency structure of û(i) and û(j) given û(−i,−j)

by projecting them onto the space orthogonal to the space (linearly or additively) spanned

by û(−i,−j). Here, we compare the performances of methods using the external factor and

those that ignore them. The average ROC curves are rendered in Figure 5.

From Figure 5, we see that first of all, when g(f) = f , the methods using external

factors outperform their counterparts without using the information with the best method
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Figure 5: ROC curves for a general graphical model with external factors (AUCs in leg-

ends).
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(C) n = 100, g(f) = f2 (D) n = 300, g(f) = f2

being lasso.dcov. Second, when we have nonlinear factors, using the factors do not nec-

essarily help when we only consider linear projection. For example, the performances

of lasso.pearson and lasso.pearson.f in panel (c) illustrates this point. On the other hand,

by using sparse additive model based projection, we have a substantial gain over all the

remaining methods especially for n = 300.
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5 Real Data Analysis

We collect daily excess returns of 90 stocks among the S&P 100 index, which are available

between August 19, 2004 and August 19, 2005. We chose the starting date as Google’s

Initial Public Offering date, and consider one year of daily excess returns since then. In

particular, we consider the following Fama-French three factors model (Fama & French,

1993)

rit − rft = βi,MKT(MKTt − rft) + βi,SMBSMBt + βi,HMLHMLt + uit,

for i = 1, . . . , 90 and t = 1, . . . , 252. At time t, rit represents the return for stock i, rft

is the risk-free rate, and MKTt, SMBt and HMLt constitute market, size and value factors,

respectively.

5.1 Individual stocks

In the first experiment, we study the conditional dependency on all pairs of stocks, with

the conditioning set being the Fama-French three factors in Section 5.1.1. Then, we further

add the industry factor to the conditioning set in Section 5.1.2.

5.1.1 Fama-French three-factors effect

We perform P-DCov test with FDR control on all pairs of stocks and study the dependence

between stocks conditioning on the Fama-French three factors. Under significance level

α = 0.01, we found out that 15.46% of the pairs of stocks are conditionally dependent

given the three factors, which implies that the three factors may not be sufficient to explain

the dependencies among stocks. As a comparison, we also implemented the conditional

independence test with the distance covariance based test replaced by Pearson correlation

based test. It turns out the 9.34% of the pairs are significant under the same significance

level. This shows the P-DCov test is more powerful than the Pearson correlation test in

discovering significant pairs that are conditionally dependent.

We then investigate the top 5 pairs of stocks that correspond to the largest test statistic

values using the P-DCov test. They are (BHI, SLB), (CVX, XOM), (HAL, SLB), (COP,

CVX), and (BHI, HAL). Interestingly, all six stocks involved are closely related to the
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oil industry. This reveals the high level of dependence among oil industry stocks that

cannot be well explained by the Fama-French three factors model. In addition, we examine

the stock pairs that are conditionally dependent under the P-DCov test but not under the

Pearson correlation test. The two most significant pairs are (C, USB) and (MRK, PFE).

The first pair is in the financial industry (Citigroup and U.S. Bancorp) and the second pair

is pharmaceutical companies (Merck & Co. and Pfizer). This shows that by using the

proposed P-DCov, some interesting conditional dependency structures could be recovered.

This is consistent with the findings that the within-sector correlations are still present even

after adjusting for Fama-French factors and 10 industrial factors (Fan et al., 2016).

5.1.2 Industry factor effect

For the top 5 stock pairs with the largest test statistics after conditioning on the Fama-

French three factors in Section 5.1.1, we would like to evaluate how much of the conditional

dependency comes from the industry group effect. In particular, as these stocks all come

from the energy industry, we computed the corresponding test statistics with and without

further conditioning on the energy group (XLE), in addition to the Fama-French three fac-

tors. We summarized the results in Table 2, where columns “woXLE” and “wXLE” contain

values of the test statistic before and after further conditioning on XLE respectively for each

pair. From the table, we first see that after conditioning on XLE in additional to the Fama-

Table 2: The conditional independence test statistics before and after conditioning on the

energy group effect (XLE) for the 5 pairs of stocks.

