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Abstract. Factor models are a class of powerful statistical models that
have been widely used to deal with dependent measurements that arise
frequently from various applications from genomics and neuroscience to
economics and finance. As data are collected at an ever-growing scale,
statistical machine learning faces some new challenges: high dimension-
ality, strong dependence among observed variables, heavy-tailed vari-
ables and heterogeneity. High-dimensional robust factor analysis serves
as a powerful toolkit to conquer these challenges.

This paper gives a selective overview on recent advance on high-
dimensional factor models and their applications to statistics includ-
ing Factor-Adjusted Robust Model selection (FarmSelect) and Factor-
Adjusted Robust Multiple testing (FarmTest). We show that classical
methods, especially principal component analysis (PCA), can be tai-
lored to many new problems and provide powerful tools for statistical
estimation and inference. We highlight PCA and its connections to
matrix perturbation theory, robust statistics, random projection, false
discovery rate, etc., and illustrate through several applications how in-
sights from these fields yield solutions to modern challenges. We also
present far-reaching connections between factor models and popular
statistical learning problems, including network analysis and low-rank
matrix recovery.
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1. INTRODUCTION

In modern data analytics, dependence across high-dimensional outcomes or
measurements is ubiquitous. For example, stocks within the same industry exhibit
significantly correlated returns, housing prices of a country depend on various
economic factors, gene expressions can be stimulated by cytokines. Ignoring such
dependence structure can produce significant systematic bias and yields inefficient
statistical results and misleading insights. The problems are more severe for high-
dimensional big data, where dependence, non-Gaussianity and heterogeneity of
measurements are common.

Factor models aim to capture such dependence by assuming several variates
or “factors”, usually much fewer than the outcomes, that drive the dependence
of the entire outcomes (Lawley and Maxwell, 1962; Stock and Watson, 2002).
Stemming from the early works on measuring human abilities (Spearman, 1927),
factor models have become one of the most popular and powerful tools in multi-
variate analysis and have made profound impact in the past century on psychology
(Bartlett, 1938; McCrae and John, 1992), economics and finance (Chamberlain
and Rothschild, 1982; Fama and French, 1993; Stock and Watson, 2002; Bai and
Ng, 2002), biology (Hirzel et al., 2002; Hochreiter et al., 2006; Leek and Storey,
2008), etc. Suppose x1, . . . ,xn are n i.i.d. p-dimensional random vectors, which
may represent financial returns, housing prices, gene expressions, etc. The generic
factor model assumes that

(1.1) xi = µ+Bfi + ui, or in matrix form, X = µ1⊤n +BF⊤ +U,

where X = (x1, . . . ,xn) ∈ R
p×n, µ = (µ1, . . . , µp)

⊤ is the mean vector,
B = (b1, . . . ,bp)

⊤ ∈ R
p×K is the matrix of factor loadings, F = (f1, . . . , fn)

⊤ ∈
R
n×K stores K-dimensional vectors of common factors with Efi = 0, and

U = (u1, . . . ,un) ∈ R
p×n represents the error terms (a.k.a. idiosyncratic compo-

nents), which has mean zero and is uncorrelated with or independent of F. We
emphasize that, for most of our discussions in the paper (except Section 3.1), only
{xi}ni=1 are observable, and the goal is to infer B and {fi}ni=1 through {xi}ni=1.
Here we use the name “factor model” to refer to a general concept where the
idiosyncratic components ui are allowed to be weakly correlated. This is also
known as the “approximate factor model” in the literature, in contrast to the
“strict factor model” where the idiosyncratic components are assumed to be un-
correlated.

Note that the model (1.1) has identifiability issues: given any invertible matrix
R ∈ R

K×K , simultaneously replacing B with BR and fi with R−1fi does not
change the observation xi. To resolve this ambiguity issue, the following identifi-
ability assumption is usually imposed:

Assumption 1.1 (Identifiability). B⊤B is diagonal and cov(fi) = Ip.

Other identifiability assumptions as well as detailed discussions can be found in
Bai and Li (2012) and Fan et al. (2013).

Factor analysis is closely related to principal component analysis (PCA), which
breaks down the covariance matrix into a set of orthogonal components and
identifies the subspace that explains the most variation of the data (Pearson,
1901; Hotelling, 1933). In this selective review, we will mainly leverage PCA, or
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more generally, spectral methods, to estimate the factors {fi}ni=1 and the loading
matrix B in (1.1). Other popular estimators, mostly based on the maximum
likelihood principle, can be found in Lawley and Maxwell (1962); Anderson and
Amemiya (1988); Bai and Li (2012), etc. The covariance matrix of xi consists
of two components: cov(Bfi) and cov(ui). Intuitively, when the contribution of
the covariance from the error term ui is negligible compared with those from
the factor term Bfi, the top-K eigenspace (namely, the space spanned by top
K eigenvectors) of the sample covariance of {xi}ni=1 should be well aligned with
the column space of B. This can be seen from the assumption that cov(xi) =
BB⊤ + cov(ui) ≈ BB⊤, which occurs frequently in high-dimensional statistics
(Fan et al., 2013).

Here is our main message: applying PCA to well-crafted covariance matrices
(including vanilla sample covariance matrices and their robust version) consis-
tently estimates the factors and loadings, as long as the signal-to-noise ratio is
large enough. The core theoretical challenge is to characterize how idiosyncratic
covariance cov(ui) perturb the eigenstructure of the factor covariance BB⊤. In
addition, the situation is more complicated with the presence of heavy-tailed
data, missing data, computational constraints, heterogeneity, etc.

The rest of the paper is devoted to solutions to these challenges and a wide
range of applications to statistical machine learning problems. In Section 2, we
will elucidate the relationship between factor models and PCA and present several
useful deterministic perturbation bounds for eigenspaces. We will also discuss
robust covariance inputs for the PCA procedure to guard against corruption
from heavy-tailed data. Exploiting the factor structure of the data helps solve
many statistical and machine learning problems. In Section 3, we will see how the
factor models and PCA can be applied to high-dimensional covariance estimation,
regression, multiple testing and model selection. In Section 4, we demonstrate
the connection between PCA and a wide range of machine learning problems
including Gaussian mixture models, community detection, matrix completion,
etc. We will develop useful tools and establish strong theoretical guarantees for
our proposed methods.

Here we collect all the notations for future convenience. We use [m] to re-
fer to {1, 2, . . . ,m}. We adopt the convention of using regular letters for scalars
and using bold-face letters for vectors or matrices. For x = (x1, . . . , xp)

⊤ ∈ R
p,

and 1 ≤ q < ∞, we define ‖x‖q =
(∑p

j=1 |xj |q
)1/q

, ‖x‖0 = |supp(x)|, where
supp(x) = {j : xj 6= 0}, and ‖x‖∞ = max1≤j≤p |xj |. For a matrix M,
we use ‖M‖2, ‖M‖F , ‖M‖max and ‖M‖1 to denote its operator norm (spec-
tral norm), Frobenius norm, entry-wise (element-wise) max-norm, and vector
ℓ1 norm, respectively. To be more specific, the last two norms are defined by
‖M‖max = maxj,k |Mjk| and ‖M‖1 =

∑
j,k |Mjk|. Let Ip denote the p× p identity

matrix, 1p denote the p-dimensional all-one vector, and ✶A denote the indicator
of event A, i.e., ✶A = 1 if A happens, and 0 otherwise. We use N (µ,Σ) to refer
to the normal distribution with mean vector µ and covariance matrix Σ. For
two nonnegative numbers a and b that possibly depend on n and p, we use the
notation a = O(b) and a . b to mean a ≤ C1b for some constant C1 > 0, and
the notation a = Ω(b) and a & b to mean a ≥ C2b for some constant C2 > 0.
We write a ≍ b if both a = O(b) and a = Ω(b) hold. For a sequence of random
variables {Xn}∞n=1 and a sequence of nonnegative deterministic numbers {an}∞n=1,
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we write Xn = OP(an) if for any ε > 0, there exists C > 0 and N > 0 such that
P(|Xn| ≥ Can) ≤ ε holds for all n > N ; and we write Xn = oP(an) if for any
ε > 0 and C > 0, there exists N > 0 such that P(|Xn| ≥ Can) ≤ ε holds for all
n > N . We omit the subscripts when it does not cause confusion.

2. FACTOR MODELS AND PCA

2.1 Relationship between PCA and factor models in high dimensions

Under model (1.1) with the identifiability condition, Σ = cov(xi) is given by

(2.1) Σ = BB⊤ +Σu, Σu = (σu,jk)1≤j,k≤p = cov(ui).

Intuitively, if the magnitude of BB⊤ dominates Σu, the top-K eigenspace of
Σ should be approximately aligned with the column space of B. Naturally we
expect a large gap between the eigenvalues of BB⊤ and Σu to be important for
estimating the column space ofB through PCA (see Figure 1). On the other hand,
if this gap is small compared with the eigenvalues of Σu, it is known that PCA
leads to inconsistent estimation (Johnstone and Lu, 2009). The above discussion
motivates a simple vanilla PCA-based method for estimating B and F as follows
(assuming the Identifiability Assumption).

Step 1. Obtain an estimator µ̂ and Σ̂ of µ and Σ, e.g., the sample mean and
covariance matrix or their robust versions.

Step 2. Compute the eigen-decomposition of Σ̂ =
∑p

j=1 λ̂jv̂jv̂
⊤
j . Let {λ̂k}Kk=1

be the top K eigenvalues and {v̂k}Kk=1 be their corresponding eigenvectors. Set

V̂ = (v̂1, . . . , v̂K) ∈ R
p×K and Λ̂ = diag(λ̂1, . . . , λ̂K) ∈ R

K×K .

Step 3. Obtain PCA estimators B̂ = V̂Λ̂1/2 and F̂ = (X − µ̂1⊤)⊤V̂Λ̂−1/2,
namely, B̂ consists of the top-K rescaled eigenvectors of Σ̂ and f̂i is just the
rescaled projection of xi − µ̂ onto the space spanned by the eigen-space: f̂i =
Λ̂−1/2V̂T (xi − µ̂).
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Fig 1. The left panel is the histogram of the eigenvalue distribution from a synthetic dataset.
Fix n = 1000, p = 400 and K = 2 and let all the entries of B be i.i.d. Gaussian N (0, 1/4).
Each entry of F and U is generated from i.i.d. N (0, 1) and i.i.d. N (0, 52) respectively. The
data matrix X is formed according to the factor model (1.1). The right diagram illustrates the
Pervasiveness Assumption.
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Let us provide some intuitions for the estimators in Step 3. Recall that bj is
the jth column of B. Then, by model (1.1), B⊤(xi − µ) = B⊤Bfi + B⊤ui. In
the high-dimensional setting, the second term is averaged out when ui is weakly
dependent across its component. This along with the identifiability condition
delivers that

(2.2) fi ≈ diag(B⊤B)−1B⊤(xi − µ) = diag(‖b1‖2, · · · , ‖bK‖2)−1B⊤(xi − µ).

Now, we estimate BB⊤ by
∑K

j=1 λ̂jv̂jv̂
⊤
j and hence bj by λ̂

1/2
j v̂j and ‖bj‖2 by

λ̂j . Using the substitution method, we obtain the estimators in Step 3.
The above heuristic also reveals that the PCA-based methods work well if

the effect of the factors outweighs the noise. To quantify this, we introduce a
form of Pervasiveness Assumption from the factor model literature. While this
assumption is strong1, it simplifies our discussion and captures the above intu-
ition well: it holds when the factor loadings {bj}pj=1 are random samples from a
nondegenerate population (Fan et al., 2013).

Assumption 2.1 (Pervasiveness). The first K eigenvalues of BB⊤ have order
Ω(p), whereas ‖Σu‖2 = O(1).

Note that cov(fi) = IK under the Identifiability Assumption 1.1. The first
part of this assumption holds when each factor influences a non-vanishing pro-
portion of outcomes. Mathematically speaking, it means that for any k ∈
[K] := {1, 2, . . . ,K}, the average of squared loadings of the kth factor satisfies
p−1

∑p
j=1B

2
jk = Ω(1) (right panel of Figure 1). This holds with high probability

if, for example, {Bjk}pj=1 are i.i.d. realizations from a non-degenerate distribu-
tion, but we will not make such assumption in this paper. The second part of
the assumption is reasonable, as cross-sectional correlation becomes weak after
we take out the common factors. Typically, if Σu is a sparse matrix, the norm
bound ‖Σu‖2 = O(1) holds; see Section 3.1 for details. Under this Pervasiveness
Assumption, the first K eigenvalues of Σ will be well separated with the rest
of eigenvalues. By the Davis-Kahan theorem (Davis and Kahan, 1970), which
we present as Theorem 2.1, we can consistently estimate the column space of B
through the top-K eigenspace of Σ. This explains why we can apply PCA to
factor model analysis (Fan et al., 2013).

Though factor models and PCA are not identical (see Jolliffe, 1986), they are
approximately the same for high-dimensional problems with the pervasiveness
assumption(Fan et al., 2013). Thus, PCA-based ideas are important components
of estimation and inference for factor models. In later sections (especially Section
4), we discuss statistical and machine learning problems with factor-model-type
structures. There PCA is able to achieve consistent estimation even when the
Pervasiveness Assumption is weakened—and somewhat surprisingly—PCA can
work well down to the information limit. For perspectives from random matrix
theory, see Baik et al. (2005); Paul (2007); Johnstone and Lu (2009); Benaych-
Georges and Nadakuditi (2011); O’Rourke et al. (2016); Wang and Fan (2017),
among others.

