
Factor-Adjusted Regularized Model Selection

Jianqing Fana, Yuan Keb,∗and Kaizheng Wanga

aDepartment of ORFE, Princeton University, USA

bDepartment of Statistics, University of Georgia, USA

Abstract

This paper studies model selection consistency for high dimensional sparse regression when

data exhibits both cross-sectional and serial dependency. Most commonly-used model selection

methods fail to consistently recover the true model when the covariates are highly correlated.

Motivated by econometric and financial studies, we consider the case where covariate depen-

dence can be reduced through the factor model, and propose a consistency strategy named

Factor-Adjusted Regularized Model Selection (FarmSelect). By learning the latent factors and

idiosyncratic components and using both of them as predictors, FarmSelect transforms the prob-

lem from model selection with highly correlated covariates to that with weakly correlated ones

via lifting. Model selection consistency, as well as optimal rates of convergence, are obtained

under mild conditions. Numerical studies demonstrate the nice finite sample performance in

terms of both model selection and out-of-sample prediction. Moreover, our method is flexible

in the sense that it pays no price for weakly correlated and uncorrelated cases. Our method

is applicable to a wide range of high dimensional sparse regression problems. An R-package

FarmSelect is also provided for implementation.
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1 Introduction

With the development of data collection and storage technologies, high dimensional time series char-

acterize many contemporary research problems in economics, finance, genomics, statistics, machine

learning and so on. Specifying an appropriate yet parsimonious model has become a key topic in

high dimensional time series analysis. Parsimonious models are preferable due to their simplicity

and interpretability. In classic econometric studies, extensive efforts have been made to identify

the correct orders of time series models, see Akaike (1973), Schwarz (1978), Tsay and Tiao (1985),

Choi (1992) and Tiao and Tsay (1989) among others. In addition, removing redundant coefficients

can improve the prediction accuracy of time series. Professor George C. Tiao and his co-authors,

among others, have contributed to this area by a series of pioneering works (Box and Tiao, 1976;

Liu et al., 1992; Montgomery et al., 1998).

Over the past two decades, many model selection methods have been developed. A major part

of them are based on the regularized M -estimation approach including the LASSO (Tibshirani,

1996), the SCAD (Fan and Li, 2001), the elastic net (Zou and Hastie, 2005), and the Dantzig

selector (Candes and Tao, 2007), among others. These methods have attracted a large amount of

theoretical and algorithmic studies. See Donoho and Elad (2003), Fan and Peng (2004), Efron et al.

(2004), Meinshausen and Bühlmann (2006), Zhao and Yu (2006), Fan and Lv (2008), Zou and Li

(2008), Bickel et al. (2009), Wainwright (2009), Zhang (2010), and references therein. However, most

existing model selection schemes are not tailored for economic and financial applications as they

assume covariates are cross-sectionally weakly correlated and serially independent. These conditions

are easily violated in economic and financial datasets. For example, economics studies (e.g. Stock

and Watson, 2002; Bai and Ng, 2002) show that there exist strong co-movements among a large

pool of macroeconomic variables. A stylized feature of the stock return data is cross-sectionally

correlated among the stock returns. Furthermore, even if the weakly correlated assumption holds,

one may still observe strong spurious correlations in a high dimensional sample.

To illustrate how cross-sectional correlations influence the model selection result, we consider

a toy example of LASSO with an equally correlated design. Consider a sparse linear model y =

Xβ∗ + ε. We choose sample size n = 100, dimensionality p = 200, β∗ = (β1, · · · , β10,0T(p−10))
T ,

and ε ∼ N(0n, 0.3In). The nonzero coefficients β1, · · · , β10 are drawn from i.i.d. Uniform [2, 5].

The covariates X = (x1, · · · ,xp)
T are drawn from the normal distribution N(0p, Σ) where Σ is

a correlation matrix with all off-diagonal elements ρ for some ρ ∈ [0, 1). Let ρ increase from 0 to

0.95 by a step size 0.05. For each given ρ, we simulate 200 replications and calculate the average
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Figure 1: LASSO model selection results with respect to the correlations

model size selected by LASSO, the average model size when the first false discovery (xj , j > 10)

enters the solution path and the model selection consistency rate. As is shown in Figure 1, the

correlation influences the model selection results in the following three aspects: (i) selected model

size, (ii) early selection of false variables, (iii) model selection consistency rates. Therefore, when

the covariates are highly correlated, there is little hope to exactly recover the active set from the

solution path of LASSO. As to be shown later, the correlation has similar adverse impacts on other

model selection methods (e.g. SCAD and elastic net).

To overcome the the aforementioned problems caused by the cross-sectional correlation, this

paper proposes a consistent strategy named Factor-Adjusted Regularized Model Selection (Farm-

Select) for the case where covariates can be decorrelated via a few pervasive latent factors. More

precisely, let xtj be the tth (t = 1, · · · , n) observation of the jth (j = 1, · · · , p) covariate, and assume

that xt = (xt1, · · · , xtp)T follows an approximate factor model

xt = Bft + ut, (1.1)

where ft is a K × 1 vector of latent factors, B is a p×K matrix of factor loadings, and ut is a p× 1

vector of idiosyncratic components that are uncorrelated with ft. The strategy of FarmSelect is to

first learn the parameters in approximate factor model (1.1) for the covariates {xt}nt=1. Denote by

f̂t and B̂ the obtained estimators of the factors and loadings respectively. Then by identifying the
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highly correlated low rank part by B̂f̂t, we transform the problem from model selection with highly

correlated covariates in xt to that with weakly correlated or uncorrelated idiosyncratic components

ût := xt − B̂f̂t and f̂t. This lifting step makes covariates weakly correlated. The second step

amounts to solving a regularized profile likelihood problem. We study FarmSelect in detail by

providing theoretical guarantees that FarmSelect can achieve model selection consistency as well as

estimation consistency under mild conditions. Unlike traditional studies of model selection where

the samples are assumed to be i.i.d., the serial dependency is allowed and thus our theories apply to

time series data. Moreover, both theoretical and numerical studies show the flexibility of FarmSelect

in the sense that it pays no price for weakly correlated cases. This property makes FarmSelect very

powerful when the underlying correlations between active and inactive covariates are unknown.

FarmSelect is applicable to a wide range of high dimensional sparse regression related problems

that include but are not limited to linear model, generalized linear model, Gaussian graphic model,

robust linear model, and group LASSO. For the sparse linear regression, the proposed approach is

equivalent to projecting the response variable and covariates onto the linear space orthogonal to the

one spanned by the estimated factors. Existing algorithms that yield solution paths of LASSO can

be directly applied in the second step. To demonstrate the finite sample performance of FarmSelect,

we study two simulated and one empirical example. The numerical results show FarmSelect can

consistently select the true model even when the covariates are highly correlated while existing

methods like LASSO, SCAD and elastic net fail to do so. An R-package FarmSelect ( https://

cran.r-project.org/web/packages/FarmSelect ) is also provided to facilitate the implementation

of our method.

Various methods have been studied to estimate the approximate factor model. Principal compo-

nents analysis (PCA, Stock and Watson, 2002) is among one of the most popular ones. Data-driven

estimation methods of the number of factors have been studied in extensive literature, such as Bai

and Ng (2002), Luo et al. (2009), Hallin and Liška (2007), Lam and Yao (2012), and Ahn and

Horenstein (2013) among others. Recently, a large amount of literature contributed to the asymp-

totic analysis of PCA under the ultra-high dimensional regime including Johnstone and Lu (2009),

Fan et al. (2013), Shen et al. (2016) and Wang and Fan (2017), among others.

The rest of the paper is organized as follows. Section 2 overviews the problem setup including

regularized M -estimators of sparse regression, the irrepresentable condition, and approximate factor

models. Section 3 introduces the model selection methodology of FarmSelect and studies the sparse

generalized linear model as a showcase example. Some issues related to the estimation of approxi-
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mate factor models will be discussed in Section 3 as well. Section 4 presents the general theoretical

results. Section 5 provides simulation studies and Section 6 studies the forecast of U.S. bond risk

premia. Due to the limitation of space, all technical proofs are presented in a separate supplement

file.

Here are some notations that will be used throughout the paper. In denotes the n× n identity

matrix; 0 refers to the n×m zero matrix; 0n and 1n represent the all-zero and all-one vectors in R
n,

respectively. For a matrix M, we denote its matrix entry-wise max norm as ‖M‖max = maxi,j |Mij |
and denote by ‖M‖F and ‖M‖p its Frobenius and induced p-norms, respectively. λmin(M) denotes

the minimum eigenvalue of M if it is symmetric. For M ∈ R
n×m, I ⊆ [n] and J ⊆ [m], define

MIJ = (Mij)i∈I,j∈J , MI· = (Mij)i∈I,j∈[m] and M·J = (Mij)i∈[n],j∈J . For a vector v ∈ R
p and

S ⊆ [p], define vS = (vi)i∈S to be its subvector. Let ∇ and ∇2 be the gradient and Hessian

operators. For f : Rp → R and I, J ∈ [p], define ∇If(x) = (∇f(x))I and ∇2
IJf(x) = (∇2f(x))IJ .

N(µ,Σ) refers to the normal distribution with mean µ and covariance matrix Σ.

2 Problem Setup

2.1 Regularized M-estimator

Let us begin with a family of high dimensional sparse regression problems in the following settings.

From now on we suppose that {xt}nt=1 are (p−1)-dimensional random vectors of covariates with zero

mean1, and {yt}nt=1 are responses with each yt sampled from some probability distribution P(zt)

parametrized by zt = β∗
0 +

∑p−1
j=1 β

∗
jxtj = (1,xT

t )β
∗. Here β∗ = (β∗

0 , · · · , β∗
p−1)

T ∈ R
p is a sparse

vector with s ≪ p non-zero elements. Let X = (x1, · · · ,xn)
T ∈ R

n×(p−1) and y = (y1, · · · yn)T ∈
R
n be the design matrix and response vector, respectively. Define X1 = (1n,X) ∈ R

n×p, where the

subscript 1 refers to the all-one column added to the original design matrix X.

Let Ln(y,X1β) be some convex and differentiable loss function assigning a cost to any parameter

β ∈ R
p. Suppose that β∗ is the unique minimizer of the population risk E[Ln(y,X1β)]. Under the

high-dimensional regime, it is natural to estimate β∗ via a regularized M -estimator as follows:

β̃ ∈ argmin
β∈Rp

{Ln(y,X1β) + λRn(β)} , (2.1)

1We use (p − 1) instead of p to denote the number of covariates so that there are p coefficients including the

intercept. In addition, we center the covariates if they could have non-zero means. Whether this step is done or not

does not affect the estimation of {β∗

j}
p
j=1, but does affect the intercept β∗

0 .
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where Rn : Rp → R+ is a norm that penalizes the use of a nonsparse vector β and λ > 0 is a tuning

parameter.

