Submitted to Statistical Science

A selective overview of deep

learning
Jianging Fan, Cong Ma and Yigiao Zhong

Princeton University and Stanford University

Abstract. Deep learning has achieved tremendous success in recent
years. In simple words, deep learning uses the composition of many
nonlinear functions to model the complex dependency between input
features and labels. While neural networks have a long history, re-
cent advances have significantly improved their empirical performance
in computer vision, natural language processing, and other predictive
tasks. From the statistical and scientific perspective, it is natural to
ask: What is deep learning? What are the new characteristics of deep
learning, compared with classical statistical methods? What are the
theoretical foundations of deep learning?

To answer these questions, we introduce common neural network
models (e.g., convolutional neural nets, recurrent neural nets, genera-
tive adversarial nets) and training techniques (e.g., stochastic gradient
descent, dropout, batch normalization) from a statistical point of view.
Along the way, we highlight new characteristics of deep learning (in-
cluding depth and over-parametrization) and explain their practical and
theoretical benefits. We also sample recent results on theories of deep
learning, many of which are only suggestive. While a complete under-
standing of deep learning remains elusive, we hope that our perspectives
and discussions serve as a stimulus for new statistical research.

Key words and phrases: neural networks, over-parametrization, stochas-
tic gradient descent, approximation theory, generalization error.

MSC 2010 subject classifications: Primary 62-01, 62-02; secondary 62H-
30.

1. INTRODUCTION

Modern machine learning and statistics deal with the problem of learning from
data: given a training dataset {(vi,®;)}i<i<n where x; € R? contains the in-
put features and y; € R is the output', one secks a function f : R — R from
a certain function class F that has good prediction performance on test data.
This problem is of fundamental significance and finds applications in numerous

Department of ORFE, Princeton University, Princeton, NJ, 08544 (e-mail:

Jqfan@princeton.edu; congm@princeton.edu; yiqiaoz@stanford.edu)

*J. Fan is supported in part by the NSF grants DMS-1712591 and DMS-1662139, the NIH
grant RO1-GMO072611 and Cong Ma by the ONR grant N00014-19-1-2120.

When the label y is given, this problem is often known as supervised learning. We mainly
focus on this paradigm throughout this paper and remark sparingly on its counterpart, unsu-
pervised learning, where y is not given.

1
imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



2 J. FAN, C. MA, AND Y. ZHONG

contexts. For instance, in image recognition, the input x (reps. the output y)
corresponds to the raw image (reps. its category) and the goal is to find a map-
ping f(-) that can classify future images accurately. Decades of research efforts
in statistical machine learning have been devoted to developing methods to find
f () efficiently with provable guarantees. Prominent examples include linear classi-
fiers (e.g., linear / logistic regression, linear discriminant analysis), kernel methods
(e.g., support vector machines), tree-based methods (e.g., decision trees, random
forests), nonparametric regression (e.g., nearest neighbors, local kernel smooth-
ing), etc. Roughly speaking, each aforementioned method corresponds to a differ-
ent function class F from which the final classifier f(-) is chosen.

Deep learning (LeCun, Bengio and Hinton, 2015), in its simplest form, proposes
the following compositional function class:

(11) {f($70) = WLO'L(WL_1 s 0’2(W20’1(W1m))) ’ 0= {Wl, e ,WL}} .

Here, the set of matrices @ = {Wy,..., W} are the parameters of the model, and
for each 1 <1 < L, oy(+) is some fixed nonlinear function. Though simple, deep
learning has made significant progress towards addressing the problem of learning
from data over the past decade. Specifically, it has performed close to or better
than humans in various important tasks in artificial intelligence, including image
recognition (He et al., 2016a), game playing (Silver et al., 2017), and machine
translation (Wu et al., 2016). Owing to its great promise, the impact of deep
learning is also growing rapidly in areas beyond artificial intelligence; examples
include statistics (Bauer et al., 2019; Schmidt-Hieber, 2017; Liang, 2017; Romano,
Sesia and Candés, 2018; Gao et al., 2018), applied mathematics (Weinan, Han and
Jentzen, 2017; Chen et al., 2018), clinical research (De Fauw et al., 2018), etc.

TABLE 1
Winning models for ILSVRC image classification challenge.

Model Year # Layers | # Params | Top-5 error
Shallow < 2012 — — > 25%
AlexNet 2012 8 61M 16.4%
VGG19 2014 19 144M 7.3%

GoogleNet 2014 22 ™ 6.7%
ResNet-152 2015 152 60M 3.6%

To get a better idea of the success of deep learning, let us take the ImageNet
Challenge (Russakovsky et al., 2015) (also known as ILSVRC) as an example.
In the classification task, one is given a training dataset consisting of 1.2 million
color images with 1000 categories, and the goal is to classify images based on the
input pixels. The performance of a classifier is then evaluated on a test dataset
of 10° images, and in the end the top-5 error? is reported. Table 1 highlights a
few popular models and their corresponding performance. As can be seen, deep
learning models (the second to the last rows) have a clear edge over shallow models
(the first row) that fit linear models / tree-based models on handcrafted features.
This significant improvement raises three foundational questions:

Why is deep learning better than classical methods on tasks like image recognition?

2The algorithm makes an error if the true label is not contained in the top-5 predictions
made by the algorithm.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 3

Why doesn’t over-parametrization hurt predictions?
How are such high-dimensional highly nonconvex functions optimized?

1.1 Intriguing new characteristics of deep learning

It is widely acknowledged that two indispensable factors contribute to the suc-
cess of deep learning, namely (1) huge datasets that often contain millions of
samples and (2) immense computing power resulting from clusters of graphics
processing units (GPUs). Admittedly, these resources are only recently available:
The latter allows us to train larger and deeper neural networks which reduces
biases and the former enables variance reduction. However, these two alone are
not sufficient to explain the mystery of deep learning due to some of its intriguing
new characteristics:*

1.1.1 Depth and approximation. Neural networks are closely akin to the classi-
cal projection pursuit regression model (Friedman and Stuetzle, 1981), where one
postulates

K

(1.2) f@) = gu(Bl =),

k=1

with {8y} being unit vectors and {gx ()} being univariate smooth functions. One
can essentially view the projection pursuit regression model (1.2) as a neural
network with one hidden layer, where {gx(-)} constitutes the nonlinear activa-
tion functions.® In contrast, deep learning models the complicated nonlinearity
through composing many simple nonlinear functions (cf. (1.1)), namely the depth
is much larger than one. While it is known, theoretically, that neural networks
with one hidden layer is already a universal approzrimator, i.e., it can approximate
any continuous function if the number of hidden units is taken arbitrarily large,
empirically, deeper neural networks generally have better performance; see Table 1
for an example. The heuristic explanation for this multilayer structure is that, in
many real-world datasets such as images, there are different levels of features and
lower-level features are building blocks of higher-level ones. See Yosinski et al.
(2015) for a visualization of trained features of convolutional neural nets. This
is also supported by empirical results from physiology and neuroscience (Hubel
and Wiesel, 1962; Abbasi-Asl et al., 2018). Nevertheless, the understanding of the
benefits of depth is far from complete.

1.1.2 Over-parametrization and generalization. Modern deep learning models
often have far more parameters than the number of samples. Such a large degree
of over-parametrization allows the model to perfectly fit the training data — a
phenomenon often observed in practice (Zhang et al., 2016). This seems to be
at odds with traditional statistical wisdom. Indeed, the bias-variance tradeoff
tells us that the test / generalization error usually exhibits a U-shaped curve as
model complexity increases, and in particular, a model that easily overfits training
data is prone to worse performance on the test data. Surprisingly, it is found

3We note that these characteristics are interleaved in an intricate way. For instance, depth
also plays an important role in the optimization aspect of deep learning. Here, we choose the
following decomposition to simplify the narrative.

“Note that in the the projection pursuit regression model, the activation functions {gx(-)}
are unspecified and fully nonparametric.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



4 J. FAN, C. MA, AND Y. ZHONG

that neural networks can exhibit the “double descent phenomenon”, i.e., the test
error further decreases once the model complexity is beyond a certain critical
threshold (Belkin et al., 2019; Hastie et al., 2019). This curious phenomenon
motivates many statistical questions: What is a good measure of model complexity
for over-parametrized networks? How do practical algorithms such as stochastic
gradient descent find a low-complexity classifier that generalizes well?.

1.1.8 Nonconvezity and optimization. Training deep learning models, e.g., es-
timating the parameters € in (1.1) via maximum likelihood estimation, often
results in nonconvex optimization problems that are computationally intractable
to solve. In general, we cannot hope for an algorithm that can return to us the
global solution and different algorithms might end with different estimators in the
parameter space. Therefore, the statistical performance of neural networks (e.g.,
test accuracy) depends heavily on the particular optimization algorithm used for
training (Wilson et al., 2017). This is drastically different from many classical sta-
tistical problems, where the related optimization problems are less complicated.
For instance, when the associated optimization problem has a relatively simple
structure (e.g., convex objective functions, linear constraints), the solution to the
optimization problem can often be unambiguously computed and analyzed. How-
ever, in deep neural networks, due to over-parametrization, there are usually many
local minima with different statistical performance (Li et al., 2018a). Nevertheless,
running stochastic gradient descent with random initialization often finds model
parameters with good out-of-sample performance.

1.1.4 Implicit representation learning. Although deep learning is often used as
discriminative models to predict the outcome y based on the features «, its power
of obtaining useful representations of the input data @ has been well documented
in the literature. For instance, after training on a large amount of labeled images,
the hidden units of deep neural networks can represent features such as edges,
corners, wheels, eyes, etc.; see Yosinski et al. (2015). Moreover, people can use
a part of the trained models to achieve better performance on different but re-
lated datasets than training from scratch (a.k.a. transfer learning) (Yosinski et al.,
2014). In the statistical language, this suggests that deep learning not only per-
forms well in finding the conditional density p(y|x), but also implicitly informs
us of the prior p(x) even though no explicit unsupervised learning is involved.

1.2 Towards the theory of deep learning

Despite the empirical success, the theoretical support for deep learning is still
in its infancy. Setting the stage, for any classifier f, denote by® R(f) the expected
risk on fresh sample (a.k.a. test error, prediction error or generalization error), and
by® R, (f) the empirical risk / training error averaged over the training dataset.
Arguably, the key theoretical question in deep learning is

why s R(fn) small, where fn is the classifier returned by the training algorithm?

We follow the conventional approximation-estimation decomposition (some-
times, also bias-variance tradeoff) to decompose the term R(f,) into two parts.
Let F be the function class expressible by a family of neural nets. Define f* £

5In the literature, E(f) is also used to denote this quantity.
5Parallel to the previous footnote, E, (f) is also used in the literature to denote this quantity.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 5

accuracy
(=
©
@
—=.

£ C
CA
~ >
oW
W e~
=

0.97
0.96

—&— training accuracy
l test accuracy

0.95

10 20 30 40 50
epochs

(a) MNIST images (b) training and test accuracies

Fig 1: (a) shows the images in the public dataset MNIST; and (b) depicts the
training and test accuracies along the training dynamics. Note that the training
accuracy is approaching 100% and the test accuracy is still high.

argmin s R(f) to be the best possible classifier and f% £ argmin s 7 R(f) to be the

best classifier in F. Then, we can decompose the excess risk £ £ R(f,) — R(f*)
into two parts:

(1.3) €= R(f5) = R(f*) + R(fa) — R(fF).

-~

approximation error estimation error
Both errors can be small for deep learning (cf. Figure 1), which we explain below.

e The approximation error is determined by the function class F. Intuitively, the
larger the class, the smaller the approximation error. Deep learning models use
many layers of nonlinear functions (cf. Figure 2) that drive this error small.
Indeed, in Section 5, we provide recent theoretical progress of its representa-
tion power. For example, deep models allow an efficient representation of the
interactions among variable while shallow models cannot.

e The estimation error reflects the generalization power, which is influenced by
both the complexity of the function class F and the properties of the train-
ing algorithms. Interestingly, for over-parametrized deep neural nets, stochastic
gradient descent typically results in a near-zero training error (i.e., Ry ( fn) ~ 0;
see e.g., the right panel of Figure 1). Moreover, its generalization error re-
mains small or moderate. This “counterintuitive” behavior suggests that for
over-parametrized models, gradient-based algorithms enjoy benign statistical
properties; we shall see in Section 7 that gradient descent enjoys implicit regu-
larization in the over-parametrized regime even without explicit regularization
(e.g., {5 regularization).

The above two points lead to the following heuristic explanation of the success
of deep learning models. The large depth of deep neural nets and heavy over-
parametrization lead to small or zero training errors, even when running simple
algorithms with a moderate number of iterations. In addition, these simple algo-
rithms with a moderate number of iterations do not explore the entire function
space and thus have limited complexities, which results in small generalization
error with a large sample size.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



6 J. FAN, C. MA, AND Y. ZHONG

1.3 A roadmap of the paper

We first introduce basic deep learning models in Sections 24, and then exam-
ine their representation power via the lens of approximation theory in Section 5.
Section 6 is devoted to training algorithms and their ability to drive the training
error small. In Section 7, we sample recent theoretical progress towards demys-
tifying the generalization power of deep learning. Along the way, we provide our
own perspectives, and in the end, we identify a few interesting questions for future
research in Section 8. The goal of this paper is to present suggestive methods and
results, rather than giving conclusive arguments (which is currently unlikely) or
a comprehensive survey. We hope that our discussion serves as a stimulus for new
statistics research.

2. FEED-FORWARD NEURAL NETWORKS

Before introducing the vanilla feed-forward neural nets, let us set up neces-
sary notations for the rest of this section. We focus primarily on classification
problems, as regression problems can be addressed similarly. Given the training
dataset {(y;,®:)}1<i<n where y; € [K] £ {1,2,...,K} and z; € R? are inde-
pendent across i € [n], supervised learning aims at finding a (possibly random)
function f (x) that predicts the outcome y for a new input @, assuming that
(y, ) follows the same distribution as {(y;, ;) }1<i<p. In the terminology of ma-
chine learning, the input x; is often called the feature, the output y; called the
label, and the pair (y;, x;) is an ezample. They correspond to the statistical termi-
nologies covariate (or predictor), categorical response, and sample. The function
f is called the classifier, and estimation of f is training or learning, which is the
same as an estimator in statistics. The performance of f is evaluated through the
mis-classification error P(y # f()), which can be often estimated from a separate
test dataset.

As with classical statistical estimation, for each k € [K], a classifier approxi-
mates the conditional probability P(y = k|x) using a function fi(x; € ) parametrized
by 0;.. Then the category with the highest probability is predicted. Thus, learning
is essentially estimating the parameters 6. In statistics, one of the most popular
methods is (multinomial) logistic regression, which stipulates a specific form for
the functions fi(x; 0;): let 2, = B, + ap and fi.(z;0x) = Z ' exp(z;) where
Z 2 % exp(z) is a normalization factor to make {fi(z;05)}1<p<i a valid
probability distribution. It is clear that logistic regression induces linear decision
boundaries in R?, and hence it is restrictive in modeling the nonlinear dependency
between y and «. The deep neural networks we introduce below provide a flexible
framework for modeling nonlinearity in a fairly general way.