Stock Pair woXLE wXLE

(BHI, SLB) 46.92 15.09

(CVX, XOM) 35.71 1.86

(HAL, SLB) 34.81 5.19

(COP, CVX) 34.12 1.00

(BHI, HAL) 33.67 6.41

French three factors, all five stock pairs become less dependent with much smaller test
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statistic values, which agrees with intuition since we remove the impact of industry factor

with the additional conditioning. A second observation is that, while the five pairs of stocks

are listed in decreasing order in terms of distance covariance before conditioning on the in-

dustry factor (in column “woXLE”), the order of these pairs changed after conditioning (in

column “wXLE”). This implies that the industry effects may play quite different roles for

these pairs of stocks, when we evaluate distance covariances. After carefully investigating

the five pairs, we found that CVX, XOM, and COP are oil companies which are directly

impacted by XLE, whereas BHI, SLB, and HAL are energy service companies. This may

explain that compared with (CVX, XOM) and (COP, CVX), (BHI, SLB), (HAL, SLB) and

(BHI, HAL) have a relatively larger test statistic after conditioning on the industry factor

XLE in additional to the Fama-French three factors. Some other possible issues that may

affect the conditional dependency include the liquidity of stocks (Haugen & Baker, 1996).

5.2 Stock groups by industry

One advantage of our proposed procedure is that P-DCov can investigate dependence be-

tween two multivariate vectors, not necessarily of the same dimension, conditioning on

external factors. As an illustration, beyond studying the relationship of stocks within in-

dustrial sectors as in Section 5.1.1, we explore dependency structures between industrial

sectors conditioning on the Fama-French three factors. In particular, we group the stocks

in S&P 100 into 32 industrial groups based on the “Sectoring by industry groups” infor-

mation provided on https://www.nasdaq.com. Each of the industrial group now

contains a few stocks, with a full list provided in Table 6 in Appendix. We perform P-

DCov test on all pairs of industrial groups conditioning the same Fama-French three fac-

tors in Section 5.1.1. Table 3 presents the pairs of industrial groups (containing more than 2

stocks) which attain the smallest P-value of 1e-6, and for readers’ convenience, we list the

stocks corresponding to each selected groups in Table 4. A few interesting findings are the

following. Industry ‘Conglomerates’ (containing stocks of General Electric, Honeywell,

3M and United Technologies Corporation), is conditionally dependent of both ‘Aerospace’

(containing stocks of Boeing, General Dynamics and Raytheon) and ‘Transportation’ (con-

taining stocks of FedEx, Norfolk Southern and UPS-United Parcel Service). A plausible
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Table 3: Pairs of stock groups with the smallest P-value 1e-6.

Conglomerates Aerospace

Large Cap Pharma Medical Products

Soap and Cleaning Products Large Cap Pharma

Conglomerates Transportation

Banks Finance

Banks Medical Products

Conglomerates Banks

Banks Utility

Soap and Cleaning Products Banks

Wireless National Banks

explanation is that the companies in sector ‘Conglomerates’ may produce supplies such as

components/gadgets for sector ‘Aerospace’ and ‘Transportation’ and therefore the returns

of these industrial sectors might be dependent. Similarly, ‘Large Cap Pharma’ (containing

stocks of Bristol-Myers Squibb, Johnson & Johnson, Merck & Co and Pfizer) is condi-

tionally dependent of ‘Medical Products’ (containing stocks of Abbott Laboratories, Bax-

ter International and Medtronic) and ‘Soap and Cleaning Products’ (containing stocks of

Colgate-Palmolive and Procter & Gamble). The first relationship can be explained as Phar-

maceutical versus Health care and the second is due to the fact that companies in ‘Soap

and Cleaning Products’ are big suppliers of the Pharmaceutical companies in terms of their

commonly used commodities. Lastly, based on the industrial division provided by Nasdaq,

sector ‘Finance’ contains mainly investment banks while sector ‘Banks’ contains the usual

regional and commercial banks. It is reasonable to believe these two sectors are closely

dependent. The rest of the pairs are detected as significant although we cannot provide an

obvious explanation. Nevertheless, since the Fama-French three factors are conditioned

out, the discovered conditional dependencies can be subtle. We will leave them to experts

for further investigation.

After looking at the interesting pairs corresponding to the smallest P-values, we apply

FDR control with α = 0.01 and selected 27 important pairs with results presented in Tables
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Table 4: The stocks corresponding to each selected industry.