A special case of this problem is the L1 penalized likelihood estimation of generalized linear

models. Suppose the conditional density function of Y given covariates x is a member of the

exponential family, i.e.

f(y|x,β∗) ∝ exp[yz − b(z) + c(y)], (2.2)

where z = β∗
0 +

∑p−1
j=1 β

∗
j xj = (1,xT )β∗, b(·) and c(·) are known functions, and β∗ is an unknown

coefficient vector of interest. It is commonly assumed that b(·) is strictly convex. Taking the loss

function to be the negative log-likelihood function and the penality function to be the L1 norm, the

regularized M -estimator of β∗ admits the form

β̃ ∈ argmin
β∈Rp

{
1

n

n∑

t=1

[−yt(1,x
T
t )β + b((1,xT

t )β)] + λ‖β‖1
}
. (2.3)

2.2 Irrepresentable condition

We expect a good estimator of (2.1) to achieve estimation as well as selection consistency. The

former requires ‖β̃−β∗‖ P−→ 0 for some norm ‖ · ‖ as n → ∞; while the latter requires P(supp(β̃) =

supp(β∗)) → 1 as n → ∞. In general, the estimation consistency does not imply selection consis-

tency and vice versa. To study the selection consistency, we consider a stronger condition named

general sign consistency as follows.

Definition 2.1 (Sign consistency). An estimate β̃ is sign consistent with respect to β∗ if lim
n→∞

P(sign(β̃) =

sign(β∗)) = 1.

Zhao and Yu (2006) studied the LASSO estimator and showed there exists an irrepresentable

condition which is sufficient and almost necessary for both sign and estimation consistencies for a

sparse linear model. Without loss of generality, we assume supp(β∗) = [s] = S. Denote (X1)S

and (X1)Sc as the submatrices of X1 defined by its first s columns and the rest (p − s) columns,

respectively. Then the irrepresentable condition requires some τ ∈ (0, 1), such that

‖(X1)
T
Sc(X1)S [(X1)

T
S (X1)S ]

−1‖∞ ≤ 1− τ. (2.4)

For general regularized M -estimator (2.1) to achieve both sign and estimation consistencies, Lee

et al. (2015) proposed a generalized irrepresentable condition. When applied to the L1 regularizer,

it becomes

‖∇2
ScSL(β

∗)[∇2
SSL(β

∗)]−1‖∞ ≤ 1− τ, (2.5)
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for some τ ∈ (0, 1), where L(β) = Ln(y,X1β). It is easy to check (2.5) is equivalent to (2.4) under

the LASSO case. The generalized irrepresentable condition will easily get violated when there exist

strong correlations between active and inactive variables. Even if it holds, the key parameter τ can

be very close to zero, making it hard to select the correct model and obtain small estimation errors

simultaneously.

2.3 Approximate factor model

To go beyond the assumption of weakly correlation, a natural extension is a conditional weak

correlation. Suppose covariates are dependent through latent common factors. Given these common

factors, the idiosyncratic components are weakly correlated. The factor model has been well studied

in econometrics and statistics literature, we refer to Lawley and Maxwell (1971); Stock and Watson

(2002); Bai and Ng (2002); Forni et al. (2013); Fan et al. (2013), among others. For an overview,

see Fan et al. (2019+).

We assume that {xt}nt=1 ⊆ R
p−1 follows the approximate factor model

xt = Bft + ut, t ∈ [n], (2.6)

where {ft}nt=1 ⊆ R
K are latent factors, B ∈ R

(p−1)×K is a loading matrix, and {ut}nt=1 ⊆ R
p−1 are

idiosyncratic components. Note that xt is the only observable quantity. Throughout the paper, K

is assumed to be independent of n, which is frequently imposed in the literature of factor model

(Fan et al., 2013). We assume that {ft,ut}nt=1 come from a time series {ft,ut}∞t=−∞. Denote

F = (f1, · · · , fn)
T ∈ R

n×K and U = (u1, · · · ,un)
T ∈ R

n×(p−1). Then (2.6) can be written in a

more compact form:

X = FBT +U. (2.7)

We impose the following identifiability assumption (Fan et al., 2013). Here we only put the most

basic assumption for factor model, and more can be found in Section 3.3 where estimation of factor

model is discussed.

Assumption 2.1. Assume that cov(ft) = IK , BTB is diagonal, and all the eigenvalues of BTB/p

are bounded away from 0 and ∞ as p → ∞.

7



3 Factor-adjusted regularized model selection

3.1 Methodology

To illustrate the main idea, we temporarily assume ft and ut to be observable. Define B0 =

(0K ,BT )T ∈ R
K×p and U1 = (1n,U) ∈ R

n×p. By the approximate factor model (2.7), we have

decompositions X1 = FBT
0 +U1 and

X1β = FBT
0 β +U1β = Fγ +U1β,

where γ = BT
0 β ∈ R

K . The regularized M -estimator (2.1) can be written as

β̃ ∈ argmin
β∈Rp, γ=BT

0
β∈RK ,

{Ln(y,Fγ +U1β) + λRn(β)} .

Instead of using β̃ to estimate β∗, we regard γ as nuisance parameters, drop the constraint γ = BT
0 β,

and consider a new estimator

β̂ ∈ argmin
β∈Rp, γ∈RK

{Ln(y,Fγ +U1β) + λRn(β)} , (3.1)

namely (uT
t , f

T
t )

T are now regarded as new covariates. In other words, by lifting the covariate space

from R
p to R

p+K , the highly dependent covariates xt are replaced by weakly dependent ones.

The theory for us to ignore the constraint γ = BT
0 β is given by the following lemma, whose

proof is given by Appendix A in the supplement file.

Lemma 3.1. Consider the generalized linear model (2.2), let Ln(y, z) = 1
n

∑n
t=1[−ytzt + b(zt)],

ηt = yt − b′((1,xT
t )β

∗) and wt = (1,uT
t , f

T
t )

T . If E(ηtwt) = 0p+K , then

(β∗,BT
0 β

∗) = argmin
β∈Rp, γ∈RK

E[Ln(y,Fγ +U1β)].

It is worth pointing out that the assumption E(ηtwt) = 0p+K is very mild and natural. We just

assume the residual ηt and augmented covariates wt to be uncorrelated, which is almost as weak

as the standard condition E(ηt|xt) = 0 for the generalized linear model. For example, in the linear

model yt = (1,xT
t )β

∗ + ηt, we strengthen the condition only from E(ηtxt) = 0 to E(ηtft) = 0 and

E(ηtut) = 0. In particular, the assumptions hold if ηt is independent of ut and ft.

By construction, (U,F) has much weaker cross-sectional correlation than X. Thus, the penalized

profile likelihood (3.1) removes the effect of strong correlations caused by the latent factors. It can

be implemented as follows:
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Step 1: Initial estimation. Let X ∈ R
n×p be the design matrix. Fit the approximate factor

model (2.7) and denote B̂, F̂ and Û = X−F̂B̂T the obtained estimators of B, F and U respectively

by using the principal component analysis (Bai, 2003; Fan et al., 2013; Fan et al., 2019+). More

specifically, the columns of F̂/
√
n are the eigenvectors of XXT corresponding to the top K eigenval-

ues, B̂ = n−1XT F̂. This is the same as B̂ = (
√
λ1ξ1, · · · ,

√
λKξK) and F̂ = XB̂ diag(λ−1

1 · · · , λ−1
K ),

where {λj}Kj=1 and {ξj}Kj=1 are top K eigenvalues in descending order and their associated eigen-

vectors of the sample covariance matrix.

Step 2: Augmented M -estimation. Define Ŵ = (1n, Û, F̂) ∈ R
n×(p+K) and θ = (βT ,γT )T ∈

R
p+K . Then β̂ is obtained from the first p entries of the solution to the augmented problem

θ̂ ∈ argmin
θ∈Rp+K

{
Ln(y,Ŵθ) + λRn(θ[p])

}
. (3.2)

We call the above two-step method as the factor-adjust regularized model selection (FarmSelect).

If ut is independent of ft and the variables in the idiosyncratic component ut are weakly correlated,

then the columns in Ŵ = (1n, Û, F̂) are weakly correlated as long as F and U are well estimated.

Hence, we successfully transform the problem from model selection with highly correlated covariates

X in (2.1) to model selection with weakly correlated or uncorrelated ones by lifting the space to

a higher dimension. The augmented problem (3.2) is a convex optimization problem which can

be minimized via many existing convex optimization algorithms, such as coordinate descent (e.g.

Friedman et al., 2010) and ADMM (Boyd et al., 2011).

3.2 Example: sparse linear model

Now we illustrate the FarmSelect procedure using sparse linear regression, where y = X1β
∗ + ε.

With aforementioned notation, we have

y = X1β
∗ + ε = F̂B̂T

0 β
∗ + Û1β

∗ + ε. (3.3)

The augmented M -estimator (3.2) for the sparse linear model is of the following form:

β̂ ∈ argmin
β∈Rp, γ∈RK

{
1

2n
‖y − F̂γ − Û1β‖22 + λ‖β‖1

}
.

Solving the least-squares problem with respect to γ, we have the penalized profile least-squares

solution

β̂ ∈ argmin
β∈Rp

{
1

2n
‖(In − P̂)(y − Û1β)‖22 + λ‖β‖1

}
, (3.4)

9



where P̂ = F̂(F̂T F̂)−1F̂T is the n × n projection matrix onto the column space of F̂. As the

decorrelation step does not depend on the choice of the regularizer R(·), FarmSelect can be applied

to a wide range of penalized least squares problems such as SCAD, group LASSO, elastic net, fused

LASSO, other folded concave penalties, and so on.

There is another way to understand this method. By left multiplying the projection matrix

(In − P̂) to both sides of (3.3), we have

(In − P̂)y = (In − P̂)Û1β
∗ + (In − P̂)ε, (3.5)

where (In−P̂)Û1 can be treated as the decorrelated design matrix and (In−P̂)y is the corresponding

response variable. From (3.5) we see that the method in Kneip and Sarda (2011) coincides with

FarmSelect in the linear case. However, the projection-based representation only makes sense in

sparse linear regression. In contrast, our idea of profile likelihood directly generalizes to more general

problems.

3.3 Estimating factor models

Principal component analysis (PCA) is frequently used to estimate latent factors for model (2.7).

The estimated matrix of latent factors F̂ is
√
n times the eigenvectors corresponding to the K largest

eigenvalues of the n × n matrix XXT . Using the normalization FTF/n = IK yields B̂ = XT F̂/n.

Now we introduce the asymptotic properties of estimated factors and idiosyncratic components. We

adopt the regularity assumptions in Fan et al. (2013), which are similar to the ones in Bai (2003)

and other literature on high-dimensional factor analysis.

Assumption 3.1. 1. {ft,ut}∞t=1 is strictly stationary. In addition, E ftk = Eutj = E(utjftk) =

0 for all i ∈ [n], j ∈ [p− 1] and k ∈ [K];

2. There exist constants c1, c2 > 0 such that λmin(cov(ut)) > c1, ‖ cov(ut)‖1 < c2 and

minj,k∈[p−1] var(utjutk) > c1;

3. There exist r1, r2 > 0 and b1, b2 > 0 such that for any s > 0, j ∈ [p − 1] and k ∈ [K],

P(|utj | > s) ≤ exp(−(s/b1)
r1) and P(|ftk| > s) ≤ exp(−(s/b2)

r2).

Assumption 3.2. Let F0
−∞ and F∞

T denote the σ-algebras generated by {(ft,ut) : i ≤ 0} and

{(ft,ut) : i ≥ T} respectively. Assume the existence of r3, C > 0 such that 3/r1+3/(2r2)+1/r3 > 1

10



and for all T ≥ 1,

sup
A∈F0

−∞
,B∈F∞

T

|P(A)P(B)− P(AB)| ≤ exp(−CT r3);

Assumption 3.3. There exists M > 0 such that for all t, s ∈ [n], we have ‖B‖max < M ,

E{p−1/2[uT
t us − E(uT

t us)]
4} < M and E ‖p−1/2BTut‖42 < M .

