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Abstract— Remote sensing data from hyperspectral cameras
suffer from limited spatial resolution, in which a single pixel
of a hyperspectral image may contain information from sev-
eral materials in the field of view. Blind hyperspectral image
unmixing is the process of identifying the pure spectra of
individual materials (i.e., endmembers) and their proportions
(i.e., abundances) at each pixel. In this article, we propose a novel
blind hyperspectral unmixing model based on the graph total
variation (gTV) regularization, which can be solved efficiently
by the alternating direction method of multipliers (ADMM).
To further alleviate the computational cost, we apply the Nyström
method to approximate a fully connected graph by a small subset
of sampled points. Furthermore, we adopt the Merriman–Bence–
Osher (MBO) scheme to solve the gTV-involved subproblem
in ADMM by decomposing a gray-scale image into a bitwise
form. A variety of numerical experiments on synthetic and real
hyperspectral images are conducted, showcasing the potential
of the proposed method in terms of identification accuracy and
computational efficiency.
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I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) is an important and
useful tool to acquire high-resolution data in the electro-

magnetic spectrum with many applications in remote sensing,
including surveillance, agriculture, environmental monitoring,
and astronomy. With hundreds to thousands of spectral bands,
a hyperspectral image provides a detailed description of a
scene. However, due to the limited spatial resolution of
imaging sensors, the acquired hyperspectral data at each pixel
represent a collection of material signatures in the field of view
of each pixel. The signature corresponding to one pure material
is called an endmember in the hyperspectral data analysis [1].
Given that the endmembers of all materials present in the
scene, hyperspectral unmixing aims to estimate the proportions
of constituent endmembers at every single pixel, called the
abundance map. If the spectral information of endmembers is
unavailable, then the problem becomes a blind hyperspectral
unmixing problem that requires simultaneously identifying the
endmembers and estimating the abundance map. There are a
large number of hyperspectral mixing and unmixing methods
[2], [3], including linear and nonlinear models, depending
on assumptions about the interaction of the light with the
observed scene.
In this article, we focus on the linear mixing model. Espe-

cially, by assuming that each light ray interacts with only one
endmember in the field of view before reaching the sensor,
we model the spectrum at each pixel as a linear combina-
tion of all endmembers. Due to the physical interpretation
of the hyperspectral mixing model, it is also reasonable to
assume that each element of endmembers and abundances
is nonnegative. Another commonly used constraint is that
abundances from all the endmembers at each pixel sum up
to one, which implies that all abundance vectors belong to the
probability simplex, determined by the standard unit vectors
in a Euclidean space. Note that one can remove the sum-to-
one constraint for physically motivated reasons, e.g., when
illumination conditions or the topography of the scene change
locally in the image [4]. We adopt the sum-to-one constraint
due to the interpretability of the abundances.
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Nonnegative matrix factorization (NMF) [5], decomposing
a given matrix into a product of two matrices with nonneg-
ative entries, is widely used in blind hyperspectral unmixing
[6]–[8]. Suppose that the given hyperspectral image X is of
size w × n, where w is the number of spectral bands and n is
the number of spatial pixels. One aims to write X as a product
of two nonnegative matrices S ∈ R

w×k and A ∈ R
k×n with k

being the total number of the endmembers. Note that the rank
of the matrix S A is at most k, and k is usually much smaller
than w and n. Then, the hyperspectral unmixing problem can
be formulated as a nonnegative least-squares problem

min
S∈�w×k
A∈�k×n

1

2
‖X − S A‖2F (1)

where �l×m denotes the set of all nonnegative real matrices
of size l × m, i.e.,

�l×m := {X ∈ R
l×m | Xij ≥ 0, i = 1, . . . , l, j = 1, . . . , m}.

(2)

However, nonconvexity of the objective function in (1) may
lead to multiple local minima for NMF. To address this
issue, various regularization techniques have been developed
to enforce some desirable properties on the endmembers
or abundance matrices. For example, methods based on the
spatial sparsity of abundances include the use of the �0-norm
[9], the �1-norm [10], the �2-norm in fully constrained least-
squares unmixing (FCLSU) [11], the �1/2-norm [12], and the
mixed �p,q -norm for group sparsity [13].
Due to the success of the total variation (TV) [14] in the

image processing community, the TV regularization has been
applied to hyperspectral unmixing to preserve the piecewise
constant structure of the abundance map for each material.
For example, sparse unmixing via variable splitting augmented
Lagrangian and TV (SUnSAL-TV) [15] involves a 2-D TV
regularization. Other TV-based variants include TV with �1
[16], TV with sparse NMF [17], TV with nonnegative tensor
factorization [18], and an improved collaborative NMF with
TV (ICoNMF-TV) [19] that combine robust collaborative
NMF (R-CoNMF) [20] and TV. Recently, TV is considered
as a quadratic regularization promoting minimum volume in
the NMF framework, referred to as NMF-QMV [21]. An
extension of TV to nonlocal spatial operators [22], [23] has
led to nonlocal TV being considered for the blind hyper-
spectral unmixing problem [24], [25]. TV has also been
extended from vectors in Euclidean space to signals defined
on a graph. For example, the graph TV (gTV) [26] is a
special case of the p-Dirichlet form [27], [28] in graph signal
processing. Some graph regularization techniques for hyper-
spectral imaging include graph NMF (GNMF) [29], structured
sparse regularized NMF (SS-NMF) [30], graph-regularized
�1/2-NMF (GLNMF) [31], and graph-regularized multilinear
mixing model (G-MLM) based on superpixels [32]. However,
most of these graph-based approaches suffer from intensive
computation, especially when computing the pairwise similar-
ity between all pixels. To reduce the computational cost, the
Nyström method [33] generates a low-rank approximation of
the graph Laplacian, which can be incorporated into unmixing.