Banks BAC C JPM RF USB WFC

Large Cap Pharma BMY JNJ MRK PFE

Soap and Cleaning Products CL PG

Conglomerates GE HON MMM UTX

Wireless National S T VZ

Medical Products ABT BAX MDT

Utility AEP AES ETR EXC SO

Finance AXP COF GS MS

Aerospace BA GD RTN

Transportation FDX NSC UPS

5 and 6. Similar messages can be discovered and we leave out the detailed discussions due

to the large number of pairs.

6 Discussion

In this work, we proposed a general framework for testing conditional independence via

projection and showed a new way to create dependency graphs. A few future directions

worth exploration. Firstly, the current theoretical results assume that contribution of fac-

tors is sparse linear. How to extend the theory to the case of sparse additive model projec-

tion would be an interesting future work. The second potential direction is to extend the

methodology and theory to the case where the dimensions of x and y grow with n.

Furthermore, the proposed methodology could be generalised to test the conditional in-

dependency of multiple random vectors {X1, · · · , XN} given a common factor f by taking

advantage of a recent result by Böttcher et al. (2019), which developed a new dependency

measure for multiple random vectors. A preliminary description of the extension is as

follows.

1. Estimate the errors {ǫXj
, j = 1, · · · , N} by the projection methods described in the
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current paper. Denote the corresponding estimates as {ǫ̂Xj
, j = 1, · · · , N}.

2. With a predetermined significance level α, we reject the null hypothesis if the nor-

malized total multivariance (see Test B in Section 4.5 of Böttcher et al. (2019) for

details) satisfies

N · NM̄2
p(ǫ̂X1 , · · · , ǫ̂XN

) ≥ χ2
1−α(1),

where
NM̄2

p(·) is the normalized total multivariance function specified in definition

4.17 in Böttcher et al. (2019).

The detailed impact of the estimated error on the asymptotic distribution of the test statistic

is worth further investigation.

An R package pgraph for implementing the proposed methodology is available on

CRAN.

Appendix

Lemma 3. Under Condition 3, we have maxi,j ‖(Bx − B̂x)(fi − fj)‖ = Op(an) and

Emaxi,j ‖(Bx − B̂x)(fi − fj)‖ = O(an).

Proof. From Condition 3, it is obvious that maxi,j ‖(Bx − B̂x)(fi − fj)‖ = Op(an). Let

Un = maxi,j ‖(Bx − B̂x)(fi − fj)‖ and Ũn = Un/an. Then, we have

E(Ũn) =

∫ ∞

0

P(Ũn > t)dt

=

∫ 1

0

P(Ũn > t)dt+

∫ ∞

1

P(Ũn > t)dt

≤ 1 +

∫ ∞

1

C−t
1 dt < ∞.

As a result, the lemma is proved.

For the remaining proofs, we apply Taylor expansion to ‖ǫ̂i,x − ǫ̂j,x‖ at ǫi,x − ǫj,x and

get

‖ǫ̂i,x − ǫ̂j,x‖ = ‖ǫi,x − ǫj,x‖+
c⊤i,j,x

‖ci,j,x‖
(Bx − B̂x)(fi − fj) = ‖ǫi,x − ǫj,x‖+Di,j,x,

‖ǫ̂i,y − ǫ̂j,y‖ = ‖ǫi,y − ǫj,y‖+
c⊤i,j,y

‖ci,j,y‖
(By − B̂y)(fi − fj) = ‖ǫi,y − ǫj,y‖+Di,j,y, (13)
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where ci,j,x = λi,j,x(ǫ̂i,x − ǫ̂j,x) + (1 − λi,j,x)(ǫi,x − ǫj,x) and ci,j,y = λi,j,y(ǫ̂i,y − ǫ̂j,y) +

(1− λi,j,y)(ǫi,y − ǫj,y), for λi,j,x ∈ [0, 1] and λi,j,y ∈ [0, 1].

of Theorem 1. Using the Taylor expansion in (13), we have the following decomposition