2.1 Model setups

From the high level, deep neural networks (DNNs) use the composition of a
series of simple nonlinear functions to model nonlinearity

hE) = gB) o gl o ogW(),

where o denotes the composition of two functions and L is the number of hidden
layers, which is usually called the depth of a neural network (NN) model. Letting
h(©) £ & one can recursively define R £ g® (h(efl)) forall/ =1,2,...,L. The
feed-forward neural networks, also called the multilayer perceptrons (MLPs), are

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 7

input layer o output layer

hidden layer hidden layer

Fig 2: A feed-forward neural network with an input layer, two hidden layers and
an output layer. The input layer represents raw features x;. Both hidden lay-
ers compute an affine transform (a.k.a. indices) of the input and then apply an
element-wise activation function o (-). Finally, the output returns a linear trans-
form followed by the softmax activation (resp. simply a linear transform) of the
hidden layers for the classification (resp. regression) problem.

neural nets with a specific choice of g: for £ =1, ..., L, define
(2.1) RO = g (R0 £ o(WORED 4 p®),

where W and 5 are the weight matrix and the bias / intercept, respectively,
associated with the [-th layer, and o (+) is usually a simple fixed nonlinear function
called the activation function. In statistical terms, we create affine transformations
(or multiple indices) using matrix W with intercept b(é), based on the previous
layer of input vector R In words, in each layer ¢, the input vector R goes
through an affine transformation first and then passes through a fixed nonlinear
function o(-). See Figure 2 for an illustration of a simple feed-forward neural
network with two hidden layers. The activation function o (-) is usually applied
element-wise, and a popular choice is the ReLU (Rectified Linear Unit) function:

(2.2) [o(2)]; = max{z;,0},

which is the positive part of z;. Other choices of activation functions include leaky
ReLU (Maas, Hannun and Ng, 2013), tanh function and the classical sigmoid
function (1 + e~#)~!, which are less used nowadays, due to the computation and
the convergence/divergence of gradients, as to be explained later.

Given an output A" from the final hidden layer and a label y, we can define
a loss function to minimize. A common loss function for classification problems is
the multinomial logistic loss. Using the terminology of deep learning, we say that
R goes through an affine transformation and then the soft-maz function:

Fulz:;0) 2 m’ Vke[K], where z=WIHDRE) | p+D) ¢ RE
k SXP\ %k

Then the loss is defined to be the cross-entropy between the label y (in the form
of an indicator vector) and the score vector (fi(x;0),..., fx(x;0))", which is

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



8 J. FAN, C. MA, AND Y. ZHONG

exactly the negative log-likelihood of the multinomial logistic regression model:

K

(2.3) L(f(x;0),y) = —>_ 1{y = k}log fu(x;6),

k=1

where 8 2 {W® b®) : 1 < ¢ < L +1}. We emphasize that all the hidden nodes
RV ... hY) depend on the parameters 0 through (2.1). As a final remark, the
number of parameters scales with both the depth L and the width (i.e., the
dimensionality of W(Z)), and hence it can be quite large for deep neural nets.

2.2 Back-propagation in computational graphs

Training neural networks follows the empirical risk minimization paradigm that
minimizes the loss (e.g., (2.3)) over all the training data. This minimization is
usually done via stochastic gradient descent (SGD). In a way similar to gradient
descent, SGD starts from a certain initial value 8° and then iteratively updates
the parameters @' by moving it in the direction of the negative gradient. The
difference is that, in each update, a small subsample B C [n] called a mini-
batch—which is typically of size 32-512—is randomly drawn and the gradient is
calculated only on B instead of the full batch [n]. This considerably saves the
computational cost in the calculation of gradients. By the law of large numbers,
this stochastic gradient should be close to the full sample one, albeit with some
random fluctuations. A pass of the whole training set is called an epoch. Usually,
after several or tens of epochs, the error on a validation set levels off and training
is complete. See Section 6 for more details and variants on training algorithms.

The key to the above training procedure, namely SGD, is the calculation of the
gradient V¢z(0), where

(24) (5(0) = |BI™' Y L(f (i 0),u1)-

1€EB
Gradient computation, however, is in general nontrivial for complex models, and
it is susceptible to numerical instability for a model with large depth. Here, we
introduce an efficient approach, namely back-propagation, for computing gradients
in neural networks.

Back-propagation (Rumelhart, Hinton and Williams, 1985) is a direct applica-
tion of the chain rule in networks. As the name suggests, the calculation is per-
formed in a backward fashion: one first computes 9¢g/ OhL) | then 8¢5 / ohL=1),
..., and finally 0/p/ ohM . For example, in the case of the ReLU activation func-
tion”, we have the following recursive / backward relation
(2.5)

g orY g Al
orD — gD gp® on®
where diag(-) denotes a diagonal matrix with elements given by the argument.
Note that the calculation of d¢z/dh\"" depends on 83/0h'Y), which is the
partial derivatives from the next layer. In this way, the derivatives are “back-
propagated” from the last layer to the first layer. These derivatives {9¢z/0h(")}
are then used to update the parameters. For instance, the gradient update for

= (W)  diag (ﬂ{w(@h“—” +b0 > 0})

"The issue of non-differentiability at the origin is often ignored in implementation.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 9

Yy
X u(l) h(l) P
‘———} matmul )y relu ——J matmul Ly /‘
cross
vvui/////)' vvai/////)' entropy
\ 2
)

A-ws——”———” -

Fig 3: The computational graph illustrates the loss (2.7). For simplicity, we omit
the bias terms. Symbols inside nodes represent functions, and symbols outside
nodes represent function outputs (vectors/scalars). matmul is matrix multiplica-
tion, relu is the ReLLU activation, cross entropy is the cross entropy loss, and
SoS is the sum of squares.

WO is given by

(2.6) WO w98 e OB e

A ow' ol

jm J

where ¢/ = 1 if the j-th element of W®RD 4 ) is nonnegative, and ¢/ = 0

otherwise. The step size 7 > 0, also called the learning rate, controls how much
parameters are changed in a single update.

A more general way to think about neural network models and training is to
consider computational graphs. Computational graphs are directed acyclic graphs
that represent functional relations between variables. They are very convenient
and flexible to represent function composition, and moreover, they also allow an
efficient way of computing gradients. Consider a feed-forward neural network with
a single hidden layer and an /5 regularization:

(27)  (8) = ts(6) +1a(0) = £s(8) + A( S (WP + S (w)?),
33’ 33"

where £3(0) is the same as (2.4), and A > 0 is a tuning parameter. A similar exam-
ple is considered in Goodfellow, Bengio and Courville (2016). The corresponding
computational graph is shown in Figure 3. Each node represents a function (inside
a circle), which is associated with an output of that function (outside a circle). For
example, we view the term ¢3(60) as a result of four compositions: first the input
data = multiplies the weight matrix W) resulting in «(), then it goes through
the ReLU activation function relu resulting in h(l), then it multiplies another
weight matrix W@ leading to p, and finally it produces the cross-entropy with
label y as in (2.3). The regularization term is incorporated in the graph similarly.

A forward pass is complete when all nodes are evaluated starting from the input
x. A backward pass then calculates the gradients of Kg with respect to all other
nodes in the reverse direction. Due to the chain rule, the gradient calculation for
a variable (say, 90z/0u") is simple: it only depends on the gradient value of
the variables (0¢g/0h) the current node points to, and the function derivative
evaluated at the current variable value (o/(u(!)). Thus, in each iteration, a com-
putational graph only needs to (1) calculate and store the function evaluations

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



10 J. FAN, C. MA, AND Y. ZHONG

at each node in the forward pass, and then (2) calculate all the derivatives in the
backward pass.

Back-propagation in computational graphs forms the foundations of popular
deep learning programming software, including TensorFlow (Abadi and et. al.,
2015) and PyTorch (Paszke et al., 2017), which allows more efficient building and
training of complex neural net models.

3. POPULAR MODELS

Moving beyond vanilla feed-forward neural networks, we introduce two other
popular deep learning models, namely, the convolutional neural networks (CNNs)
and the recurrent neural networks (RNNs). One important characteristic shared
by the two models is weight sharing, that is, some model parameters are identical
across locations in CNNs or across time in RNNs. This is related to the notion
of translational invariance in CNNs and stationarity in RNNs. At the end of this
section, we introduce a modular thinking for constructing more flexible neural
nets.

3.1 Convolutional neural networks

The convolutional neural network (CNN) (LeCun et al., 1998; Fukushima and
Miyake, 1982) is a special type of feed-forward neural networks that is tailored
for image processing. More generally, it is suitable for analyzing data with salient
spatial structures. In this subsection, we focus on image classification using CNNs,
where the raw input (i.e., image pixels) and features of each hidden layer are
represented by a 3D tensor X € R4 *%*d Here, the first two dimensions di, do
of X indicate spatial coordinates of an image while the third ds indicates the
number of channels. For instance, ds is 3 for the raw inputs corresponding to the
red, green and blue channels, and ds can be much larger (say, 256) for hidden
layers. Each channel is also called a feature map, because each feature map is
specialized to detect the same feature at different locations of the input, which
we will soon explain.

Before giving the formal introduction, let us think intuitively what network
structures best fit image data. First, objects in images are related to their locations
(spatial coordinates), so it would be better if the weights W are only receptive
to different local patches. This dramatically reduces the number of parameters
compared with the feed-forward networks. Second, we expect invariance of objects
when translating them, or flipping them in images, so naturally, some weights
should share the same values. Third, we hope the network could summarize the
image information as we move to higher layers.

These desired properties lead to the following building blocks of CNNs, namely
the convolutional layer and the pooling layer.

1. Conwvolutional layer (CONV). A convolutional layer has the same functionality
as described in (2.1), where the input feature X € R4 *92%d goes through an
affine transformation first and then an element-wise nonlinear activation. The
difference lies in the specific form of the affine transformation. A convolutional
layer uses a number of filters to extract local features from the previous input.
More precisely, each filter is represented by a 3D tensor F, € R®*%w*d (1 < k <
ds), where w is the size of the filter (typically 3 or 5) and ds denotes the total
number of filters. Note that the third dimension d3 of F}, is equal to that of the

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 11

input feature map filter output feature map

28
ﬂ 5
75
3
28
3
X e R28><28><3 F, € R5><5><3 X c R24X24X1

Fig 4: X € R¥*28X3 represents the input feature consisting of 28 x 28 spatial
coordinates in a total number of 3 channels / feature maps. F}, € R5*5*3 denotes
the k-th filter with size 5 x 5. The third dimension 3 of the filter automatically
matches the number 3 of channels in the previous input. Every 3D patch of X
gets convolved with the filter F}, and this as a whole results in a single output
feature map X:7:,k with size 24 x 24 x 1. Stacking the outputs of all the filters
{Fk}1<k<k will lead to the output feature with size 24 x 24 x K.

input feature X . For this reason, one usually says that the filter has size w x w,
while suppressing the third dimension ds. Each filter F} then convolves with
the input feature X to obtain one single feature map OF € R(d1—w+1)x(d1—w+1)

where®

w ds

(3.1) Of; = (X1 Fr) = > D> > [Xivir—1jtir—1alFeli g

i'=1j'=11=1

Here [X];; € R¥X®Xds g a small “patch” of X starting at location (i, 7). See
Figure 4 for an illustration of the convolution operation. If we view the 3D
tensors [X];; and Fj, as vectors, then each filter essentially computes their
inner product with a part of X indexed by 4,j (which can be also viewed as
convolution, as its name suggests). One then packs the resulted feature maps
{OF} into a 3D tensor O with size (d; —w + 1) x (d; —w + 1) x d3, where

(3.2) [Olijk = [0";;.

The outputs of convolutional layers are then followed by nonlinear activation
functions. One commonly used activation function is the ReLU function, in
which case we have

(33)  Xyk=0(0yr), Vi€ld—w+1],j€ [d—w+1],k € [ds].

The convolution operation (3.1) and the ReLU activation (3.3) work together
to extract features X from the input X (a positive value represent presence
of a feature). Different from feed-forward neural nets, the filters Fj, are shared
across all locations (7,7). A patch [X];; of an input responds strongly (that is,
producing a large value) to a filter F}, if they are positively correlated. Therefore

8To simplify notation, we omit the bias/intercept term associated with each filter.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



12 J. FAN, C. MA, AND Y. ZHONG

6 7 15 13
14 15 15

2 X 2 max pooling 2 x 2 max pooling

14 15 3 14 1 9

(mm ) 16 14 10

16 12 16 8 2 10

stride = 2 stride = 1

16 8 12
11 5 4 12

Fig 5: A 2 x 2 max pooling layer extracts the maximum of 2 by 2 neighboring
pixels / features across the spatial dimension.

intuitively, each filter F}, serves to extract features similar to Fj. As a side note,
after the convolution (3.1), the spatial size d; x dg of the input X shrinks to
(di —w+1) % (dy —w+1) of X due to the edge effect. However, one may
want the spatial size unchanged. This can be achieved via padding, where one
appends zeros to the margins of the input X to enlarge the spatial size to
dy X do. In addition, a stride in the convolutional layer determines the gap i’ —1
and j' — j between two patches X;; and Xy ;: in (3.1) the stride is 1, and a
larger stride would lead to feature maps with smaller sizes.

2. Pooling layer (POOL). A pooling layer aggregates the information of nearby
features into a single one. This downsampling operation reduces the size of
the features for subsequent layers and saves computation. One common form
of the pooling layer is composed of the 2 x 2 max-pooling filter. It computes
max{X; j x, Xit1,jk> Xij+1,k> Xit1,j+1,k}, that is, the maximum of the 2 x 2
neighborhood in the spatial coordinates; see Figure 5 for an illustration. Note
that the pooling operation is done separately for each feature map k. As a
consequence, a 2 x 2 max-pooling filter acting on X € R4 *%Xds wi]] result
in an output of size dy/2 X d2/2 x ds. In addition, the pooling layer does not
involve any parameters to optimize. Pooling layers serve to reduce redundancy
since a small neighborhood around a location (7, j) in a feature map is likely to
contain similar information.

In addition, we also use fully-connected layers as building blocks, which we have
already introduced in Section 2. Each fully-connected layer treats input tensor X
as a vector Vec(X), and computes X = o(WVec(X)). A fully-connected layer

CONV 5 x 5 POOL 2 x 2 CONV 5x5 POOL2x2 FC FC FC

LR RS

10 x 10 x 16 120 84 10
32x32x1 28 x 28 x 6 14x14x6 5x5x16

Fig 6: LeNet is composed of an input layer, two convolutional layers, two pooling
layers and three fully-connected layers. Both convolutions use 5 x 5 filters. In
addition, the two pooling layers use 2 x 2 average pooling.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 13

why Why Why Why
@ Whn Whp, Whh
Wn

(a) One-to-many (b) Many-to-one (¢) Many-to-many

Fig 7: Vanilla RNNs with different inputs/outputs settings. (a) has one input but
multiple outputs; (b) has multiple inputs but one output; (c¢) has multiple inputs
and outputs. Note that the parameters are shared across time steps.

does not use weight sharing and is often used in the last few layers of a CNN. As
an example, Figure 6 depicts the well-known LeNet 5 (LeCun et al., 1998), which
is composed of two sets of CONV-POOL layers and three fully-connected layers.