In this work, we propose an efficient framework for blind
hyperspectral unmixing based on an approximation of gTV
to exploit the similarity of spectral information at different
pixels and preserve sharp edges of the abundance map.
By treating the spectral vector at each pixel as a vertex,
the given hyperspectral data can be modeled as a graph, whose
adjacency matrix is determined by the pairwise similarity
between any two vertices. Instead of using the incidence
matrix to define the discrete graph derivative operator and,
thereby, gTV [26]–[28], [34], we approximate gTV by the
graph Laplacian. This approach is inspired by a theoretical
result in [35]: the TV seminorm of a binary function defined
on a graph is well-approximated by the graph Ginzburg–
Landau (GL) functional involving the graph Laplacian and
a double-well potential. In order to relax the restriction on
binary data, we adopt a bitwise decomposition [36] to deal
with gray-scale images. Especially, we decompose the input
data into eight bits, solve the optimization problem at each
bit channel, and aggregate all bits into gray-scale values.
Our framework incorporates several techniques to increase

the computational efficiency. To avoid a direct calculation of
the graph Laplacian, we adopt the Nyström method [33] in
graph clustering to approximate the eigenvalues and eigenvec-
tors of the graph Laplacian. The Nyström method is a low-
rank approximation of the weight-matrix that does not require
the computation of all pairwise comparisons between feature
vectors. Rather, it uses random sampling to construct a low-
rank approximation that is roughly O(N) for the number of
feature vectors rather than computing the full matrix which
is O(N2). This is a reasonable assumption in cases where
the image is thought to be representable by a relatively
small number of features as would be the case with a mod-
est number of endmembers. This approximation significantly
reduces the computational costs in both time and storage,
which makes our approach scalable to high-dimensional data.
Moreover, we design an efficient numerical algorithm to solve
the proposed model via the alternating direction method of
multipliers (ADMM) [37], [38]. In particular, the gTV-related
subproblem can be solved efficiently by the Merriman–Bence–
Osher (MBO) scheme [39], [40] at each bit channel. We can
readily incorporate an accelerated version [41] of the MBO
scheme and the Nyström method into the proposed framework.
To demonstrate the effectiveness of these approximations,
we conduct extensive experiments on various synthetic and
real hyperspectral data sets, showing the great potential of
the proposed method in terms of accuracy and computational
efficiency.
The main contributions of this article are threefold.
1) We propose a novel data-driven type of graph regu-

larization, i.e., gTV based on the similarity of spectral
information, imposed on the abundance map. To the best
of our knowledge, this is the first time that the gTV
regularization has been applied to solve a hyperspectral
unmixing problem.

2) We apply the Nyström method to efficiently approximate
eigenvalues and eigenvectors of a normalized graph
Laplacian, which significantly improves the scalability
of our approach.
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3) We present an effective graph-based framework that
integrates the Nyström method and the MBO scheme
into blind hyperspectral unmixing. We also provide a
thorough discussion of computational complexity and
parameter selection of the proposed algorithm.

The remainder of this article is organized as follows.
In Section II, we provide a brief introduction of concepts
and methods used in our workflow, including the Nyström
method, the GL functional, and the MBO scheme. Section III
presents the proposed hyperspectral unmixing model, followed
by a detailed description of the proposed algorithm based on
ADMM and its complexity analysis. Extensive experiments are
provided in Section IV, followed by a discussion on parameter
selection in Section V. Finally, conclusions and future works
are given in Section VI.

II. PRELIMINARIES

In this section, we provide preliminary knowledge for a set
of building blocks that are used in this work, including the
graph construction, the Nyström method for efficiently approx-
imating the similarity weight matrix, and the GL functional
with a fast solver to find its minimizer via MBO.

A. Graph Construction

Similarity graphs are an important mathematical tool to
describe directed/undirected pairwise connections between
objects. Typically, a graph consists of vertices (or nodes)
connected by edges with the associated weights. Considering
a collection of data points {xi}n

i=1 ⊆ R
w, one simple way to

construct a graph G is to treat each point as a vertex of the
graph. Then, the weight matrix (also known as the affinity
matrix) W ∈ R

n×n of G is defined by

Wij = e−d(xi ,x j )
2/σ , i, j = 1, . . . , n (3)

where d(xi , x j ) is the distance between the two vertices xi

and x j , and σ > 0 controls how similar they are. There are
two distance metrics widely used in graph-based applications.