V2
n(ǫ̂x, ǫ̂y)− V2

n(ǫx, ǫy) = T1 + T2 + T3,

where

T1 =
1

n2

n∑

i,j=1

Di,j,x‖ǫi,y − ǫj,y‖+
1

n2

n∑

i,j=1

Di,j,x

1

n2

n∑

k,l=1

‖ǫk,y − ǫl,y‖ −
2

n3

n∑

i=1

n∑

j,k=1

Di,j,x‖ǫi,y − ǫk,y‖,

(14)

T2 =
1

n2

n∑

i,j=1

Di,j,y‖ǫi,x − ǫj,x‖+
1

n2

n∑

i,j=1

Di,j,y

1

n2

n∑

k,l=1

‖ǫk,x − ǫl,x‖ −
2

n3

n∑

i=1

n∑

j,k=1

Di,j,y‖ǫi,x − ǫk,x‖,

(15)

T3 =
1

n2

n∑

i,j=1

Di,j,xDi,j,y +
1

n2

n∑

i,j=1

Di,j,x

1

n2

n∑

i,j=1

Di,j,y −
2

n3

n∑

i=1

n∑

j,k=1

Di,j,xDi,k,y. (16)

By Condition 3, we have maxi,j |Di,j,x| ≤ 2‖(Bx − B̂x)F‖2,∞ ≤ Op(an). Therefore,

|T1| = Op(an)

(
4

n2

n∑

i,j=1

‖ǫi,y − ǫj,y‖
)
,

|T2| = Op(an)

(
4

n2

n∑

i,j=1

‖ǫi,x − ǫj,x‖
)
,

|T3| = Op(a
2
n).

Another fact we easily observe is that: n−2
∑n

i,j=1 ‖ǫi,x−ǫj,x‖ = Op(1), since E‖ǫi,x−
ǫj,x‖ is uniformly bounded over all (i, j) pairs and so is E(n−2

∑n
i,j=1 ‖ǫi,x − ǫj,x‖).

As a result, we know V2
n(ǫ̂x, ǫ̂y)−V2

n(ǫx, ǫy)
P→ 0. This combined with Lemma 1 leads

to

V2
n(ǫ̂x, ǫ̂y)

P→ V2(ǫx, ǫy).

Remark: The result of Theorem 1 cannot be implied from that of Theorem 2, since

independence between ǫx and ǫy is not assumed.
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Lemma 4. For the ci,j,x and ci,j,y defined in (13), we have the following approximation

error bound on the normalized version.

∥∥∥∥
ci,j,x

‖ci,j,x‖
− ǫi,x − ǫj,x

‖ǫi,x − ǫj,x‖

∥∥∥∥ ≤ 2

‖ǫi,x − ǫj,x‖
max
i,j

‖(Bx − B̂x)(fi − fj)‖, (17)

∥∥∥∥
ci,j,y

‖ci,j,y‖
− ǫi,y − ǫj,y

‖ǫi,y − ǫj,y‖

∥∥∥∥ ≤ 2

‖ǫi,y − ǫj,y‖
max
i,j

‖(By − B̂y)(fi − fj)‖. (18)

Proof. It suffices to show (17). First, we will show

∥∥∥∥
ci,j,x

‖ci,j,x‖
− ǫi,x − ǫj,x

‖ǫi,x − ǫj,x‖

∥∥∥∥ ≤
∥∥∥∥

ǫ̂i,x − ǫ̂j,x

‖ǫ̂i,x − ǫ̂j,x‖
− ǫi,x − ǫj,x

‖ǫi,x − ǫj,x‖

∥∥∥∥ . (19)

Denote by α1 and α2 the angle between ci,j,x and ǫi,x−ǫj,x, and the angle between ǫ̂i,x−ǫ̂j,x

and ǫi,x − ǫj,x, respectively. It is easy to see that 0 ≤ α1 ≤ α2 ≤ π, and hence cosα1 ≥
cosα2. By cosine formula,

∥∥∥∥
ci,j,x

‖ci,j,x‖
− ǫi,x − ǫj,x

‖ǫi,x − ǫj,x‖

∥∥∥∥
2

= 2− 2 cosα1, and

∥∥∥∥
ǫ̂i,x − ǫ̂j,x

‖ǫ̂i,x − ǫ̂j,x‖
− ǫi,x − ǫj,x

‖ǫi,x − ǫj,x‖

∥∥∥∥
2

= 2− 2 cosα2.

