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Abstract
In a wide range of applications such as astronomy, biology, and medical imaging, acquired data are usually corrupted by
Poisson noise and blurring artifacts. Poisson noise often occurswhen photon counting is involved in such imagingmodalities as
X-ray, positron emission tomography, and fluorescence microscopy. Meanwhile, blurring is also inevitable due to the physical
mechanism of an imaging system, which can be modeled as a convolution of the image with a point spread function. In this
paper, we consider both non-blind and blind image deblurring models that deal with Poisson noise. In the pursuit of high-order
smoothness of a restored image, we propose a fractional-order total variation regularization to remove the blur and Poisson
noise simultaneously. We develop two efficient algorithms based on the alternating direction method of multipliers, while an
expectation-maximization algorithm is adopted only in the blind case. A variety of numerical experiments have demonstrated
that the proposed algorithms can efficiently reconstruct piecewise smooth images degraded by Poisson noise and various types
of blurring, including Gaussian and motion blurs. Specifically for blind image deblurring, we obtain significant improvements
over the state of the art.

Keywords Blind deconvolution · Poisson noise · Expectation-maximization · Fractional-order total variation

Mathematics Subject Classification 65F22 · 68U10 · 52A41 · 49N45

1 Introduction

Data acquired by any imaging sensor usually undergo many
types of degradations, in which two prominent ones are noise
and blur. Specifically in photon-counting systems, such as
X-ray, positron emission tomography (PET), single-photon
emission computerized tomography (SPECT), fluorescence
microscopy, and telescope, Poisson distribution is more
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appropriate to describe the noise statistics than the standard
Gaussian distribution. Moreover, the recorded images are
typically blurry due to the physical mechanism of an imaging
device. The blurring process can be characterized by a point
spread function (PSF), which is an impulse response of the
imaging system to a point source. For a linear shift-invariant
(LSI) system, blurring can be mathematically described by
a convolution of a clean image with a PSF, where the PSF
serves as a blurring kernel (also known as convolution ker-
nel). Therefore, image deblurring is often referred to as image
deconvolution. In this paper,we focus onLSI systems and use
the terms “deblurring” and “deconvolution” interchangeably.
If the PSF is known a priori, then recovering a clean image
from a blurry and noisy input is called non-blind deconvo-
lution. If the PSF is completely unknown, then the problem
becomes blind deconvolution.

1.1 RelatedWorks

Both non-blind and blind deconvolutions are highly ill-posed
inverse problems. A large number of deconvolution meth-
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ods have been developed to regularize the solution based
on various image priors. For example, Tikhonov-regularized
deconvolution methods [31,66] rely on the least-squares
estimation, which leads to over-smoothed image recovery
results. Owing to an edge-preserving property, total variation
(TV) [58] has become one of the most popular regularization
techniques in image deconvolution [4,7,14,15,69]. However,
the TV regularization often reduces the image contrast and
produces staircasing artifacts. To compensate for these draw-
backs, some variants of TV have been considered primarily
for the Gaussian noise, such as the non-local TV [49], the
total generalized variation (TGV) [47,56], and fractional-
order TV (FOTV) [55]. It is worth noting that both FOTV
and TGV achieve comparable performance [55], but FOTV
is more efficient than TGV due to the infimal convolution
of TGV that involves more unknown variables than FOTV.
Therefore, we adopt the FOTV regularization in this work.

Blind image deblurring is significantly more challeng-
ing than the non-blind case, as it requires to estimate both
the image and the kernel from a degraded image. One evi-
dent ambiguity is a relative scale between the sharp image
and the blur. Jin et al. [33] showed a careful normalization
of PSF yields significant improvements in blind deconvo-
lution results in terms of accuracy and robustness to noise.
Other types of ambiguities can be resolved by probabilis-
tic approaches, e.g., simulated annealing [52], but with high
computational costs. Krishnan et al. [35] proposed a nor-
malized sparsity measure for blind deconvolution, while a
plug-and-play approach was adopted in [48]. Motivated by
the PhaseLift method [11] in phase retrieval, blind deconvo-
lution was recast in [5] as reconstructing a rank-one matrix
from a set of linear measurements. Recently, Li et al. [46]
proposed to perform blind deconvolution and phase retrieval
simultaneously via a low-rank recovery. Following the suc-
cess of deep learning, some learning-based approaches for
blind deconvolution include [1,38,45,61,65].

Since PSF plays a critical role in the blurring process,
estimation of PSF can be either separated from or combined
with non-blind approaches [12,17,37,70,72]. Along this line
of research, the convolution kernel can be estimated by vari-
ous variationalmethods, including expectationmaximization
(EM) and maximum a posterior (MAP) with local or global
priors [23,43,63]. Please refer to [59] for variationalBayesian
methods and [39] for a comprehensive comparison among
various blind deblurring algorithms. In addition to smooth-
ness assumptions of the underlying image, it is also plausible
to impose certain smoothness for PSF, such as TV [16,73]
and FOTV [75]. Unfortunately, the joint optimization of both
kernel and image often leads to a no-blur solution [44], which
can be avoided by sequentially projecting the kernel onto a
feasible set of nonnegative and sum-to-one solutions [53].

In many applications, both blurring and Poisson noise
occur in an obtained image. In contrast to Gaussian noise,

Poisson noise is signal-dependent and non-additive, which
brings additional challenges to image deconvolution. Image
data subject to Poisson noise can be recovered by maxi-
mum likelihood and Bayesian approaches [8,67]. One of the
most widely used deblurring methods to deal with Poisson
noise is the Richardson–Lucy (RL) algorithm proposed inde-
pendently by Richardson [57] and Lucy [50]. One common
approach for deblurring under Poisson noise is based on the
modification of the data fidelity from the least squares mis-
fit (for Gaussian noise) to a logarithmic form (for Poisson
noise). For example, TV-based Poisson deblurring methods
include [20,24,42,62]. Similarly, frame-based method [30],
non-local gradient [29], and a dictionary learning approach
[51] were proposed to handle Poisson noise. Little attention
has been paid on blind deblurring under Poisson noise, except
for alternating minimization method [54], RL-based blind
deblurring methods [9,25], and mixed Poisson–Gaussian
noise [6].