1) Euclidean Distance: d(xi , x j ) = ‖xi − x j‖2;
2) Cosine Similarity: d(xi , x j ) = 1 − (〈xi , x j 〉/

(‖xi‖2‖x j‖2)).
In this article, we adopt the cosine similarity as the distance
function for hyperspectral data, which is physically motivated
by the fact that illumination effects change the scaling of spec-
tra but not their overall shape in the spectral domain [40]–[42].
Based on the weight matrix W , we define the degree matrix,

denoted by D, as a diagonal matrix whose entries are the row
(or column) sums of W . There are several ways to define
graph Laplacian. For example, the standard graph Laplacian
is defined as L = D − W , while the (symmetric) normalized
graph Laplacian is given by

Ls = I − D−1/2W D−1/2. (4)

In this work, we adopt the symmetric normalized graph Lapla-
cian due to its outstanding performance in the graph-based

data classification [40], [43]. By denoting X = [x1, . . . , xn] ∈
R

w×n , we have

〈X�, Ls X�〉 =
n∑

i, j=1

‖x̂i − x̂ j‖22Wij (5)

where x̂i = xi/
√

dii with di j being the (i, j)th entry of the
matrix D. Here, we use the standard inner product on matrices,
i.e., 〈X�, Ls X�〉 = tr(X Ls X�), where tr(·) is the matrix trace
operator that returns the sum of all the diagonal elements.

B. Nyström Method

Computing and storing pairwise similarities of a fully
connected graph are usually a bottleneck of many graph-
based algorithms. In order to reduce the time/space complex-
ity, we apply the Nyström method [33] to approximate the
eigenvalues and eigenvectors of W ∈ R

n×n by using only
p sampled data points with p 
 n. Up to permutations,
the similarity matrix W can be expressed in a block-matrix
form

W =
[

W11 W12
W21 W22

]
where W11 ∈ R

p×p is the similarity matrix of the sampled data
points, W12 = W�

21 is the one of the sampled points and the
unsampled points, and W22 is the one of the unsampled points.
Assume that the symmetric matrix W11 has the eigendecompo-
sition W11 = U�̃U�, where U has orthonormal eigenvectors
as columns and �̃ is a diagonal matrix whose diagonal entries
are eigenvalues of W11. The Nyström extension gives an
approximation of W by using U and �̃ as follows:

W ≈ Ũ�̃Ũ�, where Ũ =
[

U
W21U�̃−1

]
. (6)

Note that the columns of Ũ require further orthogonalization
(see [33] and [41] for more details).
In this work, we apply the Nyström method to calculate the

weight matrix for the sampled data and then use the approxi-
mated eigendecomposition (6) to approximate the normalized
graph Laplacian, i.e.,

Ls ≈ D−1/2Ũ(I − �̃)Ũ�D−1/2 := V �V � (7)

where V = D−1/2Ũ ∈ R
n×p and � = I − �̃ ∈ R

p×p. In this
way, the computation of pairwise similarities is significantly
reduced from the whole data set to a small portion.

C. Ginzburg–Langdau Functional and MBO Scheme

The classic GL energy [43], [44] for diffuse interface
models is

ε

2

∫
�

|∇u|2dx + 1

ε

∫
�

�(u)dx

where �(u) := (1/4) u2(u − 1)2 is a double-well potential to
enforce u to take binary values of {0, 1} on a domain �. The
term “diffuse interface” refers to a smooth transition between
two phases of u, where the smoothness is modeled by the
H1-seminorm and the scale of the transition is controlled
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by the parameter ε > 0. It is proven in [45] that the GL
functional � converges to the TV seminorm, i.e., as ε → 0

ε

2

∫
�

|∇u|2dx + 1

ε

∫
�

�(u)dx → C
∫

�
‖∇u‖dx

for some constant C > 0.
In a series of works, including [40], [42], and [46]–[48],

the GL functional has been extended to graphs, defined as

GL(u) = ε〈u, Lu〉 + 1

ε
�(u) (8)

where u = [u1, . . . , un]� ∈ R
n is a signal defined on a graph

G with ui being the state of vertex i and L is the graph
Laplacian of G or its variant. Here �(u) = ∑n

i=1 �(ui ), which
can be extended to the matrix case, i.e., �(U) = ∑

i, j �(ui j )
for any matrix U = (ui j ). Due to the double-well potential,
the GL functional has been successfully applied to binary
data classification [40] and multiclass classification [41], [46].
We employ the binary model here. By adding a fidelity term
to the GL energy, one obtains the following minimization
problem

E(u) = GL(u) + λF(u) (9)

where F(u) is a differentiable functional that fits the unknown
variable u to the given data y, e.g., F(u, y) = (1/2)‖u − y‖22.
The parameter λ > 0 balances the contributions between the
GL regularization term and the data fidelity term. When u is
binary, the energy E can be efficiently minimized via the MBO
scheme [39], [40]. In particular, the MBO scheme alternates
a gradient descent step that minimizes 〈u, Lu〉 + λF(u) and
a hard thresholding that minimizes the double-well potential
term. More precisely, the updated solution ut+1 from the tth
iteration is given by{

ut+1/2 = ut − dt (Lut + λ∇F(ut ))

ut+1 = H1/2(ut+1/2)
(10)

where ∇F is the gradient of F , dt > 0 is a time step size,
and H1/2(·) is a hard thresholding operator defined as

(H1/2(u))i =
{
1, if ui ≥ 1/2

0, if ui < 1/2
(11)

for i = 1, . . . , n. To circumvent the restriction on binary
solutions in the MBO scheme, we use a bitwise scheme to
deal with gray-scale images in Section III.

