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We congratulate the authors for their important and timely contributions to robust and tuning-free high
dimensional linear regression. The proposed loss function originates from nonparametric rank-based estimation
and enjoys certain pivotal properties that facilitate the selection of the tuning parameter. While tuning-free
probably sounds over claimed, the proposed penalization parameter is indeed more interpretable, easier to
select, and is independent of noise variance. We welcome the opportunity to make a few comments from various
perspectives and discuss open questions that are worth studying.

1 Historical perspectives on Rank Lasso

Consider the linear model

Yy = Xﬁo + €, (]‘)
where y = (y1, -+ ,yn)' € R™ is a response vector, X = (x1, -+ ,x,) € R™*P is a design matrix, By € R? is
an unknown coefficient vector, and € = (e1,--- ,&,)’ € R™ is a noise vector with i.i.d. entries. The Rank Lasso

estimator [Wang et al., 2020+] for estimating B is given by

B(N) = argmin  {L.(8) + A8}, (2)

BeRP

where the empirical loss function L, (8) is defined as

LB = ——— S (i — 2] 8) - (4, — =] B)] 3)
n(n—1)
i#]

and A\ > 0 is a regularization parameter to be chosen. This is equivalent to fitting the linear model

yi —y; = (z; —x;) Bo+ (es — £5) (4)

using ¢, regression, since the error distribution €; — ¢; is symmetric.

The proposed Rank Lasso estimator (2) is an extension of the traditional nonparametric rank-based estimator
for linear models to the high dimensional setting; see Hettmansperger and McKean [1978, 2010]. Without the
{1 penalty, a general rank-based estimator takes the following form

n

p—argmin{ 3" a (R (s - I 8)) (1 - <7 ) |. (5)
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where R(y; —x, 3) denotes the rank of y; — ;" 8 among the residuals {y; — ] B}1<i<n and a(i) = ¢(i/(n+1))
for some nondecreasing function ¢(-) : (0,1) — R satisfying [ ¢(u)du = 0 and [ ¢?(u)du = 1. An illustrate
example of ¢(-) is the sign function, i.e. ¢(u) = sgn(u — 1/2). Under this circumstance, the general rank-based
estimator (5) recovers the well-known least absolute deviation estimator.
In fact, Rank Lasso corresponds to the rank-based estimator with the Wilcoxon score function ¢(u) =
V12(u —1/2), ie.
2(n+1) <&

Ln(B) = m;a@ (i — . B)) (vi — = B).

For future convenience, we denote D(y — X3) = Y1 | a(R(y; — =] 8))(y; — = B) and rewrite the Rank Lasso

estimator as 2 3
5 . n+ _
ﬁ—ag%;;n{\/gn(n_l)D(y XB)+ A8l } (6)

2 Computational efficiency and effect of subsampling

Denote by f(-) the density of the error distribution. The relative efficiency between the rank regression and the
{1-regression for symmetric error distributions is 3[[ f?(u)du]?/f(0)? [Hodges Jr and Lehmann, 1963], which is
0.75,1.04,1.25,1.37,1.43,1.50 for ¢, distribution with v = 1,2,4, 8,16, co (normal) and 3 for the uniform distri-
bution. Namely, for a variety of distributions, the rank regression estimator has high efficiency in comparison
with ¢;-regression. Why, then, the ¢;-regression is far more popular? One possible cause, as pointed out by
the authors in Section 4.2 of Wang et al. [2020+], is the computational burden for obtaining the Rank Lasso
estimator — the U-statistics structure in (3), which involves n(n — 1) pairs of samples. To alleviate this issue,
the authors suggest a subsampling mechanism to reduce the computational cost of the Rank Lasso estimator.
More specifically, N = m - n terms are sampled with replacement from n(n —1)/2 terms in the loss function (3),
where m can vary from 1 to (n —1)/2. A smaller m brings more computational benefits, but larger bias as well
as variance. In other words, it loses statistical efficiency when compared with using the full sample. In this
section, we complement the paper by investigating empirically the effect of the sampling budget m. In addition,
we propose another principled subsampling mechanism for Rank Lasso that demonstrates superiority over the
above mentioned one.

