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1 Introduction

Rapid development in technology continuously floods us with high-dimensional data nowa-
days. One interesting question we wish to answer is their conditional dependency struc-
ture. Mathematically, let z = (z(),..., 2(?) be a d-dimensional random vector, which
represents our data. We would like to know whether () 1L 20)|z\ {2 20} fori # j €
{1,...,d} orif there are other factors f associated with z, then whether 2z 1 z()|f. For
visualization, a graph is often used to represent such a conditional dependence structure:
vertices represent observed variables and edges indicate conditional dependence. Produc-
ing such a graph can help us understand data and has been an important topic in fields
including economics, finance, signal processing, bioinformatics and network modeling
(Wainwright & Jordan, 2008).

Intrinsically, if we look at the nodes pair by pair, this is a testing problem. In general,

we can write our goal as testing whether x and y are independent given f, i.e.,
Hy:x Lylf, (D

where x, y and f are random vectors with possibly different dimensions. For such condi-
tional independence tests, there has been abundant literature, especially in econometrics.
Linton & Gozalo (1997) proposed two nonparametric tests based on a generalization of
the empirical distribution function; however, a complicated bootstrap procedure is needed
to calculate critical values of the test, which limits its applications. Su & White (2007,
2008, 2014) and Wang et al. (2015) proposed conditional independence tests based on
Hellinger distance, empirical likelihood, conditional moments and conditional characteris-
tic function, respectively. However, as many of the recently available datasets are of high-
dimension, the computation for these tests becomes prohibitive. Another related work is
Sen & Sen (2014), where the focus is on testing the independence between the error and
the predictor variables in the linear regression problem.

Our starting point is a relatively “general” model on {x,y,f}. In particular, suppose
{(xi,yi,fi, € 0,€iy), 0 =1,...,n}areii.d. realizations of (x,y,f, €,, €,), which are gen-

erated from the following model:

x=G,(f)+e€, y=G,f)+e, (2)



where f is the K-dimensional common factors, G, and G, are general mappings from
RX to R and RY, respectively. The observed data are {(x;,y;,fi),i = 1,...,n}. Here,
for simplicity and tractability, we assume independence between (€., €,) and f. Such kind
of models shed light for another route to solve the issues, nonparametric regression. The
idea is intuitive: to test (1) is the same as testing €, L €, under (2), which naturally leads
to a two-step procedure. Since {(€; ., €;,),7 = 1,...,n} are not observed, in Step 1, we
estimate the residuals. In this regard, we assume the dimensions p and ¢ to be fixed while
the number of factors K could diverge to infinity. Step 2, we apply an independence test on
the estimated residuals. These two steps constitute our new conditional independence test
and we will unveil the asymptotic properties for this new test statistic. Let’s briefly preview
the procedure in the following two paragraphs.

In Step 1, ideally, a fully nonparametric projection on f (e.g., local linear regression
(Fan, 1992)) would consistently recover the random errors asymptotically under certain
smoothness assumptions on G, and G, when K is fixed. However, it becomes challenging
when K diverges due to the curse of dimensionality if no structural assumptions are made
on G, and G,. As a result, in this paper, we will study two cases where G, and G, are
linear functions (factor models) in Section 2.2 and where G, and G, are additive functions
in Section 2.5 when K diverges. Further relaxed models might be available for future work,
but we don’t focus on them in this paper.

To complete our proposal, after estimating the residuals in Step 1, we still need to
find a suitable measure of dependence between random variables/vectors in Step 2. In
this regard, many different measures of dependence have been proposed. Some of them
rely heavily on Gaussian assumptions, such as Pearson correlation, which measures linear
dependence and the uncorrelatedness is equivalent to independence only when the joint
distribution is Gaussian; or Wilks Lambda (Wilks, 1935), where normality is adopted to
calculate the likelihood ratio. To deal with non-linear dependence and non-Gaussian distri-
bution, statisticians have proposed rank-based correlation measures, including Spearman’s
p and Kendall’s 7, which are more robust than Pearson correlation against deviations from
normality. However, these correlation measures are usually only effective for monotonic
types of dependence. In addition, under the null hypothesis that two variables are inde-

pendent, no general statistical distribution of the coefficients associated with these mea-



sures has been derived. Other related works include Hoeffding (1948), Blomqvist (1950),
Blum et al. (1961), and some methods described in Hollander et al. (2013) and Anderson
(1962). Taking these into consideration, distance covariance (Székely et al., 2007) was in-
troduced to address these deficiencies. The major benefits of distance covariance are: first,
zero distance covariance implies independence, and hence it is a true dependence measure.
Second, distance covariance can measure the dependence between any two vectors which
potentially are of different dimensions. Recently, Huo & Székely (2016) proposed a fast
computation method for distance covariance. Due to these advantages, we will focus on
distance covariance in this paper as our measure of dependence.

So far, we complete a rough description of the newly proposed conditional dependence
measure; and we are able to build conditional dependency graphs by conducting this test
edge by edge. We would like to make two remarks here to help readers connect the dots
between our work and some other existing related topics/works.

First, let us look at the connection to undirected graphical models. Undirected graphical
models (UGM) has been a popular topic in econometrics in the past decade. It studies the
“internal” conditional dependency structure of a multivariate random vector. To be more
explicit, again let z = (2™, ... () be the d-dimensional random vector of interest. We
denote the undirected graph corresponding to z by (V, E), where vertices V' correspond to
components of z and edges £ = {e;;,1 < i # j < d} indicate whether node 2@ and 20)
are conditionally independent given the remaining nodes. In particular, the edge e;; is ab-
sent if and only if 2 I 20)|z\ {z®, 2}, Therefore, UGM is a nature application of our
measure if we take f = z\ {z(V, 209} in our test. One intensively studied sub-field is GGM
(Gaussian graphical model) where z is assumed to follow a multivariate Gaussian distribu-
tion with mean @ and covariance matrix 3. This extra assumption is desirable since then
the precision matrix Q = (w;;)ixd = 37! captures exactly the conditional dependency
graph; that is, w;; = 0 if and only if e;; is absent (Lauritzen, 1996; Edwards, 2000). There-
fore, under the Gaussian assumption, this problem reduces to the estimation of precision
matrix, where a rich literature on model selection and parameter estimation can be found
in both low-dimensional and high-dimensional settings, including Dempster (1972), Drton
& Perlman (2004), Meinshausen & Biihlmann (2006), Friedman et al. (2008), Fan et al.
(2009), Cai et al. (2011), Liu (2013), Chen et al. (2014), Ren et al. (2015), Jankova & Van



De Geer (2015) and Yu & Bien (2017). With simple derivations, it’s easy to check that
GGM fits into our framework with G being linear and € having Gaussian distributions.
Therefore, with linear projection in Step 1 and distance covariance in Step 2, our proposed
conditional measure solves GGM. It’s worth noting that, indeed, in Step 2, choosing Pear-
son correlation will solve GGM as well; choosing distance covariance gives more flexibility
since we don’t assume normality on € and potentially we can solve non-Gaussian UGMs.
Another interesting work is Voorman et al. (2013), where a semi-parametric method was
introduced for graph estimation.

Second, we examine the link to factor models. As explained in the last paragraph, UGM
is a case with f being internal factors, in other words, part of the interested vector z. An-
other scenario of our framework is the case when f are external, and this is closely related
to factor models. As an example, in the Fama-French three factors model, the excessive
return of each stock can be considered as one node in the graph we want to build and f
are the chosen three-factors. This example will be further elaborated in Section 5. There-
fore, the factors f are considered as external since they are not part of the individual stock
returns. Another interesting application is discussed in Stock & Watson (2002), where ex-
ternal factors are aggregated macroeconomic variables, and the nodes are disaggregated
macroeconomic variables.