3.2 Recurrent neural networks

Recurrent neural nets (RNNs) are another family of powerful models, which
are designed to process time series data and other sequence data. RNNs have
successful applications in speech recognition (Sak, Senior and Beaufays, 2014),
machine translation (Wu et al., 2016), genome sequencing (Cao et al., 2018), etc.
The structure of an RNN naturally forms a computational graph and can be easily
combined with other structures such as CNNs to build larger computational graph
models for complex tasks. Here we introduce vanilla RNNs and improved variants
such as long short-term memory (LSTM).

8.2.1 Vanilla RNNs. Suppose we have vector-valued time series inputs @1, o, . . .

A vanilla RNN models the “hidden state” at time ¢ by a vector hy, which is subject
to the recursive formula

(3.4) hi = fo(hi—1,24).

Here, fg is generally a nonlinear function parametrized by 6. Concretely, a vanilla
RNN with one hidden layer has the following form’

h; = tanh (W hi—1 + Wz + by) where tanh(a) = 22274_&’
zi =0 (Wpyhi +b2),

where Wy, Wy, Wy, are trainable weight matrices, bp, b, are trainable bias
vectors, and z; is the output at time ¢. Like many classical time series models,
those parameters are shared across time. Note that in different applications, we
may have different input/output settings (cf. Figure 7). Examples include

e One-to-many: a single input with multiple outputs; see Figure 7(a). A typical
application is image captioning, where the input is an image and outputs are a
series of words.

e Many-to-one: multiple inputs with a single output; see Figure 7(b). One ap-
plication is text sentiment classification, where the input is a series of words in
a sentence and the output is a label (e.g., positive vs. negative).

9Similar to the activation function o (), the function tanh(-) means element-wise operations.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020

, LT -



14 J. FAN, C. MA, AND Y. ZHONG

e Many-to-many: multiple inputs and outputs; see Figure 7(c). This is adopted
in machine translation, where inputs are words of a source language (say Chi-
nese) and outputs are words of a target language (say English).

As the case with feed-forward neural nets, we minimize a loss function using
back-propagation, where the loss is typically

ZC Yt, Zt) ZZH{% = k}log <26X5X(I[)([] ? )) ,

teT teT k=1

where K is the number of categories for classification (e.g., size of the vocabulary
in machine translation), and 7 C [T7] is the length of the output sequence. During
the training, the gradients 0¢7/0h; are computed in the reverse time order (from
T to t). For this reason, the training process is often called back-propagation
through time.

One notable drawback of vanilla RNNs is that they have difficulty in captur-
ing long-range dependencies in sequence data when the length of the sequence is
large. This is sometimes due to the phenomenon of exploding /vanishing gradi-
ents. Take Figure 7(c) as an example. Computing d¢7/0h; involves the product
[12_,(0h¢y1/0h:) by the chain rule. However, if the sequence is long, the product
will be the multiplication of many Jacobian matrices, which usually results in
exponentially large or small singular values. To alleviate this issue, in practice,
the forward pass and backward pass are implemented in a shorter sliding window
{t1,t1 +1,...,t2}, instead of the full sequence {1,2,...,T}. Though effective in
some cases, this technique alone does not fully address the issue of long-term
dependency.

3.2.2 GRUs and LSTM. There are two improved variants that alleviate the
above issue: gated recurrent units (GRUs) (Cho et al., 2014) and long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997). The motivating intuition
behind these specialized structures is the characteristics of natural languages: at a
give point of the sequence, a good model should maintain some ‘states’ about past
inputs, e.g., the tense of a sentence, the clause structure, semantics, etc. These
states can be changed, turned ‘on’ or ‘off” with newly arriving inputs; this idea
leads to the use of ‘gates’.

e A GRU refines the recursive formula (3.4) by introducing gates, which are
vectors of the same length as h;. The gates, which take values in [0, 1] elemen-
twise, multiply with h;_1 elementwise and determine how much they keep the
old hidden states.

e An LSTM similarly uses gates in the recursive formula. In addition to hy,
an LSTM maintains a cell state, which takes values in R elementwise and are
analogous to counters.

Here we only discuss LSTM in detail. Denote by ® the element-wise multiplica-
tion. We have a recursive formula in replace of (3.4):

it g

h; 4
ft — 4 W T ,
O¢ o 1
g, tanh

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 15

time

Fig 8: A vanilla RNN with two hidden layers. Higher-level hidden states hf are
determined by the old states h{_; and lower-level hidden states hi~!. Multilayer
RNNSs generalize both feed-forward neural nets and one-hidden-layer RNNs.

ci=f;®ci—1+10Ogy,
h; = o; ® tanh(¢,),

where W is a big weight matrix with appropriate dimensions. The cell state vector
¢; carries information of the sequence (e.g., singular/plural form in a sentence).
The forget gate f, determines how much the values of ¢;_; are kept for time ¢,
the input gate 4; controls the amount of update to the cell state, and the output
gate o gives how much c; reveals to h;. Ideally, the elements of these gates have
nearly binary values. For example, an element of f, being close to 1 may suggest
the presence of a feature in the sequence data. Similar to the skip connections
in residual nets, the cell state ¢; has an additive recursive formula, which helps
back-propagation and thus captures long-range dependencies.

8.2.83 Multilayer RNNs. Multilayer RNNs are generalization of the one-hidden-
layer RNN discussed above. Figure 8 shows a vanilla RNN with two hidden layers.
In place of (3.4), the recursive formula for an RNN with L hidden layers now reads

/—
hy!
h!=tanh (W' | B! | ||, foralltec[L], h)Z2zx,.
1

Note that a multilayer RNN has two dimensions: the sequence length 7" and depth
L. Two special cases are the feed-forward neural nets (where 7' = 1) introduced
in Section 2, and RNNs with one hidden layer (where L = 1). Multilayer RNNs
usually do not have very large depth (e.g., 2-5), since T is already very large.

Finally, we remark that CNNs, RNNs, and other neural nets can be easily
combined to tackle tasks that involve different sources of input data. For example,
in image captioning, the images are first processed through a CNN, and then the
high-level features are fed into an RNN as inputs. These neural nets combined
together form a large computational graph, so they can be trained using back-
propagation. This generic training method provides much flexibility in various
applications.

3.3 Modules

Deep neural nets are essentially the composition of many nonlinear functions.
A component function may be designed to have specific properties in a given task,
and it can be itself resulted from composing a few simpler functions. In LSTM,

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



16 J. FAN, C. MA, AND Y. ZHONG

we have seen that the building block consists of several intermediate variables,
including cell states and forget gates that can capture long-term dependency and
alleviate numerical issues.

This leads to the idea of designing modules for building more complex neural
net models. Desirable modules usually have low computational costs, alleviate
numerical issues in training, and lead to good statistical accuracy. Since modules
and the resulting neural net models form computational graphs, training follows
the same principle briefly described in Section 2.

Here, we use the examples of Inception and skip connections to illustrate the
ideas behind modules. Figure 9(a) is an example of “Inception” modules used in
GoogleNet (Szegedy et al., 2015). As before, all the convolutional layers are fol-
lowed by the ReLU activation function. The concatenation of information from
filters with different sizes gives the model great flexibility to capture spatial in-
formation. Note that 1 x 1 filters is a 1 x 1 X d3 tensor (where d3 is the number of
feature maps), so its convolutional operation does not interact with other spatial
coordinates, only serving to aggregate information from different feature maps
at the same coordinate. This reduces the number of parameters and speeds up
the computation. Similar ideas appear in other work (Lin, Chen and Yan, 2013;
Iandola et al., 2016).

+

concat —_
3x3 5x5 1x1 3x3
CONV CONV CONV CONV
1x1 L Fox
CONV 4 4 A x A ()
1x1 1x1 3x3 3x3
CONV CONV POOL CONV
"”’)" "il"
(a) “Inception” module b) Skip connections

Fig 9: (a) The “Inception” module from GoogleNet. Concat means combining all

features maps into a tensor. (b) Skip connections are added every two layers in
ResNets.

Another module, usually called skip connections, is widely used to alleviate
numerical issues in very deep neural nets, with additional benefits in optimization
efficiency and statistical accuracy. Training very deep neural nets are generally
more difficult, but the introduction of skip connections in residual networks (He
et al., 2016a,b) has greatly eased the task.

The high level idea of skip connections is to add an identity map to an exist-
ing nonlinear function. Let F(x) be an arbitrary nonlinear function represented
by a (fragment of) neural net, then the idea of skip connections is simply re-
placing F(x) with & + F(x). The motivation can be explained from the angle of
numerical stability: if the magnitude of F(x) is small, then the spectra (singular
values) of Jacobian of x + F(x) is close to 1, so we expect better numerical stabil-
ity. Figure 9(b) shows a well-known structure from residual networks (He et al.,

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 17

2016a)—for every two layers, an identity map is added:
(3.5) zr—o(x+F(x)) =0c(x+Wa(Wz+b)+1b),

where & can be hidden nodes from any layer and W, W’ b, b’ are corresponding
parameters. By repeating (namely composing) this structure throughout all lay-
ers, He et al. (2016a,b) are able to train neural nets with hundreds of layers easily,
which overcome well-observed training difficulties in deep neural nets. Moreover,
deep residual networks also improve statistical accuracy, as the relative classifi-
cation error on ImageNet challenge was reduced by 46% from 2014 to 2015. As
a side note, skip connections can be used flexibly. They are not restricted to the
form in (3.5), and can be used between any pair of layers ¢, ¢’ (Huang et al., 2017).

4. DEEP UNSUPERVISED LEARNING

In supervised learning, given labeled training set {(y;,x;)}, we focus on discrim-
inative models, which essentially represents P(y|x) by a deep neural net f(x;0)
with parameters 6. Unsupervised learning, in contrast, aims at extracting infor-
mation from unlabeled data {x;}, where the labels {y;} are absent. In regard to
this information, it can be a low-dimensional embedding of the data {x;} or a
generative model with latent variables to approximate the distribution Px (). To
achieve these goals, we introduce two popular unsupervised deep learning mod-
els, namely, autoencoders and generative adversarial networks (GANSs). The first
one can be viewed as a dimension reduction technique and the second as a high-
dimensional density estimation. DNNs are the key elements for both of these two
models.

4.1 Autoencoders

Recall that in dimension reduction, the goal is to reduce the dimensionality
of the data and at the same time preserve its salient features. In particular, in
principal component analysis (PCA), the goal is to embed the data {z;}1<i<n
into a low-dimensional space via a linear function f such that maximum variance
can be explained. Equivalently, we want to find linear functions f : R* — RF
and g : R¥ — R? (k < d) such that the difference between @x; and g(f(x;)) is
minimized. Formally, we let

fx)=W;z2h and g(h)=W,h, where W;ec R"?and W, € R™*".

Here, for simplicity, we assume that the intercept/bias terms for f and g are zero.
Then, PCA amounts to minimizing the quadratic loss function

n
(4.1) minimizew, w, % 21 s — Wy W2

i=
If we write W = W;W,, then the above problem is the same as minimizing
[X — WX||Z subject to rank(W) < k, where X € RP*™ is the design matrix. The
solution is given by the singular value decomposition of X (Golub and Van Loan,
2013, Thm. 2.4.8), which is exactly what PCA does. It turns out that PCA is a
special case of autoencoders, which is often known as the undercomplete linear
autoencoder.

More broadly, autoencoders are neural network models for (nonlinear) dimen-

sion reduction, which generalize PCA. An autoencoder has two key components,

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



18 J. FAN, C. MA, AND Y. ZHONG

L(x,g(h))

\7
X
TA
/\/II\/\(
WYY
000

EX
[ YN
\ &///
input layer output layer

\\\\\}\}idden layer |

encoder decoder

Fig 10: A diagram of a (sparse) autoencoder. First an input @ goes through the
encoder f(+), and we obtain its hidden representation h = f(x). Then, we use the
decoder g(-) to get g(h) as a reconstruction of . Finally, the loss is determined
from the difference between the original input @ and its reconstruction g(f(x)).
A regularizer is used if the dimension of h is larger than that of x.

namely, the encoder function f(-), which maps the input & € R? to a hidden
code/representation h = f(x) € R¥, and the decoder function g(-), which maps
the hidden representation h to a point g(h) € R%. Both functions can be multi-
layer neural networks as (2.1). See Figure 10 for an illustration of autoencoders.
Let L(x1,x2) be a loss function that measures the difference between x; and o
in R%. Similar to PCA, an autoencoder is used to find the encoder f and decoder
g such that L(x,g(f(x))) is as small as possible. Mathematically, this amounts
to solving the following minimization problem

1 n
(4.2) minimizepg, — g L(xi,g(h;)) with h; = f(x;), forall i€ [n].
n
i=1

One needs to make structural assumptions on the functions f and g in or-
der to find useful representations of the data, which leads to different types of
autoencoders. One way is to model f and g by neural network functions. If no as-
sumption is made, choosing f and g to be identity functions clearly minimizes the
above optimization problem. To avoid this trivial solution, one natural way is to
require that the encoder f maps the data onto a space with a smaller dimension,
i.e., k < d. This is the undercomplete autoencoder that includes PCA as a special
case. There are other structured autoencoders which add desired properties to the
model such as sparsity or robustness, mainly through regularization terms. Below
we present two other common types of autoencoders.

e Sparse autoencoders. One may believe that the dimension k£ of the hidden
code h; is larger than the input dimension d, and that h; admits a sparse
representation. As with LASSO (Tibshirani, 1996) or SCAD (Fan and Li, 2001),

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 19

one may add a regularization term to the reconstruction loss £ in (4.2) to
encourage sparsity (Poultney et al., 2007). A sparse autoencoder solves

1 n
ming g - Zﬁ(a:i,g (hi))+ M|hil|l;, with h; = f(x;), for all i € [n].
i=1

~~ ~——

loss regularizer

This is similar to dictionary learning, where one aims at finding a sparse repre-
sentation of input data on an overcomplete basis. Due to the imposed sparsity,
the model can potentially learn useful features of the data.

e Denoising autoencoders. One may hope that the model is robust to noise in
the data: even if the input data x; are corrupted by small noise &; or miss some
components (the noise level or the missing probability is typically small), an
ideal autoencoder should faithfully recover the original data. A denoising au-
toencoder (Vincent et al., 2008) achieves this robustness by explicitly building
a noisy data ¢; = x; + §; as the new input, and then solves an optimization
problem similar to (4.2) where £ (x;, g (h;)) is replaced by L (x;, g (f(Z;))).
A denoising autoencoder encourages the encoder/decoder to be stable in the
neighborhood of an input, which is generally a good statistical property. An al-
ternative way could be constraining f and g in the optimization problem, but
that would be very difficult to optimize. Instead, sampling by adding small per-
turbations in the input provides a simple implementation. We shall see similar
ideas in Section 6.3.3.

4.2 Generative adversarial networks

Given unlabeled data {x;}1<i<n, density estimation aims to estimate the un-
derlying probability density function Px from which the data is generated. Both
parametric and nonparametric estimators (Silverman, 1998) have been proposed
and studied under various assumptions on the underlying distribution. Differ-
ent from these classical density estimators, where the density function is explic-
itly defined in relatively low dimension, generative adversarial networks (GANs)
(Goodfellow et al., 2014) can be categorized as an implicit density estimator in
much higher dimension. The reasons are twofold: (1) GANs put more emphasis on
sampling from the distribution Px than estimation; (2) GANs define the density
estimation implicitly through a source distribution Pz and a generator function
g(+), which is usually a deep neural network. We introduce GANs from the per-
spective of sampling from Px and later we will generalize the vanilla GANs using
its relation to density estimators.