To motivate the new subsampling mechanism, we recall from Section 1 that the loss function L,, is equal to
the ¢; loss (absolute deviation) over symmetrized samples {(z; — x;,y; — ¥;) }i%;- When n is even and 7 is a
random permutation over [n], a simplified loss with the same expectation is

n/2

~ 2

Ln(B;7) = n § | (Yr(20) — wI(Zi)/B) + Wr(2i-1) — 13:(21-71)@% (7)
i=1

which only concerns n/2 i.i.d. samples {(Z(2;) — Tr(2i—1)s Yr(2i) — yT(zi_l))}?z/?. Minimizing I~/n(,8, T) + M8l
amounts to ¢1-penalized least absolute deviations, which can be studied using general results for sparse quantile
regression by Belloni and Chernozhukov [2011], Fan et al. [2014]. Similar to the current paper, they also propose
to compute a pivotal quantity as the tuning parameter by simulation.

The loss in (7) based on non-overlapping pairwise differences greatly facilitates computation while enjoying
the same rate of convergence. Yet it may suffer from loss of efficiency. Consider the classical asymptotics with
fixed p, diverging n, and random designs. Ignore the ¢; penalty for a moment. Suppose that ¢; has density f,
and E(x;z]) = 3. Define &, = €7(2i) — Er(2i—1) and &; = X (24) — Tr(2i—1)- Then the density function of &; is
f(x) = (f * f)(x), where % denotes convolution, and E(&;Z, ) = 25. According to Bassett and Koenker [1978],
the least absolute deviations estimator ,é'n = argmingcpgy L, (B; T) satisfies

The asymptotic relative efficiency of 3,, with respect to the least squares estimate is 402 Jg f?(x)dz]?, which
is 1/3 of that for the estimator based on Jaeckel’s Wilcoxon-type dispersion function in Wang et al. [2020+]. A
natural idea to bridge this gap is to average the loss (7) first among a few permutations and then optimize the
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Figure 1: Different error metrics for estimating By vs. the sampling budget m. (a) ¢; error, (b) ¢5 error, (c)
False positives, and (d) False negatives. The results are based on the average of 200 simulations.

object. More specifically, for some positive integer m, one randomly draws 2m permutations {7, 72, -+, Tom
over [n] (so that we have mn pairs), and then seeks

2m
B = arg;nin {27171 Z-Z/n (Bs i) + A8 }
i=1

It turns out that this average non-overlapping-pair estimator (ANOPE) bears deep connections to the Rank
Lasso estimator. Indeed, the original symmetrized loss function L, (3) satisfies

L) = S L (B57),

where the summation is over all permutations over [n]. In view of this connection, the ANOPE constitutes
another subsampled version of the Rank Lasso estimator.

Both ANOPE and the subsampling strategy adopted by Wang et al. [2020+] are incomplete U-statistics that
use mn out of n(n — 1)/2 terms to approximate the complete version L, (8) in (3). All sampling mechnisms
generating mn pairs of indices from {(4,j) : 1 <4 < j < n} independently of the data {x;,y;}?; produce
unbiased estimates for EL,,(3). Among them, ANOPE has the minimum variance, according to Example 1 in
[Lee, 2019, Section 4.3.2]. In addition, the first few m provide most variance reduction, as new pairs provide
more independent information. When m is sufficiently large, additional pairs do not add much information. Let
us illustrate these by a simulation study.

To compare the two different subsampling-based estimators, we generate x; from N(0, I},) and &; ~ N(0,1).
We take n = 100, p = 400, and By = (v/3,v/3,v3,0,---0)T. We vary m from 1 to 20, and in addition we take
into account the full sample regime where no subsampling is used. Note that same m yields the same number
of pairwise losses in both estimators. For the purpose of comparison, we use the same error metrics as in Wang
et al. [2020+], namely the ¢; error, {5 error, the number of false positives and the number of false negatives.
Their averages over 200 trials are plotted in Figure 1. Two crucial observations are worth mentioning. First,



for a wide range of choices of m, the estimator based on subsampling permutations performs uniformly better.
Second, m = 5 seems to be a good choice for practical implementations to balance computational and statistical
efficiency. Third, even with m = 1, approximately the same computation as penalized LAD, the efficiency of
ANOPE is already very high, approximately (%)2 = 0.82 in /5 error. Therefore, for the remaining experiments
in this paper, we take m = 5, though we are aware m depends on various factors in the simulation, including

the tails of the design and noise.

3 Choice of the regularization parameter \

In this section, we focus on the choice of the regularization parameter A in (6). Let S (y — X 3) be the negative
gradient of D (y — XB)1, i.e.