With the above two remarks, we see our proposed test cover some of the existing top-
ics as by-products. We summarize the main contribution of this paper here. First, under
model (2), we propose a computationally efficient conditional independence test. Both the
response vectors and the common factors can be of different dimensions and the number
of the factors could grow to infinity with sample size. Second, we apply this test to build
conditional dependency graph (internal factors) and covariates-adjusted dependency graph
(external factors).

The rest of this paper is organized as follows. In Section 2, we present our new proce-
dure for testing conditional independence via projected distance covariance (P-DCov) and
describe how to construct conditional dependency graphs based on the proposed test. Sec-
tion 3 gives theoretical properties including the asymptotic distribution of the test statistic
under the null hypothesis as well as the type I error guarantee. Section 4 contains extensive

numerical studies and Section 5 demonstrates the performance of P-DCov via a financial



data set. We conclude the paper with a short discussion in Section 6. Several technical

lemmas and all proofs are relegated to the appendix.

2 Methods

2.1 A brief review of distance covariance

First, we introduce some notations. For a random vector z, ||z|| and ||z||; represent its

Euclidean norm and ¢; norm, respectively. A collection of n i.i.d. observations of z is

denoted as {zy, ..., z,}, where z; = (z,gl), ce z,gd))T represents the k-th observation. For

any matrix M, | M||g, ||M]|| and || M]|ax denote its Frobenius norm, operator norm and
max norm, respectively. [[M]|, is the (a,b) norm defined as the ¢, norm of the vector
consisting of column-wise ¢, norm of M. Furthermore, a A b represents min{a, b} and
a \V b represents max{a, b}.

As an important tool, distance covariance is briefly reviewed in this section with further

details available in Székely et al. (2007). We introduce several definitions as follows.

Definition 1. (w-weighted Ly norm) Let c; = %, for any positive integer d, where

I' is the Gamma function. Then for function v defined on RP X RY, the w-weighted Ly norm
of v is defined by

HV(T7P>H?U :/R+ |’}/(’T,p>|2UJ(T7p)dep, where ’lU(T,p) = (Cpcq”TH1+p”pH1+q)71'
p+q

Definition 2. (Distance covariance) The distance covariance between random vectors X €

R? and 'y € RY with finite first moments is the nonnegative number V(X,y) defined by

VA(x,y) = llgxy (T, ) — 9x(T)gy (p) 12,

where gx, gy and gy represent the characteristic functions of X, y and the joint charac-

teristic function of x and 'y, respectively.

Suppose we observe random sample {(xx,yx) : £ = 1,...,n} from the joint distribu-

tion of (x,y). We denote X = (x1,X2,...,X,) and Y = (y1,¥2,---,¥n)-



Definition 3. (Empirical distance covariance) The empirical distance covariance between

samples X and Y is the nonnegative random variable V,,(X,Y) defined by

VA(X,Y) = S51(X,Y) + S5(X,Y) — 253(X,Y),

where
51X Y) = — L3 b xillve - il S(X,Y) - ank—xlu—zuyk—ylu
k=1 k=1 k=1
1 n n
S5(X,Y) = EZ > sk = xilllye = ymll-
k=11lm=1

With above definitions, Lemma 1 depicts the consistency of V,,(X,Y) as an estimator
of V(x,y). Lemma 2 shows the asymptotic distribution of V,(X,Y) under the null hy-
pothesis that x and y are independent. Corollary 1 reveals properties of the test statistic

n)V? /S, proposed in Székely et al. (2007).

Lemma 1. (Theorem 2 in Székely et al. (2007)) Assume that E(||x|| + ||y||) < oo, then
almost surely

lim V,(X,Y) =V(x,y).

n—oo
Lemma 2. (Theorem 5 in Székely et al. (2007)) Assume that x and 'y are independent, and

E(||Ix|| + lyll) < oo, then as n — oo,
D
nVA(X,Y) = (<. p)ll2,

D e
where — represents convergence in distribution and ((-,-) denotes a complex-valued cen-

tered Gaussian random process with covariance function

R(u, up) = (92(T = T0) = 92(7)92(70)) (94 (P — Po) — 94(P)94(Po)),
in whichu = (1, p), ug = (70, py)-
Corollary 1. (Corollary 2 in Székely et al. (2007)) Assume that E(||x|| + ||y||) < oc.

1. If x and y are independent then as n — oo, nV2(X,Y)/5(X,Y) B Qwith Q 2
>y N Z3, where Z; N (0,1) and {\;} are non-negative constants depending
on the distribution of (x,y); E(Q) = 1.

2. Ifx and'y are dependent, then as n — oo, nV2(X,Y)/S5(X,Y) 5 .

7



2.2 Conditional independence test via projected distance covariance

(P-DCov)

Here, we consider the case where G, and G, are linear in (2), which leads to the following

factor model setup:
x=B,ft+e€, y=B,+¢, 3)

where B, and B, are factor loading matrices of dimension p X K and ¢ x K respectively,
and f is the K-dimensional vector of common factors. Here, we assume p and ¢ are fixed,
the number of common factors K could grow to infinity and the matrices B, and B,, are
sparse to reflect that x and y only depend on several important factors. As a result, we will
impose regularization on the estimation of B, and B,. Now, we are in the position to pro-
pose a test for problem (1). We first provide an estimate for the idiosyncratic components
€, and €,, and then calculate distance covariance between the estimates. More generally,
we project x and y onto the space orthogonal to the linear space spanned by f and eval-
uate the dependency between the projected vectors. The conditional independence test is
summarized in the following steps.

Step 1: Estimate factor loading matrices B, and B, by the penalized least square (PLS)

estimators B, and ]§y defined as follows.

~ 1

B. = argun 5 ~ BFIE: + X pn (B3 @
]7

~ 1

B, — argigfu 5| ~ BFIF: + 3 p(B) ®)
J?

where X = (x1,X2,...,X,), Y = (y1,¥2,---,¥n), F = (fi,f5,....£,), pa(+) is the
penalty function with penalty level \.

Step 2: Estimate the error vectors €; , and €; , by
éi,:p =X; — ]/—D;xfz = (Bm - ]/—S’:r)fl + €z,

&y=vyi—Bfi=(B,-B)fi+e, i=1,...n

Step 3: Define the estimated error matrices E, = (€1, ...,€,,) andE, = (€1,,,...,€,,).

Calculate the empirical distance covariance between E, and f]y as
VI(E,, E,) = $1(E,,E,) + S:(E,, E,) — 295(E,, E,).

8



Step 4: Define the P-DCov test statistic as T(x, y, f) = nV2(E,, E,)/S,(E,, E,).
Step 5: With a predetermined significance level «, we reject the null hypothesis when
T(x,y,f) > (711 — «a/2))>.

Theoretical properties of the proposed conditional independence test will be studied in
Section 3. In the above method, we implicitly assume that the number of variables K is
large so that the penalized least-squares methods are used. When the number of variables
K is small, we can take \; = Ay = 0 so that no penalization is imposed.

We would like to point out that after getting the estimated error matrices f)z and Ey, one
could apply other dependency measures including Hilbert Schmidt independence criterion

(Gretton et al., 2005) and Heller-Heller-Gorfine test (Heller et al., 2012).

2.3 Building graphs via conditional independence test

Now we explore a specific application of our conditional independence test to graphical
models. To identify the conditional independence relationship in a graphical model, i.e.,

20 1L 20)|z )\ {20, 20D}, we assume

z;E;i) = ﬁlT,z‘jfk + 6/(5), Z/Ej) = ﬁzT,ijfk + 6/(3); k=1,...,n, 6)

(4) G

(=6, ))T represents all coordinates of z;, other than z,” and z; ) and B, and

where f;, = (z
B, are d — 2 dimensional regression coefficients. Under model (6), we decide whether
edge e;; will be drawn through directly testing 2 I 2)|L(z(="79)), where L(f) is the
linear space spanned by f.