4.2.1 Sampling view of GANs. Suppose the data {x;}1<i<, at hand are all
real images, and we want to generate new natural images. With this goal in
mind, GAN models a zero-sum game between two players, namely, the generator
G and the discriminator D. The generator G tries to generate fake images akin
to the true images {x;}1<i<, while the discriminator D aims at differentiating
the fake ones from the true ones. Intuitively, one hopes to train a generator G
to generate images where the best discriminator D cannot distinguish. Therefore
the payoff is higher for the generator G if the probability of the discriminator
D getting wrong is higher, and correspondingly the payoff for the discriminator
correlates positively with its ability to tell the truth.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



20 J. FAN, C. MA, AND Y. ZHONG

training samples

{931'}1§i§n

i sample
8 sample
z g

source distribution
Pz

Fig 11: GANs consist of two components, a generator G which generates fake
samples and a discriminator D which differentiate the true ones from the fake
ones.

Mathematically, the generator G consists of two components, an source distri-
bution Pz (usually a standard multivariate Gaussian distribution with hundreds
of dimensions) and a function g(-) which maps a sample z from Pz to a point
g(z) living in the same space as . Note that any continuous random vector X in
R? can be generated by X = g(Z) for the standard Gaussian random vector Z
in R? and some function g(-). To achieve low-dimensional embedding for a class
of images, we take Z in much smaller space, often in the order of hundreds. For
generating images, g(z) would be a 3D tensor. Here g(z) is the fake sample gen-
erated from G. Similarly the discriminator D is composed of one function which
takes an image @ (real or fake) and return a number d(x) € [0, 1], the probability
of « being a real sample from Px or not. Oftentimes, both the generating function
g(+) and the discriminating function d(-) are constructed by deep neural networks,
e.g., CNNs introduced in Section 3.1. See Figure 11 for an illustration for GANs.
Denote 8¢g and Op the parameters in g(-) and d(-), respectively. Then GAN tries
to solve the following min-max problem:

(43)  minmax  Eary [08(d@)] +Bavr, log (1 - d (g (2))).

Recall that d(x) models the belief / probability that the discriminator thinks that
x is a true sample. Fix the parameters 8g and hence the generator G and consider
the inner maximization problem. We can see that the goal of the discriminator
is to maximize its ability of differentiation. Similarly, if we fix Op (and hence the
discriminator), the generator tries to generate more realistic images g(z) to fool
the discriminator.

4.2.2 Density estimation view of GANs. Let us now take a density-estimation
view of GANs. Fixing the source distribution Pz, any generator G induces a
distribution Pg over the space of images. Removing the restrictions on d(-) and
minimizing more generally Pg over a class of distributions, one can write (4.3) as

(44)  minmax  Epepy [08(d(2)] + Eqor, llog (1 d (@),

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 21

Observe that the inner maximization problem is solved by the likelihood ratio, i.e.

_ PX (SD)
Px (x) +Pg (z)

As a result, (4.4) can be simplified as

d* (z)

(4.5) min IS (Px | Fg),
g

where JS(+||-) denotes the Jensen—-Shannon divergence between two distributions
1 Px+P 1 Px+P
IS (Px||Pg) = SKL(Px | 2572) + KL(Pg || =5-2).

In words, the vanilla GAN (4.3) seeks a density Pg that is closest to Px in terms
of the Jensen—Shannon divergence. This view allows to generalize GANs to other
variants, by changing the distance metric. Examples include f-GAN (Nowozin,
Cseke and Tomioka, 2016), Wasserstein GAN (W-GAN) (Arjovsky, Chintala and
Bottou, 2017), MMD GAN (Li, Swersky and Zemel, 2015), etc. We single out the
Wasserstein GAN (W-GAN) (Arjovsky, Chintala and Bottou, 2017) to introduce
due to its popularity. As the name suggests, it minimizes the Wasserstein distance
between Px and Pg:

(46) min WS(Px|[Pg) = min  sup  Faupy [f (2)] — Baus, [f (2)],
0g 0g f:f 1-Lipschitz

where f(-) is taken over all Lipschitz functions with coefficient 1 and Pg is gener-
ated by a neural network model gg . Comparing W-GAN (4.6) with the original
formulation of GAN (4.3), one finds that the Lipschitz function f in (4.6) cor-
responds to the discriminator D in (4.3) in the sense that they share similar
objectives to differentiate the true distribution Px from the fake one Pg. In the
end, we would like to mention that GANs are more difficult to train than super-
vised deep learning models such as CNNs (Salimans et al., 2016). Apart from the
training difficulty, how to evaluate GANs objectively and effectively is an ongoing
research.

5. REPRESENTATION POWER: APPROXIMATION THEORY

Having seen the building blocks of deep learning models in the previous sec-
tions, it is natural to ask: what are the benefits of composing multiple layers of
nonlinear functions? In this section, we address this question from an approxima-
tion theoretical point of view. Mathematically, letting H be the space of functions
representable by NNs, how well can a function f (with certain properties) be ap-
proximated by functions in H? We first revisit universal approximation theories,
which are mostly developed for shallow neural nets (neural nets with a single
hidden layer), and then provide recent results that demonstrate the benefits of
depth in neural nets. Other notable works include Kolmogorov-Arnold superpo-
sition theorem (Arnold, 2009; Sprecher, 1965), and circuit complexity for neural
nets (Parberry, 1994).

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



22 J. FAN, C. MA, AND Y. ZHONG

5.1 Universal approximation theory for shallow NNs

The universal approximation theories study the approximation of f in a space F
by a function represented by a one-hidden-layer neural net

N
(5.1) g(@) = cjou(w]x — b)),
j=1

where o, : R — R is certain activation function and N is the number of hidden
units in the neural net. For different space F and activation function oy, there are
upper bounds and lower bounds on the approximation error || f — g||. See Pinkus
(1999) for a comprehensive overview. Here we present representative results.

First, as N — oo, any continuous function f can be approximated by some ¢ un-
der mild conditions. Loosely speaking, this is because each component o, ('ija: —
b;j) behaves like a basis function and functions in a suitable space F admits a
basis expansion. Given the above heuristics, the next natural question is: what is
the rate of approximation for a finite N7

Let us restrict the domain of  to a unit ball B? in R%. For p € [1,00) and

integer m > 1, consider the LP space and the Sobolev space with standard norms

o= [ [ to@pda] " Uflg = 3 10%s1] "

0<[k|<m

where DF f denotes partial derivatives indexed by k € ZSIF. Let F £ Fp' be the
space of functions f in the Sobolev space with ||f|;n, < 1. Note that functions
in F have bounded derivatives up to m-th order, and that smoothness of functions
is controlled by m (larger m means smoother). Denote by Hy the space of func-

tions with the form (5.1). The following general upper bound is due to Mhaskar
(1996).

THEOREM 5.1 (Theorem 2.1 in Mhaskar (1996)). Assume o, : R — R is such
that o, has arbitrary order derivatives in an open interval I, and that o, is not a
polynomial on I. Then, for any p € [1,00), d > 2, and integer m > 1,

sup inf |[f — gllp < Camp N~™7,
feﬁTQGHN

where Cq m p is independent of N, the number of hidden units.

In the above theorem, the condition on o,(-) is mainly technical. Note, however,
that the ReLLU function does not satisfy this condition. This upper bound is
useful when the dimension d is not large. It clearly implies that the one-hidden-
layer neural net is able to approximate any smooth function with enough hidden
units. However, it is unclear how to find a good approximator g; nor do we have
control over the magnitude of the parameters (huge weights are impractical).
While increasing the number of hidden units N leads to better approximation,
the exponent —m/d suggests the presence of the curse of dimensionality. The
following (nearly) matching lower bound is stated in Maiorov and Meir (2000).

THEOREM 5.2 (Theorem 5 in Maiorov and Meir (2000)). Letp > 1, m > 1
and N > 2. If the activation function is the standard sigmoid function o(t) =

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 23

(14+e 7L then

(5.2) sup inf ||f — gllp =y (N log N) ™4,
feFm 9€hy T

where Cémp is independent of N.

Results for other activation functions are also obtained by Maiorov and Meir
(2000). Moreover, the term log N can be removed if we assume an additional
continuity condition (Mhaskar, 1996).

For the natural space F)" of smooth functions, the exponential dependence
on d in the upper and lower bounds may look unappealing. However, Barron
(1993) showed that for a different function space, there is a good dimension-free
approximation by the neural nets. Suppose that a function f : R? — R has a
Fourier representation

(5.3) fla) = [ e fw) dw,
R4
where f(w) € C. Assume that f(0) = 0 and that the following quantity is finite

(5.4) Cr= [ Iwllalfw)| do.
R4
Barron (1993) uncovers the following dimension-free approximation guarantee.

THEOREM 5.3 (Proposition 1 in Barron (1993)). Fiz a C > 0 and an arbitrary
probability measure p on the unit ball B in R, For every function f with Cy<C
and every N > 1, there exists some g € Hy such that

1/2 20
— xr 2 T ==
[ @ =g ue)| <2

Moreover, the coefficients of g may be restricted to satisfy Z;V:1 lej| < 2C.

The upper bound is now independent of the dimension d. However, Cy may
implicitly depend on d, as the formula in (5.4) involves an integration over R (so
for some functions C'y may depend exponentially on d). Nevertheless, this theorem
does characterize an interesting function space with an improved upper bound.
Details of the function space are discussed by Barron (1993). This theorem can
be generalized; see Makovoz (1996) for an example. Earlier papers on universal
approximation include Gybenko (1989) and Hornik (1991).

To help understand why a dimensionality-free approximation holds, let us ap-
peal to a heuristic argument given by Monte Carlo simulations. It is well-known
that Monte Carlo approximation errors are independent of dimensionality in eval-
uation of high-dimensional integrals. Generally, let us generate {w;}i<j<n ran-
domly from a given density p(-) in R%, e.g., one can take p(-) o f. Consider the
approximation to (5.3) by

N
1 ,
j=1
Then, gy (@) is a one-hidden-layer neural network with N units and the sinusoid

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



24 J. FAN, C. MA, AND Y. ZHONG

activation function. Note that Egy(x) = f(x), where the expectation is taken
with respect to randomness {w;}. Now, by independence, we have

1 o e 1
E(gn(x) — f(a:))2 = NVar(cjez<“’J’ >) < NEC?,

if Ec? < oo. Therefore, the rate is independent of the dimensionality d, though
the constant can be.

5.2 Approximation theory for multi-layer NNs

The approximation theory for multilayer neural nets is less understood com-
pared with neural nets with one hidden layer. Driven by the success of deep
learning, there are many recent papers focusing on the expressivity of deep neu-
ral nets. As studied by Telgarsky (2016); Eldan and Shamir (2016); Mhaskar,
Liao and Poggio (2016); Poggio et al. (2017); Bauer et al. (2019); Schmidt-Hieber
(2017); Lin, Tegmark and Rolnick (2017); Rolnick and Tegmark (2017), deep
neural nets excel at representing composition of functions. This is perhaps not
surprising since deep neural nets are themselves defined by composing layers of
functions. Nevertheless, it points to a new territory rarely studied in statistics
before. While deep neural nets are not panacea for all problems, it is meaningful
to study specific examples where they succeed. Below we present two results, one
based on Lin, Tegmark and Rolnick (2017); Rolnick and Tegmark (2017) and the
other based on Bauer et al. (2019).

Suppose that the inputs  have a bounded domain [—1,1]¢ for simplicity. As
before, let o, : R — R be a generic function, and o, = (04, -+ ,04) " be element-
wise application of o.. Consider a neural net which is similar to (2.1) but with
scaler output: g(x) = Wyo.(- - - 0.(Wao (Wix))---). A unit or neuron refers to
an element of vectors o,(Wy -+ 0, (Waoo (Wix))---) forany k = 1,...,¢ — 1.
For a multivariate polynomial p, define my(p) to be the smallest integer such that,
for any € > 0, there exists a neural net g(x) satisfying sup,, |p(x) — g(x)| < ¢,
with k£ hidden layers (i.e., £ = k + 1) and no more than my(p) neurons in total.
Essentially, m(p) is the minimum number of neurons required to approximate p
arbitrarily well.

THEOREM 5.4 (Theorem 4.1 in Rolnick and Tegmark (2017)). Let p(x) be
a monomial x{'ah? - -z with ¢ = Z;l:l rj. Suppose that o, has deriwatives of
order 2q at the origin, and that they are nonzero. Then,

(i) mi(p) = [10—1 (r; +1);
(ii) ming, my,(p) < 30, (7[logy(r;)] +4).

This theorem reveals a sharp distinction between shallow networks (one hidden
layer) and deep networks. To represent a monomial function, a shallow network re-
quires exponentially many neurons in terms of the dimension d, whereas linearly
many neurons suffice for a deep network (with bounded r;). The exponential
dependence on d, as shown in Theorem 5.4(i), is resonant with the curse of di-
mensionality widely seen in many fields; see Donoho (2000). One may ask: how
does depth help? Depth circumvents this issue, at least for certain functions, by
allowing us to represent function composition efficiently. Indeed, Theorem 5.4(ii)

offers a nice result with clear intuitions: it is known that the product of two scalar

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 25

inputs can be represented using 4 neurons (Lin, Tegmark and Rolnick, 2017), so
by composing multiple products, we can express monomials with O(d) neurons.
Recent advances in nonparametric regressions also support the idea that deep
neural nets excel at representing composition of functions (Bauer et al., 2019;
Schmidt-Hieber, 2017). In classical nonparametric regression setting, we have
iid. data D,, = {(yi, ©i) h1<i<n. Well-known results (Stone, 1982) show that the
optimal minimax rate of convergence for the regression function f(x) = E(y;|x; =

x) under the L? error is O(nfﬁ) where p is a measure of smoothness of f.

Without structural assumptions, the quality of estimates will suffer from a large
dimension d. Subsequent works focused on restricted families of regression func-
tions whose intrinsic dimensionality is small, which include additive models (Stone
et al., 1985), single-index models (Hardle et al., 1993), functions with low-order
interactions (Stone et al., 1994), etc. Recently, Bauer et al. (2019) considered a
general form of hierarchical structure where the true regression function can be
represented by a tree where each node has at most d* children. In a very simpli-
fied fashion, the functions under consideration are represented by compositions
GrL(Gr-1(...Go(a] z,...,a}.x))), where each G, : RT - RY (£ =0,...,L—1)
is a map in lower-dimensional spaces, and it satisfies certain smoothness condi-
tion. Then, it is shown that there is a function estimator fn representable by
neural networks such that the L? error satisfies

(5.6) Ep,Ea | fu(@) — f(z)] = O((logn)*n” 7).

As a relief, this result implies that the intrinsic dimension d*, rather than the
ambient dimension d, determines the convergence rate.

This result provides another justification for deep neural nets: if data are truly
hierarchical, then the quality of approximators by deep neural nets depends on
the intrinsic dimensionality, which avoids the curse of dimensionality.