We summarize useful properties of F̂ and Û in Lemma 3.2, which directly follows from Lemmas

10-12 in Fan et al. (2013).

Lemma 3.2. Let γ−1 = 3/r1 + 3/(2r2) + 1/r3 + 1. Suppose that log p = o(nγ/6), n = o(p2), and

Assumptions 2.1, 3.1, 3.2 and 3.3 hold. There exists a nonsingular matrix H0 ∈ R
K×K such that

1. ‖F̂H0 − F‖max = OP(
1√
n
+ n1/4√

p );

2. max
k∈[K]

n−1
∑n

t=1 |(F̂H0)jk − ftk|2 = OP(
1
n + 1

p)

3. max
j∈[p−1]

n−1
∑n

t=1 |ûji − uji|2 = OP(
log p
n + 1

p);

4. ‖Û−U‖max = oP(1).

A practical issue arises on how to choose the number of factors, i.e. K. As latent factors, loading

and idiosyncratic components are all unobservable in the approximate factor model, the estimation

of K is an intrinsic un-supervised learning problem. From the inference point of view, existing

literature (Chamberlain and Rothschild, 1982; Stock and Watson, 2002; Bai and Ng, 2002, among

others) usually assumes that there exists a non-negative integer K such that the first K population

eigenvalues of X are diverging with p, while the rest p − K eigenvalues are bounded. From the

dimension reduction point of view, selecting K is to find a proper trade-off between goodness-of-fit

and compactness of the model. In this paper, we follow a conditional sparsity perspective (Fan

et al., 2013) regarding the role of K, where K is the smallest non-negative integer such that the

idiosyncratic components U = X − FBT is weakly correlated. In this regard, for our purpose of

model selection, a small overestimation of K does not seriously affect the adjusted model selection.

We adopt the modified ratio method, e.g. equation (10) in Chang et al. (2015), for the numerical

studies in this paper due to its simplicity. Let λk(XXT ) be the kth largest eigenvalue of XXT ,

Kmax be a prescribed upper bound and Cn be a constant that depends on n and p. The number of

factors can be estimated by

K̂ = argmin
k≤Kmax

λk+1(XXT ) + Cn

λk(XXT ) + Cn
(3.6)

11



for some given Cn. When X itself is weakly correlated, one can estimate K as 0.

Besides the modified ratio method, Bai and Ng (2002) studied the convergence and consistency

estimation of K for high dimensional factor models. They proposed to estimate K by minimizing

a family of information criteria. We refer to equation (9) in Bai and Ng (2002) for viable examples.

3.4 Factor-adjusted variable screening

Screening methods (e.g. Fan and Lv, 2008; Fan and Song, 2009; Wang and Leng, 2016) are com-

putationally attractive and thus popular for ultra-high dimensional data analysis. However, the

screening methods tend to include too many variables when there exist strong correlations among

covariates (Fan and Lv, 2008; Wang and Leng, 2016). As an extension of FarmSelect, we propose

the following conditional variable screening method to tackle this problem.

Step 1: Initial estimation. We fit the approximate factor model (2.7) to obtain B̂, F̂ and Û.

Step 2: Augmented marginal regression. For j ∈ [p − 1], let Ûj be the j-th column of Û and

compute

(α̂j , β̂j , γ̂j) = argmin
α∈R,β∈R,γ∈RK

Ln(y,1nα+ Ûjβ + F̂γ). (3.7)

Step 3 Screening. Return {j : |β̂j | ≥ ξ} for some prescribed threshold ξ.

For sparse linear regression, our screening method reduces to the factor-profiled screening method

proposed by Wang (2012).

4 Theoretical results

4.1 FarmSelect with approximate factor model

Now we establish theoretical guarantees of the FarmSelect estimator (3.2). Recall that β∗ is equal

to the first p entries of θ∗. Define S = supp(θ∗), S1 = supp(β∗) and S2 = [p +K]\S. When the

covariates X admit the approximate factor model (2.7), the oracle procedure uses true augmented

covariates wt = (1,uT
t , f

T
t )

T for t ∈ [n] and solves

min
θ

{Ln(y,Wθ) + λ‖θ[p]‖1},

12



where W = (wT
1 , · · · ,wT

n )
T = (U1,F). However, W is not observable in practice. Hence we need

to use its estimator Ŵ and solve

min
θ

{Ln(y,Ŵθ) + λ‖θ[p]‖1}.

Below the error induced by the factor estimation will be studied carefully. To deliver a clear

discussion on the conditions and results, we focus on the FarmSelect estimator for the generalized

linear model (2.3), and assume that the covariates are generated from the approximate factor model

(2.7).

Assumption 4.1 (Smoothness). b(z) ∈ C3(R). For some constants M2 and M3, we have 0 ≤
b′′(z) ≤ M2 and |b′′′(z)| ≤ M3, ∀z.

Assumption 4.2 (Restricted strong convexity and irrepresentable condition). Let θ∗ =


 β∗

BT
0 β

∗


.

Assume the existence of κ2 > κ∞ > 0 and τ ∈ (0, 1) such that

‖[∇2
SSLn(y,Wθ∗)]−1‖ℓ ≤

1

4κℓ
, for ℓ = 2 and ∞,

‖∇2
S2SLn(y,Wθ∗)[∇2

SSLn(y,Wθ∗)]−1‖∞ ≤ 1− 2τ.

(4.1)

Assumption 4.3 (Estimation of factor model). ‖W‖max ≤ M0

2 for some constant M0 > 0. In

addition, there exist K ×K nonsingular matrix H0, and H =


 Ip 0p×K

0K×p H0


 such that for W =

ŴH, we have ‖W −W‖max ≤ M0

2 and maxj∈[p+K]

(
1
n

∑n
t=1 |wtj − wtj |2

)1/2
≤ 2κ∞τ

3M0M2|S| .

Before presenting the main results, we make a few remarks on the assumptions.

1. Assumption 4.1 holds for a large family of generalized linear models. For example, linear

model has b(z) = 1
2z

2, M2 = 1 and M3 = 0; logistic model has b(z) = log(1 + ez) and finite

M2, M3.

2. The first inequality in (4.1) involves only a small matrix and holds easily, and the second in-

equality there is related to the generalized irrespresentable condition. Standard concentration

inequalities (e.g. the Bernstein inequality for weakly dependent variables in Merlevède et al.

(2011)) yield that Assumption 4.2 holds with high probability as long as E[∇2Ln(y,Wθ∗)]

satisfies similar conditions.

13



3. Here we show an example where the irrepresentable condition holds for the augmented covari-

ates W but fails to hold for the original ones X. Suppose the covariates {xi}ni=1 are generated

from a single factor model xi = bfi + ui, where b = (1, 1, 2, · · · , 2)T ∈ R
p, fi ∼ N(0, 1),

ui ∼ N(0, Ip) and it is independent of fi. Consider a sparse linear model yi = xT
i β

∗+εi, where

{εi}ni=1 are i.i.d. N(0, σ2) variables for some σ > 0 and they are independet of {fi,ui}ni=1;

β∗ = (1, 1, 0, · · · , 0)T ∈ R
p. Let Ln(y, z) = 1

2n‖y − z‖22. Note that wi = (uT
i , fi)

T ∈ R
p+1,

θ∗ = ((β∗)T ,bTβ∗)T ∈ R
p+1,

yi = xT
i β

∗ + εi = fib
Tβ∗ + uT

i β
∗ + εi = wT

i θ
∗ + εi,

and ∇2Ln(y,Wθ) = 1
nW

TW. Thanks to the independence, we have wi ∼ N(0, Ip+1) and

E∇2Ln(y,Wθ) = Ip+1. Hence

∇2
S2S ELn(y,Wθ∗)[∇2

SS ELn(y,Wθ∗)]−1 = 0,

where S = {1, 2, p + 1} and S2 = {3, · · · , p}. With high probability, the irrepresentable

condition also holds for the empirical quantity Ln(y,Wθ∗). On the other hand, we observe

that xi ∼ N(0,Σ) with Σ = bbT +Ip. When X are used as covariates, we have S = {1, 2} and

S2 = {3, · · · , p}. From ΣSS =


2 1

1 2


 and ΣScS = 2·1(p−2)×2, we get ΣScSΣ

−1
SS = 2

3 ·1(p−2)×2

and ‖ΣScSΣ
−1
SS‖∞ = 4

3 > 1. Hence the irrepresentable condition is violated.

4. Under the conditions of Lemma 3.2, we have ‖W−W‖max = oP(1) and maxj∈[p+K]

(
1
n

∑n
t=1 |wtj−

wtj |2
)1/2

= OP(
√

log p
n + 1√

p), where W = ŴH, H =


 Ip 0p×K

0K×p H0


 and some proper H0.

Hence |S|2( log pn + 1
p) = O(1) can guarantee Assumption 4.3 to hold with high probability.

Theorem 4.1. Suppose Assumptions 4.1-4.3 hold. Define M = M3
0M3|S|3/2 and

ε = max
j∈[p+K]

∣∣∣ 1
n

n∑

t=1

wtj [−yt + b′((1,xT
t )β

∗)]
∣∣∣.

If 7ε
τ < λ < κ2κ∞τ

12M
√

|S|
, then we have supp(β̂) ⊆ supp(β∗) and

‖β̂ − β∗‖∞ ≤ 6λ

5κ∞
, ‖β̂ − β∗‖2 ≤

4λ
√
|S|

κ2
, ‖β̂ − β∗‖1 ≤

6λ|S|
5κ∞

.

In addition, if ε < κ2κ∞τ2

12CM
√

|S|
and min{|β∗

j | : β∗
j 6= 0, j ∈ [p]} > 6Cε

5κ∞τ hold for some C > 7, then by

taking λ ∈ ( 7τ ε,
C
τ ε) we can achieve the sign consistency sign(β̂) = sign(β∗).
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By taking λ ≍ ε, one can achieve the sign consistency and ‖β̂−β∗‖∞/ε = OP(1), ‖β̂−β∗‖2/ε =
OP(

√
|S|) and ‖β̂ − β∗‖1/ε = OP(|S|). Hence ε is a key quantity characterizing the error rate of

our FarmSelect estimator, whose size is controlled using the following lemma.

Lemma 4.1. Let ηt = yt− b′((1,xT
t )β

∗) and wt = (1,uT
t , f

T
t )

T . Assume that {wt, ηt}∞−∞ is strictly

stationary and satisfies the following conditions

1. E(ηtwt) = 0;

2. There exist constants b, γ1 > 0 such that P(|ηt| > s) ≤ exp(1 − (s/b)γ1) for all t ∈ Z and

s ≥ 0;

3. There exist constants c, γ3 > 0 such that for all T ≥ 1,

sup
A∈F0

−∞
,B∈F∞

T

|P(A)P(B)− P(AB)| ≤ exp(−cT γ3),

where F0
−∞ and F0

−∞ denote the σ-algebras generated by {(wt, ηt) : i ≤ 0} and {(wt, ηt) : i ≥
T} respectively;

In addition, suppose that the assumptions in Lemma 3.2 hold. Then we have

ε = max
j∈[p+K]

∣∣∣∣∣
1

n

n∑

t=1

wtjηt

∣∣∣∣∣ = OP(

√
log p

n
+

1√
p
).