More specifically, for each node pair {(i,7) : 1 < i < j < d}, we define T =

T (2%, 20) z(=»=9)) using the same steps as in Section 2.2 as the test for the current null

hypothesis:
Hyij: €V 1L €. (7)

We now summarize the testing results by a graph in which nodes represent variables in z
and the edge e;; between node ¢ and node j is drawn only when H ;; is rejected at level .
In (6), the factors are created internally via the observations on remaining nodes z \

{20, 2D}, In financial applications, it is often desirable to build graphs when conditioning



on external factors. In such cases, it is straightforward to change the factors in (6) to
external factors.
We will demonstrate the two different types of conditional dependency graphs via ex-

amples in Sections 4 and 5.

2.4 Graph estimation with FDR control

Through the graph building process described in Section 2.3, we can carry out d = d(d —
1)/2 P-DCov tests simultaneously and we wish to control the false discovery rate (FDR) at
a pre-specified level 0 < o < 1. Let Ry and R be the number of falsely rejected hypotheses
and the number of total rejections, respectively. The false discovery proportion (FDP) is
defined as Rr/ max{1, R} and the FDR is the expectation of FDP.

In the literature, various procedures have been proposed for conducting large-scale mul-
tiple hypothesis testing via FDR control. Liu (2013) proposed a procedure for estimating
large Gaussian graphical models with FDR control. Fan et al. (2018) proposed factor-
adjusted tests by estimating the latent factors that drive the dependency of these tests. In
this work, we will follow the most commonly used Benjamini and Hochberg (BH) proce-
dure developed in the seminal work of Benjamini & Hochberg (1995), where P-values of
all marginal tests are compared. More specifically, let Py < Py < --- < Fg) be the
ordered P-values of the d hypotheses given in (7). Let s = max{0 <i < d : Puy < aif d},
and we reject the s hypotheses H ;; with the smallest P-values. We will demonstrate the

performance of this strategy via the real data example in Section 5.

2.5 Extension to functional projection

In the P-DCov described in Section 2.2, we assume the conditional dependency of x and y
given factor f is expressed via a linear form of f. In other words, we are projecting x and
y onto the space orthogonal to £(f) and evaluate the dependence between the projected
vectors. Although this linear projection assumption makes the theoretical development
easier and delivers the main idea of this work, a natural extension is to consider a nonlinear

projection. In particular, we consider the following additive generalization (Stone, 1985)

10



of the factor model setup:

K K
X:ng(fj)‘i_exay:Zg?(fj)"i_ey? (8)

j=1 j=1
where {g7(-), g?(-), j =1,..., K} are unknown vector-valued functions we would like to

estimate. In (8), we consider the additive space spanned by factor f. By this extension, we
could identify more general conditional dependency structures between x and y given f.
This is a special case of (2), but avoids the issue of curse of dimensionality.

In the high-dimensional setup where K is large, we can use a sparse additive model
(Ravikumar et al., 2009; Fan et al., 2011) to estimate the unknown functions. The condi-
tional independence test described in Section 2.2 could be modified by replacing the linear
regression with the (penalized) additive model regression. We will investigate the P-DCov
method coupled with the sparse additive model (Ravikumar et al., 2009) in numerical stud-

i€es.

Remark 1. (8) is the additive generalization of (3) with homoscedastic noises, i.e., the
covariance matrix of €, and €, are constant across different samples. Following Rigby
& Stasinopoulos (1996) and Rigby & Stasinopoulos (2005), we can further extend (8) to

accommodate heteroscedastic noises. In particular, we consider the following model

K K
x= S g () + e y= S g+ Sy(De, ©)
=1 =1
where €, and €, are the idiosyncratic errors, Xx(f) = diag{o,,(f), - ,0,,(f)}, and

Yy(f) = diag{o,, (f),--- ,0,,(f)}. Adapting the model described in (1a), (1b) and (Ic)
in Rigby & Stasinopoulos (1996), we assume the standard deviation functions are modeled

via transformed additive models:

gilow, (O] =Y hi(fe), geloy, ()] =D hi(fi), (10)

where g, and g, are link functions, hi;(f1.) and hy;(fi) are linear or non-parametric func-
tions of fi corresponding to o, or o, respectively.
We can then use the algorithms developed in Rigby & Stasinopoulos (1996) and Rigby

& Stasinopoulos (2005) to get a new set of error estimates, in place of Steps 1 and 2 of our

11



original P-DCov test. Subsequently, we can follow Steps 3 to 5 of the P-DCov test on the
estimated errors. This leads to a generalized P-DCov test with heteroskedastic errors. We

skip the details to keep the paper concise.

3 Theoretical Results

In this section, we derive the asymptotic properties of our conditional independence test.

First, we introduce several assumptions on €,, €, and f.
Condition 1. Ee, = Ee, = 0, E|e,||? < oo, E|le,]|* < o0

Condition 2. Let us assume that the densities of || €, , — €2 .|| and || €1, — €3, || are bounded
on [0, Cy), for some positive constant Cy. In other words, there exists a positive constant
M,

MAxX R, ,—e;o| (1) < M, maX By, () < M,
t€[0,C0] t€[0,Co]

where h,(-) represents the probability density function for random variable .

Remark 2. Conditions 1 and 2 impose mild moment and distributional assumptions on
random errors €, and €,. We use the following two simple examples to provide some
intuitions regarding Condition 2. Assume €;, ~ N(0,1,), for i = 1, 2, we have €, , —
€2, ~ N(0,21,) and hence || €1, — €. ~ 2x*(p). Therefore,
2
hHEi,m—ej,:c”(t> = mtl)lez

It is easy to observe that, with Coy = 1 and M = 1, Condition 2 is satisfied. Now instead
of an identity covariance matrix, let us consider the other extreme case with all coordinates
copies or negative copies of one variable (the case where all correlations equal 1 or -1).

Then ||€1 . — €a.||* ~ 2p - x*(1). Therefore,

1 £2
Bera—e; | (t) = ———=mce 3.
Again, with Cy = 1 and M = ﬁ Condition 2 is satisfied.

To better understand when the proposed projection method works, we give the follow-

ing high-level assumptions, whose justifications are noted below.
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Condition 3. There exist constants Cy > 1 and v > 0, such that for any Cy > 1, with

probability greater than 1 — C “2 we have for any n,
[(B. ~ B)Flam < Cae [|(B, — B,)F|loe < Coa
where the sequence a,, = o{n="/* A (n1+7) logn)~1/3}.

Condition 4. Let B, ; denote the [-th row of B,, and similarly we define ﬁm, B, and

ﬁy,l. We assume for any fixed I,
||Bx,l - Bw,l”l = Op(en>a ||By,l - By,lHl = Op(en)7
where sequences e,, and a,, in Condition 3 satisfy a,e, = o(m).

Remark 3. Conditions 3 and 4 are mild. They are imposed to ensure the quality of the
projection and guarantee the theoretical properties regarding our conditional indepen-
dence test. For example, one could directly call the results from penalized least squares
for high-dimensional regression (Belloni et al., 2011; Biihlmann & Van De Geer, 2011;
Hastie et al., 2015) and robust estimation (Belloni & Chernozhukov, 2011; Wang, 2013;

Fan et al., 2017). We now discuss two special examples as follows.

1. (K is fixed) In this fixed dimensional case, it is straightforward to verify that the

projection based on ordinary least squares satisfies the two conditions.

2. (Sparse Linear Projection) Let B, = (b{,bJ, ..., bl)" and B, = (b7,b?, ... ,Bg)T.
Note that the graphical model case corresponds to p = 1. We apply the popu-
lar Ly-regularized least squares for each dimension of x regressing on the factor
F. Here, we further assume the true regression coefficient b; is sparse for each j
with S; = {k : (b;)x # 0}, S; = {k : (b;), # 0} and |S;| = s;. From Theo-
rem 11.1, Example 11.1 and Theorem 11.3 in Hastie et al. (2015), and since {f;},

b; —bj|| < C\/*25, 5, = 5

n

are i.i.d., we have with probability going to 1,
and max; ||(f;)s,|| < s;logn. Then, we have with probability going to 1, for each

1=1,...,nandj=1,...,p,

I(b; = by) fill = [[(b; —b;)g, (£)s, | < II(b; — by)s, [[I(£)s, |

maxl K
< Csmaxlognv ° o8 ) (11)
n

13



where syax = max; s;. It is now easy to verify that Conditions 3 and 4 are satisfied
even under the ultra-high-dimensional case where log K = o(n%),0 < a < 1/3.
We would like to omit the details here for brevity about the specification of various

constants.