We point out that the approximation theory for deep learning is far from com-
plete. For example, in Theorem 5.4, the condition on o, excludes the widely used
ReLU activation function, and there are no constraints on the magnitude of the
weights (so they can be unreasonably large). In (5.6), there is no guarantee that

N

training neural nets with SGD would find such f,.

6. TRAINING DEEP NEURAL NETS

The existence of a good function approximator in the NN function class does
not explain why in practice we can easily find them. In this section, we introduce
standard methods, namely stochastic gradient descent (SGD) and its variants,
to train deep neural networks (or to find such a good approximator). As with
many statistical machine learning tasks, training DNNs follows the empirical risk
minimization (ERM) paradigm which solves the following optimization problem

n

> L(f (::0),us).

i=1

1
(6.1) minimizegegrr £y (0) £ —
n

Here L(f(x;0),y;) measures the discrepancy between the prediction f(x;;0)
the neural network and the true label y;. Correspondingly, denote by ¢(8)
E(z,)~p[L(f(x;0),y)] the out-of-sample error, where D is the joint distribution
over (y,x). Solving ERM (6.1) for deep neural nets faces various challenges that

> S,

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



26 J. FAN, C. MA, AND Y. ZHONG

roughly fall into the following three categories.

e Scalability and nonconvexity. Both the sample size n and the number of param-
eters p can be huge for modern deep learning applications, as we have seen in
Table 1. Many optimization algorithms are not practical due to the computa-
tional costs and memory constraints. What is worse, the empirical loss function
£,(0) in deep learning is often nonconvex. It is a priori not clear whether an
optimization algorithm can drive the empirical loss (6.1) small.

o Numerical stability. With a large number of layers in DNNs, the magnitudes
of the hidden nodes can be drastically different, which may result in the “ex-
ploding gradients” or ‘“vanishing gradients” issue during the training process.
This is because the recursive relations across layers often lead to exponentially
increasing / decreasing values in both forward passes and backward passes.

o (eneralization performance. Our ultimate goal is to find a parameter 6 such
that the out-of-sample error Z(é) is small. However, in the over-parametrized
regime where p is much larger than n, the underlying neural network has the
potential to fit the training data perfectly while performing poorly on the test
data. To avoid this overfitting issue, proper regularization, whether explicit or
implicit, is needed in the training process for the neural nets to generalize.

In the following three subsections, we discuss practical solutions / proposals to
address these challenges.

6.1 Stochastic gradient descent

Stochastic gradient descent (SGD) (Robbins and Monro, 1951) is by far the
most popular optimization algorithm to solve ERM (6.1) for large-scale problems.
It has the following simple update rule:

(6.2) o't =0' —nGO)  with G (0") =VL(f (x:;0"),v,)
for t = 0,1,2,..., where 7; > 0 is the step size (or learning rate), 8° € RP is
an initial point and 4 is chosen randomly from {1,2,---  n}. It is easy to verify

that G(6') is an unbiased estimate of V£, (0'). The advantage of SGD is clear:
compared with the full gradient descent, which goes over the entire dataset to
compute the average gradient in every update, SGD uses one sample to compute
the gradient in each update and hence is considerably more efficient in terms of
both computation and memory (especially in the first few iterations).

Apart from practical benefits of SGD, how well does SGD perform theoreti-
cally in terms of minimizing ¢,(0)? We begin with the convex case, i.e., the case
where the loss function is convex w.r.t. 8. It is well understood in literature that
with proper choices of the step sizes {n;}, SGD is guaranteed to achieve both
consistency and asymptotic normality.

e Consistency. If £(0) is a strongly convex function'’, then under some mild

10For results on consistency and asymptotic normality, we consider the case where in each
step of SGD, the stochastic gradient is computed using a fresh sample (y, ) from D. This allows
to view SGD as an optimization algorithm to minimize the population loss £(8).

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 27

conditionsu, learning rates that satisfy
o o

(6.3) Znt = 400 and 2771:2 < 400
t=0 t=0

. o . . A .
guarantee almost sure convergence to the unique minimizer 8* = argming?(0),

ie., 6 255 9% ast — 0o (Robbins and Monro, 1951; Kiefer et al., 1952; Bottou,
1998; Kushner and Yin, 2003). The requirements in (6.3) can be viewed from
the perspective of bias-variance tradeoff: the first condition ensures that the
iterates can reach the minimizer (controlled bias), and the second ensures that
stochasticity does not prevent convergence (controlled variance).

e Asymptotic normality. It is proved by Polyak and Tsypkin (1979) that for
robust linear regression with fixed dimension p, under the choice 1y = t=1,
V(0" — 6%) is asymptotically normal under some regularity conditions (but
' is not asymptotically efficient in general). Moreover, by averaging the iter-
ates of SGD, Polyak and Juditsky (1992) proved that even with a larger step
size my < t7% a € (1/2,1), the averaged iterate 6" = ¢! 2221 0° is asymp-
totic efficient for robust linear regression. These strong results show that SGD
with averaging performs as well as the MLE asymptotically, in addition to its
computational efficiency.

These classical results, however, fail to explain the effectiveness of SGD when
dealing with nonconvex loss functions in deep learning. Admittedly, finding global
minima of nonconvex functions is computationally infeasible in the worst case.
Nevertheless, recent work (Allen-Zhu, Li and Song, 2018; Du et al., 2018) bypasses
the worst-case scenario by focusing on losses incurred by over-parametrized deep
learning models. In particular, they show that (stochastic) gradient descent con-
verges linearly towards the global minimizer of £,,(0) as long as the neural network
is sufficiently over-parametrized. This phenomenon is formalized below.

THEOREM 6.1 (Theorem 2 in Allen-Zhu, Li and Song, 2018).  Let {(yi, i) }1<i<n
be a training set satisfying min, j.;2; ||&; — xjl|2 > 0 > 0. Consider fitting the data
using a feed-forward neural network (1.1) with ReLU activations. Denote by L
(resp. W) the depth (resp. width) of the network. Suppose that the neural network
1s sufficiently over-parametrized, i.e.,

(6.4) W > poly (n, L, }),

where poly means a polynomial function. Then with high probability, running
SGD (6.2) with certain random initialization and properly chosen step sizes yields
0,(0") < e intx<log?l iterations.

Two notable features are worth mentioning: (1) first, the network under consid-
eration is sufficiently over-parametrized (cf. (6.4)) in which the number of param-
eters is much larger than the number of samples, and (2) one needs to initialize
the weight matrices to be in near-isometry such that the magnitudes of the hidden
nodes do not blow up or vanish. In a nutshell, over-parametrization and random
initialization together ensure that the loss function (6.1) has a benign landscape'?

10ne example of such condition can be constraining the second moment of the gradients:
E[[|VL (zi,y:;6") ||5] < C1+ C2|6° — 67|53 for some C1,C> > 0. See Bottou (1998) for details.
12In Allen-Zhu, Li and Song (2018), the loss function £,(8) satisfies the PL condition.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



28 J. FAN, C. MA, AND Y. ZHONG

around the initial point, which in turn implies fast convergence of SGD iterates.

There are certainly other challenges for vanilla SGD to train deep neural nets:
(1) training algorithms are often implemented in GPUs, and therefore it is im-
portant to tailor the algorithm to the infrastructure, (2) the vanilla SGD might
converge very slowly for deep neural networks, albeit good theoretical guarantees
for well-behaved problems, and (3) the learning rates {n;} can be difficult to tune
in practice. To address the aforementioned challenges, three important variants
of SGD, namely mini-batch SGD, momentum-based SGD, and SGD with adaptive
learning rates are introduced.

6.1.1 Mini-batch SGD. Modern computational infrastructures (e.g., GPUs) can
evaluate the gradient on a number (say 64) of examples (a sub-sample) as effi-
ciently as evaluating that on a single example. To utilize this advantage, mini-
batch SGD with batch size K > 1 forms the stochastic gradient through K
random samples:

K
. 1
(6.5) O =0'—nGO) with G(O") = e D VL(f(m:0"),y:8),
k=1
where for each 1 < k < K, zf is sampled uniformly from {1,2,--- ,n}. Mini-batch

SGD, which is an “interpolation” between gradient descent and stochastic gradient
descent, achieves the best of both worlds: (1) using 1 < K < n samples to
estimate the gradient, one effectively reduces the variance and hence accelerates
the convergence, and (2) by taking the batch size K appropriately (say 64 or
128), the stochastic gradient G(6*) can be efficiently computed using the matrix
computation toolboxes on GPUs.

6.1.2 Momentum-based SGD. While mini-batch SGD forms the foundation of
training neural networks, it can sometimes be slow to converge due to its oscil-
lation behavior (Sutskever et al., 2013). Optimization community has long inves-
tigated how to accelerate the convergence of gradient descent, which results in
a beautiful technique called momentum methods (Polyak, 1964; Nesterov, 1983).
Similar to gradient descent with moment, momentum-based SGD, instead of mov-
ing the iterate @ in the direction of the current stochastic gradient G(6*), smooth
the past (stochastic) gradients {G(6")} to stabilize the update directions. Math-
ematically, let v* € RP be the direction of update in the tth iteration, i.e.,

0t+1 _ Ot o nt’vt-
Here v" = G(6°) and for t = 1,2, -
(6.6) vl = po'~l 4+ G(6Y)

with 0 < p < 1. A typical choice of p is 0.9. Notice that p = 0 recovers the mini-
batch SGD (6.5), where no past information of gradients is used. A simple un-
rolling of v reveals that v' is actually an exponential smoothing (un-normalized)
of the past gradients, i.e., v' = Zz':o p=7G(67). Compared with vanilla mini-
batch SGD, the inclusion of the momentum “smooths” the oscillation direction
and accumulates the persistent descent direction. We want to emphasize that
theoretical justifications of momentum in the stochastic setting is not fully un-
derstood (Kidambi et al., 2018; Jain et al., 2017).

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 29

6.1.3 SGD with adaptive learning rates. In optimization, preconditioning is of-
ten used to accelerate first-order optimization algorithms. In principle, one can
apply this to SGD, which yields the following update rule:

(6.7) 't =0 —n, P7G(0Y)

with P, € RP*P being a preconditioner at the ¢-th step. Newton’s method can
be viewed as one type of preconditioning where P, = V2/,,(0"). The advantages
of preconditioning are two-fold: first, a good preconditioner reduces the condi-
tion number by changing the local geometry to be more homogeneous, which is
amenable to fast convergence; second, a good preconditioner frees practitioners
from laboring tuning of the step sizes, as is the case with Newton’s method. Ada-
Grad, an adaptive gradient method proposed by Duchi, Hazan and Singer (2011),
builds a preconditioner P; based on information of the past gradients:

(6.8) P = {diag(zt:G(Ht)G(Ot)T>}l/2.

Since we only require the diagonal part, this preconditioner (and its inverse) can be
efficiently computed in practice. In addition, investigating (6.7) and (6.8), one can
see that AdaGrad adapts to the importance of each coordinate of the parameters,
which receive small learning rates if updated frequently and vice versa. In prac-
tice, one adds a small quantity § > 0 (say 107%) to the diagonal entries to avoid
singularity (numerical underflow). A notable drawback of AdaGrad is that the
effective learning rate vanishes quickly along the learning process. This is because
the historical sum of the gradients can only increase with time. RMSProp (Hin-
ton, Srivastava and Swersky, 2012) is a popular remedy for this problem which
incorporates the idea of exponential smoothing:

(6.9) P, = {disg(pP + (1 - p)G (0 G (6) )}

Again, the decaying parameter p is usually set to be 0.9. Later, Adam (Kingma
and Ba, 2014; Reddi, Kale and Kumar, 2018) combines the momentum method
and adaptive learning rate and becomes the default training algorithms in many
deep learning applications.

6.2 Easing numerical instability

For very deep neural networks or RNNs with long dependencies, training diffi-
culties often arise when the values of nodes have different magnitudes or when the
gradients “vanish” or “explode” during back-propagation. Here we discuss three
partial solutions to alleviate this problem. Other proposals for promoting numer-
ical stability include AdaNet (Cortes et al., 2017) for example.

6.2.1 ReLU activation function. One useful characteristic of the ReLLU function
is that its derivative is either 0 or 1, and the derivative remains 1 even for a large
input. This is in sharp contrast with the standard sigmoid function (1 4 e~*)~1
which results in a very small derivative when inputs have large magnitude. The
consequence of small derivatives across many layers is that gradients tend to be
“killed”, which means that gradients become approximately zero in deep nets.

The popularity of the ReLU activation function and its variants (e.g., leaky
ReLU) is largely attributable to the above reason. It has been well observed that

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



30 J. FAN, C. MA, AND Y. ZHONG

the ReLLU activation function has superior training performance over the sigmoid
function (Krizhevsky, Sutskever and Hinton, 2012; Maas, Hannun and Ng, 2013).

6.2.2 Skip connections. We have introduced skip connections in Section 3.3.
Why are skip connections helpful for reducing numerical instability? This struc-
ture does not introduce a larger function space, since the identity map can be also
represented with ReLU activations: ¢ = o(x) — o(—x).

One explanation is that skip connections bring ease to the training / optimization
process. Suppose that we have a general nonlinear function F(x; 0,). With a skip
connection, we represent the map as ;11 = xy+ F(x/; 0y) instead. Now the gra-
dient w41 /0xy becomes

ox OF (xy; 0 OF (xy; 0
(6.10) SR g OF (w¢; 60) instead of M,
oxy oxzy oxy
where I is an identity matrix. By the chain rule, gradient update requires com-
puting products of many components, e.g., gﬁf = é::_ll 8;5;, so it is desirable
Oxpy1

to keep the spectra (singular values) of each component Dy close to 1. In neural
nets, with skip connections, this is easily achieved if the parameters have small
values; otherwise, this may not be achievable even with careful initialization and
tuning. Notably, training neural nets with hundreds of layers is possible with the
help of skip connections.

6.2.3 Batch normalization. Recall that in regression analysis, one often stan-
dardizes the design matrix so that the features have zero mean and unit vari-
ance. Batch normalization extends this standardization procedure from the input
layer to all the hidden layers. Mathematically, fix a mini-batch of input data
{(xi,yi) }ien, where B C [n]. Let hy) be the feature of the i-th example in the

(-th layer (¢ = 0 corresponds to the input x;). The batch normalization layer
0

7

a1 (©) 24 1 ©®) 2 W ahr—p
K= g Z h;”, o= g Z (hi — p,) and hi7norm = .
iEB ieB

computes the normalized version of h;”’ via the following steps:

Here all the operations are element-wise. In words, batch normalization computes
the z-score for each feature over the mini-batch B and uses that as inputs to
subsequent layers. To make it more versatile, a typical batch normalization layer
has two additional learnable parameters v) and B such that

R —~0opl g0,

i,new 7,norm

Again ® denotes the element-wise multiplication. As can be seen, v and B
set the new feature hgi)ew to have mean B and standard deviation v(*). The
introduction of batch normalization makes the training of neural networks much
easier and smoother. More importantly, it allows the neural nets to perform well
over a large family of hyper-parameters including the number of layers, the number
of hidden units, etc. At test time, the batch normalization layer needs more care.

For brevity we omit the details and refer to Ioffe and Szegedy (2015).
6.3 Regularization techniques

So far we have focused on training techniques to drive the empirical loss (6.1)
small efficiently. Here we proceed to discuss common practice to improve the

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 31

generalization power of trained neural nets.