1There is a weaker assumption, under which (1.1) is usually called the weak factor model;
see Onatski (2012).
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2.2 Estimating the number of factors

In high-dimensional factor models, if the factors are unobserved, we need to
choose the number of factors K before estimating the loading matrix, factors,
etc. The number K can be usually estimated from the eigenvalues of the the
sample covariance matrix or its robust version. With certain conditions such as
separation of the top K eigenvalues from the others, the estimation is consistent.
Classical methods include likelihood ratio tests (Bartlett, 1950), the scree plot
(Cattell, 1966), parallel analysis (Horn, 1965), etc. Here, we introduce a few recent
methods: the first one is based on the eigenvalue ratio, the second on eigenvalue
differences, and the third on the eigenvalue magnitude.

For simplicity, let us use the sample covariance and arrange its eigenvalues in
descending order: λ1 ≥ λ2 ≥ · · · ≥ λn∧p, where n∧ p = min{n, p} (the remaining
eigenvalues, if any, are zero). Lam and Yao (2012) and Ahn and Horenstein (2013)
proposed an estimator K̂1 based on ratios of consecutive eigenvalues. For a pre-
determined kmax, the eigenvalue ratio estimator is

K̂1 = argmax
i≤kmax

λi
λi+1

.

Intuitively, when the signal eigenvalues are well separated from the other eigenval-
ues, the ratio at k = K should be large. Under some conditions, the consistency
of this estimator, which does not involve complicated tuning parameters, is es-
tablished.

In an earlier work, Onatski (2010) proposed to use the differences of consecutive
eigenvalues. For a given δ > 0 and pre-determined integer kmax, define

K̂2(δ) = max{i ≤ kmax : λi − λi+1 ≥ δ}.

Using a result on eigenvalue empirical distribution from random matrix theory,
Onatski (2010) proved consistency of K̂2(δ) under the Pervasiveness Assumption.
The intuition is that, the Pervasiveness Assumption implies that λK − λK+1

tends on ∞ in probability as n → ∞; whereas λi − λi+1 → 0 almost surely
for K < i < kmax because these λi-s converge to the same limit, which can be
determined using random matrix theory. Onatski (2010) also proposed a data-
driven way to determine δ from the empirical eigenvalue distribution of the sample
covariance matrix.

A third possibility is to use an information criterion. Define

V (k) =
1

np
min

B̂∈Rp×k,F̂∈Rn×k

‖X− µ̂1⊤n − B̂F̂⊤‖2F = p−1
∑

j>k

λj ,

where µ̂ is the sample mean, and the equivalence (second equality) is well known.
For a given k, V (k) is interpreted as the scaled sum of squared residuals, which
measures how well k factors fit the data. A very natural estimator K̂3 is to find
the best k ≤ kmax such that the following penalized version of V (k) is minimized
(Bai and Ng, 2002):

PC(k) = V (k) + k σ̂2g(n, p), where g(n, p) :=
n+ p

np
log

(
np

n+ p

)
,
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and σ̂2 is any consistent estimate of (np)−1
∑n

i=1

∑d
j=1 Eu

2
ji. The upper limit

kmax is assumed to be no smaller than K, and is typically chosen as 8 or 15 in
empirical studies in Bai and Ng (2002). Consistency results are established under
more general choices of g(n, p).

We conclude this section by remarking that in general, it is impossible to con-
sistently estimate K if the smallest nonzero eigenvalue B⊤B is much smaller than
‖Σu‖2, because the ‘signals’ (eigenvalues of B⊤B) would not be distinguishable
from the the noise (eigenvalues of UU⊤). As mentioned before, consistency of
PCA is well studied in the random matrix theory literature. See Dobriban (2017)
for a recent work that justifies parallel analysis using random matrix theory.

2.3 Robust covariance inputs

To extract latent factors and their factor loadings, we need an initial covariance
estimator. Given independent observations x1, . . . ,xn with mean zero, the sample
covariance matrix, namely Σ̂sam := n−1

∑n
i=1 xix

⊤
i , is a natural choice to estimate

Σ ∈ R
p×p. The finite sample bound on ‖Σ̂sam − Σ‖2 has been well studied in

the literature (Vershynin, 2010; Tropp, 2012; Koltchinskii and Lounici, 2017).
Before presenting the result from Vershynin (2010), let us review the definition
of sub-Gaussian variables.

A random variable ξ is called sub-Gaussian if ‖ξ‖ψ2 ≡ supq≥1 q
−1/2(E|ξ|q)1/q

is finite, in which case this quantity defines a norm ‖ · ‖ψ2 called the sub-
Gaussian norm. Sub-Gaussian variables include as special cases Gaussian vari-
ables, bounded variables, and other variables with tails similar to or lighter than
Gaussian tails. For a random vector ξ, we define ‖ξ‖ψ2 := sup‖v‖2=1 ‖ξ⊤v‖ψ2 ; we
call ξ sub-Gaussian if ‖ξ‖ψ2 is finite.

Theorem 2.1. Let Σ be the covariance matrix of xi. Assume that

{Σ− 1
2xi}ni=1 are i.i.d. sub-Gaussian random vectors, and denote κ =

sup‖v‖2=1 ‖x⊤
i v‖ψ2. Then for any t ≥ 0, there exist constants C and c only de-

pending on κ such that

(2.3) P

(
‖Σ̂sam −Σ‖2 ≥ max(δ, δ2)‖Σ‖2

)
≤ 2 exp(−ct2),

where δ = C
√
p/n+ t/

√
n.

Remark 2.1. The spectral-norm bound above depends on the ambient dimen-
sion p, which can be large in high-dimensional scenarios. Interested readers can
refer to Koltchinskii and Lounici (2017) for a refined result that only depends on
the intrinsic dimension (or effective rank) of Σ.

An important asepect of the above result is the sub-Gaussian concentration in
(2.3), but this depends heavily on the sub-Gaussian or sub-exponential behaviors
of observed random vectors. This condition can not be validated in high dimen-
sions when tens of thousands of variables are collected. See Fan et al. (2016b).
When the distribution is heavy-tailed2, one cannot expect sub-Gaussian or sub-
exponential behaviors of the sample covariance in the spectral norm (Catoni,

2Here, we mean it has second bounded moment when estimating the mean and has bounded
fourth moment when estimating the variance.
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2012). See also Vershynin (2012) and Srivastava and Vershynin (2013). There-
fore, to perform PCA for heavy-tailed data, the sample covariance is not a good
choice to begin with. Alternative robust estimators have been constructed to
achieve better finite sample performance.

Catoni (2012), Fan et al. (2017b) and Fan et al. (2016b) approached the prob-
lem by first considering estimation of a univariate mean µ from a sequence of i.i.d
random variables X1, · · · , Xn with variance σ2. In this case, the sample mean X̄
provides an estimator but without exponential concentration. Indeed, by Markov
inequality, we have P(|X̄ − µ| ≥ tσ/

√
n) ≤ t−2, which is tight in general and

has a Cauchy tail (in terms of t). On the other hand, if we truncate the data
X̃i = sign(Xi)min(|Xi|, τ) with τ ≍ σ

√
n and compute the mean of the trun-

cated data, then we have (Fan et al., 2016b)

P

(∣∣ 1
n

n∑

i=1

X̃i − µ
∣∣ ≥ t

σ√
n

)
≤ 2 exp(−ct2),

for a universal constant c > 0. In other words, the mean of truncated data with
only a finite second moment behaves very much the same as the sample mean
from the normal data: both estimators have Gaussian tails (in terms of t). This
sub-Gaussian concentration is fundamental in high-dimensional statistics as the
sample mean is computed tens of thousands or even millions of times.

As an example, estimating the high-dimensional covariance matrix Σ = (σij)
involves O(p2) univariate mean estimation, since the covariance can be expressed
as an expectation: as σij = E(XiXj)− E(Xi)E(Xj). Estimating each component

by the truncated mean yields a covariance matrix Σ̃. Assuming the fourth moment
is bounded (as the covariance itself are second moments), by using the union
bound and the above concentration inequality, we can easily obtain

P

(
‖Σ̃−Σ‖max ≥

√
a log p

c′n

)
. p2−a

for any a > 0 and a constant c′ > 0. In other words, with truncation, when the
data have merely bounded fourth moments, we can achieve the same estimation
rate as the sample covariance matrix under the Gaussian data.

Fan et al. (2016b) and Minsker (2016) independently proposed shrinkage vari-
ants of the sample covariance with sub-Gaussian behavior under the spectral
norm, as long as the fourth moments of X are finite. For any τ ∈ R

+, Fan et al.
(2016b) proposed the following shrinkage sample covariance matrix

(2.4) Σ̂s(τ) =
1

n

n∑

i=1

x̃ix̃
⊤
i , x̃i := (‖xi‖4 ∧ τ)xi/‖xi‖4,

to estimate Σ, where ‖ · ‖4 is the ℓ4-norm. The following theorem establishes the
statistical error rate of Σ̃s(τ) in terms of the spectral norm.

Theorem 2.2. Suppose E(v⊤xi)4 ≤ R for any unit vector v ∈ Sp−1. Then it
holds that for any δ > 0,

(2.5) P

(
‖Σ̂s(τ)−Σ‖2 ≥

√
δRp log p

n

)
≤ p1−Cδ,

where τ ≍
(
nR/(δ log p)

)1/4
and C is a universal constant.
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Applying PCA to the robust covariance estimators as described above leads to
more reliable estimation of principal eigenspaces in the presence of heavy-tailed
data.

In Theorem 2.2, we assume that the mean of xi is zero. When this does not
hold, a natural estimator of Σ = 1

2E(x1 − x2)(x1 − x2)
⊤ is to use the shrunk

U -statistic (Fan et al., 2017a):

Σ̂U (τ) =
1

2
(
n
2

)
∑

j 6=k

ψτ (‖xj − xk‖22)
‖xj − xk‖22

(xj − xk)(xj − xk)
⊤

=
1

2
(
n
2

)
∑

j 6=k
min

(
1, τ/‖xj − xk‖22

)
(xj − xk)(xj − xk)

⊤,

where ψτ (u) = (|u|∧τ)sign(u). When τ = ∞, it reduces to the usual U -statistics.
It possesses a similar concentration property to that in Theorem 2.2 with a proper
choice of τ .

2.4 Perturbation bounds

In this section, we introduce several perturbation results on eigenspaces, which
serve as fundamental technical tools in factor models and related learning prob-
lems. For example, in relating the factor loading matrix B to the principal com-
ponents of covariance matrix Σ in (2.1), one can regard Σ as a perturbation of
BB⊤ by an amount of Σu and take A = BB⊤ and Ã = Σ in Theorem 2.3 below.
Similarly, we can also regard a covariance matrix estimator Σ̂ as a perturbation
of Σ by an amount of Σ̂−Σ.

We will begin with a review of the Davis-Kahan theorem (Davis and Kahan,
1970), which is usually useful for deriving ℓ2-type bounds (which includes spec-
tral norm bounds) for symmetric matrices. Then, based on this classical result,
we introduce entry-wise (ℓ∞) bounds, which typically give refined results under
structural assumptions. We also derive bounds for rectangular matrices that are
similar to Wedin’s theorem (Wedin, 1972). Several recent works on this topic can
be found in Yu et al. (2014); Fan et al. (2018b); Koltchinskii and Xia (2016);
Abbe et al. (2017); Zhong (2017); Cape et al. (2017); Eldridge et al. (2017).

First, for any two subspaces S and S̃ of the same dimension K in R
p, we choose

any V, Ṽ ∈ R
p×K with orthonormal columns that span S and S̃, respectively. We

can measure the closeness between two subspaces though the difference between
their projectors:

d2(S, S̃) = ‖ṼṼ⊤ −VV⊤‖2 or dF (S, S̃) = ‖ṼṼ⊤ −VV⊤‖F .

The above definitions are both proper metrics (or distances) for subspaces S and
S̃ and do not depend on the specific choice of V and Ṽ, since ṼṼ⊤ and VV⊤ are
projection operators. Importantly, these two metrics are connected to the well-
studied notion of canonical angles (or principal angles). Formally, let the singular
values of Ṽ⊤V be {σk}Kk=1, and define the canonical angles θk = cos−1 σk for k =
1, . . . ,K. It is often useful to denote the sine of the canonical (principal) angles
by sinΘ(V̂,V) := diag(sin θ1, . . . , sin θK) ∈ R

K×K , which can be interpreted as
a generalization of sine of angles between two vectors. The following identities
are well known (Stewart and Sun, 1990).

‖ sinΘ(Ṽ,V)‖2 = d2(S, S̃),
√
2‖ sinΘ(Ṽ,V)‖F = dF (S, S̃).
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10 FAN, WANG, ZHONG AND ZHU

In some cases, it is convenient to fix a specific choice of Ṽ and V. It is known
that for both Frobenius norm and spectral norm,

‖ sinΘ(Ṽ,V)‖ ≤ min
R∈O(K)

‖ṼR−V‖ ≤
√
2 ‖ sinΘ(Ṽ,V)‖,

where O(K) is the space of orthogonal matrices of size K × K. The minimizer
(best rotation of basis) can be given by the singular value decomposition (SVD)
of Ṽ⊤V. For details, see Cape et al. (2017) for example.

Now, we present the Davis-Kahan sin θ theorem (Davis and Kahan, 1970).

Theorem 2.3. Suppose A, Ã ∈ R
n×n are symmetric, and that V, Ṽ ∈ R

n×K

have orthonormal column vectors which are eigenvectors of A and Ã respectively.
Let L(V) be the set of eigenvalues corresponding to the eigenvectors given in V,
and let L(V⊥) (respectively L(Ṽ⊥)) be the set of eigenvalues corresponding to
the eigenvectors not given in V (respectively Ṽ). If there exists an interval [α, β]
and δ > 0 such that L(V) ⊂ [α, β] and L(Ṽ⊥) ⊂ (−∞, α− δ]∪ [β+ δ,+∞), then
for any orthogonal-invariant norm3

‖ sinΘ(Ṽ,V)‖ ≤ δ−1 ‖(Ã−A)V‖.