Theorem 1. Under Conditions 1 and 3,
V2(&s,€,) 2 V2(eas€y).
In particular, when €, and €, are independent, V% (¢é,, €,) 5o

Theorem 1 shows that the sample distance covariance between the estimated residual
vectors converges to the distance covariance between the population error vectors. It en-
ables us to use the distance covariance of the estimated residual vectors to construct the

conditional independence test as described in Section 2.2.

Theorem 2. Under Conditions 1-4, and the null hypothesis that €, 1 €, (or equivalently
x L ylf),

2/~ ~\ D 2
nV, (€ €,) = [IC]I7,
where ( is a zero-mean Gaussian process defined analogously as in Lemma 2.

Theorem 2 provides the asymptotic distribution of the test statistic 7'(x, y, f) under the

null hypothesis, which is the basis of Theorem 3.

Corollary 2. Under the same conditions of Theorem 2,
nV2(€4,€,)/52(€0,€,) = Q. where Q 2"\, Z2,
j=1
where Z; XN (0,1) and {\;} are non-negative constants depending on the distribution
of (x,y); E(Q) = L.
Theorem 3. Consider the test that rejects conditional independence when

nV2(&;, €,)

Sé(ézaéy>

where ®(-) is the cumulative distribution function of N'(0,1). Let o, (x,y,f) denote its

> (@71 (1—a/2))?, (12)

associated type I error. Then under Conditions 1-4, for all 0 < o < 0.215,

14



(i) iy o0 (%, 5, £) < @

(ii) supe, y, limy, o0 an(x,y,f) = a.

Part (i) of Theorem 3 indicates the proposed test with critical region (12) has an asymp-
totic significance error at most . Part (i) of Theorem 3 implies that there exists a pair
(€2, €,) such that the pre-specified significant level « is achieved asymptotically. In other

words, the size of testing H : €, I €, s a.

Remark 4. When the sample size n is small, the theoretical critical value in (12) could
sometimes be too conservative in practice (Székely et al., 2007). Therefore, we recommend
using random permutation to get a reference distribution for the test statistic T'(x,y,f)
under Hy. Random permutation is used to decouple €; , and €; , so that the resulting pair
(€x(i) s €iy) follows the null model, where {m(1),...,m(n)} are a random permutation of
indices {1,...,n}. Here, we set the number of permutations R(n) = |200 + 5000/n] as
in Székely et al. (2007). Consequently, we can also estimate the P-value associated with
the conditional independence test based on the quantiles of the test statistics over R(n)

random permutations.

4 Monte Carlo Experiments

In this section, we investigate the performance of P-DCov with five simulation examples.
In Example 4.1, we consider a factor model and test the conditional independence between
two vectors x and y given their common factor f, via P-DCov. In Examples 4.2, we in-
vestigate the classical Gaussian graphical model. In Example 4.3, we consider the case of
general graphical model without the Gaussian assumption. In Example 4.4, we consider
the case of dependency graph with the contribution of external factors. In Example 4.5, we

consider a general graphical model with external factors.

Example 4.1. [High-dimensional factor model] Let p = 5, ¢ = 10 and K = 1000. The

rows of B, and rows of B, are drawn independently from zyx = (z1,2z1)T, where z, is
a 3-dimensional vector with elements i.i.d. from Unif[2,3] and zo = Ok _5. {f;}I, are

iLid. from N(0,1x). We generate n i.i.d. copies {r;}?_, from log-normal distribution
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In N (0, X) (heavy-tail) where X is an equal correlation matrix of size (p + q) X (p + q)
with ¥, = pwhen j # k and ¥;; = 1. €;, and €,, are the centered version of the first
p coordinates and the last q coordinates of r;. Then, {x;}!' | and {y;}I, are generated

according to X; = B,f; + €;, and y; = B,f; + €, , correspondingly.

In Example 4.1, we consider a high-dimensional factor model with sparse structure.
Note that the errors are generated from a heavy tail distribution to demonstrate the proposed
test works beyond Gaussian errors. We assume each coordinate of x and y only depends on
the first three factors. We calculate 7'(x, y, f) in the P-DCov test, and Tj(x, y, f) in which
we replace €, , and €, ,, by the true €; , and €; ,, as an oracle test to compare with. To get ref-
erence distributions of 7'(x,y, f) and Ty (x,y, f), we follow the permutation procedure as
described in Section 3. In this example, we set the significance level o = 0.1. We vary the
sample size from 100 to 300 with increment of 20 and show the empirical power based on
2000 repetitions for both T'(x,y, f) and Ty (x,y, f) in Figure 1 for p € {0.1,0.2,0.3,0.4}.
In the implementation of penalized least squares in Step 1, we use R package glmnet with
the default tuning parameter selection method (10-fold cross-validation) and perform least
square on the selected variables to reduce estimation bias of these estimated parameters
(Belloni et al., 2013). It is worth mentioning that an alternative approach to reduce the
estimation bias is the de-biased lasso method (Zhang & Zhang, 2014; Van de Geer et al.,
2014). Here, we decided to use the least square post model selection approach due to its
simplicity and computational efficiency.

From Figure 1, it is clear that as the sample size or p increases, the empirical power
also increases in general. Also, comparing the panels (A) and (B) in Figure 1, we see
that when the sample size is small, the P-DCov test has smaller power than the oracle test,
however, the difference between them becomes negligible as the sample size increases.
This is consistent with our theory regarding the asymptotic distribution of the test statistics.
When p = 0, Table 1 reports the empirical type I error for both P-DCov as well as the oracle
version. It is clear that the type I error of P-DCov is under good control as the sample size

increases.

Example 4.2. [Gaussian graphical model] We consider a Gaussian graphical model with

precision matrix Q = X7, where S is a tridiagonal matrix of size d x d, and is associated
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Table 1: Type I error of Example 1

Test based on €, and €,

n 100 120 140 160 180 200 220 240 260 280 300

0.119 0.114 0.116 0.100 0.098 0.097 0.092 0.102 0.094 0.091 0.096

Test based on €, and €,

n 100 120 140 160 180 200 220 240 260 280 300

0.086 0.102 0.104 0.094 0.092 0.091 0.096 0.103 0.098 0.092 0.095

Figure 1: Power-sample size graph of Example 1
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with the autoregressive process of order one. We set d = 100 and the (i, j)-element in 3 to

be 0, j = exp(—|s; — s;|), where 0 = 51 < 9 < -+ < s4. In addition,

i — 81 = Uniform (1,3), i =2,...,d.

In this example, we would like to compare the proposed P-DCov with the state-of-the-
art approaches for recovering Gaussian graphical models. In terms of recovering structure
), we compare lasso.dcov (projection by lasso followed by distance covariance), sam.dcov
(projection by sparse additive model followed by distance covariance), lasso.pearson (pro-
jection by lasso followed by Pearson correlation), sam.pearson (projection by sparse addi-
tive model followed by Pearson correlation) with three popular estimators corresponding

to the lasso, adaptive lasso and scad penalized likelihoods (called graphical.lasso, graphi-
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Figure 2: ROC curves for Gaussian graphical models with AUCs in legends.
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cal.alasso and graphical.scad on the graph) for the precision matrix (Friedman et al., 2008;
Fan et al., 2009). Here, lasso.dcov and sam.dcov are two examples of our P-DCov methods.
We use R package SAM to fit the sparse additive model. To evaluate the performances, we
construct receiver operating characteristic (ROC) curves for each method with sample sizes
n = 100 and n = 300. The process of constructing the ROC curves involves conducting
the P-DCov test for each pair of nodes and record the corresponding P-values. In each of
the ROC curve, true positive rates (TPR) are plotted against false positive rates (FPR) at
various thresholds of those P-values (“TP” means the true entry of the precision matrix is
nonzero and estimated as nonzero; “FP” means the true entry of the precision matrix is
zero but estimated as nonzero). We follow the implementation in Fan et al. (2009) for the
three penalized likelihood estimators. The average results over 100 replications of different
methods are reported in Figure 2. The associated AUC (Area Under the Curve) for each
method is also displayed in the legend of the figure.