Therefore, (19) is proved and it remains to show that

∥∥∥∥
ǫ̂i,x − ǫ̂j,x

‖ǫ̂i,x − ǫ̂j,x‖
− ǫi,x − ǫj,x

‖ǫi,x − ǫj,x‖

∥∥∥∥ ≤ 2

‖ǫi,x − ǫj,x‖
max

i,j∈{1,...,n}
‖(Bx − B̂x)(fi − fj)‖. (20)

Left hand side of (20) can be rewritten as

∥∥∥∥
ǫ̂i,x − ǫ̂j,x

‖ǫ̂i,x − ǫ̂j,x‖
− ǫi,x − ǫj,x

‖ǫi,x − ǫj,x‖

∥∥∥∥

=

∥∥∥∥
[(ǫ̂i,x − ǫ̂j,x)− (ǫi,x − ǫj,x)]‖ǫ̂i,x − ǫ̂j,x‖ − (‖ǫ̂i,x − ǫ̂j,x‖ − ‖ǫi,x − ǫj,x‖)(ǫ̂i,x − ǫ̂j,x)

‖ǫ̂i,x − ǫ̂j,x‖‖ǫi,x − ǫj,x‖

∥∥∥∥

≤ 1

‖ǫi,x − ǫj,x‖
(‖(ǫ̂i,x − ǫ̂j,x)− (ǫi,x − ǫj,x)‖+ |‖ǫ̂i,x − ǫ̂j,x‖ − ‖ǫi,x − ǫj,x‖|)

≤ 2

‖ǫi,x − ǫj,x‖
max

i,j∈{1,...,n}
‖(Bx − B̂x)(fi − fj)‖.

Combining (19) and (20), the lemma is proved.

Lemma 5. Under Conditions 1 and 2, and the null hypothesis that ǫx ⊥⊥ ǫy, for any γ > 0,

1

nγ log n

[
1

n2

n∑

i,j=1

1

‖ǫi,x − ǫj,x‖

]
P→ 0,

1

nγ log n

[
1

n2

n∑

i,j=1

1

‖ǫi,y − ǫj,y‖

]
P→ 0.

Proof. We will only show the first result involving ǫx with the other one follows similarly.

For any δ > 0, let

Rn =
1

n2

n∑

i,j=1

1

‖ǫi,x − ǫj,x‖
, R̄n =

1

n2

n∑

i,j=1

[
1

‖ǫi,x − ǫj,x‖
∧ n2+δ

]
.
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Then for ∀ ǫ > 0,

P[|Rn − R̄n| > ǫ] ≤ n2
P[‖ǫi,x − ǫj,x‖ < n−2−δ] ≤ Cn2n−2−δ = Cn−δ, (21)

due to the Condition 2 that the density function of ‖ǫi,x − ǫj,x‖ is pointwise bounded.

Therefore, |Rn − R̄n| P→ 0, which leads to

∣∣∣∣
Rn

nγ log n
− R̄n

nγ log n

∣∣∣∣
P→ 0. (22)

On the other hand,

E[
1

log n

1

‖ǫi,x − ǫj,x‖
∧ n2+δ]

=
1

log n
P(

1

‖ǫi,x − ǫj,x‖
> n2+δ)n2+δ +

1

log n

∫ ∞

n−2−δ

1

t
h‖ǫi,x−ǫj,x‖(t)dt

≤ C

log n
+

1

log n

∫ C0

n−2−δ

1

x
h‖ǫi,x−ǫj,x‖(x)dx+

1

log n

∫ ∞

C0

1

t
h‖ǫi,x−ǫj,x‖(t)dt

≤ C

log n
+

C

log n

∫ C0

n−2−δ

1

x
dx+

1

C0 log n
P(‖ǫi,x − ǫj,x‖ > C0)

≤ C

log n
+

C

log n
[log(C0) + log(n2+δ)] +

1

C0 log n

≤ C

log n
+ C ′ +

1

C0 log n
, (23)

where h‖ǫi,x−ǫj,x‖ is the density of ‖ǫi,x − ǫj,x‖. In the above derivation, the first inequality

can be easily seen from (21) and the second inequality utilizes Condition 2.