This theorem can be generalized to singular vector perturbation for rectangu-
lar matrices; see Wedin (1972). A slightly unpleasant feature of this theorem is
that δ depends on the eigenvalues of both A and Ã. However, with the help of
Weyl’s inequality, we can immediately obtain a corollary that does not involve
the eigenvalues of Ã. Let λj(·) denote the jth largest eigenvalue of a real sym-
metric matrix. Recall that Weyl’s inequality bounds the differences between the
eigenvalues of A and Ã:

(2.6) max
1≤j≤n

∣∣∣λj(Ã)− λj(A)
∣∣∣ ≤ ‖Ã−A‖2.

This inequality suggests that, if the eigenvalues in L(Ṽ⊥) have the same ranks
(in descending order) as those in L(V⊥), then L(Ṽ⊥) and L(V⊥) are similar.
Below we state our corollary, whose proof is in the appendix.

Corollary 2.1. Assume the setup of the above theorem, and suppose the
eigenvalues in L(Ṽ) have the same ranks as those in L(V). If L(V) ⊂ [α, β] and
L(V⊥) ⊂ (−∞, α− δ0] ∪ [β + δ0,+∞) for some δ0 > 0, then

‖ sinΘ(Ṽ,V)‖2 ≤ 2δ−1
0 ‖Ã−A‖2.

We can then use ‖ sinΘ(Ṽ,V)‖F ≤
√
K ‖ sinΘ(Ṽ,V)‖2 to obtain a bound

under the Frobenius norm. In the special case where L(V) = {λ} and V = v,
Ṽ = ṽ reduce to vectors, we can choose α = β = λ, and the above corollary
translates into

(2.7) min
s∈{±1}

‖v̂ − sv‖2 ≤
√
2 sin θ(v̂,v) ≤ 2

√
2 δ−1

0 ‖Ã−A‖2.

3A norm ‖·‖ is orthogonal-invariant if ‖U⊤BV‖ = ‖B‖ for any matrix B and any orthogonal
matrices U and V.
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Fig 2. The left plot shows the entries (coordinates) of the second eigenvectors v2 computed from
the adjacency matrix from the SBM with two equal-sized blocks (n = 5000,K = 2). The plot also
shows the expectation counterpart v∗

2, whose entries have the same magnitude O(1/
√
n). The

deviation of v2 from v∗
2 is quite uniform, which is a phenomenon not captured by the Davis-

Kahan’s theorem. The right plot shows the coordinates of two leading eigenvectors of the sample
covariance matrix calculated from 2012–2017 daily return data of 484 stocks (tiny black dots).
We also highlight six stocks during three time windows (2012–2015, 2013–2016, 2014–2017) with
big markers, so that the fluctuation/perturbation is shown. The magnitude of these coordinates
is typically small, and the fluctuation is also small.

We can now see that the factor model and PCA are approximately the same
with sufficiently large eigen-gap. Indeed, under Identifiability Assumption 1.1, we
have Σ = BB⊤ +Σu. Applying Weyl’s inequality and Corollary 2.1 to BB⊤ (as
A) and Σ (as Ã), we can easily control the eigenvalue/eigenvector differences
by ‖Σu‖2 and the eigengap, which is comparably small under Pervasiveness As-
sumption 2.1. This difference can be interpreted as the bias incurred by PCA on
approximating factor models.

Furthermore, given any covariance estimator Σ̂, we can similarly apply the
above results by setting A = Σ and Ã = Σ̂ to bound the difference between the
estimated eigenvalues/eigenvectors and the population counterparts. Note that
the above corollary gives us an upper bound on the subspace estimation error in
terms of the ratio ‖Σ̂−Σ‖2/δ0.

Next, we consider entry-wise bounds on the eigenvectors. For simplicity, here
we only consider eigenvectors corresponding to unique eigenvalues rather than
the general eigenspace. Often, we want to have a bound on each entry of the
eigenvector difference ṽ − v, instead of an ℓ2 norm bound, which is an average-
type result. In many cases, none of these entries has dominant perturbation, but
the Davis-Kahan’s theorem falls short of providing a reasonable bound (the näıve
bound ‖ · ‖∞ ≤ ‖ · ‖2 gives a suboptimal result).

Some recent papers (Abbe et al., 2017) have addressed this problem, and in
particular, entry-wise bounds of the following form are established.

|[ṽ − v]m| . µ
‖Ã−A‖2

δ0
+ small term, ∀ m ∈ [n],

where µ ∈ [0, 1] is related to the structure of the statistical problem and typically
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12 FAN, WANG, ZHONG AND ZHU

can be as small as O(1/
√
n), which is very desirable in high-dimensional setting.

The small term is often related to independence pattern of the data, which is
typically small under mild independence conditions.

We illustrate this idea in Figure 2 through a simulated data example (left) and
a real data example (right), both of which have factor-type structure. For the
left plot, we generated a network data according to the stochastic block model
with K = 2 blocks (communities), each having nodes n/2 = 2500: the adjacency
matrix that represents the links between nodes is a symmetric matrix, with up-
per triangular elements generated independently from Bernoulli trials (diagonal
elements are taken as 0), with the edge probability 5 log n/n for two nodes within
blocks and log n/(4n) otherwise. Our task is to classify (cluster) these two commu-
nities based on the adjacency matrix. We used the second eigenvector v2 ∈ R

5000

(that is, corresponding to the second largest eigenvalue) of the adjacency ma-
trix as a classifier. The left panel of Figure 2 represents the values of the 5000
coordinates (or entries) [v2]i in the y-axis against the indices i = 1, . . . , 5000 in
the x-axis. For comparison, the second eigenvector v∗

2 ∈ R
5000 of the expectation

of the adjacency matrix—which is of interest but unknown—have entries taking
values only in {±1/

√
5000}, depending on the unknown nature of which block a

vertex belongs to (this statement is not hard to verify). We used the horizontal
line to represent these ideal values: they indicate exactly the membership of each
vertex. Clearly, the magnitude of entry-wise perturbation is O(1/

√
n). Therefore,

we can use sign(v2)/
√
5000 as an estimate of v∗ and classify all nodes with the

same sign as the same community. See Section 4.2 for more details.
For the right plot, we used daily return data of stocks that are constituents

of S&P 500 index from 2012.1.1–2017.12.31. We considered stocks with exactly
n = 1509 records and excluded stocks with incomplete/missing values, which
resulted in p = 484 stocks. Then, we calculated the sample covariance matrix
Σ̂sam ∈ R

p×p using the data in the entire period, and computed two leading eigen-
vectors (note that they span the column space of B) and plotted the coordinates
(entries) using small dots. Stocks with an coordinate smaller than 5% quantile or
larger than 95% quantile are potentially outlying values and are not shown in the
plot. In addition, we also highlighted the fluctuation of six stocks during three
time windows: 2012.1–2015.12, 2013.1–2016.12 and 2014.1–2017.12, with differ-
ent big markers. That is, for each of the three time windows, we re-computed the
covariance matrices and the two leading eigenvectors, and then highlighted coor-
dinates that correspond to the six major stocks. Clearly, the magnitude for these
stocks is small, which is roughly O(1/

√
p), and the fluctuation of coordinates is

also very small. Both plots suggest an interesting phenomenon of eigenvectors in
high dimensions: entry-wise behavior of eigenvectors can be benign under factor
model structure.

To state our results rigorously, let us suppose that A, Ã,W ∈ R
n×n are sym-

metric matrices, with Ã = A + W and rank(A) = K < n. Let the eigen-
decomposition of A and Ã be

(2.8) A =
K∑

k=1

λkvkv
⊤
k , and Ã =

K∑

k=1

λ̃kṽkṽ
⊤
k +

n∑

k=K+1

λ̃kṽkṽ
⊤
k .

Here the eigenvalues {λk}Kk=1 and {λ̃k}Kk=1 are the K largest ones of A and Ã,
respectively, in terms of absolute values. Both sequences are sorted in descending
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HIGH DIMENSIONAL FACTOR MODELS 13

order. {λ̃k}nk=K+1 are eigenvalues of Ã whose absolute values are smaller than

|λ̃K |. The eigenvectors {vk}Kk=1 and {ṽk}nk=1 are normalized to have unit norms.
Here {λk}Kk=1 are allowed to take negative values. Thanks to Weyl’s inequality,

{λ̃k}Kk=1 and {λ̃k}nk=K+1 are well-separated when the size of perturbation W is
not too large. In addition, we have the freedom to choose signs for eigenvectors,
since they are not uniquely defined. Later, we will use ‘up to sign’ to signify
that our statement is true for at least one choice of sign. With the conventions
λ0 = +∞ and λK+1 = −∞, we define the eigen-gap as

(2.9) δk = min{λk−1 − λk, λk − λk+1, |λk|}, ∀ k ∈ [K],

which is the smallest distance between λk and other eigenvalues (including 0).
This definition coincides with the (usual) eigen-gap in Corollary 2.1 in the special
case L(vk) = {λk} where we are interested in a single eigenvalue and its associated
eigenvector.

We now present an entry-wise perturbation result. Let us first look at only one
eigenvector. In this case, when ‖Ã−A‖ is small, heuristically,

ṽk =
Ãṽk

λ̃k
≈ Ãvk

λk
= vk +

(Ã−A)vk
λk

holds uniformly for each entry. When A = EÃ, that is, Ã is unbiased, this gives
the first-order approximation (rather than bounds on the difference ṽk−vk) of the
random vector ṽk. Abbe et al. (2017) proves rigorously this result and generalizes
to eigenspaces. The key technique for the proof is similar to Theorem 2.4 below,
which simplifies the one in Abbe et al. (2017) in various ways but holds under
more general conditions. It is stated in a deterministic way, and can be powerful
if there is certain structural independence in the perturbation matrix W. A self-
contained proof can be found in the appendix.

For each m ∈ [n], let W(m) ∈ R
n×n be a modification of W with the mth row

and mth column zeroed out, i.e.,

W
(m)
ij =Wij✶{i 6=m}✶{j 6=m}, ∀ i, j ∈ [n].

We also define Ã(m) = A + W(m), and denote its eigenvalues and eigenvectors

by {λ̃(m)
k }nk=1 and {ṽ(m)

k }nk=1, respectively. This construction is related to the
leave-one-out technique in probability and statistics. For recent papers using this
technique, see Bean et al. (2013); Zhong and Boumal (2018); Abbe et al. (2017)
for example.

Theorem 2.4. Fix any ℓ ∈ [K]. Suppose that |λℓ| ≍ maxk∈[K] |λk|, and that
the eigen-gap δℓ as defined in (2.9) satisfies δℓ ≥ 5‖W‖2. Then, up to sign,

(2.10) |[ṽℓ − vℓ]m| .
‖W‖2
δℓ

(
K∑

k=1

[vk]
2
m

)1/2

+
|〈wm, ṽ

(m)
ℓ 〉|

δℓ
, ∀m ∈ [n],

where wm is the mth column of W.
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14 FAN, WANG, ZHONG AND ZHU

To understand this theorem, let us compare it with the standard ℓ2 bound
(Theorem 2.3) , which implies ‖ṽℓ−vℓ‖2 . ‖W‖2/δℓ. The first term of the upper
bound in (2.10) says the perturbation on the mth entry can be much smaller,
because the factor (

∑K
k=1[vk]

2
m)

1/2, always bounded by 1, can be usually much
smaller. For example, if vk’s are uniformly distributed on the unit sphere, then
this factor is typically of order O(

√
K log n/n). This factor is related to the notion

of incoherence in Candès and Recht (2009); Candès et al. (2011), etc.
The second term of the upper bound in (2.10) is typically much smaller than

‖W‖2/δℓ, especially under certain independence assumption. For example, if wm

is independent of other entries, then, by construction, ṽ
(m)
ℓ and wm are inde-

pendent. If, moreover, entries of wm are i.i.d. standard Gaussian, |〈wm, ṽ
(m)
ℓ 〉| is

of order OP(1), whereas ‖W‖2 typically scales with
√
n. This gives a bound for

the mth entry, and can be extended to an ℓ∞ bound if we are willing to make
independence assumption for all m ∈ [n] (which is typical for random graphs for
example).

We remark that this result can be generalized to perturbation bounds for
eigenspaces (Abbe et al., 2017), and the conditions on eigenvalues can be relaxed
using certain random matrix assumptions (Koltchinskii and Xia, 2016; O’Rourke
et al., 2017; Zhong, 2017).

Now, we extend this perturbation result to singular vectors of rectangular ma-
trices. Suppose L, L̃,E ∈ R

n×p satisfy L̃ = L+E and rank(L) = K < min{n, p}.
Let the SVD of L and L̃ be4

L =

K∑

k=1

σkukv
⊤
k and L̃ =

K∑

k=1

σ̃kũkṽ
⊤
k +

min{n,p}∑

k=K+1

σ̃kũkṽ
⊤
k ,

where σk and σ̃k are respectively non-increasing in k, and uk and vk are all
normalized to have unit ℓ2 norm. As before, let {σ̃k}Kk=1 have K largest absolute
values. Similar to (2.9), we adopt the conventions σ0 = +∞, σK+1 = 0 and define
the eigen-gap as

(2.11) γk = min{σk−1 − σk, σk − σk+1}, ∀ k ∈ [K].