1.2 Scope of the Paper

The goal of this work is to remove Poisson noise and blurring
artifacts simultaneously from an observed image. Motivated
by our recent FOTV Poisson denoising [18], we develop
deblurring methods based on the FOTV regularization to
preserve high-order smoothness of the underlying image.
In particular, we consider both non-blind and blind deblur-
ring models. We adopt the alternating direction method of
multipliers (ADMM) [10,26,27] for the non-blind decon-
volution and an EM-based optimization scheme [60,71]
only for the blind case. A variety of numerical experiments
on natural images have shown the great potential of the
proposed algorithms in terms of visual quality and recon-
struction accuracy. The major contributions of this work
are threefold. First, we incorporate the FOTV regularization
for image deblurring problem with Poisson noise. Second,
we develop two efficient algorithms for solving non-blind
and blind deconvolution models, respectively. Convergence
guarantee is established for the blind case. Lastly, extensive
experiments are conducted to demonstrate the superior per-
formance of the proposed approaches, especially significant
improvements over the state-of-the-art methods are observed
in our blind deblurring algorithm.

The rest of the paper is organized as follows. Section 2
provides background knowledge on convolution models,
Poisson noise statistics, the EM algorithm, and the defi-
nition of the FOTV regularization. The proposed models
for both non-blind and blind deconvolution are described
in Sect. 3 together with two efficient algorithms. Extensive
experiments are presented inSect. 4, illustrating the effective-
ness and efficiency of our proposed methods. Finally, Sect. 5
concludes the paper.
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2 Preliminaries

In this section, we briefly review a few key components of
the proposed methods.

2.1 ConvolutionModels

The image blurring process can be modeled by a linear equa-
tion

g = h � u, (1)

where g is a blurred image by convolving a sharp image u
with a blurring kernel h and � denotes a two-dimensional
convolution operator. To properly define the convolution
operator, we shall discuss boundary conditions of the image.
There are several boundary conditions used in image deblur-
ring, including zero, periodic, reflexive and anti-reflexive
boundary conditions [21,28]. In particular, the periodic
boundary condition has been commonly used in image pro-
cessing, since the convolution operator under the periodic
boundary condition can be efficiently implemented via the
fast Fourier transform (FFT). However, since images are not
always periodic, an alternative approach [53] is to restrict
convolution to a smaller region rather than the original image
so that the boundary conditions do not affect the acquired
data, which is referred to as no boundary condition. A dis-
crete image can be represented as a matrix. Let u be a matrix
of size m × n and the kernel h of size l × w. Following the
Matlab’s valid option in convolution, we denote

ḡ = h ◦ u, (2)

where ḡ has the support of size (m − l + 1) × (n − w + 1).
Note that h and u are not commutative, i.e., h ◦ u �≡ u ◦ h in
general, and u ◦ h may not be well-defined if the support of
h is relatively small.

In this work, we use the periodic boundary condition (1)
for the non-blind deconvolution and no boundary condition
(2) for the blind case. With an abuse of notation, we denote
both types of convolution as a matrix-vector multiplication
after vectorizing the image u, denoted by Hu with a matrix
H , in order to have a unified formulation. We will specify
which convolution operator is used when discussing the cor-
responding algorithms.

2.2 Poisson Noise

Due to the physical mechanism of the imaging process, Pois-
son distribution is more appropriate to describe the noise
statistics than the commonly used Gaussian distribution.
Poisson noise, also known as photon noise, can be described
by the Poisson distribution. Recall that a random variable

f is said to follow a Poisson distribution with a parameter
γ > 0, if the probability mass function is given by

Prγ ( f ) = γ f

f ! e
−γ .

The parameter γ determines the expected value of f as well
as its variance. Now we assume the measured data at each
pixel fi follows an i.i.d. Poisson distributionwith the ground-
truth value gi being the parameter γ (the expectation) and
hence we have

Pr( f |g) =
N∏

i=1

g fi
i

fi ! e
−gi . (3)

Here N is the total number of pixels, f = { fi }Ni=1 with each
fi ≥ 0, and g = {gi }Ni=1. From the Bayes’ Theorem, the
posterior probability density of g for a given f is

Pr(g| f ) = Pr( f |g)Pr(g)
Pr( f )

. (4)

Taking the negative log-likelihood of (4), we get

− log Pr(g| f )

=
N∑

i=1

− fi log gi + gi + log( fi !) − log Pr(g) + log Pr( f )

=
N∑

i=1

(gi − fi log gi ) − log Pr(g) + (log( fi !) + log Pr( f )).

(5)

The last two terms involving f are known and therefore can
be ignored when minimizing (5) with respect to g.

We assume that the observed image f is obtained by the
convolution of the clean image u with the blurring kernel h,
followed by the corruption with Poisson noise. We can esti-
mate the image u via the maximum a posteriori probability
(MAP), i.e., u ∈ argmaxu≥0 Pr(u| f ). Since the blur can be
expressed as g = Hu, the posterior probability Pr(u| f ) and
the prior probability Pr(g) are related to Pr(g| f ) and Pr(u),
respectively. By using the log-likelihood form of (5), the
MAP estimation can be expressed as,

min
u≥0

〈(Hu − f log Hu), 1Ω 〉 + R(u), (6)

where 1Ω denotes the indicator function on a discrete grid
of the image domain Ω ⊂ R

2 and R(u) is related to
− log Pr(u), which is called an image prior.

2.3 Expectation-Maximization

Wereviewan expectation-maximization (EM) algorithm [19,
64] tominimize (6),whichwill be integrated in our algorithm.
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Suppose that there is no prior probability, i.e., regularization
term R(u) = 0 and hence we have

min
u≥0

〈(Hu − f log Hu), 1Ω 〉. (7)

It follows from the Karush–Kuhn–Tucker (KKT) conditions
[34,36] that there exists an Lagrange multiplier vector λ ≥ 0
such that

0 = H∗1Ω − H∗
(

f

Hu

)
− λ, (8)

0 = λ � u, (9)

where H∗ is the adjoint operator of H and � is the compo-
nentwise multiplication. Note that since H is a real matrix,
H∗ is simply the transpose of H .

After multiplying (8) by u componentwise and substitut-
ing into (9), we can get an updating scheme for uk+1 by the
fixed-point iteration method

uk+1 = uk

H∗1Ω

� H∗
(

f

Huk

)
, (10)

where vector multiplication and division are all componen-
twise. For simplicity, we omit the use of � and define the
following operator

EM( f , H , u) = u

H∗1Ω

H∗
(

f

Hu

)
, (11)

which depends on f , H , u, and returns the output in (10).
We can show the objective function (7) decreases under the
iteration (10); please refer to Lemma 1 in “Appendix.”