Therefore, R̄n/log n is bounded in L1 and since nγ → ∞, R̄n/[n
γ log(n)] converges to

0 in L1 and hence in probability, i.e.,

R̄n

nγ log(n)

P→ 0. (24)

This, combined with (22) yields

Rn

nγ log(n)

P→ 0. (25)

This completes the proof of Lemma 5.

To prove Theorem 2, we first introduce two propositions.

Proposition 1. Under Conditions 1 and 2, and the null hypothesis that ǫx ⊥⊥ ǫy,

T1 = Op(an/n), T2 = Op(an/n)
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Proof. From (14), we rewrite T1 as

T1 =
1

n2

n∑

i,j=1

Di,j,x


‖ǫi,y − ǫj,y‖+

1

n2

n∑

k,l=1

‖ǫk,y − ǫl,y‖ −
1

n

n∑

k=1

‖ǫi,y − ǫk,y‖ −
1

n

n∑

k=1

‖ǫj,y − ǫk,y‖




.
=

1

n2

n∑

i,j=1

Di,j,xAi,j,y,

with Ai,j,y self-defined by the equation.

Let us consider term

E(T 2
1 ) =

1

n4

∑

i 6=j,k 6=l

E(Di,j,xDk,l,xAi,j,yAk,l,y) =
1

n4

∑

i 6=j,k 6=l

E(Di,j,xDk,l,x)E(Ai,j,yAk,l,y).

(26)

We can separate the above quantity into three parts. It is easy to see that Di,j,x are

identically distributed with respect to different pairs of (i, j) when i 6= j. Let us define the

following three sets of index quadruples:

• I1 = {(i, j, k, l)|there are four distinct values in {i, j, k, l}}.

• I2 = {(i, j, k, l)|i 6= j, k 6= l, and there are three distinct values in {i, j, k, l}}.

• I3 = {(i, j, k, l)|i 6= j, k 6= l, and there are two distinct values in {i, j, k, l}}.

Let us suppose E(Di,j,xDk,l,x) = c1, for (i, j, k, l) ∈ I1; E(Di,j,xDk,l,x) = c2, for

(i, j, k, l) ∈ I2. E(Di,j,xDk,l,x) = c3, for (i, j, k, l) ∈ I3. By Condition 3, we know c1, c2

and c3 are all of order O(a2n). Also, E(Ai,j,y) = O(1). Then we have

E(T 2
1 ) = E

(
c1
n4

∑

I1

Ai,j,yAk,l,y +
c2
n4

∑

I2

Ai,j,yAk,l,y +
c3
n4

∑

I3

Ai,j,yAk,l,y

)
. (27)

On the other hand, we observe that
∑n

j=1 Ai,j,y = 0 by definition and Ai,j,y = Aj,i,y, so

we have

∑

I2

Ai,j,yAk,l,y =
n∑

i=1

(
n∑

j=1

Ai,j,y)
2 −

n∑

i=1

n∑

j=1

A2
i,j,y = −

n∑

i=1

n∑

j=1

A2
i,j,y.

By Condition 1, we know all the second order terms of distances of differences (‖ǫi,y −
ǫj,y‖2, ‖ǫi,y−ǫj,y‖·‖ǫi,y−ǫk,y‖ as examples) have bounded expectation, and thus all the sec-

ond order terms of Ai,j,y’s also have bounded expectations. Therefore, E(n−4
∑

I3
Ai,j,yAk,l,y) =
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O(n−2). Finally, since
∑n

i=1

∑n
j=1 Ai,j,y = 0,

∑

I1

Ai,j,yAk,l,y =(
n∑

i=1

n∑

j=1

Ai,j,y)
2 −

∑

I2

Ai,j,yAk,l,y −
∑

I3

Ai,j,yAk,l,y −
n∑

i=1

A2
i,i,y

=−
∑

I2

Ai,j,yAk,l,y −
∑

I3

Ai,j,yAk,l,y −
n∑

i=1

A2
i,i,y.

This combined with our previous calculations leads to E(n−4
∑

I1
Ai,j,yAk,l,y) = O(n−2).

As a result, we have E(T 2
1 ) = O(a2n/n

2). Together with Chebychev’s inequality, we know

T 2
1 = Op(a

2
n/n

2) and equivalently, T1 = Op(an/n). Similarly, we could show that T2 =

Op(an/n).