For j ∈ [p] and i ∈ [n], we define unit vectors {ũ(j)
k }min{n,p}

k=1 ⊆ R
n and

{ṽ(i)
k }min{n,p}

k=1 ⊆ R
p by replacing certain row or column of E with zeros. To be

specific, in our expression L̃ = L + E, if we replace the ith row of E by zeros,
then the normalized right singular vectors of the resulting perturbed matrix are

denoted by {ṽ(i)
k }min{n,p}

k=1 ; and if we replace the jth column of E by zeros, then
the normalized left singular vectors of the resulting perturbed matrix are denoted

by {ũ(j)
k }min{n,p}

k=1 .

Corollary 2.2. Fix any ℓ ∈ [K]. Suppose that σℓ ≍ maxk∈[K] σk, and that

4Here, we prefer using uk to refer to the singular vectors (not to be confused with the noise
term in factor models). The same applies to Section 4.
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HIGH DIMENSIONAL FACTOR MODELS 15

γℓ ≥ 5‖E‖2. Then, up to sign,

|[ũℓ − uℓ]i| .
‖E‖2
γℓ

(
K∑

k=1

[uk]
2
i

)1/2

+
|〈(erowi )⊤, ṽ(i)

ℓ 〉|
γℓ

, ∀ i ∈ [n], and

|[ṽℓ − vℓ]j | .
‖E‖2
γℓ

(
K∑

k=1

[vk]
2
j

)1/2

+
|〈ecolj , ũ

(j)
ℓ 〉|

γℓ
, ∀ j ∈ [p],

where erowi ∈ R
p is the ith row vector of E, and ecolj ∈ R

n is the jth column vector
of E.

If we view L̃ as the data matrix (or observation) X, then, the low rank matrix
L can be interpreted as BF⊤. The above result provides a tool of studying esti-

mation errors of the singular subspace of this low rank matrix. Note that ṽ
(i)
ℓ can

be interpreted as the result of removing the idiosyncratic error of the ith obser-

vation, and ũ
(j)
ℓ as the result of removing the jth covariate of the idiosyncratic

error.
To better understand this result, let us consider a very simple case: K = 1

and each row of E is i.i.d. N (0, Ip). We are interested in bounding the singular
vector difference between the rank-1 matrix L = σ1uv

⊤ and its noisy observation
L̃ = L+ E. This is a spiked matrix model with a single spike. By independence

between erowi and ṽ
(i)
ℓ as well as elementary properties of Gaussian variables,

Corollary 2.2 implies that with probability 1− o(1), up to sign,

(2.12) ‖ũ1 − u1‖∞ ≤ ‖E‖2
σ1

‖u1‖∞ +
O(

√
log n)

σ1
.

Random matrix theory gives ‖E‖2 ≍ √
n +

√
p with high probability. Our ℓ2

perturbation inequality (Corollary 2.1) implies that ‖ũ1 −u1‖2 ≤ ‖E‖2/σ1. This
upper bound is much larger than the two terms in (2.12), as ‖u1‖∞ is typically
much smaller than 1 in high dimensions. Thus, (2.12) gives a better entry-wise
control over the ℓ2 counterpart.

Beyond this simple case, there are many desirable features of Corollary 2.2.
First of all, we allow K to be moderately large, in which case, as mentioned
before, the factor (

∑K
k=1[uk]

2
i )

1/2 is related to the incoherence structure in the
matrix completion and robust PCA literature. Secondly, the result holds deter-
ministically, so random matrices are also applicable. Finally, the result holds for
each i ∈ [n] and j ∈ [p], and thus it is useful even if the entries of E are not
independent, e.g. when a subset of covariates are dependent.

To sum up, our results Theorem 2.4 and Corollary 2.2 provide flexible tools of
studying entry-wise perturbation of eigenvectors and singular vectors. It is also
easy to adapt to other problems since their proofs are not complicated (see the
appendix).

3. APPLICATIONS TO HIGH-DIMENSIONAL STATISTICS

3.1 Covariance estimation

Estimation of high-dimensional covariance matrices has wide applications in
modern data analysis. When the dimensionality p exceeds the sample size n, the
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16 FAN, WANG, ZHONG AND ZHU

sample covariance matrix becomes singular. Structural assumptions are necessary
in order to obtain a consistent estimator in this challenging scenario. One typical
assumption in the literature is that the population covariance matrix is sparse,
with a large fraction of entries being (close to) zero, see Bickel and Levina (2008)
and Cai and Liu (2011). In this setting, most variables are nearly uncorrelated.
In financial and genetic data, however, the presence of common factors leads to
strong dependencies among variables (Fan et al., 2008). The approximate factor
model (1.1) better characterizes this structure and helps construct valid estimates.
Under this model, the covariance matrix Σ has decomposition (2.1), where Σu =
cov(ui) = (σu,jk)1≤j,k≤p is assumed to be sparse (Fan et al., 2013). Intuitively,
we may assume that Σu only has a small number of nonzero entries. Formally,
we require the sparsity parameter

m0 := max
j∈[p]

p∑

k=1

✶ {σu,jk 6= 0}

to be small. This definition can be generalized to a weaker sense of sparsity, which
is characterized by mq = maxj∈[p]

∑p
k=1 |σu,jk|q, where q ∈ (0, 1) is a parameter.

Note that small mq forces Σu to have few large entries. However, for simplicity,
we choose not to use this more general definition when presenting theoretical
results below.

The approximate factor model has the following two important special cases,
under which the parameter estimation has been well studied.

• The sparse covariance model is (2.1) without factor structure, i.e. Σ = Σu;
typically, entry-wise thresholding is employed for estimation.

• The strict factor model corresponds to (2.1) with Σu being diagonal; usu-
ally, PCA-based methods are used.

The approximate factor model is a combination of the above two models, as it
comprises both a low-rank component and a sparse component. A natural idea
is to fuse methodologies for the two models into one, by estimating the two com-
ponents using their corresponding methods. This motivated our high-level idea
for estimation under the approximate factor model: (1) estimating the low-rank
component (factors and loadings) using regression (when factors are observable)
or PCA (when factors are latent); (2) after eliminating it from Σ, employing stan-
dard techniques such as thresholding in the sparse covariance matrix literature
to estimate Σu; (3) adding the two estimated components together.

First, let us consider the scenario where the factors {fi}ni=1 are observable.
In this setting, we do not need the Identifiability Assumption 1.1. Fan et al.
(2008) focused on the strict factor model where the Σu in (2.1) is diagonal. It is
then extended to the approximate factor model (1.1) by Fan et al. (2011). Later,
Fan et al. (2018b) relaxed the sub-Gaussian assumption on the data to moment
condition, and proposed a robust estimator. We are going to present the main
idea of these methods using the one in Fan et al. (2011).

Step 1. Estimate B using the ordinary least-squares: B̂ = (b̂1, . . . , b̂p)
⊤ where

(âj , b̂j) = argmin
a,b̂

1

n

n∑

i=1

(xij − a− b⊤fi)
2.
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HIGH DIMENSIONAL FACTOR MODELS 17

Step 2. Let â = (â1, · · · , âp)⊤ be the vector of intercepts, ûi = xi − â− B̂fi be
the vector of residual for i ∈ [n], and Su = 1

n

∑n
i=1 ûiû

⊤ be the sample covariance.

Apply thresholding to Su and obtain a regularized estimator Σ̂u.

Step 3. Estimate cov(fi) by ĉov(fi) =
1
n

∑n
i=1(fi − f̄)(fi − f̄)⊤.

Step 4. The final estimator is Σ̂ = B̂ĉov(fi)B̂
⊤ + Σ̂u.

We remark that in Step 2, there are many thresholding rules for estimating
sparse covariance matrices. Two popular choices are the t-statistic-based adap-
tive thresholding (Cai and Liu, 2011) and correlation-based adaptive thresh-
olding (Fan et al., 2013), with the entry-wise thresholding level chosen to be

ω ≍ K
√

log p
n . As the sparsity pattern of correlation and covariance are the same

and the correlation matrix is scale-invariant, one typically applies the thresh-
olding on the correlation and then scales it back to the covariance. Except for
the number of factors K, this coincides with the commonly-used threshold for
estimating sparse covariance matrices.

While it is not possible to achieve better convergence of Σ in terms of the
operator norm or the Frobenius norm, Fan et al. (2011) considered two other
important norms. Under regularity conditions, it is shown that

‖Σ̂−Σ‖Σ = OP

(
m0K

√
log p

n
+
K
√
p log p

n

)
,

‖Σ̂−Σ‖max = OP

(
K

√
log p

n
+K2

√
log n

n

)
.

(3.1)

Here for A ∈ R
p×p, ‖A‖Σ and ‖A‖max refer to its entropy-loss norm

p−1/2‖Σ−1/2AΣ−1/2‖F and entry-wise max-norm maxi,j |Aij |. As is pointed out
by Fan et al. (2011) and Wang and Fan (2017), they are relevant to portfolio

selection and risk management. In addition, convergence rates for ‖Σ̂−1−Σ−1‖2,
‖Σ̂u −Σu‖2 and ‖Σ̂−1

u −Σ−1
u ‖2 are also established.

Now we come to covariance estimation with latent factors. As is mentioned in
Section 2.1, the Pervasiveness Assumption 2.1 helps separate the low-rank part
BB⊤ from the sparse part Σu in (2.1). Fan et al. (2013) proposed a Principal
Orthogonal complEment Thresholding (POET) estimator, motivated by the rela-
tionship between PCA and factor model, and the estimation of sparse covariance
matrix Σu in Fan et al. (2011). The procedure is described as follows.

Step 1. Let S = 1
n

∑n
i=1 xix

⊤
i be the sample covariance matrix, {λ̂j}pj=1 be the

eigenvalues of S in non-ascending order, {ξ̂j}pj=1 be their corresponding eigenvec-
tors.

Step 2. Apply thresholding to Su = S−∑K
j=1 λ̂j ξ̂j ξ̂

⊤
j and obtain a regularized

estimator Σ̂u.

Step 3. The final estimator is Σ̂ =
∑K

j=1 λ̂j ξ̂j ξ̂
⊤
j + Σ̂u.

Here K is assumed to be known and bounded to simplify presentation and
emphasize the main ideas. The methodology and theory in Fan et al. (2013) also
allow using a data-driven estimate K̂ of K. In Step 2 above we can choose from
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18 FAN, WANG, ZHONG AND ZHU

a large class of thresholding rules, and it is recommended to use the correlation-
based adaptive thresholding. However, the thresholding level should be set to

ω̃ ≍
√

log p
n + 1√

p . Compared to the level
√

log p
n we use in covariance estimation

with observed factors, the extra term 1/
√
p here is the price we pay for not

knowing the latent factors. It can be negligible when p grows much faster than
n. Intuitively, thanks to the Pervasiveness Assumption, the latent factors can be
estimated accurately in high dimensions. Fan et al. (2013) obtained theoretical
guarantees for the POET that are similar to (3.1). The analysis allows for general
sparsity patterns of Σu by consideringmq as the measure of sparsity for q ∈ [0, 1).

Robust procedures handling heavy-tailed data are proposed and analyzed by
Fan et al. (2018a,b). In another line of research, Li et al. (2017) considered es-
timation of the covariance matrix of a set of targeted variables, when additional
data beyond the variables of interest are available. By assuming a factor model
structure, they constructed an estimator taking advantage of all the data and
justified the information gain theoretically.

The Pervasiveness Assumption rules out the case where factors are weak and
the leading eigenvalues of Σ are not as large as O(p). Shrinkage of eigenvalues is
a powerful technique in this scenario. Donoho et al. (2013) systematically studied
the optimal shrinkage in spiked covariance model where all the eigenvalues except
several largest ones are assumed to be the same. Wang and Fan (2017) considered
the approximate factor model, which is more general, and proposed a new version
of POET with shrinkage for covariance estimation.

3.2 Principal component regression with random sketch

Principal component regression (PCR), first proposed by Hotelling (1933) and
Kendall (1965), is one of the most popular methods of dimension reduction in lin-
ear regression. It employs the principal components of the predictors xi to explain
or predict the response yi. Why do principal components, not other components,
have more prediction power? Here we offer an insight from the perspective of
high-dimensional factor models.

The basic assumption is that the unobserved latent factors fi ∈ R
K drive

simultaneously the covariates via (1.1) and responses, as shown in Figure 3. As
a specific example, we assume

yi = θ∗⊤fi + εi, i = 1, . . . , n, or in matrix form, y = Fθ∗ + ε,

where y = (y1, . . . , yn)
⊤ and the noise ε = (ε1, . . . , εn)

⊤ has zero means. Since
fi is latent and the covariate vector is high dimensional, we naturally infer the
latent factors from the observed covariates via PCA. This yields the PCR.

By (2.2) (assume µ = 0 for simplicity), yi ≈ (β†)⊤xi + εi, where β† :=
B(B⊤B)−1θ∗ ∈ R

p. This suggests that if we directly regress yi over xi, then
the regression coefficient β† should lie in the column space spanned by B. This
inspires the core idea of PCR, i.e., instead of seeking the least square estima-
tor in the entire R

p space, we restrict our search scope to be the left leading
singular space of X, which is approximately the column space of B under the
Pervasiveness Assumption.

Let us discuss PCR more rigorously. To be consistent with the rest of this
paper, we let X ∈ R

p×n, which is different from conventions, and

(3.2) yi = x⊤
i β

∗ + εi, i = 1, . . . , n, or in matrix form, y = X⊤β∗ + ε.
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Fig 3. Illustration of the data generation mechanism in PCR. Both predictors xi and responses
yi are driven by the latent factors fi. PCR extracts latent factors via the principal components
from X, and uses the resulting estimate F̂ as the new predictor. Regressing y against F̂ leads
to the PCR estimator θ̂ ∈ R

K , which typically enjoys a smaller variance due to its reduced
dimension, though it introduces bias.