We observe that lasso.pearson and sam.pearson perform similarly to the penalized like-
lihood methods when n = 100. On the other hand, lasso.dcov and sam.dcov lead to slightly
smaller AUC value due to the use of the distance covariance, which is expected for the
Gaussian model. This shows that we do not pay a big price for using the more complicated

distance covariance and sparse additive model.
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Example 4.3. [A general graphical model] We consider a general graphical model with
a combination of multivariate t distribution and multivariate Gaussian distribution. The
dimension of x is d = 100. In detail, x = (x}, x1,x2)T where x, follows a 20 dimensional
multivariate t distribution with degrees of freedom 5, location parameter 0 and identity
covariance matrix, Xs follows the same Gaussian graphical model as in Example 4.2 except
the dimension is now 10, and x5 ~ N (0,I;0). In addition, X1, x5, and x3 are mutually

independent.

To generate a multivariate ¢-distribution, we first generate a random vector wy, from the
standard multivariate Gaussian distribution and an independent random variable 7 ~ x?(5)
and then set x; = w/+/7. One important fact about the multivariate ¢ distribution is that the
zero element in the precision matrix does not imply conditional independence like the case
of Gaussian graphical models (Finegold & Drton, 2009). Indeed, for x;, we actually have
the fact that xgi) and xgj ) are dependent given ngi’fj ) for any pair 1 <14 # j < 20. On the
contrary, the Gaussian likelihood based methods will falsely claim that all the components
of x; are independent, because the corresponding elements in €2 are 0.

The average ROC curve results are rendered in Figure 3. As expected, by using the
new projection based distance covariance method for testing conditional independence,
lasso.dcov outperforms all the other methods in terms of AUC, with a more evident advan-
tage when n = 300. One interesting observation is that: in the region where FPR is very
low, the likelihood based methods actually outperform P-DCov methods. One possible

reason is that the likelihood based methods are more capable of capturing the conditional

dependency structure within x as it follows a Gaussian graphical model.

Example 4.4. [Dependency graph with external factors] We consider a dependency graph
with the contribution of external factors. In particular, we generate u ~ N (0,Q), where
Q is the same tridiagonal matrix used in Example 4.2 except the dimension is now 30
and f ~ N(0,I3y), then the observation x = u + Qg(f) where Qsox300 is a sparse
coefficient matrix that dictates how each dimension of x depends on the factor g(f). In
particular, we let Q = [Q30x157 030x285) with the generation of Q follows the setting in
Cai et al. (2013). For each element @ij, we first generate a Bernoulli distribution with

success probability 0.2 to determine whether Qij is 0 or not. If Qij is not 0, we then
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Figure 3: ROC curves for a general graphical model with AUCs in legends.
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generate Q; ~ Uniform (0.5,1). Here we consider two forms of g(-), namely g(f) = £
and g(f) = f2.

Now, we report results regarding the average ROC curves for lasso.pearson, lasso.dcov,
sam.pearson and sam.dcov. The results for both g(f) = f and g(f) = f? are depicted in
Figure 4. Note that we are not building a conditional dependency graph among x, but a
dependency graph of x conditioning on the external factor f. There are some insightful
observations from the figure. First of all, by looking at the first case when g(f) = f, it
is clear that lasso.pearson is the best as it takes advantage of the sparse linear structure
paired with the Gaussian distribution of the residual. By using the distance covariance as
a dependency measure, or by using the sparse additive model as a projection method, it is
reassuring that we do not lose much efficiency. Second, for the case when g(f) = f2 and
n = 300, we can see a substantial advantage of the sparse additive model based methods as

they can capture this nonlinear contribution of the factors to the dependency structure of x.

Example 4.5. [A general graphical model with external factors] We consider a general
conditional dependency graph with the contribution of external factors by combining the
ingredients of Examples 4.3 and 4.4. In particular, we generate u = (x1,x1) with x, and
xo generated from Example 4.3 and £ ~ N(0,1I3), then set x = u + Qg(f) where Q is

the same as Example 4.4. We also consider g(f) = f and g(f) = £~
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Figure 4: ROC curves for factor based dependency graph with AUCs in legends.
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In this example, we would like to investigate the performance of a two-step projection
method. In particular, we first project x onto the space spanned by f and denote the residual
by 1. Then we explore the conditional dependency structure of 1Y and ") given a(~%~7)
by projecting them onto the space orthogonal to the space (linearly or additively) spanned
by (~»77). Here, we compare the performances of methods using the external factor and
those that ignore them. The average ROC curves are rendered in Figure 5.

From Figure 5, we see that first of all, when g(f) = f, the methods using external

factors outperform their counterparts without using the information with the best method
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Figure 5: ROC curves for a general graphical model with external factors (AUCs in leg-

ends).
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being lasso.dcov. Second, when we have nonlinear factors, using the factors do not nec-
essarily help when we only consider linear projection. For example, the performances
of lasso.pearson and lasso.pearson.f in panel (c) illustrates this point. On the other hand,
by using sparse additive model based projection, we have a substantial gain over all the

remaining methods especially for n = 300.
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S5 Real Data Analysis

We collect daily excess returns of 90 stocks among the S&P 100 index, which are available
between August 19, 2004 and August 19, 2005. We chose the starting date as Google’s
Initial Public Offering date, and consider one year of daily excess returns since then. In
particular, we consider the following Fama-French three factors model (Fama & French,

1993)
rie — e = Bimkr(MKTy — 1) + B smuSMBy + B m HML; + wy,

fori =1,...,90and t = 1,...,252. At time ¢, r;; represents the return for stock i, 7
is the risk-free rate, and MKT;, SMB; and HML,; constitute market, size and value factors,

respectively.

5.1 Individual stocks

In the first experiment, we study the conditional dependency on all pairs of stocks, with
the conditioning set being the Fama-French three factors in Section 5.1.1. Then, we further

add the industry factor to the conditioning set in Section 5.1.2.

5.1.1 Fama-French three-factors effect

We perform P-DCov test with FDR control on all pairs of stocks and study the dependence
between stocks conditioning on the Fama-French three factors. Under significance level
a = 0.01, we found out that 15.46% of the pairs of stocks are conditionally dependent
given the three factors, which implies that the three factors may not be sufficient to explain
the dependencies among stocks. As a comparison, we also implemented the conditional
independence test with the distance covariance based test replaced by Pearson correlation
based test. It turns out the 9.34% of the pairs are significant under the same significance
level. This shows the P-DCov test is more powerful than the Pearson correlation test in
discovering significant pairs that are conditionally dependent.

We then investigate the top 5 pairs of stocks that correspond to the largest test statistic
values using the P-DCov test. They are (BHI, SLB), (CVX, XOM), (HAL, SLB), (COP,
CVX), and (BHI, HAL). Interestingly, all six stocks involved are closely related to the

23



oil industry. This reveals the high level of dependence among oil industry stocks that
cannot be well explained by the Fama-French three factors model. In addition, we examine
the stock pairs that are conditionally dependent under the P-DCov test but not under the
Pearson correlation test. The two most significant pairs are (C, USB) and (MRK, PFE).
The first pair is in the financial industry (Citigroup and U.S. Bancorp) and the second pair
is pharmaceutical companies (Merck & Co. and Pfizer). This shows that by using the
proposed P-DCov, some interesting conditional dependency structures could be recovered.
This is consistent with the findings that the within-sector correlations are still present even

after adjusting for Fama-French factors and 10 industrial factors (Fan et al., 2016).