Recall that the assumption E(ηtwt) = 0 has been used in Lemma 3.1 as a cornerstone of our

FarmSelect methodology. The rest in the list are standard conditions similar to Assumptions 3.1-3.3.

All of them are mild and interpretable.

Lemma 4.1 asserts that ε = OP(
√

log p
n + 1√

p). The first term
√

log p
n corresponds to the optimal

rate of convergence for high-dimensional M -estimator (e.g. Bickel et al., 2009). The second term

1√
p is the price we pay for factor estimation, which is negligible if n = O(p log p). In that high-

dimensional regime, all the error bounds for ‖β̂ − β∗‖ℓ (ℓ = 1, 2,∞) match the optimal ones in the

literature.

4.2 Factor-adjusted variable screening

In this subsection, we study the factor-adjusted variable screening procedure described in Section

3.4. The lemma below considers the population version of the factor-adjusted screening procedure.
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It shows that as long as E(ujy) 6= 0 for all j’s in the active set supp(β∗), where uj is the j-

th idiosyncratic component, the screening retains all the important variables. Furthermore, if

E(ujy) = 0 for all j’s outside the active set, the screening procedure exactly recovers the active set.

Lemma 4.2. Let f be a K-dimensional random vector, u be a zero-mean random variable and is

independent of f , y be another random variable living in the same probability space, and b ∈ C2(R)

such that 0 < b′′ ≤ M . Assume that u, y and the coordinates of f all have finite second moments.

Define

(α, β,γ) = argmin
α∈R,β∈R,γ∈RK

E[b(α+ uβ + fTγ)− (α+ uβ + fTγ)y].

We have the followings.

1. |β| ≥ |E(uy)|/(M · Eu2);

2. If E(uy) = 0 and P(u = 0) = 0, then β = 0.

Now we investigate the sure screening property of the factor-adjusted screening procedure. Recall

that F = (f1, · · · , fn)T ∈ R
n×K and U = (u1, · · · ,un)

T ∈ R
n×p are matrices of true factors

and idiosyncratic components, respectively, and their estimated versions are F̂ and Û. We use

Uj , Ûj ∈ R
n to refer to the j-th columns of U and Û. Define Ln,j(α, β,γ) = Ln(y,1nα+Ûjβ+F̂γ)

for j ∈ [p], α ∈ R, β ∈ R and γ ∈ R
K . Let

(αj , βj ,γj) = argmin
α∈R,β∈R,γ∈RK

ELn(y,1nα+Ujβ + Fγ) (4.2)

be the population version of (α̂j , β̂j , γ̂j).

The following three assumptions are variants of those in Section 4.1, and hence they hold almost

surely or with high probability in the cases we are interested in.

Assumption 4.4 (Smoothness). b ∈ C3(R). For some constant M , we have 0 ≤ b′′(z) ≤ M and

|b′′′(z)| ≤ M , ∀z.

Assumption 4.5 (Strong convexity of marginal loss functions). There exists some constant κ > 0

such that ∇2Ln,j(αj , βj ,γj) � κI for all j ∈ [p].

Assumption 4.6 (Estimation of factor model). There exist constants C, c and a nonsingular matrix

H0 ∈ R
K×K such that the followings happen. Let H =


 Ip 0p×K

0K×p H0


 and W = ŴH. We have

‖W‖max ≤ C, ‖W −W‖max ≤ C and maxj∈[p+K]

(
1
n

∑n
t=1 |wtj − wtj |2

)1/2
≤ c.
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Theorem 4.2. Suppose that Assumptions 4.4, 4.5 and 4.6 hold with high probability, and the

constant c in Assumption 4.6 is small enough. For j ∈ [p− 1], define

εj =
1

n

n∑

t=1

[b′(αj + fTt γj + utjβj)− yt](1, f
T
t , utj)

T .

If ξ ≤ ρminj∈supp(β∗) |E(ujy)|/(M · Eu2j ) for some constant ρ ∈ (0, 1) and

max
j∈supp(β∗)

‖εj‖2 = oP( min
j∈supp(β∗)

|E(ujy)|/Eu2j ), (4.3)

then we have

P(supp(β∗) ⊆ {j : |β̂j | ≥ ξ}) = 1− o(1).

Under the conditions in Lemma 4.1, we can prove that

max
j∈supp(β∗)

‖εj‖2 = OP(

√
log p

n
+

1√
p
).

Theorem 4.2 asserts that if minj∈supp(β∗) |E(ujy)|/Eu2j grows faster than
√

log p
n + 1√

p , the factor-

adjusted screening procedure enjoys the sure screening property (Fan and Lv, 2008; Fan and Song,

2009). The optimal choice of the screening threshold ξ can be disucssed by following the analysis as

in Fan and Song (2009). Here we do not pursue this result as it is not the main focus of the paper.

5 Simulation study

5.1 Example 1: Linear regression

We study a simulated example for high dimensional sparse linear regression with correlated covari-

ates. The correlation structure is calibrated from S&P 500 monthly excess returns between 1980

and 2012. Throughout the numerical studies of this paper, the tuning parameter λ is selected by

the 10-fold cross-validation. The model selection performance is measured by the model selection

consistency rate and the sure screening rate. The former is the proportion of simulations that the

selected model is identical to the true one and the latter is the proportion of simulations that the

selected model contains all important variables.
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Calibration and data generation process

We calculate the centered monthly excess returns for the stocks in S&P 500 index that have complete

records from January 1980 to December 2012. The data, collected from CRSP2 , contains the returns

of 202 stocks with a time span of 396 months. Denote the centred monthly excess returns as zt,

t = 1, . . . , 396. The calibration and data generation procedure are outlined as follows.

(1) Fit zt with a three factor model. We apply PCA on the sample covariance of {zt}396t=1 and

denote λk and ξk, k = 1, 2, 3, as the top three eigenvalues and corresponding eigenvectors. We

estimate loadings B̃ = (
√
λ1ξ1,

√
λ2ξ2,

√
λ3ξ3) and f̃t = (λ

−1/2
1 ξT1 zt, λ

−1/2
2 ξT2 zt, λ

−1/2
3 ξT1 zt)

T .

(2) Calculate ΣB as the sample covariance of the rows of B̃, which is diag(λ1, λ2, λ3). Generate

loading matrix B whose rows are draws from i.i.d. N(0, ΣB).

(3) Fit VAR(1) model f̃t = Φf̃t−1+ηt. Denote Φ̂ the estimate of Φ and calculate Ση = I− Φ̂Φ̂
T
.

Generate ft from the VAR(1) model ft = Φ̂ft−1 + ηt with f0 = 0, where ηt is generated from

i.i.d. N(0, Ση).

(4) Calculate the residual ũt = zt − B̃f̃t and Σu the sample covariance matrix of ũt. Denote

σ2
u the average of the diagonal entries of Σu. Generate covariates xt from a factor model

xt = Bft + ut where the entries in ut are drawn from i.i.d. N(0, σ2
u).

(5) Generate the response yt from a sparse linear model yt = xT
t β

∗ + εt. The true coefficients

are β∗ = (β1, · · · , β10,0T(p−10))
T , and the nonzero coefficients β1, · · · , β10 are drawn from i.i.d.

Uniform(2,5). We draw εt from an AR(1) model εt = 0.5εt−1 + γt with γt ∼ N(0, 0.3).

The results of the calibrated parameters are presented in Table 1.

Table 1: Parameters calibrated from S&P 500 returns

ΣB Φ̂ Ση σ2
u

0.5237 0 0 0.1897 -0.0375 -0.0223 0.9621 -0.0056 0.0182

0 0.2884 0 0.0630 0.1553 0.0206 -0.0056 0.9715 -0.0078 0.246

0 0 0.2372 -0.0432 0.0102 0.4343 0.0182 -0.0078 0.8094

2Center for Research in Security Prices Database, see http://www.crsp.com/ for more details.
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Impacts of Irrepresentable Condition

First, we show LASSO performs poorly in terms of model selection consistency rate when the

irrepresentable condition is violated, while FarmSelect can consistently select the correct model. Let

n = 100 and p = 500. Denote by Γ∞ = ‖XT
ScXS(X

T
SXS)

−1‖∞. When Γ∞ < 1 the irrepresentable

condition holds and otherwise it is violated. We simulate 10,000 replications. For each replication,

we calculate Γ∞ and apply both LASSO and FarmSelect for model selection. Then we calculate the

model selection consistency rate within each small interval around Γ∞ (a nonparametric smoothing).

The results are presented in Figure 2. According to Figure 2, both FarmSelect and LASSO have

high model selection consistency rate when Γ∞ < 1. This shows FarmSelect does not pay any price

under the weak correlation scenario. As Γ∞ grows beyond 1, the correct model selection rate of

LASSO drops quickly. When the irrepresentable condition is strongly violated (e.g. Γ∞ > 1.5),

the correct model selection rate of LASSO is close to zero. On the contrary, FarmSelect has high

selection consistency rates regardless of Γ∞.
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Figure 2: Relationship between model selection consistency rate and irrepresentable condition.

Among the 10,000 replications, more than 9,500 replications have Γ∞ > 1 and more than 8,000

replications have Γ∞ > 1.5.
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Impacts of sample size

Second, we examine the model selection consistency with a fixed dimensionality and an increasing

sample size. We fix p = 500 and let n increase from 50 to 150. For each given sample size, we

simulate 200 replications and calculate the model selection consistency rates and the sure screening

rates for LASSO, SCAD, elastic net, and FarmSelect, respectively. For the elastic net, we set

λ1 = λ2 ≡ λ. The results are presented in Figure 3 (a) and Figure 3 (b). Figure 3 (a) shows that

model selection consistency rates of LASSO, SCAD, and elastic net do not enjoy fast convergence

to 1 when the sample size increases, while the one of FarmSelect equals to one as long as the sample

size exceeds 100. Similar phenomena are observed from sure screening rates. To demonstrate the

prediction performance, we report the mean estimation error ‖β̂ − β∗‖2 for each method, which is

a good indicator of the prediction error. The estimation errors are reported in Figure 3 (c). When

the sample size is small, LASSO, SCAD, and elastic net have large estimation errors since they tend

to select overfitted models.

Impacts of dimensionality

Third, we assess the model selection performance when the dimensionality p is growing beyond n

and diverging. We fix n = 100 and let p grow from 200 to 1000. For each given p, we simulate

200 replications and calculate the model selection consistency rate of LASSO, SCAD, elastic net,

and FarmSelect respectively. The model selection consistency rates are presented in Figure 4(a).

According to Figure 4(a), the model selection consistency rate of FarmSelect stays close to 1 even

as p increases, whereas the rates for the other three methods drop quickly. Again, we report the

estimation errors in Figure 4(b). As the dimensionality grows, FarmSelect has the least increase in

estimation error.

5.2 Example 2: Logistic regression

We consider the following logistic regression model whose conditional probability function is:

P(yt = 1|Xt) =
exp(XT

t β)

1 + exp(XT
t β)

, i = 1, · · · , N. (5.1)

We set sample size n = 300 and dimensionality p = 300, 400, 500. The true coefficients are set to

be β∗ = (βT
(1), 0)T with β(1) = (6, 5, 4)T . Hence the true model size is 3.