Let X = (x1, . . . ,xn) = PΣQ⊤ be the SVD of X, where Σ =
diag(σ1, . . . , σmin(n,p)) with non-increasing singular values. For some integer K
satisfying 1 ≤ K ≤ min(n, p), write P = (PK ,PK+) and Q = (QK ,QK+). The
PCR estimator β̂K solves the following optimization problem:

(3.3) β̂K := argmin
P⊤

K+β=0
‖y −X⊤β‖2.

It is easy to verify that

(3.4) β̂K = PKΣ−1
K Q⊤

Ky = PKP⊤
Kβ∗ +PKΣ−1

K Q⊤
Kε,

whereΣK ∈ R
K×K is the top left submatrix ofΣ. The following lemma calculates

the excess risk of β̂K , i.e., E(β̂K) := Eε[‖X⊤β̂K−X⊤β∗‖22/n], treatingX as fixed.
The proof is relegated to the appendix.

Lemma 3.1. Let p1, . . . ,pmin{n,p} ∈ R
p be the column vectors of P. For j =

1, . . . , p, denote αj = (β∗)⊤pj. We have

E(β̂K) =
Kσ2

n
+

p∑

j=K+1

λ2jα
2
j .

Define the ordinary least squares (OLS) estimator β̂ := (XX⊤)−1Xy. Note
that E(β̂) = Eε[‖X⊤β̂ − X⊤β∗‖22/n] = min(n, p)σ2/n. Comparing E(β̂K) and

E(β̂), one can clearly see a variance-bias tradeoff: PCR reduces the variance by
introducing a bias term

∑
j λ

2
jα

2
j , which is typically small and vanishes in the

ideal case P⊤
K+β

∗ = 0 —this is the bias incurred by imposing the constraint in
(3.3).

In the high-dimensional setting where p is large, calculating PK using SVD is
computationally expensive. Recently, sketching has gained growing attention in
statistics community and is used for downscaling and accelerating inference tasks
with massive data. See recent surveys by Woodruff (2014) and Yang et al. (2016).
The essential idea is to multiply the data matrix by a sketch matrix to reduce
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its dimension while still preserving the statistical performance of the procedure,
since random projection reduces the strength of the idiosyncratic noise. To apply
sketching to PCR, we first multiply the design matrix X by an appropriately
chosen matrix R ∈ R

p×m with K ≤ m < p:

(3.5) X̃ := R⊤X,

where R is called the “sketching matrix”. This creates m indices based on X.
From the factor model perspective (assuming µ = 0), with a proper choice of R,
we have X̃ ≈ R⊤BF⊤, since the idiosyncratic components in (1.1) is averaged
out due to weak dependence of u. Hence, the indices in X̃ are approximately
linear combinations of the factors {fi}ni=1. At the same time, since m ≥ K and R

is nondegenerate, the row space of X̃ is approximately the same as that spanned
by F⊤. This shows running linear regression on X̃ is approximately the same as
running it on F⊤, without using the computationally expensive PCA.

We now examine the property of sketching approach beyond the factor mod-
els. Let X̃ = P̃Σ̃Q̃⊤ be the SVD of X̃, and write P̃ = (P̃K , P̃K+) and
Q̃ = (Q̃K , Q̃K+). Imitating the form of (3.4), we consider the following sketched
PCR estimator:

(3.6) β̃K := RP̃KΣ̃
−1

K Q̃⊤
Ky,

where Σ̃K ∈ R
K×K is the top left submatrix of Σ̃.

We now explain the above construction for β̃K . It is easy to derive from (3.4)
that given R⊤X and y as the design matrix and response vector, the PCR esti-

mator should be β̃
0

K := P̃KΣ̃
−1

K Q̃⊤
Ky. Then the corresponding PCR projection

of y onto R⊤X should be X⊤Rβ̃
0

K = X⊤RP̃KΣ̃
−1

K Q̃⊤
Ky = X⊤β̃K . This leads

to the construction of β̃K in (3.6). Theorem 4 in Mor-Yosef and Avron (2018)
gives the excess risk of β̃K , which holds for any R satisfying the conditions of
the theorem.

Theorem 3.1. Assume m ≥ K and rank(R⊤X) ≥ K. If ‖ sinΘ(P̃K ,PK)‖2
≤ ν < 1, then

(3.7) E(β̃K) ≤ E(β̂K) +
(2ν + ν2)‖X⊤β∗‖22

n
.

This theorem shows that the extra bias induced by sketching is (2ν +
ν2)‖X⊤β∗‖22/n. Given the bound of E(β̂K) in Lemma 3.1, we can deduce that

E(β̃K) ≤ Kσ2

n
+

p∑

j=K+1

α2
jσ

2
j +

(2ν + ν2)‖X⊤β∗‖22
n

.

As we will see below, a smaller ν requires a larger m, and thus more computation.
Therefore, we observe a tradeoff between statistical accuracy and computational
resources: if we have more computational resources, we can allow a large dimen-
sion of sketched matrix X̃, and the sketched PCR is more accurate, and vice
versa.

One natural question thus arises: which R should we choose to guarantee a
small ν to retain the statistical rate of β̂K? Recent results (Cohen et al., 2015) on
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approximate matrix multiplication (AMM) suggest several candidate sketching
matrices for R. Define the stable rank sr(X) := ‖X‖2F /‖X‖22, which can be inter-
preted as a soft version of the usual rank—indeed, sr(X) ≤ rank(X) always holds,
and sr(X) can be small if X is approximately low-rank. An example of candidate
sketching matrices forR is a random matrix with independent and suitably scaled
sub-Gaussian entries. As long as the sketch size m = Ω(sr(X) + log(1/δ)/ε2), it
will hold for any ε, δ ∈ (0, 1/2) that

(3.8) P(‖X⊤RR⊤X−X⊤X‖22 ≥ ε‖X‖22) ≤ δ.

Combining this with the Davis-Kahan Theorem (Corollary 2.1), we can deduce
that ‖sinΘ(P̃K ,PK)‖2 is small with certain eigen-gap condition. We summarize
our argument by presenting a corollary of Theorem 9 in Mor-Yosef and Avron
(2018) below. Readers can find more candidate sketching matrices in the examples
after Theorem 1 in Cohen et al. (2015).

Corollary 3.1. For any ν, δ ∈ (0, 1/2), let

ε = ν(1 + ν)−1(σ2K − σ2K+1)/σ
2
1.

Let R ∈ R
p×m a random matrix with i.i.d. N (0, 1/m) entries. Then there exists a

universal constant C > 0 such that for any δ > 0, if m ≥ C(sr(X)+log(1/δ)/ε2),
it holds with probability at least 1− δ that

(3.9) E(β̃K) ≤ E(β̂K) +
(2ν + ν2)‖X⊤β∗‖22

n
.

Remark 3.1. Note that ε ≤ ν(σ2K − σ2K+1)/σ
2
1, and this bound is tight with

a small ν. Some algebra yields that (3.9) holds when

m = Ω
(
sr(X) +

σ21 log(1/δ)

ν2(σ2K − σ2K+1)
2

)
.

One can see that reducing ν requires a larger sketch size m. Besides, a large
eigengap of the design matrix X helps reduce the required sketch size.

3.3 Factor-Adjust Robust Multiple (FARM) tests

Large-scale multiple testing is a fundamental problem in high-dimensional in-
ference. In genome-wide association studies and many other applications, tens of
thousands of hypotheses are tested simultaneously. Standard approaches such as
Benjamini and Hochberg (1995) and Storey (2002) can not control well both false
and missed discovery rates in the presence of strong correlations among test statis-
tics. Important efforts on dependence adjustment include Efron (2007), Friguet
et al. (2009), Efron (2010), and Desai and Storey (2012). Fan et al. (2012) and
Fan and Han (2017) considered FDP estimation under the approximate factor
model. Wang et al. (2017) studied a more complicated model with both observed
variables and latent factors. All these existing papers heavily rely on the joint
normality assumption of the data, which is easily violated in real applications. A
recent paper (Fan et al., 2017a) developed a factor-adjusted robust procedure that
can handle heavy-tailed data while controlling FDP. We are going to introduce
this method in this subsection.

imsart-sts ver. 2014/10/16 file: FactorModelReview.tex date: November 1, 2020



22 FAN, WANG, ZHONG AND ZHU

Suppose our i.i.d. observations {xi}ni=1 satisfy the approximate factor model
(1.1) where µ ∈ R

p is an unknown mean vector. To make the model identifiable,
we use the Identifiability Assumption 1.1. We are interested in simultaneously
testing

H0j : µj = 0 versus H1j : µj 6= 0, for j ∈ [p].

Let Tj be a generic test statistic for H0j . For a pre-specified level z > 0, we
reject H0j whenever |Tj | ≥ z. The numbers of total discoveries R(z) and false
discoveries V (z) are defined as

R(z) = #{j : |Tj | ≥ z} and V (z) = #{j : |Tj | ≥ z, µj = 0}.

Note that R(z) is observable while V (z) needs to be estimated. Our goal is to
control the false discovery proportion FDP(z) = V (z)/R(z) with the convention
0/0 = 0.

Näıve tests based on sample averages 1
n

∑n
i=1 xi suffer from size distortion of

FDP control due to dependence of common factors in (1.1). On the other hand,
the factor-adjusted test based on the sample averages of xi −Bfi (B and fi need
to be estimated) has two advantages: the noise ui is now weakly dependent so
that FDP can be controlled with high accuracy, and the variance of ui is smaller
than that of Bfi + ui in model (1.1), so that it is more powerful. This will be
convincingly demonstrated in Figure 5 below. The factor-adjusted robust multiple
test (FarmTest) is a robust implementation of the above idea (Fan et al., 2017a),
which replaces the sample mean by its adaptive Huber estimation and extracts
latent factors from a robust covariance input.

To begin with, we consider the Huber loss (Huber, 1964) with the robustifica-
tion parameter τ ≥ 0:

ℓτ (u) =

{
u2/2, if |u| ≤ τ

τ |u| − τ2/2, if |u| > τ
,

and use µ̂j = argmaxθ∈R
∑n

i=1 ℓτ (xij − θ) as a robust M -estimator of µj . Fan
et al. (2017a) suggested choosing τ ≍

√
n/ log(np) to deal with possible asymmet-

ric distribution and called it adaptive Huber estimator. They showed, assuming
bounded fourth moments only, that

(3.10)
√
n(µ̂j − µj − b⊤

j f̄) = N (0, σu,jj) + oP(1) uniformly over j ∈ [p],

where f̄ = 1
n

∑n
i=1 fi, and σu,jj is the (j, j)th entry of Σu as is defined in (2.1).

Assuming for now that {bj}pj=1, f̄ and {σu,jj}pj=1 are all observable, then the

factor-adjusted test statistic Tj =
√
n/σu,jj(µ̂j −b⊤

j f̄) is asymptotically N (0, 1).
The law of large numbers implies that V (z) should be close to 2p0Φ(−z) for
z ≥ 0, where Φ(·) is the cumulative distribution function of N (0, 1), and p0 =
#{j : µj = 0} is the number of true nulls. Hence

FDP(z) =
V (z)

R(z)
≈ 2p0Φ(−z)

R(z)
≤ 2pΦ(−z)

R(z)
=: FDPA(z).

Note that in the high-dimensional and sparse regime, we have p0 = p− o(p) and
thus FDPA(z) is only a slightly conservative surrogate. However, we can also
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estimate the proportion π0 = p0/p and use less conservative estimate FDPA(z) =
2pπ̂0Φ(−z)/R(z) instead, where π̂0 is an estimate of π0 whose idea is depicted in
Figure 4; see Storey (2002). Finally, we define the critical value zα = inf{z ≥ 0 :
FDPA(z) ≤ α} and reject H0j whenever |Tj | ≥ zα.

P−values from sig. genes

P−values

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

Dist of P−values

P−values

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

estimated prop

Fig 4. Estimation of proportion of true nulls. The observed P-values (right panel) consist of those
from significant variables (genes), which are usually small, and those from insignificant variables,
which are uniformly distributed. Assuming the P-values for significant variables are mostly less
than λ (taken to be 0.5 in this illustration, left panel), the contributions of observed P-values > λ

are mostly from true nulls and this yields a natural estimator π̂0(λ) =
1

(1−λ)p

∑p

j=1 1(P̂j > λ),

which is the average height of the histogram with P-values > λ (red line). Note that the histograms
above the red line estimates the distributions of P-values from the significant variavles (genes)
in the left panel.

In practice, we have no access to {bj}pj=1, f̄ or {σu,jj}pj=1 in (3.10) and need
to use their estimates. This results in the Factor-Adjusted Robust Multiple test
(FarmTest) in Fan et al. (2017a). The inputs include {xi}ni=1, a generic robust co-

variance matrix estimator Σ̂ ∈ R
p×p from the data, a pre-specified level α ∈ (0, 1)

for FDP control , the number of factors K, and the robustification parameters γ
and {τj}pj=1. Note that K can be estimated by the methods in Section 2.2, and
overestimating K has little impact on final outputs.

Step 1. Denote by Σ̂ ∈ R
p×p a generic robust covariance matrix estimator.

Compute the eigen-decomposition of Σ̂, set {λ̂j}Kj=1 to be its top K eigenvalues

in descending order, and {v̂j}Kj=1 to be their corresponding eigenvectors. Let

B̂ = (λ̃
1/2
1 v̂1, . . . , λ̃

1/2
K v̂K) ∈ R

p×K where λ̃j = max{λ̂j , 0}, and denote its rows

by {b̂j}pj=1.