6.3.1 Weight decay. One natural regularization idea is to add an ¢ penalty to
the loss function. This regularization technique is known as the weight decay in
deep learning. We have seen one example in (2.7). For general deep neural nets,
the loss to optimize is £}(8) = £,(0) + rx(0) where

L
m(@) =23 w2,

=1 j.j'

Note that the bias (intercept) terms are not penalized. If ,,(0) is a least square
loss, then regularization with weight decay gives precisely ridge regression. The
penalty r,(8) is a smooth function and thus it can be also implemented efficiently
with back-propagation.

6.3.2 Dropout. Dropout, introduced by Hinton et al. (2012), prevents overfit-
ting by randomly dropping out subsets of features during training. Take the [-th
layer of the feed-forward neural network as an example. Instead of propagating
all the features in h(® for later computations, dropout randomly omits some of
its entries by

hé?op =hn0 o mask’,

where ® denotes element-wise multiplication as before, and mask’ is a vector of
Bernoulli variables with success probability p. It is sometimes useful to rescale
the features h")

inv drop
ing, mask’ are i.i.d. vectors across mini-batches and layers. However, when testing
on fresh samples, dropout is disabled and the original features R are used to
compute the output label y. It has been nicely shown by Wager, Wang and Liang
(2013) that for generalized linear models, dropout serves as adaptive regulariza-
tion: the loss function of the perturbed inputs on average equals the loss of the
unperturbed inputs plus certain regularization term of the parameters. In partic-
ular, Wager, Wang and Liang (2013) shows that in the simplest case of linear re-
gression, it is equivalent to ¢ regularization. Another possible way to understand
the regularization effect of dropout is through the lens of bagging (Goodfellow,
Bengio and Courville, 2016). Since different mini-batches have different masks,
dropout can be viewed as training a large ensemble of classifiers at the same time,
with a further constraint that the parameters are shared. Theoretical justification
remains elusive.

= hé?op /p, which is called inverted dropout. During train-

6.3.3 Data augmentation. Data augmentation is a technique of enlarging the
dataset when we have knowledge about the invariance structure of data. It im-
plicitly increases the sample size and usually regularizes the model effectively. For
example, in image classification, we have strong prior knowledge about what in-
variance properties a good classifier should possess. The label of an image should
not be affected by translation, rotation, flipping, and even crops of the image.
Hence one can augment the dataset by randomly translating, rotating and crop-
ping the images in the original dataset.

Formally, during training we want to minimize the loss £,(8) = >, L(f(x;0), y;)
w.r.t. parameters 6, and we know a priori that certain transformation T" € T where
T :R? - R? (e.g., affine transformation) should not change the category /label

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



32 J. FAN, C. MA, AND Y. ZHONG

of a training sample. In principle, if computation costs were not a consideration,
we could convert this knowledge to a constraint fo(T'x;) = fo(x;),VT € T in the
minimization formulation. Instead of solving a constrained optimization problem,
data augmentation enlarges the training dataset by sampling 7" € 7 and gener-
ating new data {(Tx;,y;)}. In this sense, data augmentation induces invariance
properties through sampling, which results in a much bigger dataset than the
original one (Chen, Dobriban and Lee, 2019).

7. GENERALIZATION POWER

Section 6 has focused on the in-sample / training error obtained via SGD,
but this alone does not guarantee good performance with respect to the out-of-
sample / test error. The gap between the in-sample error and the out-of-sample
error, namely the generalization gap, has been the focus of statistical learning
theory since its birth; see Shalev-Shwartz and Ben-David (2014) for an excellent
introduction to this topic.

While understanding the generalization power of deep neural nets is diffi-
cult (Zhang et al., 2016), we sample recent endeavors in this section. From a
high-level point of view, these approaches can be divided into two categories,
namely algorithm-independent controls and algorithm-dependent controls. More
specifically, algorithm-independent controls focus solely on bounding the complez-
ity of the function class represented by certain deep neural networks. In contrast,
algorithm-dependent controls take into account the algorithm (e.g., SGD) used
to train the neural network.

7.1 Algorithm-independent controls: uniform convergence

The key to algorithm-independent controls is the notion of complexity of the
function class parametrized by certain neural networks. Informally, as long as the
complexity is not too large, the generalization gap of any function in the func-
tion class is well-controlled. However, the standard complexity measure (e.g., VC
dimension (Vapnik and Chervonenkis, 1971)) is at least proportional to the num-
ber of weights in a neural network (Anthony and Bartlett, 2009; Shalev-Shwartz
and Ben-David, 2014), which fails to explain the practical success of deep learn-
ing. The caveat here is that the function class under consideration is all the
functions realized by certain neural networks, with no restrictions on the size
of the weights at all. On the other hand, for the class of linear functions with
bounded norm, i.e., {x — w x| ||w|s < M}, it is well understood that the com-
plexity of this function class (measured in terms of the empirical Rademacher
complexity) with respect to a random sample {x;}1<i<, is upper bounded by
max; ||x;||2M/+/n, which is independent of the number of parameters in w. This
motivates researchers to investigate the complexity of norm-controlled deep neural
networks'® (Neyshabur, Tomioka and Srebro, 2015; Bartlett, Foster and Telgar-
sky, 2017; Golowich, Rakhlin and Shamir, 2017; Li et al., 2018b). Setting the
stage, we introduce a few necessary notations and facts. The key object under
study is the function class parametrized by the following fully-connected neural
network with depth L:

(7.1) ]:L £ {:B — WLO' (WL,10' ( s WQO' (Wla:))) ’ (W1, ce ,WL) € W} .

13Such attempts have been made in the seminal work Bartlett (1998).

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 33

Here (W1, Wo,--- ,Wp) € W represents a certain constraint on the parameters.
For instance, one can restrict the Frobenius norm of each parameter W; through
the constraint |[Wi|lp < Mp(l), where Mp(l) is some positive quantity. With
regard to the complexity measure, it is standard to use Rademacher complexity
to control the capacity of the function class of interest.

DEFINITION 7.1 (Empirical Rademacher complexity). The empirical Rademacher
complezity of a function class F w.r.t. a dataset S = {x;}1<i<n is defined as

7.2 Rs (F [sup eif (x;) }
(7.2) (F) = Sup Z
where € £ (e1,€9,- -+ ,&,) s composed of i.i.d. Rademacher random variables, i.e.,

Ple;=1)=P(e; = —1) =1/2.

In words, Rademacher complexity measures the ability of the function class
to fit the random noise represented by e. Intuitively, a function class with a
larger Rademacher complexity is more prone to overfitting. We now formalize the
connection between the empirical Rademacher complexity and the out-of-sample
error; see Chapter 24 in Shalev-Shwartz and Ben-David (2014).

THEOREM 7.1.  Assume that for all f € F and all (y, x) we have |L(f(x),y)| <
1. In addition, assume that for any fized y, the univariate function L(-,y) is

Lipschitz with constant 1. Then with probability at least 1 — & over the sample

S = {(yi, ®i) hr<icn RS D, one has for all f € F

log (4/5)

E(ye)~ L (£( Zﬁ ),yi) +2Rs (F) + ;

out-of —sample error in-sample error

In words, the generalization gap of any function f that lies in F is well-
controlled as long as the Rademacher complexity of F is not too large. With
this connection in place, we single out the following complexity bound.

THEOREM 7.2 (Theorem 1 in Golowich, Rakhlin and Shamir, 2017).  Consider
the function class Fr, in (7.1), where each parameter Wi has Frobenius norm at
most Mrp(l). Further suppose that the element-wise activation function o(-) is 1-
Lipschitz and positive-homogeneous (i.e., o(c-x) = co(x) for all ¢ > 0). Then the
empirical Rademacher complezity (7.2) w.r.t. S = {x;}1<i<n satisfies

AL, Me(l)
= .

The upper bound of the empirical Rademacher complexity (7.3) is in a similar
vein to that of linear functions with bounded norm, i.e., max; ||@;||2M/+/n, where
\EHlel Mry(l) plays the role of M in the latter case. Moreover, ignoring the
term /L, the upper bound (7.3) does not depend on the size of the network in an
explicit way if Mg (1) sharply concentrates around 1. This reveals that the capacity
of the neural network is well-controlled, regardless of the number of parameters,
as long as the Frobenius norm of the parameters is bounded. Extensions to other

(7.3) Rs (Fr) < max||zillz -

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



34 J. FAN, C. MA, AND Y. ZHONG

norm constraints, e.g., spectral norm constraints, path norm constraints have
been considered by Neyshabur, Tomioka and Srebro (2015); Bartlett, Foster and
Telgarsky (2017); Li et al. (2018b); Klusowski and Barron (2016); E, Ma and Wang
(2019). This line of work improves upon traditional capacity analysis of neural
networks in the over-parametrized setting, because the upper bounds derived are
often size-independent. Having said this, two important remarks are in order: (1)
the upper bounds (e.g., HlL:1 My (1)) involve implicit dependence on the size of the
weight matrix and the depth of the neural network, which is hard to characterize;
(2) the upper bound on the Rademacher complexity offers a uniform bound over
all functions in the function class, which is a pure statistical result. However, it
stays silent about how and why standard training algorithms like SGD can obtain
a function whose parameters have small norms.

7.2 Algorithm-dependent controls

In this subsection, we bring computational thinking into statistics and inves-
tigate the role of algorithms in the generalization power of deep learning. The
consideration of algorithms is quite natural and well motivated: (1) local/global
minima reached by different algorithms can exhibit totally different generaliza-
tion behaviors due to extreme nonconvexity, which marks a huge difference from
traditional models, (2) the effective capacity of neural nets is possibly not large,
since a particular algorithm does not explore the entire parameter space.

These demonstrate the fact that on top of the complexity of the function class,
the inherent property of the algorithm we use plays an important role in the
generalization ability of deep learning. In what follows, we survey three different
ways to obtain upper bounds on the generalization errors by exploiting properties
of the algorithms.

7.2.1 Mean field view of neural nets. As we have emphasized, modern deep
learning models are highly over-parametrized. A line of work focuses on the
over-parametrized one-hidden-layer neural networks (Mei, Montanari and Nguyen,
2018; Sirignano and Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat
and Bach, 2018; Mei, Misiakiewicz and Montanari, 2019; Javanmard, Mondelli
and Montanari, 2019). More specifically, let f(z;8) = N-'S°N  5(8] x) be a
function given by a one-hidden-layer neural net with N hidden units and pa-
rameters @ = [01,...,0x]" € RV*4 Here, o(-) is the ReLU activation function.
Suppose that one runs SGD on the samples (training examples) (xx,yr) (where
k=1,2,...) to minimize the population risk R(8) = E[(y — f(x;0))?] w.r.t. the
parameters 6. The central question here is how good is R(Gk), where 6% results
from running k steps of SGD?

To answer this question, a key observation is that this population risk de-
pends on the parameters @ only through its empirical distribution, i.e., pn(0) =
NN 89, where dp, is a point mass at @;. This motivates us to view R(6)
equivalently as R(pn(0)) — a mapping from distributions to real numbers. With
this observation in place, one can prove that running SGD for R(-)—in a suitable
scaling limit—results in a gradient flow on the space of distributions endowed
with the Wasserstein metric that minimizes R(-). In addition, it turns out that
the empirical distribution jx(8%) is well approximated by the gradient follow, as
long as the the neural net is over-parametrized (e.g., N > d) and the number
of steps is not too large. In particular, Mei, Montanari and Nguyen (2018) have

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 35

shown that under certain regularity conditions,

1 N
<elh/—v '\/d log —
Ne\/N eryatioes_

where € > 0 is an proxy for the step size of SGD and py. is the distribution of
the gradient flow at time ke. In words, the out-of-sample error of 8% generated
by SGD is well-approximated by that of pi., generated by the gradient flow.
Mei, Montanari and Nguyen (2018) further demonstrated that in some simple
settings, the out-of-sample error R(pgc) of the distributional limit can be fully
characterized. Passing the finite-dimensional SGD to its limit version — a mean
field perspective, greatly simplifies the problem conceptually. Nevertheless, how
well does R(p.) perform and how fast it converges remain largely open for general
problems. Moreover, the current approach seems confined to the one-hidden-layer
case and the extension to multi-layer scenario seems highly non-trivial.

sup_ |R(n(0")) — R (pke)
ke€[0,T/e]NN

7.2.2 Stability. A second way to understand the generalization ability of deep
learning is through the stability of SGD. An algorithm is considered stable if a
slight change of the input does not alter the output much. It has long been ob-
served that a stable algorithm has a small generalization gap; examples include k
nearest neighbors (Rogers and Wagner, 1978; Devroye and Wagner, 1979), bag-
ging (Breiman, 1996; Breiman et al., 1996), etc. The precise connection between
stability and generalization gap is stated by Bousquet and Elisseeff (2002); Shalev-
Shwartz et al. (2010). In what follows, we formalize the idea of stability and its
connection with the generalization gap. Let A denote an algorithm (possibly ran-
domized) which takes the training set S = {(y;, Z;) }1<i<n of size n and returns an
estimated parameter S A(S). Suppose coordinates of x; and y; are bounded.
Following Hardt, Recht and Singer (2015), we have the following definition for
stability.

DEFINITION 7.2.  An algorithm (possibly randomized) A is e-uniformly stable
with respect to the loss function L(-,-) if for all datasets S, S’ of size n which differ
i at most one example, one has

supEu [£(f(z;A(5)),y) — L (f(2;A(S)),y)] <e.

@y
Here the expectation is taken w.r.t. the randomness in the algorithm A and ¢
might depend on n. The loss function L(-,-) takes an example (say (x,y)) and the
estimated parameter (say A(S)) as inputs and outputs a real value.

Surprisingly, an e-uniformly stable algorithm incurs small generalization gap
i expectation, which is stated in the following lemma.

LEMMA 7.1 (Theorem 2.2 in Hardt, Recht and Singer, 2015). Let A be e-
uniformly stable. Then the expected generalization gap is no larger than ¢, i.e.,

(7.4) <e.

Ea,s

=1

With Lemma 7.1 in hand, it suffices to prove stability bound on specific algo-
rithms. It turns out that SGD introduced in Section 6 is uniformly stable when

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



36 J. FAN, C. MA, AND Y. ZHONG
solving smooth nonconvex functions.

THEOREM 7.3 (Theorem 3.12 in Hardt, Recht and Singer (2015)). Assume
that for any fized (y,x), the loss function L(f(x;0),y), viewed as a function of 0,
18 L-Lipschitz and B-smooth. Consider running SGD on the empirical loss function
with decaying step size oy < c¢/t, where ¢ is some small absolute constant. Then
SGD 1is uniformly stable with .

1— L
cx
n

where we have ignored the dependency on 3,c and L.

Theorem 7.3 reveals that SGD operating on nonconvex loss functions is indeed
uniformly stable as long as the number of steps 7' is not large compared with n.
This together with Lemma 7.1 demonstrates the generalization ability of SGD in
expectation. Nevertheless, two important limitations are worth mentioning. First,
Lemma 7.1 provides an upper bound on the out-of-sample error in expectation,
but ideally, instead of an on-average guarantee under E 4 g, we would like to have
a high probability guarantee as in the convex case (Feldman and Vondrak, 2019).
Second, controlling the generalization gap alone is not enough to achieve a small
out-of-sample error, since it is unclear whether SGD can achieve a small training
error within 7" steps.