The covariates X are generated from one of the following three models:
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(b) Correct screening rate with respect to N (P=500)
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(c) Estimation error with respect to N (P=500)
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Figure 3: From above to below: (a) Model selection consistency rates with fixed p and increasing n;

(b) Sure screening rates with fixed p and increasing n; (c) Mean estimation errors ‖β̂ − β∗‖2 with

fixed p and increasing n.
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Figure 4: From above to below: (a) Model selection consistency rates with fixed n and increasing

p; (b) Mean estimation errors ‖β̂ − β∗‖2 with fixed n and increasing p.

(1) Factor model xt = Bft + ut with K = 3. Factors are generated from a stationary VAR(1)

model ft = Φft−1 + ηt with f0 = 0. The (i, j)th entry of Φ is set to be 0.5 when i = j and

0.3|i−j| when i 6= j. We draw B, ut and ηt from the i.i.d. standard Normal distribution.

(2) Equal correlated case. We draw xt from i.i.d. Np(0,Σ), where Σ has diagonal elements 1 and

off-diagonal elements 0.4.

(3) Uncorrelated case. We draw xt from i.i.d. Np(0, I)

We compare the model selection performance of FarmSelect with LASSO and simulate 100 repli-
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cations for each scenario. The model selection performance is measured by the selection consistency

rate, sure screening rate and the average size of the selected model. The results are presented

in Table 2 below. According to Table 2, FarmSelect pays no price for the uncorrelated case and

outperforms LASSO for highly correlated cases.

Table 2: Model selection results of logistic regression (n = 200)

Factor model with K = 3

FarmSelect LASSO

Selection rate Screening rate Average model size Selection rate Screening rate Average model size

p = 300 0.91 1.00 3.22 0.22 0.98 8.13

p = 400 0.90 0.99 3.14 0.17 0.97 7.66

p = 500 0.89 0.98 3.15 0.14 0.97 9.99

Equal correlated case

FarmSelect LASSO

Selection rate Screening rate Average model size Selection rate Screening rate Average model size

p = 300 0.91 1.00 3.07 0.61 0.99 4.63

p = 400 0.91 1.00 3.06 0.54 0.99 4.67

p = 500 0.87 0.99 3.05 0.55 0.99 5.45

Uncorrelated case

FarmSelect LASSO

Selection rate Screening rate Average model size Selection rate Screening rate Average model size

p = 300 1.00 1.00 3.00 0.88 1.00 4.05

p = 400 0.99 1.00 3.01 0.86 1.00 5.11

p = 500 0.99 1.00 3.02 0.85 1.00 3.57

6 Prediction of U.S. bond risk premia

In this section, we predict U.S. bond risk premia with a large panel of macroeconomic variables.

The response variable is the monthly data of U.S. bond risk premia with a maturity of 2 to 5 years
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between January 1980 and December 2015 containing 432 data points. The bond risk premia are

calculated as the one year return of an n year maturity bond excessing the risk-free rate. The

covariates are 128 monthly U.S. macroeconomic variables in the FRED-MD database3 (McCracken

and Ng, 2016). The covariates in the FRED-MD dataset are strongly correlated and can be well

explained by a few principal components. To see this, we apply principal component analysis to

the covariates and draw the scree plot of the top 20 principal components in Figure 5. The scree

plot shows the first principal component solely explains more than 60% of the total variance. In

addition, the first 5 principal components together explain more than 90% of the total variance.

We apply one month ahead rolling window prediction with a window size of 120 months. Within

each window, we predict the U.S. bond risk premia by a high dimensional linear regression model

of dimensionality 128. We compare the proposed FarmSelect method with LASSO in terms of

model selection and prediction. Besides, we include the principal component regression (PCR) in

the competition of prediction. Instead of using the covariates as regressors directly, PCR regresses

the dependent variable on the leading principal components of covariates. The FarmSelect is im-

plemented by the FarmSelect R package with default settings. To be specific, the loss function

is L1, the number of factors is estimated by the modified eigen-ratio method and the regularized

parameter is selected by multi-fold cross-validation. The LASSO method is implemented by the

glmnet R package. The PCR method is implemented by the pls package in R.

The prediction performance is evaluated by the out-of-sample R2 which is defined as

R2 = 1−
∑432

t=121(yt − ŷt)
2

∑432
t=121(yt − ȳt)2

,

where yt is the response variable realized at time t, ŷt is the predicted yt by one of the three methods

above using the previous 120 months data, and ȳt is the sample mean of the previous 120 months

responses (yt−120, . . . , yt−1), which represents a naive predictor. For FarmSelect and LASSO, we

also report the average selected model size for prediction at time t ∈ {121, · · · , 432}. The out-of-

sample R2 and average selected model size are reported in Table 3. The results in Table 3 show

that FarmSelect selects parsimonious models and achieves the highest R2’s in all scenarios. On the

contrary, LASSO may select redundant models as it ignores correlations among covariates. To see

this, we rank the covariates according to the selected frequency. The top 5 selected covariates and

their frequencies are listed in Table 4. According to Table 4, LASSO tends to select some highly

3The FRED-MD is a monthly economic database updated by the Federal Reserve Bank of St. Louis which is

publicly available at http://research.stlouisfed.org/econ/mccracken/sel/.
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correlated covariates simultaneously. For instance, LASSO includes both Civilians Unemployed for

5-14 Weeks and Civilians Unemployed for 15-26 Weeks due to the strong correlation between them.

Scree plot of the FRED−MD

Top 20 principle components
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Figure 5: Eigenvalues (dotted line) and proportion of variance explained (bar) by the top 20 principal

components

Table 3: Out of sample R2 and average selected model size

Maturity of Bond Out of sample R2 Average model size

FarmSelect LASSO PCR FarmSelect Lasso

2 Years 0.530 0.509 0.462 5.96 6.86

3 Years 0.526 0.523 0.483 5.71 7.09

4 Years 0.484 0.476 0.470 5.53 6.81

5 Years 0.481 0.475 0.477 5.90 6.84

25



Table 4: 2 years Maturity: Top 5 variables with highest selection frequency

FarmSelect

Rank Name Frequency

1 3-Month Commercial Paper Minus FEDFUNDS 133

2 Civilians Unemployed for 15-26 Weeks 84

3 Housing Starts, Midwest 71

4 Industrial Production: Durable Consumer Goods 70

5 Moody’s Baa Corporate Bond Minus FEDFUNDS 65

LASSO

Rank Name Frequency

1 Total Reserves of Depository Institutions 209

2 Civilians Unemployed for 5-14 Weeks 185

3 Housing Starts, Midwest 110

4 3-Month Commercial Paper Minus FEDFUNDS 96

5 Civilians Unemployed for 15-26 Weeks 88
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Abstract

This supplement file contains all the technical proofs for “Factor-Adjusted Regularized Model

Selection".

A Some preliminary results

In the first appendix, we introduce some useful results in convex analysis and inverse problems.

Under mild conditions, the tools we developed connect the unique global optimum of the regularized

loss function Lλ(θ) = L(θ)+λR(θ) with the solution of a constrained problem minsupp(θ)⊆S Lλ(θ).

Lemma A.1. Suppose L(θ) ∈ C2(Rp) and is convex. R(θ) is convex and R(α + β) = R(α) +

R(β) for α ∈ M and β ∈ M⊥, where M is a linear subspace of Rp and M⊥ is its orthonormal

complement. In addition, there exists R∗(θ) ∈ C(Rp) such that |〈α,β〉| ≤ R(α)R∗(β) for α ∈ M⊥

and β ∈ R
p. Let Lλ(θ) = L(θ) + λR(θ) where λ ≥ 0, and θ̂ ∈ argminθ∈M Lλ(θ).

If R∗(∇L(θ̂)) < λ and θT∇2L(θ̂)θ > 0 for all θ ∈ M, then θ̂ is the unique global minimizer of

Lλ(θ).

Proof. For any θ ∈ R
p we use θM, θM⊥ to denote its orthonormal projections on M and M⊥,

respectively. On the one hand, by convexity and orthogonality we have

L(θ)− L(θM) ≥ 〈∇L(θM),θ − θM〉 = 〈∇L(θM),θM⊥〉 ≥ −R(θM⊥)R∗(∇L(θM)).

∗Corresponding author. Postal address of the corresponding author: 310 Herty Drive University of Georgia,

Athens, GA 30602, USA. Email addresses: jqfan@princeton.edu, yuan.ke@uga.edu, kaizheng@princeton.edu.
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Since R∗(∇L(θ̂)) < λ, there exists δ > 0 such that ‖θ − θ̂‖2 < δ implies R∗(∇L(θ)) < λ. Together

with ‖θM − θ̂‖2 ≤ ‖θ − θ̂‖2, we know L(θ) − L(θM) ≥ −λR(θM⊥) as long as ‖θ − θ̂‖2 < δ, and

the inequality strictly holds when R(θM⊥) > 0.

On the other hand, R(θ)−R(θM) = R(θM + θM⊥)−R(θM) = R(θM⊥). Hence ‖θ− θ̂‖2 < δ

forces Lλ(θ)−Lλ(θM) = [L(θ)−L(θM)] + λ[R(θ)−R(θM)] ≥ 0 and the inequality strictly holds

when R(θM⊥) > 0.

Now suppose 0 < ‖θ − θ̂‖2 < δ. If θ ∈ M, then the facts θ̂ ∈ argminθ∈M Lλ(θ) and

αT∇2L(θ̂)α > 0, ∀α ∈ M implies that Lλ(θ
′) > Lλ(θ̂). In addition, our assumptions yield

‖θ‖22 ≤ R(θ)R∗(θ) for θ ∈ M⊥, leading to R(θ) > 0 over M⊥\{0}. If θ /∈ M, then R(θM⊥) > 0

and Lλ(θ) > Lλ(θM) ≥ Lλ(θ̂). Therefore θ̂ is a strict local optimum of Lλ(θ), which is convex

over R
p. This finishes the proof.

Lemma A.2. Let L(θ) be convex over a Euclidean space M. If θ0 ∈ M, r > 0, and L(θ) > L(θ0)

over the sphere ∂B(θ0, r), then any minimizer of L(θ) is within the ball B(θ0, r).

Proof. For any θ /∈ B(θ0, r), there exists t ∈ (0, 1) and θ′ ∈ ∂B(θ0, r) such that θ′ = (1− t)θ+ tθ0.

Then L(θ0) < L(θ′) ≤ (1 − t)L(θ) + tL(θ0), yielding L(θ) > L(θ0). Hence there is no minimizer

outside B(θ0, r).

Lemma A.3. Suppose M is a Euclidean space, θ0 ∈ M and L(θ) is convex over M. In addition,

there exist κ,A > 0 such that L(θ) ≥ L(θ0) + 〈h,θ − θ0〉+
κ
2‖θ − θ0‖

2
2 as long as h ∈ ∂L(θ0) and

‖θ − θ0‖2 ≤ A. If infh∈∂L(θ0) ‖h‖2 <
1
2κA, then any minimizer of Lλ(θ) = L(θ) + λR(θ) is within

the ball {θ : ‖θ − θ0‖2 ≤
2
κ infh∈∂L(θ0) ‖h‖2}.

Proof. If ‖θ − θ0‖2 < A and h ∈ ∂L(θ0), then

L(θ)− L(θ0) ≥ 〈h,θ − θ0〉+
κ

2
‖θ − θ0‖

2
2 ≥ −‖h‖2‖θ − θ0‖2 +

κ

2
‖θ − θ0‖

2
2

= ‖θ − θ0‖2(
κ

2
‖θ − θ0‖2 − ‖h‖2).