2.4 Fractional-Order Total Variation

We consider a fractional-order total variation as an image
prior. Given an image domain Ω ⊂ R

2, we discretize it as a
rectangular grid {(xi , y j ) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Then
an image can be represented as a matrix in the Euclidean
space R

m×n , denoted as ui, j = u(xi , y j ). For a specified
order α > 0 of derivatives where α could be a fractional
number, theα-order total variation of u : Ω → R extends the
traditional TV [58] by involving fractional-order derivatives.
In particular, based on the Grünwald-Letnikov fractional-
order derivatives [74], the discrete fractional-order gradient
is defined as

∇αu = [Dα
1 u, Dα

2 u]T, (12)

where the fractional-order derivatives Dα
1 u, Dα

2 u ∈ R
m×n

along the x-axis and the y-axis are approximated by the

(Dα
1 u)i, j =

K−1∑
k=0

(−1)kCα
k ui−k, j ,

(Dα
2 u)i, j =

K−1∑
k=0

(−1)kCα
k ui, j−k .

(13)

Here K is the number of neighboring pixels that are used to
approximate the fractional-order derivative at each pixel. The
coefficients {Cα

k }K−1
k=0 are defined as Cα

k = Γ (α+1)
Γ (k+1)Γ (α+1−k)

with the Gamma functionΓ (x). Then the discrete fractional-
order TV of u is defined as

‖∇αu‖1 :=
∑

i, j

(|(Dα
1 u)i, j | + |(Dα

2 u)i, j |
)
. (14)

According to the relation that (∇α)∗ = (−1)αdivα , the dis-
crete fractional-order divergence divα p ∈ R

m×n for p =
(p(1), p(2)) ∈ R

m×n × R
m×n is given by [74]

(divα p)i, j = (−1)α
K−1∑

k=0

(−1)kCα
k (p(1)

i+k, j + p(2)
i, j+k). (15)

Note that the divergence (15) is the adjoint of the gradient
(12).

3 The ProposedMethods

We propose two FOTV-regularized variational models for
non-blind and blind deconvolution under Poisson noise.
More specifically, we incorporate the FOTV regularization
(14) as an image prior R(u) into the MAP estimation (6).
Technically speaking, both non-blind and blind deconvolu-
tion can have the same objective function to be minimized,
while the blind deconvolution requires an additional estimate
of the kernel. Furthermore, we decide to use different bound-
ary conditions for blind and non-blind deconvolutions. Since
blind deconvolution ismuchmore delicate than the non-blind
one, we do not want to use any unfaithful information from
wrongly assumed boundary conditions and hence the model
(2) with a no-boundary-condition is more appropriate for
blind deconvolution. As for the non-blind case, we adopt the
periodic boundary condition (1) for fast computation.

3.1 Non-blind Deconvolution

We propose the following FOTV-regularized model for non-
blind deconvolution, when the data are corrupted by Poisson
noise,

min
u∈Ω

‖∇αu‖1 + β〈h � u − f log(h � u), 1Ω 〉, (16)
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where β > 0 is a weighting parameter to make a balance
between the regularization term and the data fitting.We adopt
the alternating directionmethod ofmultipliers (ADMM) [10,
26,27] to solve the proposed model (16). In particular, we
introduce two auxiliary variables z ∈ R

m×n×2, g ∈ R
m×n,

and reformulate (16) in an equivalent form,

min
u,z,g

‖z‖1 + β〈g − f log(g), 1Ω 〉,
s.t. z = ∇αu, g = h � u.

(17)

The corresponding augmented Lagrangian functional is
given by

L(u, z, g;λ1, λ2) = ‖z‖1 + β〈g − f log g, 1Ω 〉
+ 〈λ1, z − ∇αu〉 + μ1

2

∥∥z − ∇αu
∥∥2
F

+ 〈λ2, g − h � u〉 + μ2

2
‖g − h � u‖2F ,

(18)

where λ1 ∈ R
m×n×2 and λ2 ∈ R

m×n are dual variables or
Lagrangian multipliers, μ1, μ2 are two positive parameters,
and ‖·‖F denotes the Frobenius norm. Then ADMM yields
the following iterations,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = argmin
u

L(u, zk, gk;λk
1, λ

k
2),

zk+1 = argmin
z

L(uk+1, z, gk;λk
1, λ

k
2),

gk+1 = argmin
g

L(uk+1, zk+1, g;λk
1, λ

k
2),

λk+1
1 = λk

1 + μ1(zk+1 − ∇αuk+1),

λ2
k+1 = λ2

k + μ2(g
k+1 − h � uk+1).

(19)

To solve the u-subproblem in (19), we compute the gradient
of (18) with respect to u and get the optimality condition

(∇α)∗(μ1∇αu − μ1z − λ1) + h̃ � (μ2h � u − μ2g − λ2) = 0.

Here (∇α)∗ is the adjoint of∇α , which is the divergence oper-
ator defined in (15), and h̃ is the adjoint kernel of h by rotating
h by 90◦ clockwise. Under the periodic boundary condition,
the composite operators (∇α)∗(∇α·) and h̃ � (h � ·) can be
diagonalized by the fast Fourier transform (FFT) due to their
respective circulant transformation matrices. Therefore, we
obtain a closed-form solution for u given by

uk+1 = F−1
( F(v)

μ1F[(∇α)∗(∇α)] + μ2|F(h)|2
)

, (20)

where v = (∇α)∗(μ1zk +λk
1)+ h̃�(μ2gk +λk2),F andF−1

represent the Fourier transform and its inverse, respectively.
Note that matrix division, square and absolute value are all
performed componentwise.

Algorithm 1: FOTV non-blind deconvolution under
Poisson noise.
Input: f , h
Set parameters: α, β, μ1, μ2, ε > 0
Initialization: u0 = f , g0 = h � u0,λ0

1 = 0, λ02 = 0, k = 0

while ‖uk+1−uk‖F
‖uk‖F < ε do

Solve uk+1 by (20),
Solve zk+1 by (21),
Solve gk+1 by (22),
λ1

k+1 = λ1
k + μ1(zk+1 − ∇αuk+1),

λ2
k+1 = λ2

k + μ2(gk+1 − h � uk+1),
k ← k + 1

end
Output: u = uk+1.

In addition, there is a closed-form solution for the z-
subproblem given by a shrinkage operator,

zk+1 = shrink

(
∇αuk+1 − λ1

k

μ1
,
1

μ1

)
, (21)

where shrink(s, γ ) = sgn(s)�max{|s|−γ, 0}with all arith-
metic operators being performed componentwise.

Taking the derivative of the functional L with respect to
g, we obtain the optimality condition for the g-subproblem,

β

(
1 − f

g

)
+ λ2 + μ2(g − h � uk+1) = 0.

Since g > 0, we rewrite the above equation as a quadratic
equation

g2 +
(

β + λ2

μ2
− h � uk+1

)
g − β f

μ2
= 0,

and choose the positive solution, i.e.,

gk+1 =
−

(
β+λk2
μ2

− h � uk+1
)

2

+

√(
β+λk2
μ2

− h � uk+1

)2

+ 4
(

β f
μ2

)

2
.