5.1.2 Industry factor effect

For the top 5 stock pairs with the largest test statistics after conditioning on the Fama-
French three factors in Section 5.1.1, we would like to evaluate how much of the conditional
dependency comes from the industry group effect. In particular, as these stocks all come
from the energy industry, we computed the corresponding test statistics with and without
further conditioning on the energy group (XLE), in addition to the Fama-French three fac-
tors. We summarized the results in Table 2, where columns “woXLE” and “wXLE” contain
values of the test statistic before and after further conditioning on XLE respectively for each

pair. From the table, we first see that after conditioning on XLE in additional to the Fama-

Table 2: The conditional independence test statistics before and after conditioning on the

energy group effect (XLE) for the 5 pairs of stocks.

Stock Pair woXLE wXLE
(BHI, SLB) 46.92 15.09
(CVX, XOM) 35.71 1.86
(HAL, SLB) 34.81 5.19
(COP, CVX) 34.12 1.00
(BHI, HAL) 33.67 6.41

French three factors, all five stock pairs become less dependent with much smaller test
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statistic values, which agrees with intuition since we remove the impact of industry factor
with the additional conditioning. A second observation is that, while the five pairs of stocks
are listed in decreasing order in terms of distance covariance before conditioning on the in-
dustry factor (in column “woXLE”), the order of these pairs changed after conditioning (in
column “wXLE”). This implies that the industry effects may play quite different roles for
these pairs of stocks, when we evaluate distance covariances. After carefully investigating
the five pairs, we found that CVX, XOM, and COP are oil companies which are directly
impacted by XLE, whereas BHI, SLB, and HAL are energy service companies. This may
explain that compared with (CVX, XOM) and (COP, CVX), (BHI, SLB), (HAL, SLB) and
(BHI, HAL) have a relatively larger test statistic after conditioning on the industry factor
XLE in additional to the Fama-French three factors. Some other possible issues that may

affect the conditional dependency include the liquidity of stocks (Haugen & Baker, 1996).

5.2 Stock groups by industry

One advantage of our proposed procedure is that P-DCov can investigate dependence be-
tween two multivariate vectors, not necessarily of the same dimension, conditioning on
external factors. As an illustration, beyond studying the relationship of stocks within in-
dustrial sectors as in Section 5.1.1, we explore dependency structures between industrial
sectors conditioning on the Fama-French three factors. In particular, we group the stocks
in S&P 100 into 32 industrial groups based on the “Sectoring by industry groups” infor-
mation provided on https://www.nasdaq.com. Each of the industrial group now
contains a few stocks, with a full list provided in Table 6 in Appendix. We perform P-
DCov test on all pairs of industrial groups conditioning the same Fama-French three fac-
tors in Section 5.1.1. Table 3 presents the pairs of industrial groups (containing more than 2
stocks) which attain the smallest P-value of 1e-6, and for readers’ convenience, we list the
stocks corresponding to each selected groups in Table 4. A few interesting findings are the
following. Industry ‘Conglomerates’ (containing stocks of General Electric, Honeywell,
3M and United Technologies Corporation), is conditionally dependent of both ‘Aerospace’
(containing stocks of Boeing, General Dynamics and Raytheon) and ‘Transportation’ (con-

taining stocks of FedEx, Norfolk Southern and UPS-United Parcel Service). A plausible
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Table 3: Pairs of stock groups with the smallest P-value 1e-6.

Conglomerates Aerospace
Large Cap Pharma Medical Products
Soap and Cleaning Products Large Cap Pharma

Conglomerates Transportation
Banks Finance
Banks Medical Products
Conglomerates Banks
Banks Utlity
Soap and Cleaning Products Banks
Wireless National Banks

explanation is that the companies in sector ‘Conglomerates’ may produce supplies such as
components/gadgets for sector ‘Aerospace’ and ‘Transportation’ and therefore the returns
of these industrial sectors might be dependent. Similarly, ‘Large Cap Pharma’ (containing
stocks of Bristol-Myers Squibb, Johnson & Johnson, Merck & Co and Pfizer) is condi-
tionally dependent of ‘Medical Products’ (containing stocks of Abbott Laboratories, Bax-
ter International and Medtronic) and ‘Soap and Cleaning Products’ (containing stocks of
Colgate-Palmolive and Procter & Gamble). The first relationship can be explained as Phar-
maceutical versus Health care and the second is due to the fact that companies in ‘Soap
and Cleaning Products’ are big suppliers of the Pharmaceutical companies in terms of their
commonly used commodities. Lastly, based on the industrial division provided by Nasdagq,
sector ‘Finance’ contains mainly investment banks while sector ‘Banks’ contains the usual
regional and commercial banks. It is reasonable to believe these two sectors are closely
dependent. The rest of the pairs are detected as significant although we cannot provide an
obvious explanation. Nevertheless, since the Fama-French three factors are conditioned
out, the discovered conditional dependencies can be subtle. We will leave them to experts
for further investigation.

After looking at the interesting pairs corresponding to the smallest P-values, we apply

FDR control with v = 0.01 and selected 27 important pairs with results presented in Tables
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Table 4: The stocks corresponding to each selected industry.

Banks BAC C JPM RF USB WEC
Large Cap Pharma BMY JNJ MRK PFE
Soap and Cleaning Products CL PG
Conglomerates GE HON MMM UTX
Wireless National STVZ
Medical Products ABT BAX MDT
Utility AEP AES ETR EXC SO
Finance AXP COF GS MS
Aerospace BA GD RTN
Transportation FDX NSC UPS

5 and 6. Similar messages can be discovered and we leave out the detailed discussions due

to the large number of pairs.

6 Discussion

In this work, we proposed a general framework for testing conditional independence via
projection and showed a new way to create dependency graphs. A few future directions
worth exploration. Firstly, the current theoretical results assume that contribution of fac-
tors is sparse linear. How to extend the theory to the case of sparse additive model projec-
tion would be an interesting future work. The second potential direction is to extend the
methodology and theory to the case where the dimensions of x and y grow with n.
Furthermore, the proposed methodology could be generalised to test the conditional in-
dependency of multiple random vectors { X1, - - - , Xy} given a common factor f by taking
advantage of a recent result by Bottcher et al. (2019), which developed a new dependency
measure for multiple random vectors. A preliminary description of the extension is as

follows.

1. Estimate the errors {ex,,j = 1,--- , N} by the projection methods described in the
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current paper. Denote the corresponding estimates as {e€x,,j = 1,--- , N}.

2. With a predetermined significance level «, we reject the null hypothesis if the nor-
malized total multivariance (see Test B in Section 4.5 of Bottcher et al. (2019) for
details) satisfies

N =2/~ ~
N- MZ(EXN"' 7€XN) > X%7a<1)7

N - . . o . . . .
where M%() is the normalized total multivariance function specified in definition

4.17 in Bottcher et al. (2019).

The detailed impact of the estimated error on the asymptotic distribution of the test statistic
is worth further investigation.

An R package pgraph for implementing the proposed methodology is available on
CRAN.

Appendix

A~

Lemma 3. Under Condition 3, we have max, ; ||(B, — B,)(f; — )| = O,(a,) and
B maxs, || (B, — B.)(E — £)]] = Oan).