III. PROPOSED METHOD

Let X ∈ R
w×n be a hyperspectral image, where w is the

number of spectral bands and n is the number of pixels in
the image. We denote the spectral signature of pure materials,
called endmembers, as {s j }k

j=1 with k being the number of
endmembers. Assume that the spectral signature at each pixel,
namely, each column of X , follows the standard linear mixing
model, i.e.,

xi =
k∑

j=1

a j is j , i = 1, . . . , n (12)

where a j i is the proportion of the j th material at the i th
pixel. By concatenating all spectral signatures s j ’s, we obtain a
matrix S ∈ R

w×k , which is called the mixing matrix. Similarly,
by assembling all weights a j i ’s, we obtain a matrix A ∈ R

k×n ,
which is called the abundance map. Thus, we can rewrite (12)
as X = S A. Different from [49], our method does not require
the presence of pure pixels, rather just to assume the linear
unmixing model (12).
By taking the noise into consideration, the blind unmixing

problem is to estimate both S and A simultaneously from the
noisy hyperspectral data X , i.e.,

X = S A + η

where η ∈ R
w×n is an additive noise term, which is typically

assumed to be the Gaussian noise. This is a highly ill-posed
problem, and hence, additional assumptions and regulariza-
tions are required. First, due to the physical interpretation of
(12), both S and A are assumed to be nonnegative matrices,
i.e., S ∈ �w×k and A ∈ �k×n with � defined in (2).
In addition, since each element of A is the proportion of
one of the pure materials in a single pixel, it is natural to
impose the sum-to-one assumption, i.e., 1�

k A = 1�
n , where 1m

denotes the all-one (column) vector of length m. We use the
abovementioned two assumptions as constraints to refine the
solution space.
In the previous work [50], we considered a graph Laplacian

regularization for hyperspectral unmixing, i.e.,

JH1(A) = 1

2

n∑
i, j=1

‖âi − â j‖22Wij (13)

where ai is the i th column of A and âi = ai/
√

dii . However,
the graph Laplacian regularization usually causes oversmooth-
ing due to the presence of �2-norm in (13). To mitigate the
oversmoothing artifacts, we propose a gTV regularization on
the abundance map, i.e.,

JTV(A) = 1

2

n∑
i, j=1

‖âi − â j‖1Wij . (14)

Minimizing JTV can preserve edges of the abundance map
for each material in a nonlocal fashion. The proposed gTV-
regularized model for blind hyperspectral unmixing can be
formulated as

min
S∈�w×k

A∈�k×n ,1�
k A=1�

n

1

2
‖X − S A‖2F + λJTV(A) (15)

where λ is a positive tuning parameter. Note that we use
the given hyperspectral data X to generate a weighted graph
by assuming that spectral signatures and abundance maps
share the same spatial smoothness. Note that the sum-to-one
constraint on the abundance map is commonly used in hyper-
spectral unmixing [2]; it implicitly enforces sparsity because it
is related to the �1-norm. By considering only the sparsity of
spatial gradients, the spatial TV regularization has a tendency
to oversmooth the abundance map [51]. On the contrary,
the proposed gTV regularization considers the similarity of
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spectral information at different pixels, and hence, it can
preserve fine spatial features in the abundance map.
In order to apply the ADMM framework, we rewrite

the constraints in (15) using indicator functions. In general,
the indicator function χ� of a set � is defined as

χ�(Z) =
{
0, Z ∈ �

∞, otherwise.

By denoting 
 := {Z ∈ R
k×n : Z ∈ �k×n, 1�

k Z = 1�
n },

we can rewrite the model (15) as an unconstrained problem

min
S,A

1

2
‖X − S A‖2F + λJTV(A) + χ�w×k (S) + χ
(A). (16)

We introduce two auxiliary variables B ∈ R
k×n and C ∈ R

w×k

and rewrite the objective function (16) as its equivalent form

min
S,A,B,C

1

2
‖X − C A‖2F + λJTV(B) + χ�w×k (S) + χ
(A)

s.t. A = B, S = C. (17)

The corresponding augmented Lagrangian is

L = 1

2
‖X − C A‖2F + λJTV(B) + χ�w×k (S) + χ
(A)

+ρ

2
‖A − B + B̃‖2F + γ

2
‖S − C + C̃‖2F

where B̃ and C̃ are dual variables and ρ and γ are two
positive parameters. Then, the ADMM algorithm requires
solving four subproblems at each iteration, i.e., minimizing
L with respect to C, S, A, and B individually while fixing the
others. Especially, the C-subproblem reads as

argmin
C

1

2
‖X − C A‖2F + γ

2
‖S − C + C̃‖2F

which has a closed-form solution. The S-subproblem seeks
the projection of C − C̃ onto the set of all nonnegative
matrices, which can be solved by hard thresholding. As for
the A-subproblem, the solution can be obtained by projecting
a least-squares solution onto the convex set 
, i.e.,

A = P
((S�S + ρ I )−1(S� X + ρ(B − B̃))) (18)

where P
 is the projection operator on the set 
 that can be
implemented by a fast algorithm [52].
For the B-subproblem, we approximate the nondifferen-

tiable gTV by the graph GL functional. To remove the binary
restriction of MBO, we approximate any real number in
[0, 1] by its best M-bit binary representation [36]. We apply
the MBO scheme on each channel separately, which can be
implemented in parallel. Finally, we combine all the channels
to get an approximated solution with elements in [0, 1] for the
B-subproblem. In all our experiments, we set M = 8. More
specifically, we approximate the matrix B by a set of M binary
matrices Bm ∈ R

k×n with m = 1, . . . , M such that

Bij ≈
M∑

m=1

2−m(Bm)i j (19)

where M is the total number of bits being considered and Bm

is the mth bit channel of the matrix B , i.e., (Bm)i j ∈ {0, 1}.