7.2.3 Implicit reqularization. In the presence of over-parametrization (number
of parameters larger than the sample size), conventional wisdom informs us that
we should apply some regularization techniques (e.g., 1 / {5 regularization) so that
the model will not overfit the data. However, in practice, neural networks without
explicit regularization generalize well. This phenomenon motivates researchers to
look at the regularization effects introduced by training algorithms (e.g., SGD)
in this over-parametrized regime. While there might exits multiple, if not infinite
global minima of the empirical loss (6.1), it is possible that practical algorithms
tend to converge to solutions with better generalization powers.

Take the underdetermined linear system X6 = y as a starting point. Here
X € R™*P and 0 € RP with p much larger than n. Running gradient descent on
the loss 5| X6 — yl|3 from the origin (i.e., 8° = 0) results in the solution with the
minimum Euclidean norm, that is GD converges to

min 0|2 subject to X6 =y.

OcRp
In words, without any fs regularization in the loss function, gradient descent
automatically finds the solution with the least 5 norm. This phenomenon, often
called as implicit reqularization, not only has been empirically observed in training
neural networks, but also has been theoretically understood in some simplified
cases, e.g., logistic regression with separable data. In logistic regression, given a
training set {(vi, ;) }i<i<n with &; € RP and y; € {1,—1}, one aims to fit a
logistic regression model by solving the following program:

: 1 ¢
(7.5) min - ;ﬁ(yimjot).

Here, ¢(u) = log(1 + e~*) denotes the logistic loss. Further assume that the data

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 37

is separable, i.e., there exists 8* € RP such that y;0* a; > 0 for all i. Under
this condition, the loss function (7.5) can be arbitrarily close to zero for certain 0
with ||@]||2 — oo. What happens when we minimize (7.5) using gradient descent?
Soudry et al. (2018) uncovers a striking phenomenon.

THEOREM 7.4 (Theorem 3 in Soudry et al., 2018). Consider the logistic re-
gression (7.5) with separable data. If we run GD

1 n
t+1 _ gt L ol (T Ot
0T =0 U ;:1 Yyl (y,a:z (7] )

from any initialization 8° with an appropriate step size n > 0, then normalized 6°
converges to a solution with the mazimum fo margin. That is,

t A~
(7.6) lim —— =0,

where 0 is the solution to the hard margin support vector machine:

(7.7) 02 arg 511%1% 110]]2, subject to yia:ZTH >1 forall<i<n.
€

The above theorem reveals that gradient descent, when solving logistic regres-
sion with separable data, implicitly regularizes the iterates towards the f5 max
margin vector (cf. (7.6)), without any explicit regularization as in (7.7). Similar
results have been obtained by Ji and Telgarsky (2018). In addition, Gunasekar
et al. (2018a) studied algorithms other than gradient descent and showed that
coordinate descent produces a solution with the maximum ¢; margin.

Moving beyond logistic regression, which can be viewed as a neural net with no
hidden layers, the theoretical understanding of implicit regularization in deeper
neural networks is still limited; see Gunasekar et al. (2018b) for an illustration in
deep linear convolutional neural networks.

8. DISCUSSION

Due to space limitations, we have omitted several important deep learning mod-
els; notable examples include deep reinforcement learning (Mnih et al., 2015), deep
probabilistic graphical models (Salakhutdinov and Hinton, 2009), variational au-
toencoders (Kingma and Welling, 2013), transfer learning (Yosinski et al., 2014),
etc. Apart from the modeling aspect, interesting theories on generative adversarial
networks (Arora et al., 2017; Bai, Ma and Risteski, 2018), recurrent neural net-
works (Allen-Zhu and Li, 2019), connections with kernel methods (Jacot, Gabriel
and Hongler, 2018; Arora et al., 2019) are also emerging. We have also omitted
the inverse-problem view of deep learning where the data are assumed to be gen-
erated from a certain neural net and the goal is to recover the weights in the NN
with as few examples as possible. Various algorithms (e.g., GD with spectral ini-
tialization) have been shown to recover the weights successfully in some simplified
settings (Zhong et al., 2017; Soltanolkotabi, 2017; Goel, Klivans and Meka, 2018;
Mondelli and Montanari, 2018; Chen et al., 2019a; Fu, Chi and Liang, 2018).

In the end, we identify a few important directions for future research.

e New characterization of data distributions. The success of deep learning re-
lies on its power of efficiently representing complex functions relevant to real

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



38 J. FAN, C. MA, AND Y. ZHONG

data. Comparatively, classical methods often have optimal guarantee if a prob-
lem has a certain known structure, such as smoothness, sparsity, and low-
rankness (Stone, 1982; Donoho and Johnstone, 1994; Candés and Tao, 2009;
Chen et al., 2019b), but they are insufficient for complex data such as images.
How to characterize the high-dimensional real data that can free us from known
barriers, such as the curse of dimensionality, is an interesting open question.

e Understanding various computational algorithms for deep learning. As we have
emphasized throughout this survey, computational algorithms (e.g., variants of
SGD) play a vital role in the success of deep learning. They allow fast training
of deep neural nets and probably contribute towards the good generalization
behavior of deep learning in practice. Understanding these computational algo-
rithms and devising better ones are crucial components in understanding deep
learning.

o Robustness. It has been well documented that DNNs are sensitive to small ad-
versarial perturbations that are indistinguishable to humans (Szegedy et al.,
2013). This raises serious safety issues once deep learning models are deployed
in applications such as self-driving cars, healthcare, etc. It is therefore cru-
cial to refine current training practice to enhance robustness in a principled
way (Singh, Murdoch and Yu, 2018).

e Low signal-to-noise ratio (SNR). Arguably, for image data and audio data where
the signal-to-noise ratio is high, deep learning has achieved great success. In
many other statistical problems, the SNR may be very low. For example, in
financial applications, the firm characteristic and covariates may only explain
a small part of the financial returns; in healthcare systems, the uncertainty of
an illness may not be predicted well from a patient’s medical history. How to
adapt deep learning models to excel at such tasks is an interesting direction to
pursue.

ACKNOWLEDGEMENTS

We thank Ruying Bao, Yuxin Chen, Chenxi Liu, Qingcan Wang and Pengkun
Yang for helpful comments and discussions. We also thank the editor and the
reviewers for pointing out references on universal approximation theorems and

AdaNet.

REFERENCES

ABADI, M. and ET. AL. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org.

ABBasi-AsL, R., CHEN, Y., BLoNIARZ, A., OLIVER, M., WILLMORE, B. D.; GALLANT, J. L.
and Yu, B. (2018). The DeepTune framework for modeling and characterizing neurons in
visual cortex area V4. bioRziv 465534.

ALLEN-ZHU, Z., L1, Y. and SoNG, Z. (2018). A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962.

ALLEN-ZHU, Z. and L1, Y. (2019). Can SGD Learn Recurrent Neural Networks with Provable
Generalization? ArXiv e-prints abs/1902.01028.

ANTHONY, M. and BARTLETT, P. L. (2009). Neural network learning: Theoretical foundations.
cambridge university press.

ARJOVSKY, M., CHINTALA, S. and BoTToUu, L. (2017). Wasserstein Generative Adversarial
Networks. 70 214-223.

ARrNoOLD, V. I. (2009). On functions of three variables. Collected Works: Representations of
Functions, Celestial Mechanics and KAM Theory, 1957-1965 5-8.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 39

ARORA, S., GE, R., LiaNG, Y., Ma, T. and ZHANG, Y. (2017). Generalization and equilibrium
in generative adversarial nets (GANSs). In Proceedings of the 84th International Conference
on Machine Learning-Volume 70 224-232. JMLR. org.

ARORA, S., Du, S. S., Hu, W., L1, Z. and WangG, R. (2019). Fine-Grained Analysis of
Optimization and Generalization for Overparameterized Two-Layer Neural Networks. arXiv
preprint arXiw:1901.08584.

Barl, Y., Ma, T. and RisTESKI, A. (2018). Approximability of discriminators implies diversity
in GANs. arXiv preprint arXiv:1806.10586.

BARRON, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal func-
tion. IEEE Transactions on Information theory 39 930-945.

BARTLETT, P. L. (1998). The sample complexity of pattern classification with neural networks:
the size of the weights is more important than the size of the network. IEEFE transactions on
Information Theory 44 525-536.

BARTLETT, P. L., FOSTER, D. J. and TELGARSKY, M. J. (2017). Spectrally-normalized mar-
gin bounds for neural networks. In Advances in Neural Information Processing Systems 30
(I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett,
eds.) 6240-6249. Curran Associates, Inc.

BAUER, B., KoHLER, M. et al. (2019). On deep learning as a remedy for the curse of dimen-
sionality in nonparametric regression. The Annals of Statistics 47 2261-2285.

BELKIN, M., Hsu, D., Ma, S. and MANDAL, S. (2019). Reconciling modern machine-learning
practice and the classical bias—variance trade-off. Proceedings of the National Academy of
Sciences 116 15849-15854.

BotrTou, L. (1998). Online learning and stochastic approximations. On-line learning in neural
networks 17 142.

BousQueT, O. and ELISSEEFF, A. (2002). Stability and generalization. Journal of machine
learning research 2 499-526.

BREIMAN, L. (1996). Bagging predictors. Machine learning 24 123-140.

BREIMAN, L. et al. (1996). Heuristics of instability and stabilization in model selection. The
annals of statistics 24 2350—-2383.

Canbpis, E. J. and Tao, T. (2009). The power of convex relaxation: Near-optimal matrix
completion. arXiv preprint arXiv:0903.1476.

Cao, C., Liu, F., TaN, H., SoNg, D., SHU, W., L1, W., ZHou, Y., Bo, X. and XIE, Z. (2018).
Deep learning and its applications in biomedicine. Genomics, proteomics & bioinformatics 16
17-32.

CHEN, S., DoBrIBAN, E. and LEE, J. H. (2019). Invariance reduces variance: Understanding
data augmentation in deep learning and beyond. arXiv preprint arXiv:1907.10905.

CHEN, T., RuBANOVA, Y., BETTENCOURT, J. and DUVENAUD, D. (2018). Neural Ordinary
Differential Equations. arXiv preprint arXiv:1806.07366.

CHEN, Y., CHI, Y., FAN, J. and Ma, C. (2019a). Gradient descent with random initialization:
Fast global convergence for nonconvex phase retrieval. Mathematical Programming 1-33.

CHEN, Y., CHI, Y., FaN, J., Ma, C. and YAN, Y. (2019b). Noisy Matrix Completion: Under-
standing Statistical Guarantees for Convex Relaxation via Nonconvex Optimization. arXiv
preprint arXiv:1902.07698.

Cuizat, L. and BacH, F. (2018). On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in neural information processing
systems 3040-3050.

CHo, K., VAN MERRIENBOER, B., GULCEHRE, C., BAHDANAU, D., BoOUGAREs, F.,
ScHWENK, H. and BENGIO, Y. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

CorrtES, C., GoNnzaLvo, X., KuzNETSOV, V., MOHRI, M. and YANG, S. (2017). Adanet: Adap-
tive structural learning of artificial neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70 874-883. JMLR. org.

DE Fauw, J., LEDpsaM, J. R., ROMERA-PAREDES, B., NikoLov, S., ToMASEV, N., BLACK-
WELL, S., AskHaMm, H., GLoroT, X., O’DONOGHUE, B.; VISENTIN, D. et al. (2018). Clin-
ically applicable deep learning for diagnosis and referral in retinal disease. Nature medicine
24 1342.

DEVROYE, L. and WAGNER, T. (1979). Distribution-free performance bounds for potential
function rules. IEEE Transactions on Information Theory 25 601-604.

DonNoHo, D. L. (2000). High-dimensional data analysis: The curses and blessings of dimension-

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



40 J. FAN, C. MA, AND Y. ZHONG

ality. AMS math challenges lecture 1 32.

DoNoHO, D. L. and JOHNSTONE, J. M. (1994). Ideal spatial adaptation by wavelet shrinkage.
biometrika 81 425-455.

Du, S. S., LEg, J. D., L1, H., WaANG, L. and Zuai, X. (2018). Gradient descent finds global
minima of deep neural networks. arXiv preprint arXiv:1811.0380.

DucHr, J., HAazaN, E. and SINGER, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12 2121-2159.

E, W., Ma, C. and WANG, Q. (2019). A Priori Estimates of the Population Risk for Residual
Networks. arXiv preprint arXiv:1903.02154.

ELDAN, R. and SHAMIR, O. (2016). The power of depth for feedforward neural networks. In
Conference on Learning Theory 907-940.

Fan, J. and L1, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association 96 1348-1360.

FELDMAN, V. and VONDRAK, J. (2019). High probability generalization bounds for uniformly
stable algorithms with nearly optimal rate. arXiv preprint arXiv:1902.10710.

FriEDMAN, J. H. and STUETZLE, W. (1981). Projection pursuit regression. Journal of the
American statistical Association 76 817-823.

Fu, H., CHi, Y. and Li1aNG, Y. (2018). Local geometry of one-hidden-layer neural networks
for logistic regression. arXiv preprint arXiv:1802.06463.

FukusHIMA, K. and MIYAKE, S. (1982). Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets
267-285. Springer.

Gao, C., Liu, J., Yao, Y. and ZHu, W. (2018). Robust Estimation and Generative Adversarial
Nets. arXww preprint arXiv:1810.02030.

GoOEL, S., KLivaNs, A. and MEKA, R. (2018). Learning one convolutional layer with overlapping
patches. arXiv preprint arXiv:1802.02547.

GorowicH, N., RAKHLIN, A. and SHAMIR, O. (2017). Size-independent sample complexity of
neural networks. arXiv preprint arXiv:1712.06541.

GoLruB, G. H. and VAN Loan, C. F. (2013). Matriz computations, 4 ed. JHU Press.

GoopFELLOW, 1., BENGIO, Y. and COURVILLE, A. (2016). Deep Learning. MIT Press.

GOODFELLOW, 1., POUGET-ABADIE, J., MirzA, M., XU, B., WARDE-FARLEY, D., OzAIR, S.,
CoURVILLE, A. and BENGIO, Y. (2014). Generative adversarial nets. In Advances in neural
information processing systems 2672—-2680.

GUNASEKAR, S., LEE, J., SOUDRY, D. and SREBRO, N. (2018a). Characterizing implicit bias
in terms of optimization geometry. arXiv preprint arXiv:1802.08246.

GUNASEKAR, S., LEE, J. D., SoUDRY, D. and SREBRO, N. (2018b). Implicit bias of gradi-
ent descent on linear convolutional networks. In Advances in Neural Information Processing
Systems 9482-9491.

GYBENKO, G. (1989). Approximation by superposition of sigmoidal functions. Mathematics of
Control, Signals and Systems 2 303—-314.

HARDLE, W., HALL, P., ICHIMURA, H. et al. (1993). Optimal smoothing in single-index models.
The annals of Statistics 21 157-178.

HarDT, M., RECHT, B. and SINGER, Y. (2015). Train faster, generalize better: Stability of
stochastic gradient descent. arXiv preprint arXiv:1509.01240.