Proof. From Condition 3, it is obvious that max; ; ||(B, — B,)(f; — £;)| = O,(a,). Let
U, =max, ; ||(B, — B,)(f — f;)|| and U,, = U, /a,. Then, we have

E(U,) = /0 h P(U, > t)dt
= /OlP(Un > t)dt + /100 P(U, > t)dt
< 1+/10001‘tdt< 0.
As a result, the lemma is proved. L]

For the remaining proofs, we apply Taylor expansion to ||€; , — €; .|| at €, — €;, and

get
c'. .
€z — €all = ll€i0 — €l + IIC;ZH (B: —Bo)(fi — ;) = [l€ix — €52/l + Dijas
c'. .
€y — €jyll = |l€iy — €551 + Hc:sz (By = By)(fi — ;) = |l€iy — €54/l + Dijy, (13)
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where Ci,j@ = )\i,j,x(éi,m — éj,oc) + (1 — Ai,j,x)(ei,w — Gj@) and Ci,j,y = )\i,j,y(éi,y — éj,y) -+

(1 — Ai,j,y)(@',y — Ej,y)’ for /\i,j,:c S [0, 1] and Ai7j7y S [0, 1]

of Theorem 1. Using the Taylor expansion in (13), we have the following decomposition

Vi€, &) — Vi€, €) = Ti + T + T,

where
1 n 1 n 1 n 2 n n
= > Dijalleiy — €yl + 2 > Dijw—g > lleny eyl = o > > Dijalleiy = enyll,
ij=1 ij=1 k=1 i=1 j,k=1
(14)
=5 > Dijyll€is — €l + 2 > Dijy—3 Y lers — el - o S Dijylleis — ezl
ij=1 ij=1 k=1 i=1 j,k=1
(15)
Ts=—5 Z Di jaDijy + n2 Z Di*mﬁ Z Dijy = n3 Z Z Digaliky: (1o
ij=1 i,j=1 i,j=1 i=1 jk=1

By Condition 3, we have max; ; | D; .| < 2||(Bs — Bo)F|l2.00 < Op(ay). Therefore,

4 n
1= 0o (25 3 e~ )

ij=1
4 n
72| = Oplan) | — > leia—€iall )
ij=1
T3] = Op(az).

Another fact we easily observe is that: n=2 31 ||€;, — €|l = O,(1), since El|€; , —
€;.2|| is uniformly bounded over all (4, j) pairs and so is E(n > 3 ", [|€;. — €. [)).

As aresult, we know VZ(¢é,, €,) — V2(e,, €,) L 0. This combined with Lemma 1 leads
to

V2(&,, €) LN V2 (e, €y)-
L]

Remark: The result of Theorem 1 cannot be implied from that of Theorem 2, since

independence between €, and €, is not assumed.

29



Lemma 4. For the c;;, and c;;, defined in (13), we have the following approximation

error bound on the normalized version.

Cija €ir— €ja 2 =
o < max ||(B, — B,)(f; — £ (17)
‘ Teosel ~ Tere —esal ‘ Term — g5l i< 1B = Bo) (&~ £
Cijy €iy — €y ‘ 5
- < max [|(B, — B,)(fi — £;)||. (18)
' Hcm}yH ||6i,y - Ej,y” ||€i,y - €j7y|| ©J Y e

Proof. It suffices to show (17). First, we will show

Denote by o; and v, the angle between c; ; , and €; , —€; .., and the angle between €; , —€;

ei,x - ej,x ei,m - ej,m

leic — &l lleix — €l

Cijx €z~ €ig

Icijall  ll€ie = €ell

‘ . (19)

and €; , — €, respectively. It is easy to see that 0 < a; < oy < m, and hence cos a; >

cos as. By cosine formula,

Therefore, (19) is proved and it remains to show that

Left hand side of (20) can be rewritten as

2 2

Ciw = Ciw = =2—2cos«
=92 _ .

l€iz—€all €z — €l

Cijx €ix — €jx

leijall  lleis — €l

=2 —2cosay, and ‘

€ix—€Eig €z~ €ig

)

€0 = €all  ll€in — €5all

2 ~
max ||[(B, —B,)(fi —£;)|. (20)

‘ ~ |€iw — €2 iie{l i}

' éi,x - éj,x Gz~ €jx
|€io —€inll €0 — €all
_ ' [(€ix — €0) — (€10 — €a)]l|€10 — Ejall — (|€i0 — €l — €1 — €ja]) (€10 — €jia)
- €z — €ellll€ic — €ja
_mw(éw —€jx) = (€ix — €2)|| + €z — €2l — ll€ie — €52]l])
2

max _[|(B, — B,)(f — )]

_m i,j€{L,...,n}

Combining (19) and (20), the lemma is proved. [

Lemma 5. Under Conditions I and 2, and the null hypothesis that €,, I €, for any v > 0,
1 1 o 1 1 1 o 1
A O e I P S
nvlogn |n Py |€ix — €l nvlogn |n by €y — €5yl
Proof. We will only show the first result involving €, with the other one follows similarly.

For any 0 > 0, let

1 1 — 1
D I e T Dl e T
n ||€zx - ej,x“ n= ||6i7$ - ej@”
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Then forV e > 0,
PR, — Ry| > €] <n®Ples, — €| <n™?7°] < Cn®n ™2 =Cn™°, (21

due to the Condition 2 that the density function of ||¢;, — €| is pointwise bounded.

Therefore, |R,, — R,| £ 0, which leads to

Rn RTL
- o (22)
nYlogn  n7logn
On the other hand,
1 1
E{ A n2+6]

logn [|€;: — €|l

= 1 1 > n2+6>n2+6 + 1 /OO 1h”e —€; ”(t)dt
logn "|€i.— € logn J,—2-st """ "

C 1 [% 1 1 [~1

< + / ~hes el (T)d + / ~he; ;.01 (E)dE

logn = logn J,—2sz """ 7 logn Jg, t 77" 7

C C Co 1 1
—w%ﬁﬁ%mﬂwa+%bew, €l > Co)

1
1 C 1 246
~ logn * logn[ 0g(Co) + log(n™")] + Cologn
< ¢ +C' + ! (23)
~ logn Cologn’

where A, , e, | is the density of ||€; . — €;.||. In the above derivation, the first inequality
can be easily seen from (21) and the second inequality utilizes Condition 2.
Therefore, R, /logn is bounded in L, and since n” — oo, R, /[n" log(n)] converges to

0 in L; and hence in probability, i.e.,

R,
5o, (24)
n”log(n)
This, combined with (22) yields
R,
By (25)
nYlog(n)
This completes the proof of Lemma 5. [

To prove Theorem 2, we first introduce two propositions.
Proposition 1. Under Conditions 1 and 2, and the null hypothesis that €, 1 €,,
T, = Oylan/n). Ty = Oyfan/n)
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Proof. From (14), we rewrite T} as

1 n
_ﬁz ljﬂﬂ(ew €yl + 22”6191/ €yl — = ZHezy ekyH_*ZHeJu eku”)
n

k,l=1

1
*72

T 4,5,Y

with A@ ;.y self-defined by the equation.

Let us consider term

1 1
- Z E(Di,j,:kaJ,xAi,j,yAk,l,y):_4 Z E(Di,j,:ka,l,x)E(Ai,j,yAk,l,y>-

B(T?) = -
i, kAl i kAl

(26)
We can separate the above quantity into three parts. It is easy to see that D; ;, are
identically distributed with respect to different pairs of (i, j) when i # j. Let us define the

following three sets of index quadruples:
o I = {(i,7,k,1)|there are four distinct values in {1, j, k, [} }.
o I ={(i,7,k,1)|i # j,k # [, and there are three distinct values in {4, j, k, [} }.
o I3 ={(i,7,k,1)|i # j,k # [, and there are two distinct values in {4, j, k, [} }.