Likewise, we approximate A and B̃ in the same manner and
get two sets of binary matrices {Am}M

m=1 and {B̃m}M
m=1. Then,

for each channel, we approximate the gTV regularization JTV
by the graph GL functional (8). Note that 〈A�, Ls A�〉 =
tr(ALs A�) due to (5), and hence, we obtain the following
minimization problem for each Bm :

min
Bm

ε tr(Bm Ls B�
m ) + 1

ε
�(Bm) + ρ

2λ
‖Bm − Am − B̃m‖2F

(20)

where Ls and � are defined in Section II. Note that we assume
that the graph structure at each channel is consistent with the
one that is defined by the given hyperspectral data X .

We apply the MBO scheme (10) to minimize (20), which
is a two-step iterative algorithm. In particular, the first step
requires solving for B�

m from

Ls B�
m + ρ

λ

(
B�

m − A�
m − B̃�

m

) = 0. (21)

Motivated by [41], we further accelerate the MBO by taking
advantage of the approximated eigendecomposition of Ls

given in (7). Multiplying both sides of (21) with V � from the
left, we get �V � B�

m + (ρ/λ)(V � B�
m − V �(A�

m + B̃�
m )) = 0,

or equivalently

Bm V � + ρ

λ
(BmV − (Am + B̃m)V ) = 0 (22)

since V �V = I . As a result, we only need to solve for Bm V ∈
R

k×p with a reduced problem size. Denote Zm = Bm V and
Dm = (ρ/λ)(Bm V − (Am + B̃m)V ). At the (τ +1)th iteration,
we have the following algorithm to update Bm :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z τ+1
m = Z τ

m(I − dτ�) − dτ · Dτ
m

Bτ+1/2
m = V Z τ+1

m

Dτ+1
m = ρ

λ

(
Bτ+1/2

m − (Am + B̃m)
)
V

Bτ+1
m = H1/2

(
Bτ+1/2

m
)
.

(23)

Here, the first three equations in (23) are obtained by applying
fixed-point iteration to solve (22), and the last equation in (23)
is from the MBO scheme in (10). Our numerical experiments
show that five iterations of (23) for each Bm-subproblem are
sufficient to produce reasonable results. If the B-subproblem
can be solved within certain accuracy, then the convergence
of ADMM can be guaranteed [53].
In summary, each subproblem in the ADMM algorithm can

be solved efficiently either through a closed-form solution
or within a few iterations. The entire algorithm is presented
in Algorithm 1, which terminates when either the relative
error between two subsequent mixing matrices, i.e., ‖St −
St+1‖F/‖St‖F, or the relative error between two subsequent
abundance maps, i.e., ‖At − At+1‖F/‖At‖F, is smaller than a
given tolerance.
Here, we discuss the complexity of the proposed algorithm

and compare it with the other two related methods. The
computational complexity of the Nyström method is
O(wpn + p2n), mainly for computing W12 and singular value
decomposition in (6). This is much smaller than calculating the
graph Laplacian matrix directly, as described in Section II-A,
which is O(wn2). As for the space complexity, using the
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Algorithm 1 Blind Hyperspectral Image Unmixing Based on
the gTV and MBO

Input: data X ; parameters ρ, λ, maximum numbers of
outer/inner loops Tout/Tin , and tolerance tol.

Output: S and A.
Initialize: S0, A0, and use the Nyström method to get the

reduced eigendecomposition form of the graph Laplacian
L = V �V �.

for t = 0, . . . , Tout − 1 do
Ct+1 = (X (At )T + γ (St + C̃t ))(At(At )T + γ I )−1.
St+1 = max(Ct+1 − C̃t , 0).
At+1 = P


(
((St )T St + ρ I )−1((St )T X + ρ(Bt − B̃t ))

)
.

Bitwise update Bt+1 via (23) with τ = 1, . . . , Tin .
Set B̃t+1 = B̃t + (At+1 − Bt+1).
Set C̃t+1 = C̃t + (St+1 − Ct+1).
Stop if the stopping criteria are met.

end for

approximated graph Laplacian requires storing only O(pn)
numbers, while using the full graph Laplacian would need to
store O(n2) numbers.
The time complexity of each step in Algorithm 1 is sum-

marized as follows.

1) C Update: O(wkn).
2) S Update: O(wk).
3) A Update: O(wkn + nk log k) = O(wkn).
4) B Update Per Bit Channel: O(kpn).
5) B̃, C̃ Update: O(kn).