Proposition 2. Under Conditions 1, 2, 3, and 4, and the null hypothesis that ǫx ⊥⊥ ǫy,

T3 = Op{(n−1/2a2n) ∨ (a3n(log n)n
γ) ∨ (n−1/2anen logK)}.

Proof. Recall that

T3 =
1

n2

n∑

i,j=1

Di,j,xDi,j,y +
1

n2

n∑

i,j=1

Di,j,x
1

n2

n∑

i,j=1

Di,j,y −
2

n3

n∑

i=1

n∑

j,k=1

Di,j,xDi,k,y

.
=

1

n2

n∑

i,j=1

Di,j,xBi,j,y,

with Bi,j,y self-defined in the above equation. We can easily see that
∑n

i=1 Bi,j,y = 0,

for any j. Let Bmax = maxi,j |Bi,j,y|, then we define B̃i,j,y = Bi,j,y/(2Bmax) + 0.5. In

this way, we know B̃i,j,y ∈ [0, 1] and
∑n

i=1 B̃i,j,y = 1/2 for any j. By Condition 3, we

know that Bmax = Op(an). Also, since all B̃i,j,y are non-negative, by Cauchy-Schwartz,

we can upper bound ‖B̃‖F with the case when B̃i,j,y have the same values across i. Thus,

‖B̃‖F = Op(
√
n).

Then we can rewrite T3 in the following form:

T3 =
2Bmax

n2

n∑

i,j=1

Di,j,xB̃i,j,y −
Bmax

n2

n∑

i,j=1

Di,j,x
.
= T31 − T32.

Let us look at T31 first. If we denote D and B̃ as the matrix of dimension n × n

composed of elements Di,j,x and B̃i,j,y, we know that

|T31| ≤
2Bmax

n2
‖D‖F‖B̃‖F = Op(an/n

2)Op(ann)Op(
√
n) = Op(

a2n√
n
). (28)
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Then, let us proceed to term T32. Here, we write Di,j,x in another form as a sum of two

terms and bound them separately.

Di,j,x =
(ǫi,x − ǫj,x)

⊤

‖ǫi,x − ǫj,x‖
(Bx − B̂x)(fi − fj) +

(
ci,j,x

‖ci,j,x‖
− ǫi,x − ǫj,x

‖ǫi,x − ǫj,x‖

)
(Bx − B̂x)(fi − fj)

≡ (ǫi,x − ǫj,x)
⊤

‖ǫi,x − ǫj,x‖
(Bx − B̂x)(fi − fj) + ri,j,x.

(29)

As a result, we know

T32 =
Bmax

n2

n∑

i,j=1

ri,j,x +
Bmax

n2

n∑

i,j=1

(ǫi,x − ǫj,x)
⊤

‖ǫi,x − ǫj,x‖
(Bx − B̂x)(fi − fj).

By Lemma 4, we know

|ri,j,x| ≤ max
i,j

‖(Bx − B̂x)(fi − fj)‖2
2

‖ǫi,x − ǫj,x‖
, (30)

where maxi,j ‖(Bx − B̂x)(fi − fj)‖2 = Op(a
2
n).

Together with Lemma 5, the first term in T32 has rate

n−2Bmax

n∑

i,j=1

ri,j,x = Op(a
3
n(log n)n

γ).

The second term in T32 can be rewritten in terms of trace:

∥∥∥∥∥
Bmax

n2

n∑

i,j=1

(ǫi,x − ǫj,x)
⊤

‖ǫi,x − ǫj,x‖
(Bx − B̂x)(fi − fj)

∥∥∥∥∥ (31)

=

∣∣∣∣∣Bmax Tr

(
(Bx − B̂x)

1

n2

n∑

i,j=1

(fi − fj)
(ǫi,x − ǫj,x)

⊤

‖ǫi,x − ǫj,x‖

)∣∣∣∣∣ ,

.
=
∣∣∣Bmax Tr

(
(Bx − B̂x)W

)∣∣∣ ,

≤ Bmax

p∑

l=1

‖Bx,l − B̂x,l‖1 max
i,j

|W (i, j)|, (32)

where W is self-defined and W (i, j) is the element on the i-th row and j-column of matrix

W. Let us take (i, j) = (1, 1) as an example, and look at W (1, 1) = 1
n2

∑n
i,j=1(fi,1 −

fj,1)
ǫi,x,1−ǫj,x,1
‖ǫi,x−ǫj,x‖ . We easily see that EW (1, 1) = 0, due to facts: ǫi,x and ǫj,x are mutually

independent of f with any observation indices; and E[(ǫi,x − ǫj,x)/‖ǫi,x − ǫj,x‖] = 0.