Taking h ∈ ∂L(θ0) and r > 0 such that 2
κ‖h‖2 < r < A. This forces L(θ) − L(θ0) > 0 over the

sphere B(θ0, r). Let θ̂ be one of the minimizers of L(θ). Lemma A.2 implies that ‖θ̂−θ0‖ < r < A.

2



Then 0 ≥ L(θ̂)−L(θ0) ≥ ‖θ̂−θ0‖2(
κ
2‖θ̂−θ0‖2−‖h‖2). The result is proved by taking the infimum

over h ∈ ∂L(θ0).

Corollary A.1. Suppose λ ≥ 0, M is a Euclidean space, θ0 ∈ M, L(θ) ∈ C2(M) and is convex,

and R(θ) is convex. In addition, there exist κ,A > 0 such that ∇2L(θ) � κI as long as ‖θ−θ0‖2 ≤

A. If ‖∇L(θ0)‖2 + λ infh∈∂R(θ0) ‖h‖2 <
1
2κA, then Lλ(θ) = L(θ) + λR(θ) has unique minimizer θ̂

and ‖θ̂ − θ0‖2 ≤
2
κ(‖∇L(θ0)‖2 + λ infh∈∂R(θ0) ‖h‖2).

Proof. Note that ∂Lλ(θ0) = ∇L(θ0)+λ∂R(θ0). There exists h ∈ ∂R(θ0) such that h′ = ∇L(θ0)+

h ∈ ∂Lλ(θ0) and ‖h′‖2 < ‖∇L(θ0)‖2 + λ‖h‖2 < 1
2κA. Applying Lemma A.3 to Lλ and h′, we

obtain that any minimizer of Lλ satisfies ‖θ̂ − θ0‖2 ≤ 2
κ‖h

′‖2 < 2
κ(‖∇L(θ0)‖2 + λ‖h‖2). Then

‖θ̂ − θ0‖2 ≤ A and ∇2L(θ̂) ≻ 0, proving both the bound and uniqueness.

Proof of Lemma 3.1

Let W = (w1, · · · ,wn)
T and θ∗ = ((β∗)T , (β∗)TB0)

T . Note that ∇E[Ln(y,Wθ)] = E{ 1
n

∑n
t=1[−yt+

b(wT
t θ)]wt} = E{[−y1 + b(wT

1 θ)]w1} and wT
t θ

∗ = (1,xT
t )β

∗. The claim is proved by

∇E[Ln(y,Wθ)]|θ=θ∗ = E{[−y1 + b(wT
1 θ

∗)]w1} = E{[−y1 + b((1,xT
t )β

∗)]w1} = E(η1w1) = 0.

Proof of Lemma 3.2

Lemma 3.2 is similar to the results developed in the Appendix C of Wang and Fan (2017) and hence

we omit the details.

B General results for M-estimators

We present general model selection results to be used as tools later. Without loss of generality,

we assume the last K variables are not penalized. Let Ln : Rp+K → R be a convex loss function,

θ∗ ∈ R
p+K and β∗ = θ∗

[p] be the sparse sub-vector of interest. Then θ∗ and β∗ are estimated via

θ̂ = argmin
θ∈Rp+K

{Ln(θ) + λ‖θ[p]‖1} and β̂ = θ̂[p],

respectively. Further, denote S = supp(θ∗), S1 = supp(β∗) and S2 = [p+K]\S.
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Assumption B.1 (Smoothness). Ln(θ) ∈ C2(Rp+K) and there exist A > 0, M > 0 such that

‖∇2
·SL(θ)−∇2

·SLn(θ
∗)‖∞ ≤ M‖θ − θ∗‖2 whenever supp(θ) ⊆ S and ‖θ − θ∗‖2 ≤ A.

Assumption B.2 (Restricted strong convexity). There exist κ2 > κ∞ > 0 such that ‖[∇2
SSLn(θ

∗)]−1‖∞ ≤

1
2κ∞

and ‖[∇2
SSLn(θ

∗)]−1‖2 ≤
1

2κ2
.

Assumption B.3 (Irrepresentable condition). ‖∇2
S2S

Ln(θ
∗)[∇2

SSLn(θ
∗)]−1‖∞ ≤ 1 − τ for some

τ ∈ (0, 1).

Assumptions B.1 – B.3 are standard in the studies of high-dimensional regularized estimators

(e.g. Negahban et al., 2012; Lee et al., 2015). Based on them, we introduce the following theorem

of Lp (p = 1, 2,∞) error bounds and sign consistency for the FarmSelect estimator.

Theorem B.1. (i) Error bounds : Under Assumptions B.1 – B.3, if

7

τ
‖∇Ln(θ

∗)‖∞ < λ <
κ2

4
√

|S|
min

{
A,

κ∞τ

3M

}
, (B.1)

then supp(θ̂) ⊆ S and

‖θ̂ − θ∗‖∞ ≤
3

5κ∞
(‖∇SLn(θ

∗)‖∞ + λ),

‖θ̂ − θ∗‖2 ≤
2

κ2
(‖∇SLn(θ

∗)‖2 + λ
√
|S1|),

‖θ̂ − θ∗‖1 ≤ min
{ 3

5κ∞
(‖∇SLn(θ

∗)‖1 + λ|S1|),
2
√

|S|

κ2
(‖∇SLn(θ

∗)‖2 + λ
√

|S1|)
}
.

(ii) Sign consistency : In addition, if the following two conditions

min{|β∗
j | : β

∗
j 6= 0, j ∈ [p]} >

C

κ∞τ
‖∇Ln(θ

∗)‖∞,

‖∇Ln(θ
∗)‖∞ <

κ2τ

7C
√
|S|

min
{
A,

κ∞τ

3M

} (B.2)

hold for some C ≥ 5, then by taking λ ∈ ( 7τ ‖∇Ln(θ
∗)‖∞, 1τ (

5C
3 − 1)‖∇Ln(θ

∗)‖∞), the estimator

achieves the sign consistency sign(β̂) = sign(β∗).

Remark B.1. Theorem B.1 shows how the correlated covariates affect the sign consistency as well

as error bounds. To achieve the sign consistency, the tuning parameter λ should scale with τ−1.

Therefore, the L∞ and L2 errors will scale with (κ∞τ)−1 and (κ2τ)
−1, respectively. When the

4



covariates are highly correlated, the irrepresentable condition will get violated or the parameter

τ ∈ (0, 1) is very small. As a result, the model selection procedures will fail to achieve the sign

consistency and the error bounds will be suboptimal. On the other hand, the optimal error bounds

require a small λ, which typically leads to an overfitted model. One can see a trade-off between

model selection and parameter estimation due to the existence of dependency.

Remark B.2. The L1 and L2 error bounds in Theorem B.1 depend on |S1|, the number of active

variables. They stem from the bias induced by the penalty. To reduce the bias, it is desirable

to penalize as few active variables as possible. This phenomena motivates FarmSelect to adopt a

penalized profile likelihood form by not imposing penalty on the nuisance parameter γ.

As discussed in Remark B.1, when the covariates are highly correlated, the irrepresentable

condition may not hold, or has a very small τ . This makes the model selection consistency either

very hard to achieve or incompatible with low estimation error bounds. Therefore, the FarmSelect

strategy can improve the model selection consistency and reduce the estimation error bounds if X

can be decomposed into FBT + U such that (U,F) is well-behaved. This is due to the fact that

the irrepresentable condition is easier to hold with positive τ bounded away from zero after the

decorrelation step. To this end, any effective decorrelation procedure can be incorporated into this

frame work.

B.1 Proof of Theorem B.1

Define BS(θ
∗, r) = {θ : ‖θ − θ∗‖2 ≤ r, supp(θ) ⊆ S} for r > 0. We first introduce two useful

lemmas.

Lemma B.1. Suppose A ∈ R
q×r and B,C ∈ R

r×r and ‖CB−1‖ < 1, where ‖ · ‖ is an induced

norm. Then ‖A[(B+C)−1 −B−1]‖ ≤ ‖AB−1‖·‖CB−1‖
1−‖CB−1‖ .

Proof. By the sub-multiplicity of induced norms,

‖A[(B+C)−1 −B−1]‖ = ‖AB−1[(I+CB−1)−1 − I]‖ ≤ ‖AB−1‖ · ‖(I+CB−1)−1 − I‖

= ‖AB−1‖ ·
∥∥∥

∞∑

k=0

(−CB−1)k − I

∥∥∥ ≤ ‖AB−1‖
∞∑

k=1

‖CB−1‖k =
‖AB−1‖ · ‖CB−1‖

1− ‖CB−1‖
.

5



Lemma B.2. Under Assumptions B.1 and B.2, we have ‖(∇2
SSLn(θ))

−1‖2 < κ−1
2 and ‖(∇2

SSLn(θ))
−1‖∞ <

κ−1
∞ over BS(θ

∗,min{A, κ∞

M }).

Proof. Define αp(θ) = ‖(∇2
SSLn(θ

∗))−1[∇2
SSLn(θ)−∇2

SSLn(θ
∗)]‖p for p ∈ {2,∞} and θ ∈ BS(θ

∗, A).

Note that for any symmetric matrix A, we have ‖A‖1 = ‖A‖∞ and ‖A‖2 ≤
√

‖A‖1‖A‖∞ ≤ ‖A‖∞.

Hence by the Assumptions we obtain that when ‖θ − θ∗‖2 ≤ min{A, κ∞

M } and p ∈ {2,∞},

αp(θ) ≤ ‖(∇2
SSLn(θ

∗))−1‖∞‖∇2
SSLn(θ)−∇2

SSLn(θ
∗)‖∞ ≤

1

2κ∞
M‖θ − θ∗‖2 ≤

1

2
.

Lemma B.1 leads to

‖(∇2
SSLn(θ))

−1 − (∇2
SSLn(θ

∗))−1‖∞ ≤ ‖(∇2
SSLn(θ

∗))−1‖∞
α∞

1− α∞
<

1

2κ∞
,

‖(∇2
SSLn(θ))

−1 − (∇2
SSLn(θ

∗))−1‖2 ≤ ‖(∇2
SSLn(θ

∗))−1‖2
α2

1− α2
<

1

2κ2
.

Then the proof is finished by triangle’s inequality and Assumption B.2.

Now we are ready to prove Theorem B.1.

Proof of Theorem B.1. First we study the restricted problem θ̄ = argminθ∈M{Ln(θ) +λR(θ)}.

Take R(θ) = ‖θS[p]
‖1 and R∗(θ) = ‖θS2‖∞. Let A1 = min{A, κ∞τ

3M } and hence A1 ≤ min{A, κ∞

M }.

Lemma B.2 shows that ‖(∇2
SSLn(θ))

−1‖2 < κ−1
2 and ‖(∇2

SSLn(θ))
−1‖∞ < κ−1

∞ over BS(θ
∗, A1).

Since supp(θ∗) ⊆ S, any h ∈ ∂R(θ∗) satisfies ‖h‖2 ≤
√
|S1|. Therefore

‖∇SLn(θ
∗)‖2 + λ‖h‖2 ≤

1

2
κ2A1 ≤

1

2
κ2A.

Then Corollary A.1 implies that ‖θ̄ − θ∗‖2 ≤ 2
κ2
(‖∇SL(θ

∗)‖2 + λ
√

|S1|) ≤ A1.