V3
S(y—Xﬁ)Z—VD(y—Xﬁ)ZmXT[W(ﬂ)—(TH‘l)]’ (8)
with (3) € R™ being the rank vector of the residuals y — X 3. The gradient at 3 = 3y plays an important role
in the choice of the regularization parameter A. Note that S,, defined in the paper has the following equivalent

representation
2 n+1 1

T VBVin—1)va

The recommended choice of A is then given by

)\*:C'C:_1 x(l—ao)

with ¢ = 1.01 and oy = 0.1, where Gﬁ I (1 — ap) denotes the (1 — ap)-quantile of the distribution of || Sy ||oo-

We now develop a basic understanding of the distribution of S,,. It has been shown in [Hettmansperger and
McKean, 2010, Theorem 3.5.2] that

1
N
in the fixed p, large n regime. Here X = lim,, X’ X /n is the limit of the covariance matrix of X. This motivates
another way to select the regularization parameter

S(y— XBo) = N (0,%)

2 n+l a1
V3vn(n—1) Il

where v ~ N(0, X' X /n), which can be simulated via multiplier bootstrap, that is v = n~1/23""  7,X; with
n; ~ N(0,1). The consistency of the multiplier bootstrap has been established [Chernozhukov et al., 2014,
Fan et al., 2018]. An advantage of this choice is it does not depends unknown By and can be computed before
running Rank Lasso.

A — 1,01 - (1—ap),

4 Bridging Rank Lasso and other pivotal procedures

Thanks to the pivotal property of L,’s subgradient function (see Section 2.2 in Wang et al. [2020+]), tuning
can be easily done via simulation without any knowledge of the error distribution. In particular, the selection
of X is not affected by the size of noise. In stark contrast, the optimal A for Lasso

. 1 2
min {5-1X8—yl3+ Bl } (9)

is of order n71|| X "el|o that scales linearly in the standard deviation of ¢;’s.
We now take a closer look at the loss function L, in (3) under a Gaussian model and then draw links
between the Rank Lasso and two other popular approaches, square-root Lasso [Belloni et al., 2011] and scaled

ISince D(y— X B) is piecewise linear in 3, the negative gradient S(y— X 3) is defined everywhere excluding the linear boundaries.



Lasso [Sun and Zhang, 2012, with similar pivotal properties. Suppose that {x;}
and € ~ N(0,0°1,) is independent of X. By (1), the population version of L,, is

L(B) = ELw(8) = El(y: — @] B) — (v — 3 B)].
Since
y—XB~ N(0,[0” + (8- B0) (8 - B, )

has i.i.d. centered Gaussian entries, we have

L(B) = \/EE“ I — 20 8) = (2 — =3 B)°

2
= 7E1/2 — T 2 = —
\/77_ |y1 Ty /8| \/7'('7’174

Then

L(B) + AllBlh =

EY2|ly - X 8|3

9 1/2
ﬁ(n—lﬂauy _ Xﬂn%) VS

*_, are ii.d. copies N(0,X)

(10)

The right-hand side can be viewed as a population version of the penalized loss in square-root Lasso [Belloni

et al., 2011].
Oun the other hand, (10) and (11) lead to

L(B) = % o2+ (B o) TE(B — f) =

sl

The term

Elz{ (8~ Bo)* = Ely1 — z{ BI* — Elyr — ] Bo|®

[1+0 “El{ (8 - Bo)*]'/*.

is the excess risk of 3. When E|z{ (8 — Bo)|? < 02, we use Taylor expansion to derive

(1+ L EleT(8 - Bo))
(1+ IE|Z/1 — 4 ﬁ‘g E|y1 — ﬁ0|2>

202

1+E|y1w1162>

E\q %WEW

Therefore,

L(B) + N8l ~ }( + Ly - Xﬁ|2)+x||,6||1.

This time the right-hand side becomes a population version of the penalized loss in scaled Lasso [Sun and Zhang,

2012].

5 Inference based on Rank Lasso

Here we explore the possibility of conducting inference (e.g. constructing confidence intervals for coordinates in
Bo) using the Rank Lasso estimator. As in the standard Lasso estimator, the Rank Lasso estimator B is no
longer unbiased for By due to the ¢; regularizer. Inspired by the de-biased Lasso estimator Zhang and Zhang
[2014], Van de Geer et al. [2014], Javanmard and Montanari [2014], a natural approach to inference is to remove
the bias in B and construct an asymptotically unbiased estimator Bd whose distribution is easy to characterize.