(22)

In summary, we present inAlgorithm 1 forminimizing the
FOTV regularized non-blind deconvolution problem (16) via
ADMM.

3.2 Blind Deconvolution

Boundary conditions play an important role in the success
of blind deconvolution methods. In fact, all the standard
boundary conditions, i.e., periodic, reflexive, and zero, do
not correspond to any imaging systems in practice and cause
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unnatural artifacts such as ringing artifacts near boundaries
[2,13]. To mitigate these artifacts along the boundaries, we
assume to know the kernel size and crop the measured data
f in such a way that the boundary condition has no effect on
the objective function. For this purpose, we only consider the
cropped convolution output without zero-padding of bound-
aries, which is implemented by choosing the valid option
in Matlab’s convolution. Suppose the original image u and
the blurring kernel h are of sizesm×n and l×w, respectively.
The resulting no-boundary convolution of u and h, denoted
by u ◦ h, is of size (m − l + 1) × (n − w + 1). We further
incorporate the nonnegativity and sum-to-one assumptions
of the blurring kernel and obtain the following minimization
problem for blind deconvolution

min
u∈Ω
h∈Π

‖∇αu‖1 + β〈h ◦ u − f̄ log(h ◦ u), 1Ω 〉, (23)

where Π = {h ∈ R
l×w | hi, j ≥ 0,

∑
i, j hi, j = 1} and f̄ is

the cropped blurry observation. In what follows, we propose
an alternating minimization algorithm to solve (23) for u and
h.

We first minimize (23) with respect to u using a two-step
EM approach [71]. Suppose we have uk and hk at the kth
iteration. We define the convolution operation as a matrix-
vector form, i.e.,

hk ◦ u = Hu.

Then the optimality condition of (23) with respect to u can
be expressed as

1

β
pk+1 + H∗1Ω − H∗( f̄

Huk

)
= 0, (24)

where pk+1 is a subgradient of the functional ‖∇α·‖1 at uk+1,
i.e., pk+1 ∈ ∂‖∇αuk+1‖1. Dividing (24) by H∗1Ω yields

1

βH∗1Ω

pk+1 + 1Ω − 1

H∗1Ω

H∗( f̄

Huk

)
= 0. (25)

We insert uk

uk+1 into the last term as an approximation to the

constant 1Ω , thus leading to an equation for uk+1,

1

βH∗1Ω

pk+1 + 1Ω − 1

H∗1Ω

H∗( f̄

Huk

) uk

uk+1 = 0. (26)

Following the notation in (11), we define

uk+
1
2 := EM( f̄ , H , uk), (27)

which is referred to as theEMstep. Then (26) can be rewritten
as

1

βH∗1Ω

pk+1 + 1Ω − uk+ 1
2

uk+1 = 0,

which implies that uk+1 is the optimal solution to

min
u∈Ω

‖∇αu‖1 + β〈H∗1Ω, u − uk+
1
2 log u〉. (28)

We thenminimize (28) viaADMM. Inparticular,we refor-
mulate (28) as

min
u∈Ω

‖v‖1 + β〈H∗1Ω, u − uk+
1
2 log u〉

s.t. v = ∇αz, z = u,

(29)

with two auxiliary variables v and z. The corresponding aug-
mented Lagrangian functional reads as

L(u, v, z;λ1, λ2) = ‖v‖1 + β〈H∗1Ω, u − uk+
1
2 log u〉

+ μ1

2
‖v − ∇αz + λ1

μ1
‖2F + μ2

2
‖z − u + λ2

μ2
‖2F .

(30)

Here λ1, λ2 are dual variables andμ1,μ2 are positive penalty
parameters. The ADMM iterations go as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = argmin
u

L(u, vk, zk;λk
1, λ

k
2),

vk+1 = argmin
v

L(uk+1, v, zk;λk
1, λ

k
2),

zk+1 = argmin
z

L(uk+1, vk+1, z;λk
1, λ

k
2),

λ1
k+1 = λ1

k + μ1(vk+1 − ∇αuk+1),

λ2
k+1 = λ2

k + μ2(z
k+1 − uk+1).

(31)

Similarly to the non-blind case, we derive the closed-form
solution for the u-subproblem by using the positive solution
of the quadratic equation

βC(1 − uk+ 1
2

u
) − λ2 − μ2(z − u) = 0,

for C = H∗1Ω . Therefore, we get

uk+1 = − (
βC − μ2zk − λ2

)

2μ2

+
√

(βC − μ2zk − λ2)2 + 4μ2βCuk+ 1
2

2μ2
,

(32)
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The v-subproblem can be minimized via the shrinkage
operator,

vk+1 = shrink

(
∇αzk − λ1

k

μ1
,
1

μ1

)
, (33)

and we have the following z-update,

zk+1

= F−1
(F(μ2uk+1 + μ1(∇α)∗vk+1 + (∇α)∗λ1 − λ2)

F(μ1(∇α)∗∇α + μ2)

)
.

(34)

To minimize (23) with respect to h, we define a matrix
U in such a way that the convolution can be written as a
matrix-vector multiplication,

h ◦ uk+1 = Uh.

Since u and h are symmetric in the data fitting term, we can
apply an EM step for h, i.e.,

hk+
1
2 := EM( f̄ ,U , hk).

Since h has the sum-to-one restriction, we then project hk+ 1
2

to the corresponding affine space,

hk+1 = hk+
1
2 /

∑

i j

h
k+ 1

2
i j .

Note that the nonnegativity holds automatically from the
EM step (11). We summarize the proposed algorithm for
blind deconvolution under Poisson noise in Algorithm 2.
Convergence of the proposed algorithm is characterized in
Theorem 1.

Theorem 1 For the sequence {uk, hk}∞k=1 generated by Algo-
rithm 2, there always exists a convergent subsequence of
{uk, hk}∞k=1.

Please refer to “Appendix” for the detailed proof.

4 Numerical Experiments

In this section, we conduct a variety of numerical experi-
ments to justify the effectiveness of the proposed methods in
removing Poisson noise and blurring artifacts. We consider
two types of blurring kernels for Gaussian blur and motion
blur as well as several peak levels for different amount of
Poisson noise.