Furthermore,
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E(W (1, 1)2) =
1

n4

n∑

i,j,k,l=1

(fi,1 − fj,1)
ǫi,x,1 − ǫj,x,1
‖ǫi,x − ǫj,x‖

(fk,1 − fl,1)
ǫk,x,1 − ǫl,x,1
‖ǫk,x − ǫl,x‖

.

Similar to the reasoning in Proposition 1, we have n4 terms in I1. But in this scenario,

E(fi,1 − fj,1)
ǫi,x,1−ǫj,x,1
‖ǫi,x−ǫj,x‖ (fk,1 − fl,1)

ǫk,x,1−ǫl,x,1
‖ǫk,x−ǫl,x‖ = 0 due to independence, therefore we know

E(W (1, 1)2) = O(1/n).

As a result, we know |W (1, 1)| = Op(n
−1/2), and thus maxi,j |W (i, j)| = Op(n

−1/2 logK).

Furthermore, we can bound the term in (31) with rate Op(n
−1/2anen logK).

Combining T31 and T32, we know T3 = Op{(n−1/2a2n)∨(a3n(log n)nγ)∨(n−1/2anen logK)}.

Proof of Theorem 2. Recall the notations we used in the proof of Theorem 1,

V2
n(ǫ̂x, ǫ̂y)− V2

n(ǫx, ǫy) = T1 + T2 + T3.

By Propositions 1 and 2, Conditions 3 and 4, we have for any γ > 0,

n(T1 + T2 + T3) = Op(an) +Op{(a2n
√
n)∨ (n1+γ(log n)a3n)∨ (anen logK

√
n)} = op(1).

Combined with Lemma 2, the theorem is proved.

Proof of Corollary 2. The result follows directly from the proofs of Theorems 1 and 2 and

an application of Slutsky’s theorem.

Proof of Theorem 3. The proof of Theorem 3 follows similarly as Theorem 6 in Székely

et al. (2007). Here we omit the details for brevity.
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Table 5: The selected important pairs of industry groups with FDR control under α = 0.01.

Banks Medical Products

Banks Utility

Banks Medical

Banks Finance

Large Cap Pharma Medical Products

Large Cap Pharma Medical

Soap and Cleaning Products Cosmetics & Toiletries

Soap and Cleaning Products Banks

Soap and Cleaning Products Large Cap Pharma

Conglomerates Aerospace

Conglomerates Banks

Conglomerates Transportation

Retail Building Prds Retail

Wireless National Banks

Building Products Paper & Related Products

Banks Insurance

Building Products Conglomerates

Conglomerates Utility

Conglomerates Machinery

Paper & Related Products Conglomerates

Building Products Transportation

Large Cap Pharma Banks

Business Services Computer

Soap and Cleaning Products Medical Products

Semi General Computer

Conglomerates Medical Products

Paper & Related Products Metal Products
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Table 6: The industry groups and their associated stocks

Metal Products AA

Medical AMGN

Steel ATI

Cosmetics & Toiletries AVP

Medical Products ABT BAX MDT

Utility AEP AES ETR EXC SO

Insurance AIG ALL CI HIG

Finance AXP COF GS MS

Aerospace BA GD RTN

Banks BAC C JPM RF USB WFC

Large Cap Pharma BMY JNJ MRK PFE

Beverages CCU KO

Machinery CAT

Soap and Cleaning Products CL PG

Cable TV CMCSA

Oil COP CVX HAL SLB WMB XOM

Food CPB

Computer CSCO HPQ IBM MSFT ORCL PEP

Media Conglomerates DIS

Auto F

Transportation FDX NSC UPS

Conglomerates GE HON MMM UTX

Internet GOOG

Building Prds Retail HD

Semi General INTC TXN

Paper & Related Products IP

Retail MCD TGT WMT

Tobacco MO

Industrial Robotics ROK

Wireless National S T VZ

Building Products WY

Business Services XRX
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