Second, we study the L∞ bound. On the one hand, the optimality condition yields ∇SLn(θ̄) ∈

λ∂‖θ̄[p]‖∞ and hence ‖∇SLn(θ̄)‖∞ ≤ λ. On the other hand, by letting θt = (1−t)θ∗+tθ̄ (0 ≤ t ≤ 1)

we have

∇SLn(θ̄)−∇SLn(θ
∗) =

∫ 1

0
∇2

SSLn(θt)(θ̄ − θ∗)dt

= ∇2
SSLn(θ

∗)(θ̄ − θ∗) +
∫ 1

0
[∇2

SSLn(θ̄t)−∇2
SSLn(θ

∗)](θ̄ − θ∗)dt.

6



Hence

‖(θ̄ − θ∗)− (∇2
SSLn(θ

∗))−1[∇SLn(θ̄)−∇SLn(θ
∗)]‖∞

≤

∫ 1

0
‖(∇2

SSLn(θ
∗))−1[∇2

SSLn(θ̄t)−∇2
SSLn(θ

∗)](θ̄ − θ∗)‖∞dt

≤ ‖(∇2
SSLn(θ

∗))−1‖∞ sup
t∈[0,1]

‖∇2
SSLn(θ̄t)−∇2

SSLn(θ
∗)‖∞‖θ̄ − θ∗‖∞

By Assumptions B.1 and B.2, we obtain that

‖(θ̄ − θ∗)− (∇2
SSLn(θ

∗))−1[∇SLn(θ̄)−∇SLn(θ
∗)]‖∞ ≤

M

2κ∞
‖θ̄ − θ∗‖2‖θ̄ − θ∗‖∞.

By θ̄ ∈ BS(θ
∗, A1) we have

‖θ̄ − θ∗‖∞ ≤ ‖(∇2
SSLn(θ

∗))−1‖∞‖∇SLn(θ̄)−∇SLn(θ
∗)‖∞ +

M

2κ∞
‖θ̄ − θ∗‖2‖θ̄ − θ∗‖∞

≤
1

2κ∞
(λ+ ‖∇SLn(θ

∗)‖∞) +
1

6
‖θ̄ − θ∗‖∞.

Therefore,

|θ̄ − θ∗‖∞ ≤
3

5κ∞
(‖∇SLn(θ

∗)‖∞ + λ). (B.3)

Third we study the L1 bound. The bound on ‖θ̄−θ∗‖1 can be obtained in a similar way. Using

the fact that ‖ · ‖1 = ‖ · ‖∞ for symmetric matrices,

‖θ̄ − θ∗‖1 ≤ ‖(∇2
SSLn(θ

∗))−1‖1‖∇SLn(θ̄)−∇SLn(θ
∗)‖1 +

M

2κ∞
‖θ̄ − θ∗‖2‖θ̄ − θ∗‖1

≤
1

2κ∞
(λ|S1|+ ‖∇SLn(θ

∗)‖1) +
1

6
‖θ̄ − θ∗‖1.

Hence ‖θ̄ − θ∗‖1 ≤ 3
5κ∞

(‖∇SLn(θ
∗)‖1 + λ|S1|). Since supp(θ̄) ⊆ S, we also have

‖θ̄ − θ∗‖1 ≤
√

|S|‖θ̄ − θ∗‖2 ≤
2
√

|S|

κ2
(‖∇SL(θ

∗)‖2 + λ
√

|S1|).

This gives another L1 bound.

By Lemma A.1, to derive θ̂ = θ̄ it remains to show that ‖∇S2Ln(θ̄)‖∞ < λ. Using the Taylor

expansion we have

∇S2Ln(θ̄)−∇S2Ln(θ
∗) =

∫ 1

0
∇2

S2SLn(θt)(θ̄ − θ∗)dt

= ∇2
S2SLn(θ

∗)(θ̄ − θ∗) +
∫ 1

0
[∇2

S2SLn(θt)−∇2
S2SLn(θ

∗)](θ̄ − θ∗)dt.

(B.4)
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On the one hand, the first term in (B.4) follows,

‖∇2
S2SLn(θ

∗)(θ̄ − θ∗)‖∞ = ‖[∇2
S2SLn(θ

∗)(∇2
SSLn(θ

∗))−1][∇2
SSLn(θ

∗)(θ̄ − θ∗)]‖∞

≤ (1− τ)‖∇2
SSLn(θ

∗)(θ̄ − θ∗)‖∞.

By the Taylor expansion, triangle’s inequality, Assumption B.1 and the fact that θ̄ ∈ BS(θ
∗, A1),

‖∇2
SSLn(θ

∗)(θ̄ − θ∗)‖∞ ≤ ‖∇SLn(θ̄)−∇SLn(θ
∗)‖∞ +

∫ 1

0
‖[∇2

SSLn(θ̄t)−∇2
SSLn(θ

∗)](θ̄ − θ∗)‖∞dt

≤ ‖∇SLn(θ̄)‖∞ + ‖∇SLn(θ
∗)‖∞ +M‖θ̄ − θ∗‖2‖θ̄ − θ∗‖∞

≤ λ+ ‖∇SLn(θ
∗)‖∞ +

κ∞τ

3
‖θ̄ − θ∗‖∞.

On the other hand, we bound the second term in (B.4). Note that θt ∈ BS(θ
∗, A1) for all t ∈ [0, 1].

Assumption B.1 yields
∥∥∥
∫ 1

0
[∇2

S2SLn(θt)−∇2
S2SLn(θ

∗)](θ̄ − θ∗)dt
∥∥∥
∞

≤ sup
t∈[0,1]

‖∇2
S2SLn(θt)−∇2

S2SLn(θ
∗)‖∞‖θ̄ − θ∗‖∞ ≤

κ∞τ

3
‖θ̄ − θ∗‖∞.

As a result,

‖∇S2Ln(θ̄)‖∞ ≤ ‖∇S2Ln(θ
∗)‖∞ + (1− τ)

(
λ+ ‖∇SLn(θ

∗)‖∞ +
κ∞τ

3
‖θ̄ − θ∗‖∞

)
+

κ∞τ

3
‖θ̄ − θ∗‖∞

≤ λ− τ
(
λ−

2κ∞
3

‖θ̄ − θ∗‖∞ −
2

τ
‖∇Ln(θ

∗)‖∞
)
.

Recall that the L∞ bound in (B.3). By plugging in this estimate, and using the assumptions

0 < τ < 1 and λ > 20
3τ ‖∇Ln(θ

∗)‖∞, we derive that

‖∇S2Ln(θ̄)‖∞ ≤ λ− τ
(
λ−

2

5
(‖∇SLn(θ

∗)‖∞ + λ)−
2

τ
‖∇Ln(θ

∗)‖∞
)

≤ λ− τ
(3
5
λ−

4

τ
‖∇Ln(θ

∗)‖∞
)
< λ.

This implies θ̂ = θ̄ and translates all the bounds for θ̄ to the ones for θ̂. The proposition on sign

consistency follows from elementary computation, thus we omit its proof.

C Proofs of Section 4

C.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Recall that θ̂ = argminθ{Ln(y,Ŵθ) + λ‖θ[p]‖1}. Also, Assumption

4.3 tells us H0 is nonsingular and so is H =


 Ip 0p×K

0K×p H0


. Define W = ŴH, θ̄ = H−1θ̂,

8



B̂0 = (0TK , B̂T )T , θ̂
∗
=


 β∗

B̂T
0 β

∗


 and θ̄

∗
= H−1θ̂

∗
. We easily see that β̂ = θ̂[p] = θ̄[p] and

θ̄ = argminθ{Ln(y,Wθ) + λ‖θ[p]‖1}. Then it follows that supp(β̂) = supp(θ̄[p]) and ‖β̂ − β∗‖ =

‖θ̄[p] − θ̄
∗
[p]‖ ≤ ‖θ̄ − θ̄

∗
‖ for any norm ‖ · ‖.

Consequently, Theorem 4.1 is reduced to studying θ̄ and the loss function Ln(y,Wθ). The

Lemma C.1 below implies that all the regularity conditions (with A = ∞) in Theorem B.1 are

satisfied.

Let wtj and wtj be the (i, j)-th element of W and W, respectively. Observe that Ln(y,Wθ) =

1
n

∑n
t=1[−ytw

T
t θ + b(wT

t θ)], ∇Ln(y,Wθ) = 1
n

∑n
t=1[−yt + b′(wT

t θ)]wt and Wθ̄
∗
= X1β

∗. Hence

‖∇Ln(y,Wθ̄
∗
)‖∞ = ε and consequently, ‖∇SLn(y,Wθ̄

∗
)‖∞ ≤ ε, ‖∇SLn(y,Wθ̄

∗
)‖2 ≤ ε

√
|S| and

‖∇SLn(y,Wθ̄
∗
)‖1 ≤ ε|S|. In addition, λ > 7ε/τ ≥ ε. Based on these estimates, all the results

follow from Theorem B.1 and some simple algebra.

Here we present the Lemma C.1 used above and its proof.

Lemma C.1. Let Assumptions 4.1, 4.2 and 4.3 hold. Treat Ln(y,Wθ) as a function of θ, and the

derivatives below are taken with respect to it. Define M = M3
0M3|S|

3/2. Then

(i) ‖∇2
·SLn(y,Wθ)−∇2

·SLn(y,Wθ̄
∗
)‖∞ ≤ M‖θ − θ̄

∗
‖2, ∀θ,

(ii) ‖(∇2
SSLn(y,Wθ̄

∗
))−1‖∞ ≤

1

2κ∞
,

(iii) ‖(∇2
SSLn(y,Wθ̄

∗
))−1‖2 ≤

1

2κ2
,

(iv) ‖∇2
S2SLn(y,Wθ̄

∗
)(∇2

SSLn(y,Wθ̄
∗
))−1‖∞ ≤ 1− τ.

Proof. (i) Based on the fact that Wθ∗ = Wθ̄
∗
= X1β

∗, we have ∇2Ln(y,Wθ∗) = 1
n

∑n
t=1 b

′′(wT
t θ̄

∗
)wtw

T
t

and ∇2Ln(y,Wθ̄
∗
) = 1

n

∑n
t=1 b

′′(wT
t θ̄

∗
)wtw

T
t . For any j, k ∈ [p+K] and supp(θ) ⊆ S,

|∇2
jkLn(y,Wθ)−∇2

jkLn(y,Wθ̄
∗
)| ≤

1

n

n∑

t=1

|b′′(wT
t θ)− b′′(wT

t θ̄
∗
)| · |wtjwtk|

≤
1

n

n∑

t=1

M3|w
T
t (θ − θ̄

∗
)| · ‖W‖2max

(C.1)

By the Cauchy-Schwarz inequality and ‖W‖max ≤ ‖W‖max + ‖W−W‖max ≤ M0, we obtain that

for i ∈ [n], |wT
t (θ − θ̄

∗
)| = |wT

tS(θ − θ̄
∗
)S | ≤ ‖wtS‖2‖θ − θ̄

∗
‖2 ≤

√
|S|M0‖θ − θ̄

∗
‖2. Plugging this

9



result back to (C.1), we get

|∇2
jkLn(y,Wθ)−∇2

jkLn(y,Wθ̄
∗
)| ≤

√
|S|M3M

3
0 ‖θ − θ̄

∗
‖2, ∀j, k ∈ [p+K];

‖∇2
·SLn(y,Wθ)−∇2

·SLn(y,Wθ̄
∗
)‖∞ ≤ |S|3/2M3M

3
0 ‖θ − θ̄

∗
‖2 = M‖θ − θ̄

∗
‖2.