Algorithm 2: FOTV blind deconvolution under Poisson
noise.
Input: f̄ and l (kernel size)
Set parameters: α,μ1, μ2, β, ε > 0
Initialization: v0 = 0, z0 = 0, u0 = f̄ , h0 to be an average kernel
of size l × l, k = 0

while ‖uk+1−uk‖F
‖uk‖F < ε do

uk+ 1
2 = uk

H∗1Ω
H∗

(
f̄

Huk

)

uk+1 = −p +
√
p2 + 4μ2βCuk+ 1

2

2μ2
where p = (βC − μ2zk − λ2)

vk+1 = shrink(∇αzk − λ1
k

μ1
,
1

μ1
),

zk+1 is given by (34)
λ1

k+1 = λ1
k + μ1(vk+1 − ∇αuk+1),

λ2
k+1 = λ2

k + μ2(zk+1 − uk+1),

hk+ 1
2 = hk

U∗1Ω
U∗( f̄

Uhk
)

hk+1 = hk+ 1
2 /

∑
i j h

k+ 1
2

i j
k ← k + 1

end
Output: u = uk+1, h = hk+1.

We use the peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) index [68] for quantitative compari-
son. The PSNR is defined as

PSNR(u, ū) = 10 log10
P2

1
mn

∑
i, j (ui, j − ūi, j )2

, (35)

where P is themaximumpeakvalue of the original image ū ∈
R
m×n , and u is the restored image. As for SSIM, we define

the local similarity index computed on two small patches x
and y,

ssim(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
, (36)

whereμx/σ
2
x , μy/σ

2
y are the average/variance of x , y, σxy is

the covariance of x, y, and two positive parameters c1, c2 are
set to avoid the denominator being zero. The overall SSIM
is the mean of local similarity indexes, i.e.,

SSIM(u, ū) = 1

K

K∑

i=1

ssim(xi , yi ), (37)

where xi , yi are the corresponding patches indexed by i in
the two images u, ū, respectively, and K is the number of
patches.

All numerical experiments are performed underWindows
7 and Matlab R2019b running on a desktop with Intel(R)
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Fig. 1 Non-blind deconvolution
results of Cameraman with peak
at P/2 = 127.5

Original Input (20.66/0.50) RLTV(23.87/0.75)

NPTool (23.90/0.82) BM3D (24.20/0.82) FOTV (24.14/0.82)

Original Input (20.66/0.50) RLTV(23.87/0.75)

NPTool (23.90/0.82) BM3D (24.20/0.82) FOTV (24.14/0.82)

Fig. 2 Non-blind deconvolution
results of Galaxy with peak at
P = 255.

Original Input (23.76/0.67) RLTV(25.57/0.77)

NPTool (24.64/0.73) BM3D (25.04/0.74) FOTV (25.34/0.76)

Original Input (23.76/0.67) RLTV(25.57/0.77)

NPTool (24.64/0.73) BM3D (25.04/0.74) FOTV (25.34/0.76)

Core(TM) i7-4790 CPU @3.60GHz. Our Matlab source
codes are available at GitHub.1

1 Our codes are at https://github.com/mujib2020/Non-blind-and-
Blind-Deconvolution-under-Poisson-noise.

4.1 Non-blind Deconvolution

For the non-blind deconvolution experiments, we use the
four standard testing images, named by “Cameraman,”
“Galaxy,” “Phantom,” and “Shape” as shown in Figs. 1, 2,
3 and 4, respectively. We consider the blurring kernel to
be a 9 × 9 Gaussian kernel with standard deviation

√
3,

i.e., fspecial(‘gaussian’,9,sqrt(3)) in Matlab.
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Fig. 3 Non-blind deconvolution
results of Phantom with peak at
P/5 = 51

Original Input (20.25/0.72) RLTV (25.50/0.90)

NPTool (24.03/0.90) BM3D (23.33/0.92) FOTV (24.96/0.95)

Original Input (20.25/0.72) RLTV (25.50/0.90)

NPTool (24.03/0.90) BM3D (23.33/0.92) FOTV (24.96/0.95)

Fig. 4 Non-blind deconvolution
results of shape with peak at
P/10 = 25.5

Original Input (20.88/0.81) RLTV (26.86/0.89)

NPTool (29.28/0.95) BM3D (28.02/0.94) FOTV (30.07/0.96)

Original Input (20.88/0.81) RLTV (26.86/0.89)

NPTool (29.28/0.95) BM3D (28.02/0.94) FOTV (30.07/0.96)

Before taking a convolution, we set the peak value, i.e., the
maximum intensity, to P , P/2, P/5, P/10 with P = 255,
each corresponding to a level of Poisson noise. The smaller
the peak is, the more noisy the image looks like, and hence,
it becomes more challenging for deblurring/denoising.

We compare the proposed non-blind approach (Algo-
rithm 1) with some Poisson deblurring methods, including

TV regularized Richardson–Lucy (RLTL).2 [22], NPTool
[40], and BM3D [3]. For each image and each peak level,
we choose the optimal parameters that achieve the high-
est PSNR among the sets: α ∈ {1, 1.2, 1.6, 1.8}, β ∈
{10, 20, 50, 100, 150}, μ1 ∈ {0.01, 0.1, 1}, and μ2 ∈
{0.1, 1, 10, 20}. Note that we choose a large set of values for

2 We download the Matlab package for RLTV from http://fxdupe.free.
fr/software.html.
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Table 1 Non-blind
deconvolution comparison

Test image Peak (P = 255) Input RLTV NPTool BM3D FOTV

Cameraman P 21.68/0.59 24.49/0.79 23.74/0.82 24.56/0.84 24.59/0.84

P/2 20.66/0.50 23.87/0.75 23.90/0.82 24.20/0.82 24.14/0.82

P/5 18.52/0.37 22.55/0.63 23.21/0.80 23.58/0.80 23.40/0.80

P/10 16.30/0.29 20.96/0.51 22.49/0.77 23.09/0.78 22.75/0.75

Galaxy P 23.76/0.67 25.57/0.77 24.64/0.73 25.04/0.74 25.34/0.76

P/2 23.18/0.63 24.99/0.74 24.28/0.70 24.66/0.72 24.90/0.73

P/5 21.83/0.55 24.24/0.70 24.12/0.70 24.14/0.69 24.38/0.71

P/10 20.29/0.48 23.28/0.64 23.83/0.68 23.77/0.67 23.86/0.67

Phantom P 21.27/0.85 27.49/0.96 24.39/0.89 24.61/0.93 27.80/0.96

P/2 21.01/0.80 27.11/0.95 24.11/0.86 24.01/0.93 26.76/0.96

P/5 20.25/0.72 25.50/0.90 24.03/0.90 23.33/0.92 24.96/0.95

P/10 19.33/0.67 23.99/0.85 22.88/0.88 22.87/0.93 24.17/0.93

Shape P 25.52/0.88 32.94/0.97 33.34/0.98 30.14/0.97 34.32/0.99

P/2 24.61/0.85 31.50/0.95 29.97/0.94 29.53/0.94 33.50/0.99

P/5 22.80/0.83 28.86/0.91 30.90/0.96 28.63/0.95 31.77/0.98

P/10 20.88/0.81 26.86/0.89 29.28/0.95 28.02/0.94 30.07/0.96

Each entry contains PSNR and SSIM values. The best results are highlighted in bold

β to accommodate all the testing cases (different images/peak
values). NPTool requires only one parameter, which is cho-
sen among {10−5, 2× 10−5, 7× 10−5, 10−4, 2× 10−4, 3×
10−4, 9×10−4}. No parameter is needed for the other meth-
ods (RLTV and BM3D). The initial condition for all these
methods is set to the input image. For our method, the stop-

ping condition is ‖uk+1−uk‖F
‖uk‖F < 10−4.