In what follows, we sketch a heuristic argument that would ultimately lead us towards a de-biased estimator.
In view of the definition (6), 3 satisfies the first order optimality condition of (6)

~ 2(n+1)
V3n (n —1)
Here, 0|3, denotes a subgradient of ||B8||; at 3 = 3, S (y — XB) is the negative gradient of D (y — X 3)

defined in (8). In view of the asymptotic theory for rank based estimators in the low dimensional setting,
S (y — X 3) admits a linear approximation [Hettmansperger and McKean, 2010, Theorem A.3.1], i.e.

swwaw—«ﬁ/ﬂ (u) duS - /7 (B — Bo) (13)

S(y — XB) +29||Bll = 0. (12)

1 1
L S(y—XB)~ —
N (y—Xp) Tn
where X is the sample covariance of X and f(u) denotes the density function of the error £. Combine (12) and
(13) to reach?

3 1 n- ~ 1 -1_+ _
Vi (B+ 3 et 0Bl - )~mff2(u)duz S(y— Xp).

Use the optimality condition (12) and the definition of S(y — X 3) to arrive at

1 1
f( S (u du2n(n+1)

1 1
~ V12 [ 2 (u)duz ﬁs(y—Xﬂo)

1 1
T TP W duzyn(n+ 1)

Clearly, the right hand side Z has zero mean and is asymptotically normal. In fact, Z is closely related to S,
defined in the paper:

§H

sixT (2r(B) —(n+ 1)) - ﬂo)

=X (2r (By) — (n+1))

—
=)
—

11 )
NPy T mr il (14

This motivates the construction of the following de-biased estimator®

Ad 1 1
A= +ff2(u)du2n(n+1)

In addition, for each 1 < j < p, a valid (1 — «)-confidence interval of fy; is given by
[B‘? - ngl/\/ﬁ(l - a/2)7 B;i o ngl/\/ﬁ(l - 04/2)]7
where GZ', -(1 — /2) denotes the (1 — «/2)-quantile of the distribution of Z;//n.

»1xT (m«(é) — (n+ 1)) . (15)

Below, we empirically demonstrate the validity of the de-biased estimator B9. The experimental setup is
similar to that in Section 2 except that we set n = 600 and p = 400. For any set S C [p], we define the coverage
probability of 3% on S to be

Coverage (S |S\ Z {BOJ - G2 /f( —a/2), B;ifG;jl/\/ﬁ(lfaﬂ)]}.

In particular, we focus on the coverage probability on important variables Sy := {j € [p] | Bo; # 0}, unimportant
variables S§ and all the variables {2 = [p]. Table 1 reports the averaged results over 200 Monte Carlo simulations
for 1 — o =0.9. As can be seen from Table 1, the average coverage probabilities are quite close to the nominal
level 90%. While the de-biasing approach gives correct coverage, the confidence intervals are much wider than
the oracle estimator, for both active and inactive components. For example, for inactive components, any
intervals, however small, give 100% coverage, as long as they contain the origin. How to construct confidence
intervals taking more into account of the lengths of the intervals, in addition to the correct coverage? This
requires more effective use of sparsity.

2For simplicity, here we assume the sample covariance is invertible (which requires n > p), otherwise an estimator of the inverse
covariance is needed as in Javanmard and Montanari [2014].
3A consistent estimator of [ f2 (u) du is needed to make this fully practical.



Table 1: Average coverage probabilities for 90% confidence intervals

’ | Coverage (Sy) | Coverage (S5) [ Coverage ([p]) |

Normal 89.67% 90.71% 90.70%
Cauchy 88.50% 90.43% 90.42%

6 Regularization under strongly dependent covariates

The main theorem is established under restricted eigenvalue condition in Wang et al. [2020+]. This requires
the weakly dependent covariates, which usually do not hold in high-dimensional setting, as high-dimensional
covariates often measures similar things (e.g. economic health, financial returns, gene expressions). The strongly
dependent covariates are often modeled through common factors and the factor adjustments are needed in the
regularization [Fan et al., 2020a).