Therefore, the time complexity for our algorithm per iteration
is O(kn(w + p)) in total. Given p 
 n and k < w, this is
faster than the other two related methods, SUnSAL-TV [15]
and GLNMF [31], which are in the order of O(wn(w+log n))
and O(kn(w + kn)), respectively.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct extensive experiments on syn-
thetic and real data to demonstrate the performance of the
proposed approach, referred to as “gtvMBO,” in comparison
with the state-of-the-art methods in blind and nonblind hyper-
spectral unmixing. Methods that we compare include FCLSU
[11], SUnSAL-TV [15] (denoted by STV), GLNMF [31],
fractional norm �q regularized unmixing method with q = 0.1
(denoted by FRAC) [13], NMF-QMV [21] (denoted by QMV),
and our earlier unmixing work based on the graph Laplacian
[50] (denoted by GraphL).
To quantitatively measure the performance, we adopt the

following metrics to calculate the error between an estimation
Ŷ ∈ R

r×c and the reference Y ∈ R
r×c .

1) Root-Mean-Square Error (RMSE):

RMSE(Y, Ŷ ) = 1

c

√√√√1

r

r∑
i=1

‖yi − ŷi‖22

where yi ∈ R
c is the i th row of Y .

2) Normalized Mean-Square Error (nMSE):

nMSE(Y, Ŷ ) = ‖Y − Ŷ‖F
‖Y‖F .

3) Spectral Angle Mapper (SAM) in Degrees:

SAM(Y, Ŷ ) = 1

c

c∑
j=1

arccos

(
y�

j ŷ j

‖y j‖2‖ŷ j‖2

)
where y j ∈ R

r is the j th column of Y . The index j is
skipped in the sum when ‖y j‖2‖ŷ j‖2 = 0.

In order to make a fair comparison, we use the initialization
steps in [13] for all the methods considered in this article.
In particular, VCA [54], which returns 10k endmember
candidates that are clustered into k groups. This is directly
used as S for FCLSU and FRAC, while we use the mean
spectrum within each group and the sum of the abundances
estimated by FCLSU within each group as an initial guess
of S0 and A0, respectively, for all compared methods. We set
σ = 5 in the weight computation (3) and randomly select 0.1%
samples from the entire pixel list in the Nyström method to
approximate the graph Laplacian. As for γ , ρ and λ, we choose
the optimal parameters that minimize nMSE(A, Â). We first
perform a coarse grid search with parameter candidates
evenly spaced over the interval on a log scale and then do
a finer grid search around the best parameters, e.g., search
for an optimal λ in {102.5, 102.75, . . . , 103.5} given λ = 103

from the coarse grid search. For GraphL and gtvMBO,
the coarse grid search is over λ ∈ {10−5, 10−4, . . . , 105},
ρ/λ ∈ {10−3, 10−2, . . . , 103}, and γ ∈ {102, 103, . . . , 105}.
For FRAC, we fix ρ = 10 as suggested in [13] and search for
λ among {10−5, 10−4, . . . , 105}. For QMV, we search for λ
(denoted by β in [21]) ∈ {10−5, 10−4, . . . , 105}. For GLNMF
and STV, we search for λ,μ ∈ {10−5, 10−4, . . . , 105}. See
Section V for a detailed discussion on parameter selection
and sensitivity of our method. Our MATLAB source codes
are available at https://github.com/HarlinLee/gtvMBO-public.
All experiments are performed in MATLAB 2018b on a
MacBook Pro 2017 with a 2.9-GHz Intel Core i7 and 16-GB
RAM in double precision.

A. Synthetic Data

To evaluate the performance of all methods, we construct
a set of synthetic data X with ground-truth mixing matrix
S and endmember matrix A. Fig. 1 shows the ground-truth
abundance maps. We adopt the same simulation procedure
as in [15], where an endmember library is generated by
randomly selecting 240 materials from the USGS 1995 library
with 224 spectral bands. The noise-free hyperspectral image
with 75 × 75 pixels is generated by a random selection
of five spectral signatures from the library. The respective
ground-truth abundances are randomly fixed as 0.1149, 0.0741,
0.2003, 0.2055, and 0.4051. The noisy hyperspectral data are
then obtained by adding zero-mean Gaussian noise with a
signal-to-noise ratio (SNR) of 10 and 20 dB, respectively.
Table I compares all methods on the noisy data quanti-

tatively. To get a visual comparison, we present the case
of SNR = 10 dB in Fig. 2. In particular, we show all
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Fig. 1. Ground-truth abundance maps of the synthetic data (five endmembers).

Fig. 2. Reconstructed abundance maps of the fifth element from the noisy data with an SNR of 10 dB. All images are visualized over the range [0, 1].

the reconstructed abundance maps corresponding to the fifth
ground-truth abundance in Fig. 1. We exclude the results of
FCLSU and FRAC in Fig. 2, as both fail to recover the
abundance maps under such a low SNR scenario. One can
see that STV and GLNMF have a different color range on
the background comparing to other methods, while the QMV
background is still noisy. The proposed gtvMBO achieves a
balance between recognizable objects and background noise,
while the result of GraphL is slightly oversmoothed. Note that
the proposed gtvMBO only considers the regularization on A,
while QMV uses the minimum-volume-based regularization
on S, but our method still gives comparable results in recov-
ering S compared with QMV and has an advantage on recon-
structing A, especially when the underlying abundance map
has spectral geometries. In addition, gtvMBO can reconstruct
A well within a few iterations, but it takes more iterations to
get a good reconstruction of S. In the preprocessing step, both
GraphL and gtvMBO take less than a second to estimate the
eigenvalues and eigenvectors of the low-rank approximation to
the graph Laplacian by the Nyström method, while GLNMF
typically takes a minute to calculate the graph Laplacian.
In terms of running time, gtvMBO is slower than FRAC and
GraphL but much faster than the other competing methods.