Quantitative comparisons in terms of PSNR and SSIM
are reported in Table 1. The proposed algorithm achieves
the best performance in most cases. For Cameraman under
low peak values, BM3D is the winner, as it exploits simi-
lar patches to enhance the image denoising. For other three
images, the image contents are relatively simple, i.e., having
piecewise smooth structures, where FOTV performs partic-
ularly well. Visual comparisons are given in Figs. 1, 2, 3 and
4. We observe the proposed algorithm generally produces
sharper results compared to other methods. Specifically for
low peak values (51 and 25.5) in Figs. 3 and 4, the FOTV
regularization can preserve piecewise smooth structures well
andproduce satisfactory deblurring (denoising) results. In the
cases when BM3D and RLTV give higher PSNR values than
FOTV, the recovered images are not visually pleasant with
certain artifacts. For example, BM3D contains ringing arti-
facts, especially around the camera (see zoomed-in regions in
Fig. 1). RLTV tends to amplify the noise, as shown in Fig. 3.

4.2 Non-blindVersus Blind

Before presenting the results of blind deconvolution, we
compare two proposed algorithms for non-blind and blind
deconvolution using the same input data of a blurry noisy

Shape image with the same Gaussian kernel as used in the
non-blind case (Sect. 4.1) with a peak value of 255. In Fig. 5,
we plot the objective (energy) function and PSNR values
with respect to time, which empirically shows the conver-
gence of the proposed algorithms.

We present the deblurring results of shape and satellite in
Figs. 6 and 7, respectively. Both are blurred with the same
Gaussian kernel as used in the non-blind case with a peak
value of 255. For a simple ground-truth image (Shape), both
non-blind and blind deblurring algorithms yield satisfactory
results, and the non-blind result is slightly better than the
blind one. For a complicated imagewithmore features (Satel-
lite), the results are worse than Shape in terms of PSNR. This
suggests that as amuchmore ill-posed problem, blind decon-
volution cannot handle asmuch noise as in the non-blind case
and hence we increase the peak value to 1e+03 so that the
input data is less noisy.

For a fair comparison, we include comparisons using an
EM-based blind deconvolution algorithm, which alternately
updates the image and the kernel via (11) and adopt the same
framework ofEM-FOTV(Algorithm2) to implement theEM
algorithm, as summarized in Algorithm 3. In addition, we
also consider the Tikhonov regularized blind deconvolution
model given by,

min
u∈Ω
h∈Π

β〈h ◦ u − f̄ log(h ◦ u), 1Ω 〉 + 1

2
‖u‖2F , (38)

where Π and 1Ω are the same as in (23). We adopt the same
update for hk as in Algorithm 2. As for the u-subproblem,
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Fig. 5 Energy and PSNR curves (Shape image with peak at P = 255)
for the non-blind (top) and blind (bottom) algorithms

Input (25.51/0.76) EM blind (27.11/0.89)

FOTV non-blind (34.32/0.99) FOTV blind (33.78/0.99)

Input (25.51/0.76) EM blind (27.11/0.89)

FOTV non-blind (34.32/0.99) FOTV blind (33.78/0.99)

Fig. 6 Blind and non-blind comparison with the same input data: the
Shape image blurred with the Gaussian kernel and peak value of 255

we consider

min
u∈Ω

β〈Hu − f̄ log(Hu), 1Ω 〉 + 1

2
‖u‖2F , (39)

where Hu = hk ◦u. The optimality condition of (39) can be
expressed as

βH∗1Ω − βH∗ f̄

Hu
+ u = 0. (40)

Input (20.45/0.79) Tikhonov blind (22.28/0.87)

FOTV non-blind (22.74/0.87) FOTV blind (22.52/0.87)

Input (20.45/0.79) Tikhonov blind (22.28/0.87)

FOTV non-blind (22.74/0.87) FOTV blind (22.52/0.87)

Fig. 7 Blind and non-blind comparison with the same input data: the
satellite image blurred with the Gaussian kernel and peak value of 255

Algorithm 3: Blind deconvolution via EM.

Input: f̄ and l (the size of the kernel)
Set Parameter: ε > 0
Initialization: u0 = f , h0 as an average kernel of size l × l, k = 0

while ‖uk+1−uk‖F
‖uk‖F < ε do

uk+ 1
2 = uk

H∗1Ω
H∗

(
f̄

Huk

)

hk+ 1
2 = hk

U∗1Ω
U∗( f̄

Uhk
)

hk+1 = hk+ 1
2 /

∑
hk+ 1

2

k ← k + 1
end
Output: u = uk+1, h = hk+1.

Dividing (40) by βH∗1Ω and inserting uk

uk+1 into the second
term to approximate the constant 1Ω , we get an equation for
uk+1, i.e.,

1Ω − 1

H∗1Ω

H∗( f̄

Huk

) uk

uk+1 + uk

βH∗1Ω

= 0. (41)

Following the notation in (11), we can rewrite (41) as,

1Ω − uk+ 1
2

uk+1 + u

βH∗1Ω

= 0, (42)

which implies that uk+1 is the optimal solution to

min
u

β〈H∗1Ω, u − uk+
1
2 log u〉 + 1

2
‖u‖2F . (43)
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Table 2 Blind deconvolution
comparison in terms of
PSNR/SSIM

Test image Kernel Peak Input EM Tikhonov FOTV

Shape Gaussian 255 25.51/0.87 22.31/0.86 28.97/0.92 33.78/0.99

Motion 255 23.43/0.85 24.21/0.87 24.39/0.88 31.79/0.99

Spine Gaussian 255 27.86/0.80 28.68/0.82 29.38/0.84 35.90/0.97

Gaussian 1e+03 30.38/0.91 32.76/0.92 33.07/0.92 37.50/0.98

Satellite Gaussian 1e+03 19.62/0.75 23.05/0.90 23.38/0.90 24.17/0.91

Motion 1e+03 19.79/0.79 21.24/0.90 24.15/0.93 24.93/0.93

Setting the derivative of (43) with respect to u to zero, we
get

βH∗1Ω − βH∗1Ω

uk+ 1
2

u
+ u = 0.