Step 2. Let x̄j =
1
n

∑n
i=1 xij for j ∈ [p] and f̂ = argmaxf∈RK

∑p
j=1 ℓγ(x̄j−b̂⊤

j f).
Construct factor-adjusted test statistics

(3.11) Tj =
√
n/σ̂u,jj(µ̂j − b̂⊤

j f̂) for j ∈ [p],

where σ̂u,jj = θ̂j − µ̂2j − ‖b̂j‖22, θ̂j = argmin
θ≥µ̂2j+‖b̂j‖22

ℓτj (x
2
ij − θ).

Step 3. Calculate the critical value zα = inf{z ≥ 0 : FDPA(z) ≤ α}, where
FDPA(z) = 2π̂0pΦ(−z)/R(z), and reject H0j whenever |Tj | ≥ zα.

In Step 2, we estimate f̄ based on x̄j = µj + b̂⊤
j f̄ + ūj , which is implied by the
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Histogram of Sample Means with Factor Adjustment
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Histogram of Robust Means
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Histogram of Robust Means with Factor Adjustment
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Fig 5. Histograms of four different mean estimators for simultaneous inference. Fix n = 100,
p = 500 and K = 3, and data are generated i.i.d. from t3, which is heavy-tailed. Dashes lines
correspond to µj = 0 and µj = 0.6, which is unknown. Robustification and factor adjustment
help distinguish nulls and alternatives.

factor model (1.1), and regard non-vanishing µj as an outlier. In the estimation of
σu,jj , we used the identity θj := Ex2ij = µ2j +‖bj‖2+σu,jj and robustly estimated
the second moment θj .

Figure 5 is borrowed from Figure 1 in Fan et al. (2017a) that illustrates the ef-
fectiveness of this procedure. Here n = 100, p = 500,K = 3, fi ∼ N (0, I3) and the
entries of ui are generated independently from the t-distribution with 3 degrees
of freedom. It is known that t−distributions are not sub-Guassian variables and
are often used to model heavy-tailed data. The unknown means µ ∈ R

p are fixed
as µj = 0.6 for j ≤ 125 and µj = 0 otherwise. We plot the histograms of sample
means, robust mean estimators, and their counterparts with factor-adjustment.
The latent factors and heavy-tailed errors make it difficult to distinguish µj = 0.6
from µj = 0, and that explains why the sample means behave poorly. As is shown
in Figure 5, better separation can be obtained by factor adjustment and robusti-
fication.

While existing literature usually imposes the joint normal assumption on
{fi,ui}ni=1, the FarmTest only requires the coordinates of {ui}ni=1 to have bounded
fourth-order moments, and {fi}ni=1 to be sub-Gaussian. Under standard regular-
ity conditions for the approximate factor model, it is proved by Fan et al. (2017a)
that

FDPA(z)− FDP(z) = oP(1).

We see that FDPA is a valid approximation of FDP, which is therefore faithfully
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controlled by the FARM-Test.

3.4 Factor-Adjusted Robust Model (FARM) selection

Model selection is one of the central tasks in high dimensional data analysis.
Parsimonious models enjoy interpretability, stability and oftentimes, better pre-
diction accuracy. Numerous methods for model selection have been proposed in
the past two decades, including, Lasso (Tibshirani, 1996), SCAD (Fan and Li,
2001), the elastic net Zou and Hastie (2005), the Dantzig selector (Candes and
Tao, 2007), among others. However, these methods work only when the covari-
ates are weakly dependent or statisfy certain regularity conditions (Zhao and Yu,
2006; Bickel et al., 2009). When covariates are strongly correlated, Paul et al.
(2008); Kneip and Sarda (2011); Wang (2012); Fan et al. (2016a) used factor
model to eliminate the dependencies caused by pervasive factors, and to conduct
model selection using the resulting weakly correlated variables.

Assume that {xi}ni=1 follow the approximate factor model (1.1). As a standard
assumption, the coordinates of wi = (f⊤i ,u

⊤
i )

⊤ ∈ R
K+p are weakly dependent.

Thanks to this condition and the decomposition

x⊤
i β = (µ+Bfi + ui)

⊤β = α+ u⊤
i β + f⊤i γ(3.12)

where α = µTβ and γ = B⊤β. we may treat wi as the new predictors. In other
words, by lifting the number of variables from p to p +K, the covariates of wi

are now weakly dependent. The usual regularized estimation can now be applied
to this new set of variables. Note that we regard the coefficients B⊤β as free
parameters to facilitate the implementation (ignoring the relation γ = B⊤β) and
this requires an additional assumption to make this valid (Fan et al., 2016a).

Suppose we wish to fit a model yi = g(x⊤
i β, εi) via a loss function L(yi,x

⊤
i β).

The above idea suggests the following two-step approach, which is called Factor-
Adjusted Regularized (or Robust when so implemented) Model selection (Farm-
Select) (Fan et al., 2016a).

Step 1: Factor estimation. Fit the approximate factor model (1.1) to get B̂, f̂i
and ûi = xi − B̂f̂i.

Step 2: Augmented regularization. Find α, β and γ to minimize

n∑

i=1

L(yi, α+ û⊤
i β + f̂⊤i γ) +

p∑

j=1

pλ(|βj |),

where pλ(·) is a folded concave penalty (Fan and Li, 2001) with parameter λ.

In Step 1, standard estimation procedures such as POET (Fan et al., 2013)
and S-POET (Wang and Fan, 2017) can be applied, as long as they produce
consistent estimators of B, {fi}ni=1 and {ui}ni=1. Step 2 is carried out using usual
regularization methods with new covariates.

Figure 6, borrowed from Figure 3 (a) in Fan et al. (2016a), shows that the
proposed method outperforms other popular ones for model selection including
Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001) and elastic net (Zou and
Hastie, 2005), in the presence of correlated covariates. The basic setting is sparse
linear regression y = x⊤β∗ + ε with p = 500 and n growing from 50 to 160.
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The true coefficients are β∗ = (β1, · · · , β10,0p−10)
⊤, where {βj}10j=1 are drawn

uniformly at random from [2, 5], and ε ∼ N (0, 0.3). The correlation structure of
covariates x is calibrated from S&P 500 monthly excess returns between 1980
and 2012.

●

●

●

●

●
●

● ● ● ● ● ●

60 80 100 120 140 160

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Model selection consistency rate with respect to N (P=500)

Sample size N

M
o

d
e

l 
s
e

le
c
ti
o

n
 c

o
n

s
is

te
n

c
y
 r

a
te

● ● ● ● ● ●
●

●
●

●
●

●
●

●

● ●

● ●

●
●

●

● ● ●

● ● ● ● ● ●
●

●
●

●
●

●

FarmSelect

Lasso

SCAD

Elastic Net

Fig 6. Model selection consistency rate, i.e., the proportion of simulations that the selected model
is identical to the true one, with p = 500 and n varying from 50 to 160. With moderate sample
size, the proposed method faithfully identifies the correct model while other methods cannot.

Under the generalized linear model, L(y, z) = −yz + b(z) and b(·) is a convex
function. Fan et al. (2016a) analyzed theoretical properties of the above proce-
dure. As long as the coordinates of wi (rather than xi) are not too strongly
dependent and the factor model is estimated to enough precision, β̂ enjoys op-
timal rates of convergence ‖β̂ − β∗‖q = OP(|S|1/q

√
log p/n), where q = 1, 2 or

∞. When the minimum entry of |β∗| is at least Ω(
√

log p/n), the model selection
consistency is achieved.

When we use the square loss, this method reduces to the one in Kneip and
Sarda (2011). By using the square loss and replacing the penalized multiple re-
gression in Step 2 with marginal regression, we recover the factor-profiled variable
screening method in Wang (2012). While these papers aim at modeling and then
eliminating the dependencies in xi via (1.1), Paul et al. (2008) used a factor
model to characterize the joint distribution of (yi,x

⊤
i )

⊤ and develops a related
but different approach.

4. RELATED LEARNING PROBLEMS

4.1 Gaussian mixture model

PCA, or more generally, spectral decomposition, can be also applied to learn
mixture models for heterogeneous data. A thread of recent papers (Hsu and
Kakade, 2013; Anandkumar et al., 2014; Yi et al., 2016; Sedghi et al., 2016)
apply spectral decomposition to lower-order moments of the data to recover the
parameters of interest in a wide class of latent variable models. Here we use the
Gaussian mixture model to illustrate their idea. Consider a mixture ofK Gaussian
distributions with spherical covariances. Let wk ∈ (0, 1) be the probability of
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choosing component k ∈ {1, . . . ,K}, and {µ1, . . . ,µk} ⊆ R
p be the component

mean vectors, and {σ2kIp}Kk=1 be the component covariance matrices, which is
required by Hsu and Kakade (2013) and Anandkumar et al. (2014). Each data
vector x ∼ w1N (µ1, σ

2
1Ip) + · · · + wKN (µK , σ

2
KIp) follows the mixture of the

Gaussian distribution. The parameters of interest are {wk,µk, σ2k}Kk=1.
Hsu and Kakade (2013) and Anandkumar et al. (2014) shed lights on the close

connection between the lower-order moments of the data and the parameters of
interest, which motivates the use of Method of Moments (MoM). Denote the
population covariance E[(x−Ex)(x−Ex)⊤] by Σ. Below we present Theorem 1
in Hsu and Kakade (2013) to elucidate the moment structure of the problem.

Theorem 4.1. Suppose that {µk}Kk=1 are linearly independent. Then the av-

erage variance σ2ave := K−1
K∑
k=1

σ2k is the smallest eigenvalue of Σ. Let v be any

eigenvector of Σ that is associated with the eigenvalue σ2ave. Define the following
quantities:

M1 = E[(v⊤(x− Ex))2x] ∈ R
p,

M2 = E[x⊗ x]− σ2ave · Ip ∈ R
p×p,

M3 = E[x⊗ x⊗ x]−
p∑

j=1

(M1 ⊗ ej ⊗ ej + ej ⊗M1 ⊗ ej + ej ⊗ ej ⊗M1) ∈ R
p×p×p.

Then we have

(4.1) M1 =
K∑

k=1

wkσ
2
kµk, M2 =

K∑

k=1

wkµk ⊗ µk, M3 =
K∑

k=1

wkµk ⊗ µk ⊗ µk,

where the notation ⊗ represents the tensor product.

Theorem 4.1 gives the relationship between the moments of the first three or-
ders of x and the parameters of interest. With {Mi}3i=1 replaced by their empirical
versions, the remaining task is to solve for all the parameters of interest via (4.1).
Hsu and Kakade (2013) and Anandkumar et al. (2014) proposed a fast method
called robust tensor power method to compute the estimators. The crux therein is
to construct an estimable third-order tensor M̃3 that can be decomposed as the
sum of orthogonal tensors based on µk. This orthogonal tensor decomposition
can be regarded as an extension of spectral decomposition to third-order tensors
(simply speaking, three-dimensional arrays). Then the power iteration method is

applied to the estimate of M̃3 to recover each µk, as well as other parameters.
Specifically, consider first the following linear transformation of µk:

(4.2) µ̃k :=
√
ωkW

⊤µk

for k ∈ [K], where W ∈ R
p×K . The key is to use the whitening transformation by

setting W to be a square root of M2. This ensures that {µ̃k}Kk=1 are orthogonal
to each other. Denoting a⊗3 = a⊗ a⊗ a,

(4.3) M̃3 :=
K∑

k=1

ωk(W
⊤µk)

⊗3 =
K∑

k=1

1√
ωk

µ̃⊗3
k ∈ R

K×K×K
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is an orthogonal tensor decomposition; that is, it satisfies orthogonality of
{µ̃k}Kk=1. The following theorem from Anandkumar et al. (2014) summarizes the
above argument, and more importantly, it shows how to obtain µk back from µ̃k.

Theorem 4.2. Suppose the vectors {µk}Kk=1 are linearly independent, and
the scalars {ωk}Kk=1 are strictly positive. Let M2 = UDU⊤ be the spectral de-
composition of M2 and let W = UD−1/2. Then {µ̃k}Kk=1 in (4.2) are orthog-
onal to each other. Furthermore, the Moore-Penrose pseudo-inverse of W is
W† := D1/2U⊤ ∈ R

K×p, and we have µk = (W†)⊤µ̃k/
√
ωk for k ∈ [K].

As promised, the orthogonal tensor M̃3 can be estimated from empirical mo-
ments. We will make use of the following identity, which is similar to Theorem 4.1.

(4.4) M̃3 = E[(W⊤x)⊗3]−
p∑

j=1

∑

cyc

(W⊤M1)⊗ (W⊤ej)⊗ (W⊤ej),

where we used the cyclic sum notation
∑

cyc

a⊗ b⊗ c := a⊗ b⊗ c+ b⊗ c⊗ a+ c⊗ a⊗ b.

Note that W⊤ej ∈ R
K is simply the jth row of W. To obtain an estimate of

M̃3, we replace the expectation E by the empirical average, and substitute W

and M1 by their plug-in estimates. It is worth mentioning that, because M̃3 has
a smaller size than M3, computations involving M̃3 can be implemented more
efficiently.

Once we obtain an estimate of M̃3, which we denote by M3, to recover
{µk}Kk=1, {ωk}Kk=1 and {σ2k}Kk=1, the only task left is computing the orthogonal
tensor decomposition (4.3) for M3. The tensor power method in Anandkumar
et al. (2014) is shown to solve this problem with provable computational guaran-
tees. We omit the details of the algorithm here. Interested readers are referred to
Section 5 of Anandkumar et al. (2014) for the introduction and analysis of this
algorithm.

To conclude this subsection, we summarize the entire procedure of estimating
{µk, σk, ωk}Kk=1 as below.

Step 1. Calculate the sample covariance matrix Σ̂ := n−1
n∑
i=1

(xi−x)(xi−x)⊤,

its minimum eigenvalue σ̂2ave and its associated eigenvector v̂.