HasTie, T., MONTANARI, A., ROSSET, S. and TiBSHIRANI, R. J. (2019). Surprises in high-
dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560.

HE, K., ZHaNg, X., REN, S. and SuN, J. (2016a). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition 7T70-778.

HE, K., Zuang, X., REN, S. and SuN, J. (2016b). Identity mappings in deep residual networks.
In European conference on computer vision 630—645. Springer.

HinTON, G., SRIvasTAVA, N. and SWERSKY, K. (2012). Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent.

HinTON, G. E., SRIvAsTAVA, N., KRIZHEVSKY, A., SUTSKEVER, I. and SALAKHUTDINOV, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

HOCHREITER, S. and SCHMIDHUBER, J. (1997). Long short-term memory. Neural computation
9 1735-1780

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural net-
works 4 251-257.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 41

Huang, G., Liu, Z., VAN DER MAATEN, L. and WEINBERGER, K. Q. (2017). Densely con-
nected convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition 4700-4708.

HuBkL, D. H. and WIESEL, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology 160 106—154.

IanpoLA, F. N., HAN, S., Moskewicz, M. W., AsHrRAF, K., DaLLy, W. J. and KEUTZER, K.
(2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model
size. arXiv preprint arXiw:1602.07360.

IoFFE, S. and SzZEGEDY, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jacor, A., GABRIEL, F. and HONGLER, C. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems 8580—
8589.

JaIN, P., KAKADE, S. M., KipamMBI, R., NETRAPALLI, P. and SIDFORD, A. (2017). Accelerating
stochastic gradient descent. arXiv preprint arXiv:1704.08227.

JAVANMARD, A., MONDELLI, M. and MONTANARI, A. (2019). Analysis of a Two-Layer Neural
Network via Displacement Convexity. arXiv preprint arXiv:1901.01375.

J1, Z. and TELGARSKY, M. (2018). Risk and parameter convergence of logistic regression. arXiv
preprint arXiv:1803.07300.

KipaMmBI, R., NETRAPALLI, P., JAIN, P. and KAKADE, S. (2018). On the insufficiency of
existing momentum schemes for stochastic optimization. In 2018 Information Theory and
Applications Workshop (ITA) 1-9. IEEE.

KIEFER, J., WOLFOWITZ, J. et al. (1952). Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics 23 462—466.

KiNGMA, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P. and WELLING, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Krusowskl, J. M. and BARRON, A. R. (2016). Risk bounds for high-dimensional ridge function
combinations including neural networks. arXiv preprint arXiv:1607.01434.

KRIZHEVSKY, A., SUTSKEVER, I. and HINTON, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems 1097—
1105.

KusHNER, H. and YIN, G. G. (2003). Stochastic approximation and recursive algorithms and
applications 35. Springer Science & Business Media.

LeCuUN, Y., BENGIO, Y. and HINTON, G. (2015). Deep learning. nature 521 436.

LeCuN, Y., BorTou, L., BENGIO, Y. and HAFFNER, P. (1998). Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86 2278-2324.

L1, Y., SWERSKY, K. and ZEMEL, R. (2015). Generative moment matching networks. In Inter-
national Conference on Machine Learning 1718-1727.

L1, H., Xu, Z., TAYLOR, G., STUDER, C. and GOLDSTEIN, T. (2018a). Visualizing the loss
landscape of neural nets. In Advances in Neural Information Processing Systems 6391-6401.

L1, X., Lu, J., WANG, Z., HaupT, J. and ZHAO, T. (2018b). On tighter generalization bound
for deep neural networks: CNNs, ResNets, and beyond. arXiv preprint arXiv:1806.05159.

Liang, T. (2017). How Well Can Generative Adversarial Networks (GAN) Learn Densities: A
Nonparametric View. arXiv preprint arXiv:1712.08244.

LiN, M., CHEN, Q. and YAN, S. (2013). Network in network. arXiv preprint arXiv:1812.4400.

Lin, H. W., TEGMARK, M. and RoLNICK, D. (2017). Why does deep and cheap learning work
so well? Journal of Statistical Physics 168 1223-1247.

Maas, A. L., HANNUN, A. Y. and Nag, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml 30 3.

Maiorov, V. and MEIR, R. (2000). On the near optimality of the stochastic approximation of
smooth functions by neural networks. Advances in Computational Mathematics 13 79-103.
Makovoz, Y. (1996). Random approximants and neural networks. Journal of Approximation

Theory 85 98-109.

MeI, S., MisIAKIEWICZ, T. and MONTANARI, A. (2019). Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. arXiv preprint arXiv:1902.06015.

ME1, S., MONTANARI, A. and NGUYEN, P.-M. (2018). A mean field view of the landscape
of two-layer neural networks. Proceedings of the National Academy of Sciences 115 E7665—

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



42 J. FAN, C. MA, AND Y. ZHONG

E7671.

MHASKAR, H. N. (1996). Neural networks for optimal approximation of smooth and analytic
functions. Neural computation 8 164-177.

MHASKAR, H., L1iao, Q. and Poccio, T. (2016). Learning functions: when is deep better than
shallow. arXiv preprint arXiv:1603.00988.

MniH, V., KavukcvocLu, K., Siiver, D., Rusu, A. A., VENESS, J., BELLEMARE, M. G.,
GRAVES, A., RIEDMILLER, M., FIDJELAND, A. K., OsTROVSKI, G. et al. (2015). Human-
level control through deep reinforcement learning. Nature 518 529.

MonNDELLI, M. and MONTANARI, A. (2018). On the connection between learning two-layers
neural networks and tensor decomposition. arXiv preprint arXiv:1802.07301.

NEsTEROV, Y. E. (1983). A method for solving the convex programming problem with conver-
gence rate O (1/k" 2). In Dokl. Akad. Nauk SSSR 269 543-547.

NEYSHABUR, B., ToMIOKA, R. and SREBRO, N. (2015). Norm-based capacity control in neural
networks. In Conference on Learning Theory 1376-1401.

NowoziN, S., CSEKE, B. and ToMIokA, R. (2016). f-gan: Training generative neural samplers
using variational divergence minimization. In Advances in Neural Information Processing
Systems 271-279.

PARBERRY, 1. (1994). Clircuit complezity and neural networks. MIT press.

Paszke, A., Gross, S., CHINTALA, S., CHANAN, G., Yang, E., DEVITO, Z., LIN, Z., DES-
MAISON, A., ANTIGA, L. and LERER, A. (2017). Automatic differentiation in PyTorch.

PiNkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta numerica
8 143-195.

Pocalo, T., MHASKAR, H., Rosasco, L., MIRANDA, B. and Liao, Q. (2017). Why and when
can deep-but not shallow-networks avoid the curse of dimensionality: a review. International
Journal of Automation and Computing 14 503-519.

Poryak, B. T. (1964). Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics 4 1-17.

Porvak, B. T. and JupiTsky, A. B. (1992). Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization 30 838-855.

Porvak, B. T. and TsypkiIN, Y. Z. (1979). Adaptive estimation algorithms: convergence,
optimality, stability. Avtomatika i Telemekhanika 3 71-84.

PouLTNEY, C., CHOPRA, S., LECUN, Y. et al. (2007). Efficient learning of sparse represen-
tations with an energy-based model. In Advances in neural information processing systems
1137-1144.

REDDI, S. J., KALE, S. and KUMAR, S. (2018). On the convergence of adam and beyond.

RoBBiNs, H. and MoNRrRo, S. (1951). A Stochastic Approximation Method. The Annals of
Mathematical Statistics 22 400—-407.

Rocers, W. H. and WacNER, T. J. (1978). A finite sample distribution-free performance
bound for local discrimination rules. The Annals of Statistics 506-514.

RoLNICK, D. and TEGMARK, M. (2017). The power of deeper networks for expressing natural
functions. arXiv preprint arXiv:1705.05502.

Romano, Y., SesiA, M. and Canpis, E. J. (2018). Deep Knockoffs. arXiv preprint
arXiw:1811.06687.

RoTskorF, G. M. and VANDEN-EIJNDEN, E. (2018). Neural networks as interacting particle
systems: Asymptotic convexity of the loss landscape and universal scaling of the approxima-
tion error. arXiv preprint arXiv:1805.00915.

RUMELHART, D. E., HINTON, G. E. and WiLL1AMS, R. J. (1985). Learning internal represen-
tations by error propagation Technical Report, California Univ San Diego La Jolla Inst for
Cognitive Science.

Russakovsky, O., DENG, J., Su, H., KRAUSE, J., SATHEESH, S., MA, S., HuaNG, Z., KARPA-
THY, A., KHOSLA, A., BERNSTEIN, M., BERG, A. C. and FEI-FEI, L. (2015). ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV)
115 211-252.

Sak, H., SENIOR, A. and BEAUFAYS, F. (2014). Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In Fifteenth annual conference of the
international speech communication association.

SALAKHUTDINOV, R. and HINTON, G. (2009). Deep boltzmann machines. In Artificial intelli-
gence and statistics 448-455.

SaLiMaNs, T.; GoopreELLow, 1., ZAREMBA, W., CHEUNG, V., RADFORD, A. and CHEN, X.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



DEEP LEARNING 43

(2016). Improved techniques for training GANs. In Advances in Neural Information Processing
Systems 2234-2242.

ScHMIDT-HIEBER, J. (2017). Nonparametric regression using deep neural networks with ReLU
activation function. arXiv preprint arXiv:1708.06633.

SHALEV-SHWARTZ, S. and BEN-DAVID, S. (2014). Understanding machine learning: From theory
to algorithms. Cambridge university press.

SHALEV-SHWARTZ, S., SHAMIR, O., SREBRO, N. and SRIDHARAN, K. (2010). Learnability,
stability and uniform convergence. Journal of Machine Learning Research 11 2635-2670.
SILVER, D., SCHRITTWIESER, J., SIMONYAN, K., ANTONOGLOU, I., HuaNG, A., GUEz, A.,
HuBerr, T., BAKER, L., LaAl, M., BoLTON, A. et al. (2017). Mastering the game of go

without human knowledge. Nature 550 354.

SILVERMAN, B. W. (1998). Density estimation for statistics and data analysis. Chapman &
Hall, CRC.

SiNGgH, C., MurpocH, W. J. and Yu, B. (2018). Hierarchical interpretations for neural network
predictions. arXiv preprint arXiv:1806.05337.

SIRIGNANO, J. and SpiLiopouLos, K. (2018). Mean field analysis of neural networks. arXiv
preprint arXiw:1805.01053.

SOLTANOLKOTABI, M. (2017). Learning relus via gradient descent. In Advances in Neural Infor-
mation Processing Systems 2007-2017.

SouDRy, D., HOFFER, E., NacsoN, M. S., GUNASEKAR, S. and SREBRO, N. (2018). The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research
19 2822-2878.

SPRECHER, D. A. (1965). On the structure of continuous functions of several variables. Trans-
actions of the American Mathematical Society 115 340-355.

StonE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. The
annals of statistics 1040—1053.

SToNE, C. J. et al. (1985). Additive regression and other nonparametric models. The annals of
Statistics 13 689-705.

STONE, C. J. et al. (1994). The use of polynomial splines and their tensor products in multi-
variate function estimation. The Annals of Statistics 22 118-171.

SUTSKEVER, 1., MARTENS, J., DanL, G. and HINTON, G. (2013). On the importance of ini-
tialization and momentum in deep learning. In International conference on machine learning
1139-1147.

SZEGEDY, C., ZAREMBA, W., SUTSKEVER, I., BRUNA, J., ErRHAN, D., GooDFELLOW, I. and
FERGUS, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.

Szecepy, C., Liu, W., Jia, Y., SERMANET, P., REED, S., ANcGUELOV, D., ERHAN, D.,
VANHOUCKE, V. and RaBINOVICH, A. (2015). Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition 1-9.

TELGARSKY, M. (2016). Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485.

TiBsHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological) 58 267—288.

VAPNIK, V. and CHERVONENKIS, A. Y. (1971). On the Uniform Convergence of Relative Fre-
quencies of Events to Their Probabilities. Theory of Probability € Its Applications 16 264—
280.

VINCENT, P., LAROCHELLE, H., BENGIO, Y. and MANzAGOL, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th interna-
tional conference on Machine learning 1096-1103. ACM.

WAGER, S., WANG, S. and Liang, P. S. (2013). Dropout training as adaptive regularization.
In Advances in neural information processing systems 351-359.

WEINAN, E., HAN, J. and JENTZEN, A. (2017). Deep learning-based numerical methods for
high-dimensional parabolic partial differential equations and backward stochastic differential
equations. Communications in Mathematics and Statistics 5 349-380.

WiLsoN, A. C., RoeLorFs, R., STERN, M., SREBRO, N. and RECHT, B. (2017). The Marginal
Value of Adaptive Gradient Methods in Machine Learning. In Advances in Neural Informa-
tion Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan and R. Garnett, eds.) 4148-4158. Curran Associates, Inc.

Wu, Y., SCHUSTER, M., CHEN, Z., LE, Q. V., Norouzi, M., MACHEREY, W., KRIKUN, M.,
Cao, Y., Gao, Q., MACHEREY, K. et al. (2016). Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



44 J. FAN, C. MA, AND Y. ZHONG

YosinNski, J., CLUNE, J., BENGIO, Y. and LirsoN, H. (2014). How transferable are features in
deep neural networks? In Advances in neural information processing systems 3320-3328.

Yosinski, J., CLUNE, J., NGUYEN, A., Fucas, T. and LipsoN, H. (2015). Understanding
neural networks through deep visualization. arXiv preprint arXiv:1506.06579.

ZHANG, C., BENGIO, S., HARDT, M., RECHT, B. and VINYALS, O. (2016). Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530.

Zuong, K., Song, Z., JAIN, P., BARTLETT, P. L. and DHiLLON, I. S. (2017). Recovery
guarantees for one-hidden-layer neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70 4140-4149. JMLR. org.

imsart-sts ver. 2014/10/16 file: main.tex date: June 18, 2020



	Introduction
	Intriguing new characteristics of deep learning
	Depth and approximation.
	Over-parametrization and generalization.
	Nonconvexity and optimization.
	Implicit representation learning.

	Towards the theory of deep learning
	A roadmap of the paper

	Feed-forward neural networks
	Model setups
	Back-propagation in computational graphs

	Popular models
	Convolutional neural networks
	Recurrent neural networks
	Vanilla RNNs.
	GRUs and LSTM.
	Multilayer RNNs.

	Modules

	Deep unsupervised learning
	Autoencoders
	Generative adversarial networks
	Sampling view of GANs.
	Density estimation view of GANs. 


	Representation power: approximation theory
	Universal approximation theory for shallow NNs
	Approximation theory for multi-layer NNs

	Training deep neural nets 
	Stochastic gradient descent 
	Mini-batch SGD.
	Momentum-based SGD.
	SGD with adaptive learning rates.

	Easing numerical instability
	ReLU activation function.
	Skip connections.
	Batch normalization.

	Regularization techniques
	Weight decay.
	Dropout.
	Data augmentation.


	Generalization power
	Algorithm-independent controls: uniform convergence
	Algorithm-dependent controls
	Mean field view of neural nets.
	Stability.
	Implicit regularization.


	Discussion
	Acknowledgements
	References