Therefore, uk+1 can be obtained by using the positive solu-
tion from the quadratic formula, i.e.,

uk+1 = −βH∗1Ω

2
+

√
(βH∗1Ω)2 + 4βH∗1Ωuk+ 1

2

2
. (44)

The Tikhonov-based regularization for blind deconvolution
is summarized int Algorithm 4.

In Fig. 6, we use the ground-truth kernel as an initial guess
for the EM algorithm, which is still worse than the proposed
ones. Note that the EM approach is very sensitive to initial
conditions and fails when the average kernel is set as the
initial guess of the kernel. The comparison to Tikhonov is
shown in Fig. 7.

Algorithm4:Tikhonov blind deconvolution under Pois-
son noise.
Input: f̄ and l (the size of the kernel)
Set Parameter: β, ε > 0
Initialization: u0 = f , h0 as an average kernel of size l × l, k = 0

while ‖uk+1−uk‖F
‖uk‖F < ε do

uk+ 1
2 = uk

H∗1Ω
H∗

(
f̄

Huk

)

uk+1 = −βH∗1Ω

2 +
√

(βH∗1Ω)2+8βH∗1Ωuk+
1
2

2

hk+ 1
2 = hk

U∗1Ω
U∗( f̄

Uhk
)

hk+1 = hk+ 1
2 /

∑
hk+ 1

2

k ← k + 1
end
Output: u = uk+1, h = hk+1.

4.3 Blind Deconvolution

We conduct blind deconvolution using three testing images:
Shape, Spine, and Satellite with two types of blurring ker-
nels: Gaussian (fspecial(‘gaussian’,7,10)) and
motion blur (fspecial(‘motion’,11,45)). For the

Original Input (19.62/0.75) EM (23.05/0.90) Tikhonov (23.38/0.90) FOTV (24.17/0.91)

Original Input (19.79/0.79) EM (21.24/0.90) Tikhonov (24.15/0.93) FOTV (24.93/0.93)

Original Input (19.62/0.75) EM (23.05/0.90) Tikhonov (23.38/0.90) FOTV (24.17/0.91)

Original Input (19.79/0.79) EM (21.24/0.90) Tikhonov (24.15/0.93) FOTV (24.93/0.93)

Fig. 8 Blind deconvolution results of Satellite image with peak at 1e+03. The red box in the left corner shows the blurring kernel: Gaussian blur
(top) and motion blur (bottom). The proposed algorithm works particularly well in estimating motion kernels (Color figure online)
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Original Input (27.86/0.80) EM (28.68/0.82) Tikhonov (29.38/0.84) FOTV (35.90/0.97)

Original Input (30.38/0.91) EM (32.76/0.92) Tikhonov (33.07/0.92) FOTV (37.50/0.98)

Original Input (27.86/0.80) EM (28.68/0.82) Tikhonov (29.38/0.84) FOTV (35.90/0.97)

Original Input (30.38/0.91) EM (32.76/0.92) Tikhonov (33.07/0.92) FOTV (37.50/0.98)

Fig. 9 Blind deconvolution results of the Spine image with Gaussian blur and peak values of 255 (top) and 1e+03 (bottom)
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Fig. 10 PSNR versus fractional order α for Galaxy, Cameraman, Satel-
lite all with peak values at 255. Top row is non-blind and bottom row
is blind

Shape image, we consider the same level of peak (255) but
with two different types of blur. For the Spine image, we con-
sider the same type of blur, but with two peak values (255 and
1e+03). Since the Satellite image has finer features than the
Shape image, we consider a higher peak value of 1e+03
with different types of blur.

We compare the proposed Algorithm 2 with EM (Algo-
rithm 3) and Tikhonov (Algorithm 4). We select a set of opti-
mal parameters ofα ∈ {1, 1.1},β ∈ {10, 22, 60, 110, 200, 300},
μ1 ∈ {0.001, 0.01, 0.1}, and μ2 ∈ {0.01, 0.1, 0.5, 1}. The
maximum iterations are chosen among 50, 100, 150, 250,
300, 1000 for the best performance. In addition, we choose
the input data and the average kernel to be the initial guesses
for u0, h0, respectively. The same initial guesses are cho-
sen for EM and Tikhonov. The quantitative results are listed

Table 3 Optimal parameter settings

Peak Cameraman Galaxy
α β μ1 μ2 PSNR α β μ1 μ2 PSNR

P 1 100 0.1 1 24.59 1.8 100 0.01 0.1 25.35

P/2 1 50 1 0.1 24.14 1.6 50 0.1 20 24.90

P/5 1 20 1 1 23.40 1.8 20 0.1 20 24.38

P/10 1 20 1 0.1 22.67 1.6 20 0.1 20 23.86

in Table 2, which implies significant improvements of the
proposed algorithm over the classic ones. We also show
visual results in Figs. 8 and 9 for Satellite and Spine, respec-
tively. The proposed algorithm works particularly well for
the motion blur. In addition, the EM results are consistent
with the well-known phenomenon that blind deconvolution
methods tend to obtain a no-blur solution [43,53], i.e., the
estimated kernel looks like a delta function.

4.4 Discussion

We analyze the influence of the fractional-order α on the
deblurring performance by plotting the PSNR curves versus
α in Fig. 10. For each α, we tune the best combination of
other parameters as discussed in Sect. 4.1. The optimal order
for the Cameraman image is α = 1, as the image is piecewise
constant. Other images with more features have larger values
of α, e.g., α = 1.8 for the Galaxy image and α = 1.1 for
the Satellite image. We also list the optimal parameters in
Table 3 for Cameraman and Galaxy, which shows that the
optimal balancing parameter β consistently decreases with
the peak values of images. The optimal values for μ1, μ2 are
roughly the same for different peak values.

We report the computation time of various methods for
both non-blind and blind deconvolution in Table 4. The
proposed Algorithm 1 is much faster compared to the state-
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Table 4 Computation time (in s)

Test image (size) RLTV NPTool BM3D FOTV (non-blind) EM (blind) Tikhonov (blind) FOTV (blind)

Cameraman (256 × 256) 0.62 8.65 2.71 1.37 – – –

Shape (400 × 400) 2.74 14.69 12.62 4.63 0.40 28.97 37.63

Satellite (128 × 128) – – – – 0.16 1.75 2.05

The notation “–” indicates the nonexistence of the testing case, e.g., Cameraman is not used in blind deconvolution

of-the-art methods in non-blind deconvolution of Poisson
noise. Our blind deconvolution algorithm is slower than the
non-blind version, which is due to the nature of a gradient-
descent type of algorithm, i.e., ensuring the stability but at
the cost of slowing down the convergence.