Suppose that {x;}? ; are generated from the approximate factor model

where B € RP*K is a loading matrix, f; € R¥ gives the latent factors, and u; € RP records idiosyncratic
components which are weak dependent. Factor-Adjusted Regularized Model Selection (FarmSelect) [Fan et al.,
2020a] decorrelates the covariates as follows. Note that

Yi = %Tﬁo +e& = fiTBTﬁo - UiTﬁo + €. (17)

If {f;,u;}, are observable, then we can perform Rank Lasso using (f;, u;) rather than x;:

. 1
(4.8) ¢ argmin {MD(mﬁvu?ﬂ)<yjf;~yujﬂ>|+A||ﬂ1}, (8)

K 2l ..
vERK, BER oy

and then use [3’ as the estimate for By. Here we only enforce the sparsity of 3. Regression using the factors and
idiosyncratic components facilitates model selection as the new covariates have weaker correlations. When the
factors are not observable, we replace {f;,u;}?; in (18) by their empirical estimates from {x;}? ; by using the
principal component analysis.

We now demonstrate the efficacy of the procedure above on synthetic data. Consider the linear model (1) with
n = 100, p = 400, By = (2,2,2,0,---,0)T € R? and &; ~ N(0,1). Let z; ~ N(0,p11" + (1 — p)I) with p = 0.2.
This is equivalent to the factor model (16) with K = 1, B = ,/p1 € R?, f; ~ N(0,1), and u; ~ N(0, (1 — p)I)
independent of f;. We compare the Rank Lasso estimator (2) and its decorrelated version (18) with f; and u;
estimated using principal component analysis, see Section 3.1 in Fan et al. [2020a]. Throughout the experiment,
we choose the penalty parameters using the simulation method [Wang et al., 2020+] with 500 replicates, fix
ap = 0.1 and vary c from 1 to 2.2 by 0.01. To speedup computation, we subsample 5n pairs in {(4, j) }1<i<j<n
with replacement to approximate the U-statistics. Figure 2 shows the model selection errors, which are averaged
over 200 independent runs.

The selection error is the total number of false positives and false negatives, i.e. the symmetric difference
between the selected set of variables and the true one. Since the average selection error of Rank Lasso is
bounded away from zero, it cannot consistently identify the true set. Fortunately, decorrelation helps select the
true model. When both methods achieve their minimum selection error (¢ ~ 1.6 for Rank Lasso and ¢ ~ 1.15 for
the decorrelated one), the £ error of the Rank Lasso (1.84) is higher than that of its decorrelated version (1.47).
The figure also shows that the regularization parameter c or equivalently A is sensitive to the regularization.

If the covariates are correlated, ¢;-regularized sparse regression needs a large penalty parameter in order
to return a set of variables close to the true one. That inevitably induces high bias and may jeopardize the
estimation accuracy. While model selection and parameter estimation can be at odds with each other, the
decorrelation step before regression provides a reconciliation.

7 Further comments

There is a large literature on robust high-dimension regression based on Huber type of loss with diverging tuning
parameter 7. See, for example, Catoni [2012], Devroye et al. [2016], Fan et al. [2017], Sun et al. [2020], Fan
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et al. [2020b]. Wang et al. [2020] propose a data-driven method of the robustification parameter. The pros and
cons of using Rank Lasso or adaptive Huber regression cycle back to those in the low-dimensional setting. Rank
Lasso requires no moment conditions, no tuning parameters in the loss, but less efficient where error is normal
and requires the error density bounded away from zero at original. This also explains that the minimax result
of non-y/n -consistency of Sun et al. [2020] bears no contradiction with the result in Wang et al. [2020+].

The current paper [Wang et al., 2020+| analyze theoretical properties for the Rank Lasso under a ho-
moscedastic model (1) where {&;}? , are i.i.d. given {x;}! ;. For such model, both the conditional median and
the conditional mean of y; given x; are affine functions of x;, and they differ only by the intercept. Based on
the observation, the ¢;-regularized least absolute deviations

win {230l G+ T80+ Al } (19
=1

YER, BERP | N

should also serve the needs. This is computationally more attractive as we get rid of the U-statistic. The
same intuition also holds for general quantile regression. Results on robustness and tuning are available, see
Belloni and Chernozhukov [2011]. To better demonstrate the efficacy of Rank Lasso, one could consider, for
example, a class of heteroscedastic model where {(x;,&;)}"_; are i.i.d. but the conditional distribution of &;
given x; = x varies with . Quantile regression breaks down in this scenario. Thanks to the symmetrization
step for constructing the loss (3), the Rank Lasso is still expected to enjoy nice theoretical guarantees.

In addition, it would be nice to see how to go beyond linear regression. While Rank Lasso is a convex
optimization problem, things are complicated for generalized linear models such as the logistic model. It seems
challenging to design a loss function, rank-based or not, that still possesses robustness and pivotal properties
for nonlinear problems.
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