Step 2. Derive the estimators M̂1, M̂2, M̂3 based on Theorem 4.1 by plug-in
of empirical moments of x, v̂ and σ̂2ave.

Step 3. Calculate the spectral decomposition M̂2 = ÛD̂Û⊤. Let Ŵ = ÛD̂−1/2.
Construct an estimator of M̃3, denoted by M3, based on (4.4) by plug-in of

empirical moments of Ŵ⊤x, Ŵ and M̂1. Apply the robust tensor power method
in Anandkumar et al. (2014) to M3 and obtain {µk}Kk=1 and {ω̂k}Kk=1.

Step 4. Set Ŵ† = D̂1/2Û⊤ and µ̂k = (Ŵ†)⊤µk/
√
ω̂k. Solve the linear equation

M̂1 =
K∑
k=1

ω̂kσ̂
2
kµ̂k for {σ̂2k}Kk=1.
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Fig 7. In both heatmaps, a dark pixel represents an entry with value 1 in a matrix, and a
white pixel represents an entry with value 0. The left heatmap shows the (observed) adjacency
matrix A of size n = 40 generated from the SBM with two equal-sized blocks (K = 2), with
edge probabilities 5 log n/n (within blocks) and log n/(4n) (between blocks). The right heatmap

shows the same matrix with its row indices and column indices suitably permutated based on
unobserved zi. Clearly, we observe an approximate rank-2 structure in the right heatmap. This
motivates estimating zi via the second eigenvector.

4.2 Community detection

In statistical modeling of networks, the stochastic block model (SBM), first
proposed by Holland et al. (1983), has gained much attention in recent years (see
Abbe, 2017 for a recent survey). Suppose our observation is a graph of n vertices,
each of which belongs to one of K communities (or blocks). Let the vertices be
indexed by [n], and the community that vertex i belongs to is indicated by an
unknown θi ∈ [K]. In SBM, the probability of an edge between two vertices
depends entirely on the membership of the communities. To be specific, let W ∈
R
K×K be a symmetric matrix where each entry takes value in [0, 1], and let

A ∈ R
n×n be the adjacency matrix, i.e., Aij = 1 if there is an edge between

vertex i and j, and Aij = 0 otherwise. Then, the SBM assumes

P(Aij = 1) =Wkℓ with θi = k, θj = ℓ

and {Aij}i>j are independent. Here, for ease of presentation, we allow self-
connecting edges. Figure 7 gives one realization of the network with two com-
munities.

Though seemingly different, this problem shares a close connection with PCA
and spectral methods. Let zi = ek (namely, the kth canonical basis in R

K) if θi =
k, indicating the membership of ith node, and define Z = [z1, . . . , zn]

⊤ ∈ R
n×K .

The expectation of A has a low-rank decomposition EA = ZWZ⊤ and

(4.5) A = ZWZ⊤ + (A− EA).

Loosely speaking, the matrix Z plays a similar role as factors or loading matrices
(unnormalized), and A−EA is similar to the noise (idiosyncratic component). In
the ideal situation, the adjacency matrix A and its expectation are close, and nat-
urally we expect the eigenvectors of A to be useful for estimating θi. Indeed, this
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observation is the underpinning of many methods (Rohe et al., 2011; Gao et al.,
2015; Abbe and Sandon, 2015). The vanilla spectral method for network/graph
data is as follows:

Step 1. Construct the adjacency matrix A or other similarity-based matrices;

Step 2. Compute eigenvectors v1, . . . ,vL corresponding to the largest eigenval-
ues, and form a matrix V = [v1, . . . ,vℓ] ∈ R

n×L;

Step 3. Run a clustering algorithm on the row vectors of V.

There are many variants and improvements of this vanilla spectral method.
For example, in Step 1, very often the graph Laplacian D − A or normalized
Laplacian D−1/2(D −A)D−1/2 is used in place of the adjacency matrix, where
D = diag(d1, . . . , dn), and di =

∑
j Aij is the degree of vertex i. If real-valued sim-

ilarities or distances between vertices are available, weighted graphs are usually
constructed. In Step 2, there are many other refinements over raw eigenvectors
in the construction of V, for example, projecting row vectors of V onto the unit
sphere (Ng et al., 2002), and calculating scores based on eigenvector ratios (Jin,
2015), etc. In Step 3, a very popular algorithm for clustering is the K-means
algorithm.

We will look at the vanilla spectral algorithm in its simplest form. Our goal
is exact recovery, which means finding an estimator θ̂ of θ = (θ1, . . . , θn)

⊤ such
that as n→ ∞,

P(there exists a permutation π of [K] s.t. θ̂i = π(θi), ∀ i ∈ [n]) = 1− o(1).

Note that we can only determine θ up to a permutation since the distribution
of our observation is invariant to permutations of [K]. There are nice theoretical
results, including information limits for exact recovery in Abbe et al. (2016).

Despite its simplicity, spectral methods can be quite sharp for exact recovery
in SBM, which succeed in a regime that matches the information limit. The next
theorem from Abbe et al. (2017) will make this point clear. Consider the SBM
with two balanced blocks, i.e., K = 2 and {i : θi = 1} = {i : θi = 2} = n/2,
and suppose W11 = W22 = a log n/n, W12 = b log n/n where a > b > 0. In this
case, one can easily see that the second eigenvector of EA is given by v∗

2 whose
ith entry is given by 1/

√
n if θi = 1 and −1 otherwise. In other words, sgn(v∗

2)
classifies the two communities, where sgn(·) is the sign function applied to each
entry of a vector. This is shown in Figure 2 for the case that #{i : θi = 1} = 2500
(red curve, left panel), where the second eigenvector v2 of A is also depicted
(blue curve). The entrywise closeness between these two quantities is guaranteed
by the perturbation theory under ℓ∞-norm (Abbe et al., 2017).

Theorem 4.3. Let v2 be the normalized second eigenvector of A. If
√
a −√

b <
√
2, then no estimator achieves exact recovery; if

√
a−

√
b >

√
2, then both

the maximum likelihood estimator and the eigenvector estimator sgn(v2) achieves
exact recovery.

The proof of this result is based on entry-wise analysis of eigenvectors in a spirit
similar to Theorem 2.4, together with a probability tail bound for differences of
binomial variables.
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4.3 Matrix completion

In recommendation systems, an important problem is to estimate users’ pref-
erences based on history data. Usually, the available data per user is very small
compared with the total number of items (each user sees only a small number of
movies and buys only a small fraction of books, comparing to the total). Matrix
completion is one formulation of such problem.

The goal of (noisy) matrix completion is to estimate a low-rank matrix M∗ ∈
R
n1×n2 from noisy observations of some entries (n1 users and n2 items). Suppose

we know rank(M∗) = K. For each i ∈ [n1] and j ∈ [n2], let Iij be i.i.d. Bernoulli
variable with P(Iij = 1) = p that indicates if we have observed information about
the entry M∗

ij , i.e., Iij = 1 if and only if it is observed. Also suppose that our

observation is Mij = M∗
ij + εij if Iij = 1, where εij is i.i.d. N (0, σ2) jointly

independent of Iij .
One natural way to estimate M∗ is to solve

min
X∈Rn1×n2

1

2
‖PΩ(M)− PΩ(X)‖2 subject to rank(X) = K,

where PΩ : Rn1×n2 → R
n1×n2 is the sampling operator defined by [PΩ(X)]ij =

IijXij , ∀i, j. The minimizer of this problem is essentially the MLE forM∗. Due to
the nonconvex constraint rank(X) = K, it is desirable to relax this optimization
into a convex program. A popular way to achieve that is to transform the rank
constraint into a penalty term λ‖X‖∗ that is added to the quadratic objective
function, where λ is a tuning parameter and ‖·‖∗ is the nuclear norm (that is, the
ℓ1 norm of the vector of all its singular values), which encourages a solution with
low rank (number of nonzero components in that vector). A rather surprising
conclusion from Candès and Recht (2009) is that in the noiseless setting, solving
the relaxed problem yields the same solution as the nonconvex problem with high
probability.

We can view this problem from the perspective of factor models. The assump-
tion that M∗ has low rank can be justified by interpreting each Mij as the linear
combination of a few latent factors. Indeed, ifMij is the preference score of user i
for item j, then it is reasonable to positMij = b⊤

i fj , where fj ∈ R
K is the features

item j possesses and bi ∈ R
K is the tendency of user i towards the features. In

this regard, M∗ = BF⊤ can be viewed as the part explained by the factors in
the factor models.

This discussion motivates us to write our observation as

PΩ(M) = pM∗+(PΩ(M
∗)−EPΩ(M

∗)+PΩ(E)), where E := (εij)i,j ∈ R
n1×n2 ,

since EPΩ(M
∗) = pM∗. This decomposition gives the familiar “low-rank plus

noise” structure. It is natural to conduct PCA on PΩ(M) to extract the low-rank
part.

Let the best rank-K approximation of PΩ(M) be given by
Udiag(σ1, . . . , σK)V⊤, where {σk}Kk=1 are the largest K singular values in
descending order, and columns of U ∈ R

n1×K ,V ∈ R
n2×K correspond to

their normalized left and right singular vectors, respectively. Similarly, we have
singular value decomposition M∗ = U∗diag(σ∗1, . . . , σ

∗
K)(V∗)⊤. The following

result from Abbe et al. (2017) provides entry-wise bounds for our estimates. For
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a matrix, denote by ‖ · ‖max the largest absolute value of all entries, and ‖ · ‖2→∞
the largest ℓ2 norm of all row vectors.

Theorem 4.4. Let n = n1 + n2, η = max{‖U‖2→∞, ‖V‖2→∞} and κ =
σ∗1/σ

∗
K . There exist constants C,C ′ > 0 and an orthogonal matrix R ∈ R

K×K

such that the following holds. If p ≥ 6 log n/n and κn(‖M
∗‖max+σ)
σ∗
r

√
logn
np ≤ 1/C,

then with at least probability 1− C/n,

max{‖UR−U∗‖max, ‖VR−V∗‖max} ≤ C ′ηκ
n(‖M∗‖max + σ)

σ∗r

√
log n

np
,

‖Udiag{σ1, . . . , σK}V⊤ −M∗‖max ≤ C ′η2κ4(‖M∗‖max + σ)

√
n log n

p
.

We can simplify the bounds with a few additional assumptions. If n1 ≍ n2,
then η is of order O(

√
K/n) assuming a bounded coherence number. In addition,

if κ is also bounded, then

‖Udiag{σ1, . . . , σK}V⊤ −M∗‖max . (‖M∗‖max + σ)

√
log n

np
.

We remark that the requirement on the sample ratio p & log n/n is the weakest
condition necessary for matrix completion, which ensures each row and column
and sampled with high probability. Also, the entry-wise bound above can recover
the Frobenius bound (Keshavan et al., 2010) up to a log factor. It is more precise
than the Frobenius bound, because the latter only provides control on average
error.

4.4 Synchronization problems

Synchronization problems are a class of problems in which one estimates signals
from their pairwise comparisons. Consider the phase synchronization problem as
an example, that is, estimating n angles θ1, . . . , θn from noisy measurements of
their differences. We can express an angle θℓ in the equivalent form of a unit-
modulus complex number zℓ = exp(iθℓ), and thus, the task is to estimate a
complex vector z = (z1, . . . , zn)

⊤ ∈ C
n. Suppose our measurements have the

form Cℓk = z̄ℓzk + σwℓk, where z̄ℓ denotes the conjugate of zℓ, and for all ℓ > k,
wℓk ∈ C is i.i.d. complex Gaussian variable (namely, the real part and imaginary
part of wℓk are N (0, 1/2) and independent). Then, the phase of Cℓk (namely
arg(Cℓk)) encodes the noisy difference θk − θℓ.

More generally, the goal of a synchronization problem is to estimate n signals
from their pairwise measurements, where each signal is an element from a group,
e.g., the group of rotations in three dimensions. Synchronization problems are
motivated from imaging problems such as cryo-EM (Shkolnisky and Singer, 2012),
camera calibration (Tron and Vidal, 2009), etc.

Synchronization problems also admit the “low-rank plus noise” structure. Con-
sider our phase synchronization problem again. If we let wkℓ = wℓk (ℓ > k) and
wℓℓ = 0, and write W = (wℓk)

n
ℓ,k=1, then our measurement matrix C = (Cℓk)

n
ℓ,k=1

has the structure
C = zz∗ + σW,
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where ∗ denotes the conjugate transpose. This decomposition has a similar form
to (4.5) in community detection. Note that zz∗ is a complex matrix with a single
nonzero eigenvalue n, and ‖σW‖2 is of order σ

√
n with high probability (which is

a basic result in random matrix theory). Therefore, we expect that no estimators
can do well if σ &

√
n. Indeed, the information-theoretic limit is established in

Lelarge and Miolane (2016). Our next result from Zhong and Boumal (2018) gives
estimation guarantees if the reverse inequality is true (up to a log factor).

Theorem 4.5. Let v ∈ C
n be the leading eigenvector of C such that ‖v‖2 =√

n and v∗z = |v∗z|. Then, if σ .
√
n/ log n, then with probability 1 − O(n−2),

the relative errors satisfy

n−1/2‖v − z‖2 . σ/
√
n, and ‖v − z‖∞ . σ

√
log n/n.

Moreover, the above two inequalities also hold for the maximum likelihood esti-
mator.

Note that the eigenvector of a complex matrix is not unique: for any α ∈ R,
the vector eiαv is also an eigenvector, so we fix the global phase eiα by restricting
v∗z = |v∗z|. Note also that the maximum likelihood estimator is different from v,
because the MLE must satisfy the entry-wise constraint |zℓ| = 1 for any ℓ ∈ [n].
This result implies consistency of v in terms of both the ℓ2 norm and the ℓ∞
norm if σ ≪

√
n/ log n, and thus, provides good evidence that spectral methods

(or PCA) are simple, generic, yet powerful.