5 Conclusions

In this paper, we consider the problem of recovering images
that are contaminated by the Poisson noise with and without
the prior information of the blurring kernel. To preserve the
high-order smoothness, we propose the non-blind and blind
image deconvolution models based on the fractional-order
TV regularization and the statistical properties of Poisson
noise. Efficient algorithms are derived by applying ADMM
and EM with theoretical guarantees. Extensive experiments
have shown that our proposed methods have the great poten-
tial in recovering sharper images from blurry ones subject
to Poisson noise with high accuracy and efficiency. Future
works include speed-up both non-blind and blind deconvo-
lution algorithms with guaranteed convergence as well as
proper regularization to be imposed on the blurring kernel.

Appendix

Based on the blind deconvolution model (23), we define the
objective function

Q(u, h) := ‖∇αu‖1 + β〈h ◦ u − f̄ log(h ◦ u), 1Ω 〉. (45)

The proof of Theorem 1 relies on the following two lemmas.
Lemma 1 shows the decrease of the objective function values
for the sequence generated by the EM algorithm (10). By
switching u and h, we can show that Q(u, hk+1) ≤ Q(u, hk)
for any u. For a fixed h, Lemma 2 guarantees the FOTV-
regularized objective function decreases with respect to u.
Therefore, we have

Q(uk+1, hk+1) ≤ Q(uk, hk+1) ≤ Q(uk, hk).

It is obvious that the objective function Q(u, h) ≥ 0. Then
it follows from the Bolzano–Weierstrass Theorem that there
exists a convergent subsequence.

For the notational convenience, we assume u, h are col-
umn vectors, define a matrix H such that Hu := h ◦ u, and
denote (Hu)i as the i th element of Hu. Therefore, we can
rewrite the EM update (10) as

uk+1
j = ukj∑

i Hi j

∑

i

Hi j f j
(Huk)i

. (46)

Lemma 1 Given f and H , define

F(u) :=
∑

i

(
(Hu)i − fi log(Hu)i

)
(47)

For the sequence generated by (46), we have F(uk+1) ≤
F(uk).

Proof The proof follows the majorize-minimization (MM)
framework [32,41]. In particular, we define a surrogate func-
tion of F , denoted by G(u, uk), which satisfies the following
two conditions:

F(uk) = G(uk, uk)

F(u) ≤ G(u, uk), ∀u.
(48)

If uk+1 = argminu G(u, uk), then

F(uk+1) ≤ G(uk+1, uk) ≤ G(uk, uk) = F(uk),

where the first inequality and the last equality are by defini-
tion in (48), and the second inequality is because that uk+1

minimizes G(u, uk).
We consider

G(u, uk) =
∑

i

(Hu)i −
∑

i

fi
∑

j

Hi j ukj
(Huk)i

log

⎛

⎜⎝
Hi ju j

Hi j ukj
(Huk )i

⎞

⎟⎠ .

(49)

We will show G is a surrogate function for F and the EM
update (46) minimizes G(u, uk).
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Simple calculations lead to G(uk, uk) = F(uk). To show

F(u) ≤ G(u, uk), we define ai j = Hi j ukj
(Huk )i

. It is straightfor-

ward that ai j ≥ 0 and
∑

j ai j = 1, ∀i . Then by Jensen’s
inequality, we have ∀i,

∑

j

Hi j ukj
(Huk)i

log

⎛

⎜⎝
Hi ju j

Hi j ukj
(Huk )i

⎞

⎟⎠ =
∑

j

ai j log

(
Hi ju j

ai j

)

≤ log(
∑

j

Hi j u j ).

(50)

Therefore, by definitions in (49) and (47), we have F(u) ≤
G(u, uk), and hence, G is a surrogate function of F .

To show that the EM update (46) minimizes G(u, uk), we
take the gradient of G(u, uk) with respect to u and set equal
to zero, thus leading to

∑

i

Hi j −
∑

i fi ai j
u j

= 0. (51)

Therefore, we get

u j =
∑

i fi ai j∑
i Hi j

= ukj∑
i Hi j

∑

i

Hi j f j
(Huk)i

, (52)

which is equivalent to (46). By the MM framework, we have
F(uk+1) ≤ F(uk). ��

Lemma 2 Define an FOTV regularized objective function

E(u) := ‖∇αu‖1 + β
∑

i

(Hu)i − fi log((Hu)i ), (53)

and consider the following iterative scheme

uk+1 = argminu ‖∇αu‖1
+β

∑

j

(
∑

i

Hi j )(u j − u
k+ 1

2
j log u j ), (54)

with uk+ 1
2 defined by (46). We can show that E(uk+1) ≤

E(uk).

Proof Denote R(u) = ‖∇αu‖1. Since uk+1 is the optimal
solution for (54), we have

R(uk+1) + β
∑

j

(
∑

i

Hi j )(u
k+1
j − u

k+ 1
2

j log uk+1
j )

≤ R(uk) + β
∑

j

(
∑

i

Hi j )(u
k
j − u

k+ 1
2

j log ukj ),

which implies that

R(uk+1) − R(uk)

≤ β
∑

j

(
∑

i

Hi j )

(
ukj − uk+1

j + u
k+ 1

2
j log

uk+1
j

ukj

)

= β
( ∑

i

(
(Huk)i − (Huk+1)i

)

+
∑

j

(
∑

i

Hi j )u
k+ 1

2
j log

uk+1
j

ukj

)
.

(55)

Using the definition of (46) and the inequality (55), we can
compute

1

β
(E(uk+1) − E(uk))

≤
∑

i

fi log

(
(Huk)i

(Huk+1)i

)
+

∑

i j

fi ai j log
uk+1
j

ukj

≤
∑

i

fi log

(
(Huk)i

(Huk+1)i

)
+

∑

i

fi log

⎛

⎝
∑

j

ai j
uk+1
j

ukj

⎞

⎠ ,

(56)

where the last inequality is from Jensen’s inequality and

ai j = Hi j ukj
(Huk )i

. Simple calculations show that

∑

j

ai j
uk+1
j

ukj
=

∑

j

Hi j u
k+1
j

(Huk)i
= (Huk+1)i

(Huk)i
. (57)

Since fi ≥ 0, we get E(uk+1) − E(uk) ≤ 0 by plugging
(57) into (56). ��
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