B. Real Data

We use the real hyperspectral data X with the references
S and A from [55], including the Samson, Jasper Ridge, and
Urban data sets. In particular, the endmembers are manually
selected from the image data by assuming k distinct mate-
rials with one signature per material and neglecting possi-
ble spectral variability issues. The reference abundances are
obtained via FCLSU. This way of generating references for
endmembers/abundances has been widely used for assessing
the performance of various unmixing algorithms. As no ground

TABLE I

UNMIXING RESULTS ON THE SYNTHETIC DATA SET

truth is available for the real data, it is common to compare the
unmixing results to the reference endmembers/abundances.

1) Samson: In the first experiment, we use the Samson data
with 95 × 95 pixels and 156 spectral bands after preprocess-
ing, whose reference has three endmembers. The unmixing
results are given in Figs. 3 and 4 and Table II for endmem-
bers, abundance maps, and quantitative metrics, respectively.
In Fig. 3, all endmember plots can capture the rough shape and
discontinuities in the ground truth but with different heights.
The gtvMBO result has many endmember elements that are
close to zero since we enforce the nonnegative constraint on
the endmember S by using the hard thresholding operator in
the S-subproblem. For the abundance maps, the STV results
look blurry when trying to preserve spatial smoothness, and
the GLNMF results are noisy in the homogeneous areas,
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Fig. 3. Endmember profiles (S) of the Samson data set.

Fig. 4. Abundance maps (A) of the Samson data set.

as its graph Laplacian is based on the entire data that may
contain a certain amount of noise. Both blurring and noisy
artifacts can be mitigated by the low-rank approximation of

TABLE II

UNMIXING RESULTS ON THE SAMSON DATA SET

graph Laplacian in the Nyström method as in GraphL and
gtvMBO. On the other hand, gtvMBO yields sharper edges
than GraphL due to the gTV regularization. Table II reports
that GLNMF gives the best estimations in S at the cost of
high computational costs, whereas the proposed method is the
best in reconstructing the abundance maps. Note that “graph
time” in Table II is referred to as the time needed to compute
the adjacency matrix (for GLNMF) and the graph Laplacian
matrix (for GraphL and gtvMBO), while “algorithm time,”
or “alg. time” in short, refers to the time needed to run the
unmixing algorithm after initialization and graph construction.
The overall computation time of gtvMBO is the sum of “graph
time” and “time,” which is comparable to QMV and much
faster than GLNMF.

2) Jasper Ridge: In the second experiment, we test the
Jasper Ridge data that have 100×100 pixels and 198 spectral
bands. The unmixing results for endmembers and abundance
maps are shown in Figs. 5 and 6. In Fig. 6, the FRAC
abundance maps have the highest image contrast while mistak-
enly identifying trees and roads in some areas, especially the
top right part. The STV abundance maps are oversmoothed,
especially in the Dirt abundance map. Since only the five
nearest neighbors are considered when calculating the pairwise
weight of a fully connected graph, GLNMF may miss some
global features while preserving fine details. For example,
some variations in the water are captured, but some roads
are not identified in the GLNMF abundance maps. One can
see that both GraphL and gtvMBO perform very well at
identifying Water and Road abundance maps because of the
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Fig. 5. Endmember profiles (S) of the Jasper Ridge data set.

learned graph structure in the Nyström method. Especially, for
the road abundance, these two methods can recover the road
on the rightmost part of the image. This phenomenon could
be explained by the fact that it is a very narrow structure
and the nonlocal similarity with road pixels across all bands
plays an important role, illustrating the advantage of using
gTV over spatial TV. The gtvMBO results are even better
than GraphL in preserving the sharpness, especially in the Dirt
abundance map. The endmember spectral plot in Fig. 5 also
confirms that the methods failing for the road extract very poor
signatures compared with the reference. Table III compares
all the methods quantitatively. It is true that QMV gives the
best results on this data set, which is probably because the
assumptions made by QMV hold on Jasper but not on the other
data sets. The proposed gtvMBO can recover endmembers and
abundance maps in a balanced manner. The comparison results
imply that a good RMSE on the reconstructed data cannot
guarantee a good unmixing performance.