(ii) Now we come to the second claim. For any k ∈ [p+K],

‖∇2
kSLn(y,Wθ̄

∗
)−∇2

kSLn(y,Wθ∗)‖∞ ≤
1

n

n∑

t=1

b′′(xT
t β

∗)‖wtkw
T
tS − wtkw

T
tS‖∞

≤
M2

√
|S|

n

n∑

t=1

‖wtkw
T
tS − wtkw

T
tS‖2.

Also, by ‖W‖max ≤ M0/2 and ‖W‖max ≤ M0 we have

‖wtkw
T
tS − wtkw

T
tS‖2 ≤ |wtk| · ‖(wtS −wtS)

T ‖2 + |wtk − wtk| · ‖w
T
tS‖2

≤ ‖W‖max‖wtS −wtS‖2 + |wtk − wtk| ·
√

|S|‖W‖max

≤
M0

2
‖wtS −wtS‖2 +M0

√
|S| · |wtk − wtk|.

Define δ = maxj∈[p+K](
1
n

∑n
t=1 |wtj − wtj |

2)1/2. By the Jensen’s inequality, ∀J ⊆ [p+K],

1

n

n∑

t=1

‖wtJ −wtJ‖2 ≤
( 1
n

n∑

t=1

‖wtJ −wtJ‖
2
2

)1/2
≤
( |J |

n
max

j∈[p+K]

n∑

t=1

|wtj − wtj |
2
)1/2

≤
√
|J |δ.

As a result,

‖∇2
·SLn(y,Wθ̄

∗
)−∇2

·SLn(y,Wθ∗)‖∞

= max
k∈[p+K]

‖∇2
kSLn(y,Wθ̄

∗
)−∇2

kSLn(y,Wθ∗)‖∞ ≤
3

2
M0M2|S|δ.

(C.2)

Let α = ‖(∇2
SSLn(y,Wθ∗))−1[∇2

SSLn(y,Wθ̄
∗
)−∇2

SSLn(y,Wθ∗)]‖∞. Then

α ≤ ‖(∇2
SSLn(y,Wθ∗))−1‖∞‖∇2

SSLn(y,W
T
θ̄
∗
)−∇2

SSLn(y,Wθ∗)‖∞

≤
3

8κ∞
M0M2|S|δ ≤

1

2
.

(C.3)

Lemma B.1 yields

‖(∇2
SSLn(y,Wθ̄

∗
))−1 − (∇2

SSLn(y,Wθ∗))−1‖∞ ≤ ‖(∇2
SSLn(y,Wθ∗))−1‖∞

α

1− α

≤
1

4κ∞
·

α

1− 1
2

≤
3

16κ2∞
M0M2|S|δ.
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We also have a cruder bound ‖(∇2
SSLn(y,Wθ̄

∗
))−1 − (∇2

SSLn(y,Wθ∗))−1‖∞ ≤ 1
4κ∞

, which leads

to

‖(∇2
SSLn(y,Wθ̄

∗
))−1‖∞ ≤ ‖(∇2

SSLn(y,Wθ∗))−1‖∞ +
1

4κ∞
≤

1

2κ∞
. (C.4)

(iii) The third argument follows (C.4) easily. Since ‖A‖2 ≤ ‖A‖∞ holds for any symmet-

ric matrix A, we have ‖(∇2
SSLn(y,Wθ̄

∗
))−1 − (∇2

SSLn(y,Wθ∗))−1‖2 ≤ 1
4κ∞

≤ 1
4κ2

and thus

‖(∇2
SSLn(y,Wθ̄

∗
))−1‖2 ≤

1
2κ2

.

(iv) Finally we prove the last inequality. On the one hand,

‖∇2
S2SLn(y,Wθ̄

∗
)(∇2

SSLn(y,Wθ̄
∗
))−1 −∇2

S2SLn(y,Wθ∗)(∇2
SSLn(y,Wθ∗))−1‖∞

≤ ‖∇2
S2SLn(y,Wθ̄

∗
)−∇2

S2SLn(y,Wθ∗)‖∞‖(∇2
SSLn(y,Wθ̄

∗
))−1‖∞

+ ‖∇2
S2SLn(y,Wθ∗)[(∇2

SSLn(y,Wθ̄
∗
))−1 − (∇2

SSLn(y,Wθ∗))−1]‖∞.

From claim (ii) and (C.2) it is easy to see that

‖∇2
S2SLn(y,Wθ̄

∗
)−∇2

S2SLn(y,Wθ∗)‖∞‖(∇2
SSLn(y,Wθ̄

∗
))−1‖∞ ≤

1

4κ∞
3M0M2|S|δ.

On the other hand, we can take A = ∇2
S2S

Ln(y,Wθ∗), B = ∇2
SSLn(y,Wθ∗) and C = ∇2

SSLn(y,Wθ̄
∗
)−

∇2
SSLn(y,Wθ∗). By Assumption 4.2, ‖AB−1‖∞ ≤ 1− 2τ ≤ 1. Lemma B.1 forces that

‖∇2
S2SLn(y,Wθ∗)[(∇2

SSLn(y,Wθ̄
∗
))−1 − (∇2

SSLn(y,Wθ∗))−1]‖∞

= ‖A[(B+C)−1 −B−1]‖∞ ≤ ‖AB−1‖∞
‖CB−1‖∞

1− ‖CB−1‖∞
≤

‖C‖∞‖B−1‖∞
1− ‖C‖∞‖B−1‖∞

.

We have shown above in (C.3) that ‖C‖∞‖B−1‖∞ ≤ 3
8κ∞

M0M2|S|δ ≤ 1/2. As a result,

‖∇2
S2SLn(y,Wθ∗)[(∇2

SSLn(y,Wθ̄
∗
))−1 − (∇2

SSLn(y,Wθ∗))−1]‖∞ ≤
3

4κ∞
M0M2|S|δ.

By combining these estimates, we have

‖∇2
S2SLn(y,Wθ̄

∗
)(∇2

SSLn(y,Wθ̄
∗
))−1 −∇2

S2SLn(y,Wθ∗)(∇2
SSLn(y,Wθ∗))−1‖∞

≤
3

2κ∞
M0M2|S|δ ≤ τ.

Therefore ‖∇2
S2S

Ln(y,Wθ̄
∗
)(∇2

SSLn(y,Wθ̄
∗
))−1‖∞ ≤ (1− 2τ) + τ = 1− τ .
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C.2 Proof of Lemma 4.1

Let εj = 1
n

∑n
t=1wtjηt for j ∈ [p +K]. Observe that ε = maxj∈[p+K] εj and εj = | 1n

∑n
t=1wtjηt +

1
n

∑n
t=1(wtj − wtj)ηt|. By Cauchy-Schwarz inequality,

∣∣∣∣∣
1

n

n∑

t=1

(wtj − wtj)ηt

∣∣∣∣∣ ≤
(
1

n

n∑

t=1

(wtj − wtj)
2

)1/2(
1

n

n∑

t=1

η2t

)1/2

.

As a result,

ε ≤ max
j∈[p+K]

∣∣∣∣∣
1

n

n∑

t=1

wtjηt

∣∣∣∣∣+
(
1

n

n∑

t=1

η2t

)1/2

max
j∈[p+K]

(
1

n

n∑

t=1

(wtj − wtj)
2

)1/2

. (C.5)

By Theorem 1 and Remark 1 in Merlevède et al. (2011), there exist constants C1, C2, C3 and

C4 such that for any s ≥ 0,

P

(∣∣∣∣∣
1

n

n∑

t=1

wtjηt

∣∣∣∣∣ > s

)
≤ n exp

(
−
(ns)γ

C1

)
+ exp

(
−
(ns)2

nC2

)
+ exp

(
−
(ns)2

C3n
exp

(
(ns)γ(1−γ)

C4[log(ns)]γ

))
.

From this it is easily seen that for large enough constant C > 0, we have P

(∣∣ 1
n

∑n
t=1wtjηt

∣∣ > C
√

log p
n

)
≤

p−2 for all j ∈ [p+K]. Union bounds then force the first in (C.5) to be of order OP(
√

log p
n ).

Similarly, we can apply the concentration inequality in Merlevède et al. (2011) to get 1
n

∑n
t=1 η

2
t =

OP(1). It follows from Lemma 3.2 that maxj∈[p+K]

[
1
n

∑n
t=1(wtj − wtj)

2
]1/2

= OP(
√

log p
n + 1√

p).

Hence the second term in (C.5) is of order OP(
√

log p
n + 1√

p).

C.3 Proof of Lemma 4.2

We follow the proofs of Theorems 2 and 3 in Fan and Song (2009). First of all, the optimality

condition for (αM , βM ,γM ) implies that

E{u[b′(αM + fTγM + uβM )− y]} = 0. (C.6)

The independence between u and f as well as the fact that Eu = 0 lead to

E[ub′(αM + fTγM )] = 0. (C.7)

From (C.7) and b′′ ≤ M we get

|E[ub′(αM + fTγM + uβM )]| = |E[ub′(αM + fTγM + uβM )]| − |E[ub′(αM + fTγM )]|

12



≤ |E{u[b′(αM + fTγM + uβM )− b′(αM + fTγM )]}|

≤ E[|u| · |b′(αM + fTγM + uβM )− b′(αM + fTγM )|]

≤ E(|u| · |MuβM |) = βMM · Eu2.

On the other hand, (C.6) leads to |E[ub′(αM + fTγM + uβM )]| = |E(uy)|. This proves the first

part.

When E(uy) = 0, (C.6) yields E[ub′(αM + fTγM + uβM )] = 0. Then

E{u[b′(αM + fTγM + uβM )− b′(αM + fTγM )]} = 0. (C.8)

Suppose that βM 6= 0. Since b′ is strictly increasing, we have

0 < [b′(αM + fTγM + uβM )− b′(αM + fTγM )][(αM + fTγM + uβM )− (αM + fTγM )]

= [b′(αM + fTγM + uβM )− b′(αM + fTγM )]uβM

as long as u 6= 0. As P(u = 0) = 0, the inequality above yields

0 < E{[b′(αM + fTγM + uβM )− b′(αM + fTγM )]uβM} = βM E[ub′(αM + fTγM + uβM )],

which contradicts (C.8).

C.4 Proof of Theorem 4.2

An adaptation of the proof of Theorem 4.1 yields

|β̂j − βj | ≤ ‖(α̂j , β̂j , γ̂
T
j )− (αj ,βj , γ

T
j )‖2 ≤ C ′‖εj‖2/κ, ∀j.

Lemma 4.2 show that |βj | ≥ |E(ujy)|/(M · Eu2j ). Hence

ξ ≤ ρ min
j∈supp(β∗)

|E(ujy)|/(M · Eu2j ),

max
j∈supp(β∗)

‖εj‖2 = oP( min
j∈supp(β∗)

|E(ujy)|/Eu2j )

lead to ξ ≤ ρminj∈supp(β∗) |βj | and

max
j∈supp(β∗)

|β̂j − βj | ≤ C ′ max
j∈supp(β∗)

‖εj‖2/κ = oP( min
j∈supp(β∗)

|βj |),

from where we get supp(β∗) ⊆ Ŝ.
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