APPENDIX A: PROOFS

Proof of Corollary 2.1. Notice that the result is trivial if δ0 ≤ 2‖Ã −
A‖2, since ‖(Ã − A)V‖2 ≤ ‖Ã − A‖2 and ‖ sinΘ(Ã,A)‖2 ≤ 1 always hold. If
δ0 > 2‖Ã−A‖2, then by Weyl’s inequality,

L(Ṽ⊥) ⊂ (−∞, α− δ0 + ‖Ã−A‖2] ∪ [β + δ0 − ‖Ã−A‖2,+∞).

Thus, we can set δ = δ0 − ‖Ã−A‖2 in Theorem 2.3 and derive

‖ sinΘ(Ṽ,V)‖2 ≤
‖Ã−A‖2

δ0 − ‖Ã−A‖2
≤ ‖Ã−A‖2

δ0 − δ0/2
= 2δ−1

0 ‖Ã−A‖2.

This proves the spectral norm case.

Proof of Theorem 2.4. Step 1: First, we derive a few elementary inequal-
ities: for any m ∈ [n],

(A.1) ‖W(m)‖2 ≤ ‖W‖2, ‖wm‖2 ≤ ‖W‖2, ‖W −W(m)‖2 ≤ 2‖W‖2.

To prove these inequalities, recall the (equivalent) definition of spectral norm for
symmetric matrices:

‖W‖2 = max
x,y∈Sn−1

x⊤Wy = max
x∈Sn−1

‖Wx‖2,
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where Sn−1 is the unit sphere in R
n, and x = (x1, . . . , xn)

⊤,y = (y1, . . . , yn)
⊤.

The first and second inequalities follow from

‖W‖2 ≥ max{x⊤Wy : x,y ∈ Sn−1, xm = ym = 0} = ‖W(m)‖2, and

‖W‖2 ≥ max
x∈Sn−1

|〈wm,x〉| = ‖wm‖2.

The third inequality follows from the first one and the triangle inequality.
Step 2: Next, by the definition of eigenvectors,

(A.2) ṽℓ − vℓ =
Ãṽℓ

λ̃ℓ
− vℓ =

(
Aṽℓ

λ̃ℓ
− vℓ

)
+

Wṽℓ

λ̃ℓ
.

We first control the entries of the first term on the right-hand side. Using the
decomposition (2.8), we have
(A.3)[
Aṽℓ

λ̃ℓ
− vℓ

]

m

=

(
λℓ

λ̃ℓ
〈vℓ, ṽℓ〉 − 1

)
[vℓ]m +

∑

k 6=ℓ,k≤K

λk

λ̃ℓ
〈vk, ṽℓ〉[vk]m, ∀m ∈ [n].

Using the triangle inequality, we have

∣∣∣∣
λℓ

λ̃ℓ
〈vℓ, ṽℓ〉 − 1

∣∣∣∣ ≤
∣∣∣∣
λℓ

λ̃ℓ
〈vℓ, ṽℓ〉 − 〈vℓ, ṽℓ〉

∣∣∣∣+|〈vℓ, ṽℓ〉 − 1| ≤ |λℓ − λ̃ℓ|
|λ̃ℓ|

+
1

2
‖ṽℓ − vℓ‖2 .

By Weyl’s inequality, |λ̃ℓ−λℓ| ≤ ‖W‖2, and thus |λ̃ℓ| ≥ |λℓ|−‖W‖2 ≥ δℓ−‖W‖2.
Also, by Corollary 2.1 (simplified Davis-Kahan’s theorem) and its following re-
mark, ‖ṽℓ − vℓ‖2 ≤ 2

√
2 ‖W‖2/δℓ. Therefore, under the condition δℓ ≥ 2‖W‖2,

∣∣∣∣
λℓ

λ̃ℓ
〈vℓ, ṽℓ〉 − 1

∣∣∣∣ ≤
‖W‖2

δℓ − ‖W‖2
+

4‖W‖22
δ2ℓ

≤ 2‖W‖2
δℓ

+
2‖W‖2
δℓ

=
4‖W‖2
δℓ

.

Using Corollary 2.1 again, we obtain

∑

k 6=ℓ,k≤K

λ2k

λ̃2ℓ
〈vk, ṽℓ〉2 .

∑

k 6=ℓ,k≤K
〈vk, ṽℓ〉2 ≤ 1−〈vℓ, ṽℓ〉2 = sin2 θ(vℓ, ṽℓ) ≤

4‖W‖22
δ2ℓ

,

where the first inequality is due to |λ̃ℓ| ≥ |λℓ|−‖W‖2 ≥ 4|λℓ|/5 and the condition
|λℓ| ≍ maxk∈[K] |λk|, and the second inequality is due to the fact that {vk}Kk=1

is a subset of orthonormal basis. Now we use the Cauchy-Schwarz inequality to
bound the second term on the right-hand side of (A.3) and get

(A.4)

∣∣∣∣
[Aṽℓ

λ̃ℓ
− vℓ

]
m

∣∣∣∣ .
‖W‖2
δℓ

(
K∑

k=1

[vk]
2
m

)1/2

.

Step 3: To bound the entries of the second term in (A.2), we use the leave-
one-out idea as follows.
(A.5)

[Wṽℓ]m = [Wṽ
(m)
ℓ ]m+[W(ṽℓ−ṽ

(m)
ℓ )]m = 〈wm, ṽ

(m)
ℓ 〉+〈wm, ṽℓ−ṽ

(m)
ℓ 〉, ∀m ∈ [n].

We can bound the second term using the Cauchy-Schwarz inequality: |〈wm, ṽℓ−
ṽ
(m)
ℓ 〉| ≤ ‖wm‖2‖ṽℓ− ṽ

(m)
ℓ ‖2. The crucial observation is that, if we view ṽℓ as the
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perturbed version of ṽ
(m)
ℓ , then by Theorem 2.3 (Davis-Kahan’s theorem) and

Weyl’s inequality, for any ℓ ∈ [K],

‖ṽℓ − ṽ
(m)
ℓ ‖2 ≤

√
2‖∆(m)ṽ

(m)
ℓ ‖2

δ̃
(m)
ℓ − ‖∆(m)‖2

, where ∆(m) := W −W(m).

Here, δ̃
(m)
ℓ is the eigen-gap of A +W(m), and it satisfies δ̃

(m)
ℓ ≥ δℓ − 2‖W(m)‖2

since |λ̃(m)
i − λi| ≤ ‖W(m)‖2 for all i ∈ [n], by Weyl’s inequality. By (A.1), we

have δ̃
(m)
ℓ − ‖∆(m)‖2 ≥ δℓ − 4‖W‖2. Thus, under the condition δℓ ≥ 5‖W‖2, we

have

‖ṽℓ − ṽ
(m)
ℓ ‖2 .

‖∆(m)ṽ
(m)
ℓ ‖2

δℓ
.

Note that the mth entry of the vector ∆(m)ṽ
(m)
ℓ is exactly 〈wm, ṽ

(m)
ℓ 〉, and other

entries are Wim[ṽ
(m)
ℓ ]m where i 6= m. Thus,

‖ṽℓ−ṽ
(m)
ℓ ‖2 .

1

δℓ


〈wm, ṽ

(m)
ℓ 〉2 +

∑

i 6=m
W 2
im[ṽ

(m)
ℓ ]2m




1/2

≤ 1

δℓ

(
|〈wm, ṽ

(m)
ℓ 〉|+ ‖wm‖2|[ṽ(m)

ℓ ]m|
)
,

where we used
√
a+ b ≤ √

a+
√
b (a, b ≥ 0). The above inequality, together with

|〈wm, ṽℓ − ṽ
(m)
ℓ 〉| ≤ ‖wm‖2‖ṽℓ − ṽ

(m)
ℓ ‖2, leads to a bound on [Wṽℓ]m in (A.5).

|[Wṽℓ]m| . |〈wm, ṽ
(m)
ℓ 〉|+ ‖wm‖2

δℓ

(
|〈wm, ṽ

(m)
ℓ 〉|+ ‖wm‖2|[ṽ(m)

ℓ ]m|
)

. |〈wm, ṽ
(m)
ℓ 〉|+ ‖wm‖2|[ṽ(m)

ℓ ]m|(A.6)

where we used δ−1
ℓ ‖wm‖2 ≤ δ−1

ℓ ‖W‖2 < 1. We claim that |[ṽ(m)
ℓ ]m| .

(
∑K

k=1[vk]
2
m)

1/2. Once this is proved, combining it with (A.4) and (A.6) yields
the desired bound on the entries of ṽℓ − vℓ in (A.2):

|[ṽℓ − vℓ]m| .
‖W‖2
δℓ

(
K∑

k=1

[vk]
2
m

)1/2

+
1

δℓ

(
|〈wm, ṽ

(m)
ℓ 〉|+ ‖wm‖2|[ṽ(m)

ℓ ]m|
)

.
‖W‖2
δℓ

(
K∑

k=1

[vk]
2
m

)1/2

+
|〈wm, ṽ

(m)
ℓ 〉|

δℓ
,

where, in the first inequality, we used |λ̃ℓ| ≥ |λℓ| − ‖W‖2 ≥ δℓ − δℓ/5 = 4δℓ/5,
and in the second inequality, we used ‖wm‖2 ≤ ‖W‖2 and the claim.

Step 4: Finally, we prove our claim that |[ṽ(m)
ℓ ]m| . (

∑K
k=1[vk]

2
m)

1/2. By

definition, λ̃
(m)
ℓ ṽ

(m)
ℓ = (A+W(m))ṽ

(m)
ℓ . Note that the mth row of W(m)ṽ

(m)
ℓ is

0, since W(m) has only zeros in its mth row. Thus,

[ṽ
(m)
ℓ ]m =

(
[ṽ

(m)
ℓ ]m − [vℓ]m

)
+ [vℓ]m =

[Aṽ
(m)
ℓ

λ̃
(m)
ℓ

− vℓ

]
m
+ [vℓ]m.
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With an argument similar to the one that leads to (A.4), we can bound the first
term on the right-hand side.

∣∣∣∣∣
[Aṽ

(m)
ℓ

λ̃
(m)
ℓ

− vℓ

]
m

∣∣∣∣∣ .
‖W(m)‖2

δℓ

(
K∑

k=1

[vk]
2
m

)1/2

≤
(

K∑

k=1

[vk]
2
m

)1/2

.

Clearly, |[vℓ]m| is also upper bounded by the right-hand side above. This proves
our claim and concludes the proof.

Proof of Corollary 2.2. Let us construct symmetric matrices A,W,W̃
of size n+ p via a standard dilation technique (Paulsen, 2002). Define

A =

(
0 L

L⊤ 0

)
, W =

(
0 E

E⊤ 0

)
, and Ã = A+W.

It can be checked that rank(A) = 2K, and importantly,

(A.7) A =
1

2

K∑

k=1

σk

(
uk
vk

)(
u⊤
k v⊤

k

)
− 1

2

K∑

k=1

σk

(
uk
−vk

)(
u⊤
k −v⊤

k

)
.

Step 1: Check the conditions of Theorem 2.4. The nonzero eigenvalues ofA are
±σk, (k ∈ [K]), and the corresponding eigenvectors are (u⊤

k ,±v⊤
k )

⊤/
√
2 ∈ R

n+p.
It is clear that the eigenvalue condition |λℓ| ≍ maxk∈[K] |λk| in Theorem 2.4 is
satisfied, and the eigen-gap δℓ of A is exactly γℓ. Since the identity (A.7) holds for
any matrix constructed from dilation, by applying it to W we get ‖W‖2 = ‖E‖2.

Step 2: Apply the conclusion of Theorem 2.4. Similarly as before, we write
W(m) as the matrix obtained by setting mth row and mth column of W to zero,
where m ∈ [n+ p]. We also denote Ã(m) = A+W(m). Using a similar argument
as Step 1, we find

(1) the eigenvectors of Ã are

(
ũk

±ṽk

)
/
√
2,

(2) the eigenvectors of Ã(i) are

( ∗
±ṽ

(i)
k

)
/
√
2, ∀ i ∈ [n], and

(3) the eigenvectors of Ã(n+j) are

(
ũ
(j)
k

∗

)
/
√
2, ∀ j ∈ [p],

where ∗ means some appropriate vectors we do not need in the proof (we do not
bother introducing notations for them). We also observe that

wm =

{
( 0 erowi )⊤, m = i ∈ [n]

( (ecolj )⊤ 0 )⊤, m = n+ j, j ∈ [p]

Note that the inner product between wm and the eigenvector of Ã(m) is

〈(erowi )⊤,±ṽ
(i)
k 〉 if m = i ∈ [n], or 〈ecolj , ũ

(j)
k 〉 if m = n + j, j ∈ [p]. Therefore,

applying Theorem 2.4 to the first n entries of

1√
2

(
ũℓ − uℓ
ṽℓ − vℓ

)
,

we obtain the first inequality of Corollary 2.2, and applying Theorem 2.4 to the
last p entries leads to the second inequality.
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Proof of Lemma 3.1.

Eε[‖X⊤β̂K −X⊤β∗‖22/n] = Eε[‖QKΣKP⊤
Kβ∗ +QKQ⊤

Kε−X⊤β∗‖22/n]
= Eε[‖QKQ⊤

Kε−QK+ΣK+P
⊤
K+β

∗‖22/n]

=
Kσ2

n
+ β∗⊤PK+︸ ︷︷ ︸

α⊤

Σ2
K+P⊤

K+β
∗

︸ ︷︷ ︸
α

.

=
Kσ2

n
+

d∑

j=K+1

λ2jα
2
j .
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