3) Urban: Finally, we test a relatively large data set—
the Urban data set with 307 × 307 pixels and 162 spectral
bands, whose reference has four endmembers. The results
for all methods are presented in Figs. 7 and 8. In Fig. 8,
most methods, including FCLSU, FRAC, STV, GLNMF, and
QMV, yield abundance maps in low image contrast due to
the initial guess, especially in the abundance maps for the
asphalt and roof. As a by-product, the proposed gtvMBO can
greatly improve the image contrast of the abundance map
due to the gTV regularization. In addition, all the methods
have a hard time extracting a good roof endmember, but
the graph-based approaches are able to compensate this with
more features preserved. Also note that because QMV does
not enforce nonnegativity on S, the resulting spectrum for
Asphalt in QMV goes below zero. In the Roof abundance
maps, only GraphL and gtvMBO can capture those sporadic
rooftops since the approximated graph Laplacian considers the
pairwise similarity across spectral bands in the original data
with dimension w much greater than the dimension k for the
column space of the abundance map A. In Table IV, we list
all quantitative metric comparisons where gtvMBO reaches
the smallest residual error and gets comparable reconstruction
errors for the abundance map and endmember with GraphL.
Overall, the proposed method can reconstruct abundance maps
and endmember matrices with high accuracy in a short time.

V. DISCUSSION

In this section, we discuss parameter selection in our
algorithm. Due to heavy computations involved in these tasks,

Fig. 6. Abundance maps (A) of the Jasper Ridge data set.

all the results presented in this section are performed on
a workstation of DELL R7425 Dual-Processor AMD Epyc
32-core 2.2-GHz machines with 512-GB RAM each.
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Fig. 7. Endmember profiles (S) of the Urban data set.

TABLE III

UNMIXING RESULTS ON THE JASPER RIDGE DATA SET

TABLE IV

UNMIXING RESULTS ON THE URBAN DATA SET

There are several tuning parameters in our approach: the
filtering parameter σ in computing pairwise weights of the
graph, the regularization parameter λ associated with the gTV
in the proposed unmixing model, the penalty parameters ρ
and γ in the proposed algorithm based on ADMM, and the
time step size dt for the diffusion step in the modified MBO
scheme. The value of σ could be changed proportionally
according to the number of spectral bands w. Since all the
test data sets have 100∼200 spectral bands, we find that
σ = 5 typically gives good results, so we fix it throughout

Fig. 8. Abundance maps (A) of the Urban data set.

the experimental section. To solve the B-subproblem, we fix
the step size dt = 0.01 and run five iterations of (23) in the
modified MBO scheme.
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TABLE V

UNMIXING RESULTS OF GTVMBO IN A/B FORMAT, WHERE A IS THE

PREVIOUS RESULT USING OPTIMALLY TUNED λ, ρ, AND γ , AND B IS

THE RESULT OF USING DEFAULT RATIOS ρ/λ, γ /λ, AND ONLY

TUNING THE λ VALUE (GIVEN IN THE LAST ROW)

To find optimal or suboptimal values of λ, ρ, and γ , we con-
sider a skillful strategy that alleviates the time-consuming
parameter tuning. If the value of λ increases, the recovered
abundance map A has a graph structure more similar to
that of the given data X but with larger residual error, and
vice versa. The penalty parameters ρ and γ both control
the convergence of the proposed algorithm according to the
ADMM framework. In other words, λ is a model parameter
that affects the performance, and ρ and γ are algorithmic
parameters that affect the convergence. Therefore, we suggest
a set of default parameters by fixing the ratios as ρ/λ = 1,
γ /λ = 107, and only tuning the regularization parameter λ.
In fact, the B-subproblem is determined by the ratio ρ/λ.
Table V shows that using these default algorithmic parameters
still ensures comparable unmixing performance on the data
sets to when we tune all the three parameters together. Note
that the optimal parameters indeed yield better results than
the default parameters in terms of SAM(S, Ŝ), which is due
to the fact that our regularization is formulated on A and the
optimal parameters are determined according to nMSE(A, Â),
resulting in more deviations in S. In future work, we might
consider choosing optimal parameters based on a combination
of evaluation metrics on S and A.
In addition, learning a graph Laplacian or its low-rank

approximation is an important preprocessing step in our pro-
posed method. In the Nyström method, the sampling rate is
fixed as 0.1% in all our experiments. Our empirical results
show that this is sufficient for preserving the graph structure
of the original hyperspectral data. In fact, there is a tradeoff
between the number of samples corresponding to the rank of
the approximated Laplacian and the orthogonality of columns
in the approximated eigenvectors: more samples can improve
accuracy in approximating the graph Laplacian but may result
in loss of orthogonality of the resulting eigenvectors, which is
also desired in our modified MBO scheme (23). Other adaptive
sampling schemes for the Nyström extension [56] will be
explored in our future work. For high-performance computing
applications, the Nyström loop can be optimized for specific
architectures as in [57].

VI. CONCLUSION

We propose a gTV regularized approach for blind hyper-
spectral unmixing to estimate both the abundance map and

the mixing matrix under the assumption that the underlying
abundance map and the given hyperspectral data share the
same graph structure. In particular, we applied the Nyström
method to approximate the eigenvalues and eigenvectors of a
normalized graph Laplacian. To solve the proposed gTV regu-
larized unmixing problem with probability simplex constraints,
we derived an efficient algorithm based on ADMM. One of the
subproblems is decomposed into bits and then solved by the
fast MBO scheme at each bit channel. Extensive experiments
were conducted to demonstrate that the proposed frame-
work is effective and efficient, especially when the hyper-
spectral data have similarities across spectral bands. In the
future, one could integrate robust graph learning methods
and minimum-volume-based regularizations into hyperspectral
unmixing.
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