Let us suppose E(D; ;. Dyi.) = ci1, for (4,4, k,1) € I;; E(D;j,Dky.) = co, for
(4,7, k, 1) € Iy. E(D;;2Dkyq) = cs, for (i,7,k,1) € I3. By Condition 3, we know ¢y, ¢
and c3 are all of order O(a?). Also, E(4; ;,) = O(1). Then we have

C1 Co C3
E(T?) = E (F > Ay Ay + = > Ay Ay + — > Ai,j,yAk,l,y> . @D
11 12 ]3

On the other hand, we observe that 3 37 | A; ;, = 0 by definition and A; ;,, = A;;,, so

we have

n n

Z AijyAnry = Z(Z Aijy) Z gy T Z Z A iy
Iz

i=1 j=1 i=1 j=1 i=1 j=1

By Condition 1, we know all the second order terms of distances of differences (||€;, —
€yl ll€iy—€jyll || €iy—€ryl as examples) have bounded expectation, and thus all the sec-

ond order terms of A, ; ,’s also have bounded expectations. Therefore, E(n™* " 1 AijyAkiy) =
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O(n~?). Finally, since >, > i1 Aijy =0,

ZAzijkly ZZA”?/ ZAwyAkly ZAwyAkly ZAwy

=1 j=1
:_ZAZ]yAkly ZAzijkly ZAmy

This combined with our previous calculations leads to E(n™* Y7, A; j,Ar1y) = O(n72).
As a result, we have E(T?) = O(a?/n?). Together with Chebychev’s inequality, we know
T? = O,(a2/n?) and equivalently, 7y = O,(a,/n). Similarly, we could show that T, =
O,(an/n). O

Proposition 2. Under Conditions 1, 2, 3, and 4, and the null hypothesis that €, 1 €,,
Op{(n""2a2) v (a}(logn)n”) Vv (n~*ane, log K)}.

Proof. Recall that

1 n n n 2 n n
Ty= 53 DiyaDisyt 5 D Doy 3 Dy — 5 90 O DiseDirg
n n n n

ij=1 ij=1 ij=1 i=1 jk=1
= % Y DijaBisuy

ij=1
with B; ;, self-defined in the above equation. We can easily see that » . B, ;, = 0,
for any j. Let By.x = max;;|B;;,|, then we define Bi,j,y = Bijy/(2Bnax) + 0.5. In
this way, we know B, ;, € [0,1] and Y27, B;;, = 1/2 for any j. By Condition 3, we
know that By.x = O,(a,). Also, since all B, are non-negative, by Cauchy-Schwartz,
we can upper bound || B » with the case when B; ., have the same values across i. Thus,
Bllr = O(v/).

Then we can rewrite 75 in the following form:

2BmaX Z D’LJCCB’L]y maX Z Dz]x T31 - T32'

7,7=1 2,j=1
Let us look at T3; first. If we denote D and B as the matrix of dimension n x n
composed of elements D; ; , and §i7 j.y» we know that

2Bmax

T5:1] < HDHFHBHF = (an/RQ)Op(ann)Op<\/ﬁ) = Op( ). (28)

P
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Then, let us proceed to term T3,. Here, we write D; ;. in another form as a sum of two

terms and bound them separately.

(eix_ejx)T 5 (Cijx €ia —
D,.. =~ 2 (B —B f._f._|_ 2 — >
e |MJ—QN($ A=) ICijall €0 — €all
T
Eﬁg%_ZQWBx—BD@—QW+Mm-
1, 7,z

As a result, we know

n n

Bmax Bmax (ei,ﬂﬁ — GJ»I)T D
S ST ) LI T

2,7=1 n2 ij=1 ||€i,SC - ej,:cH

By Lemma 4, we know

|ﬁ4x|SI%%XHUBx—foﬂﬂ‘—fﬂH2H6

A~

where max; ; |(B, — B,)(f; — £;)[|> = O,(a2).

n

Together with Lemma 5, the first term in 735 has rate

2

— €l

n72Bmax Z Tz’,j,x = Op<a’i(log n)n’y)

ij=1

The second term in T3, can be rewritten in terms of trace:

B e —€i0)" .
D D L N RIS

it o e — egal

n

~ 1 (Ei@
Bmax Tr ((Bx - Bi)ﬁ Z (fl - f])

ij=1 lei

9

a )Bmax Tr ((BI . ﬁx)w)

P
S Bmax Z HBz,l - Bw,l”l H}%X ‘W(Zuj)‘7

=1

)

—€ja)’
b
— €l

€ ) (B, — B,)(f; — f;

(29)

f]).

(30)

(3

(32)

where W is self-defined and W (4, j) is the element on the i-th row and j-column of matrix

W. Let us take (i,7) = (1,1) as an example, and look at W (1,1) = = > i (fin =

Cix,1 62,1

fin)mt=2=r. We easily see that EWW/(1,1) = 0, due to facts: €, , and €;, are mutually

Hei,x_ej,x” ’

independent of f with any observation indices; and E[(€;, — €;.)/|€ix — €;.]|] = 0.

Furthermore,
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n

1 €ix1 — €jal €kal — €zl
E(W(1,1)%) = = (fia — i) T—2" (fon — i 1)—
n m§1 ’ €z — €jall l€re — €14l
Similar to the reasoning in Proposition 1, we have n* terms in ;. But in this scenario,
E(fi1— fj1) ]7: g ﬁ (fra— fi1) Eer: ljl - ﬁ = 0 due to independence, therefore we know
1,0 €5,z T
E(W(1,1)%) = O(1/n).
As aresult, we know |W (1,1)| = O,(n~1/?), and thus max; ; |W (i, j)| = O,(n"/%log K).
Furthermore, we can bound the term in (31) with rate O,(n"*2a,e, log K).
Combining 73; and Tz, we know T3 = O,{(n~2a2)V (a2 (logn)n")V(n~2a,e, log K)}.
OJ

Proof of Theorem 2. Recall the notations we used in the proof of Theorem 1,
Vi€, &) — Viles,€) =T + To + Ts.
By Propositions 1 and 2, Conditions 3 and 4, we have for any v > 0,

n(Ty + Ty +T3) = Op(a,) + Op{(a2v/n) vV (n' T (logn)a?) V (a,e, log Ky/n)} = 0,(1).
Combined with Lemma 2, the theorem is proved. O]

Proof of Corollary 2. The result follows directly from the proofs of Theorems 1 and 2 and

an application of Slutsky’s theorem. [

Proof of Theorem 3. The proof of Theorem 3 follows similarly as Theorem 6 in Székely

et al. (2007). Here we omit the details for brevity. ]
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Table 5: The selected important pairs of industry groups with FDR control under o = 0.01.

Banks Medical Products
Banks Utility
Banks Medical
Banks Finance
Large Cap Pharma Medical Products
Large Cap Pharma Medical
Soap and Cleaning Products Cosmetics & Toiletries
Soap and Cleaning Products Banks
Soap and Cleaning Products Large Cap Pharma
Conglomerates Aerospace
Conglomerates Banks
Conglomerates Transportation
Retail Building Prds Retail
Wireless National Banks
Building Products Paper & Related Products
Banks Insurance
Building Products Conglomerates
Conglomerates Utility
Conglomerates Machinery
Paper & Related Products Conglomerates
Building Products Transportation
Large Cap Pharma Banks
Business Services Computer
Soap and Cleaning Products Medical Products
Semi General Computer
Conglomerates Medical Products
Paper & Related Products Metal Products
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Table 6: The industry groups and their associated stocks

Metal Products
Medical

Steel

Cosmetics & Toiletries
Medical Products
Utility

Insurance

Finance

Aerospace

Banks

Large Cap Pharma
Beverages

Machinery

Soap and Cleaning Products
Cable TV

Oil

Food

Computer

Media Conglomerates
Auto

Transportation
Conglomerates
Internet

Building Prds Retail
Semi General

Paper & Related Products
Retail

Tobacco

Industrial Robotics
Wireless National
Building Products

Business Services

AA

AMGN

ATI

AVP

ABT BAX MDT

AEP AES ETR EXC SO
AIG ALL CI HIG

AXP COF GS MS

BA GD RTN

BAC C JPM RF USB WFC
BMY JNJ MRK PFE
CCU KO

CAT

CL PG

CMCSA

COP CVX HAL SLB WMB XOM
CPB

CSCO HPQ IBM MSFT ORCL PEP
DIS

F

FDX NSC UPS

GE HON MMM UTX
GOOG

HD

INTC TXN

1P

MCD TGT WMT

MO

ROK

STVZ

wY

XRX

42



