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CrossMark
Abstract
Recovering a signal from its Fourier magnitude is referred to as phase retrieval,
which occurs in different fields of engineering and applied physics. This paper
gives a new characterization of the phase retrieval problem. Particularly useful
is the analysis revealing that the common gradient-based regularization does
not restrict the set of solutions to a smaller set. Specifically focusing on binary
signals, we show that a box relaxation is equivalent to the binary constraint for
Fourier-types of phase retrieval. We further prove that binary signals can be
recovered uniquely up to trivial ambiguities under certain conditions. Finally,
we use the characterization theorem to develop an efficient denoising algorithm.

Keywords: binary signals, box relaxation, ambiguities, phase retrieval

(Some figures may appear in colour only in the online journal)
1. Introduction

In many fields of physics and engineering, one can only measure the magnitude of the Fourier
transform of a discrete signal x € CV. Denote the discrete Fourier transform by JF. Recovering
x from | Fx| is referred to as phase retrieval (PR), since the phase is completely lost in measure-
ments. Phase retrieval originated from x-ray crystallography [1, 2], trying to determine atomic
and molecular structures of a crystal. This approach was later used to reconstruct an image
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of a sample with resolution at a nano-meter scale from its x-ray diffraction pattern, known as
coherent diffraction imaging (CDI) [3]. The PR techniques now occur in various applications
such as astronomy [4] and laser optics [5]; please refer to [6] for a contemporary overview.

Phase retrieval is a very challenging problem largely due to its nonconvexity and solu-
tions being non-unique [7]. Specifically for the nonuniqueness (a.k.a. ambiguities), there are
trivial ambiguities and non-trivial ambiguities [6]. Trivial ambiguities of |Fy| = |Fx| can be
summarized as follows:

global phase shift: y; = x; - ¢/%
conjugateinverse: y, = X_x (1.1)
spatial shift: yp = x4z,

where the indices are taken cyclically up to N, - denotes the complex conjugate, and ¢ €
[0,27), ko € Z are the phase shift and spatial shift, respectively. Note that every combination
of (1.1) is also a trivial ambiguity. Non-trivial ambiguities of one-dimensional signals can be
classified by the roots of the Z-transform of the autocorrelation of the signal [8], while almost
all multi-dimensional signals only have non-trivial ambiguities [9], since the Z-transform of
their autocorrelation being reducible is of measure zero in the space of all polynomials [8, 10].

For unique recovery of a real signal of size N in up to trivial ambiguities, at least 2N — 1
random measurements are needed, provided the sampling matrix has full spark [11]. This result
was later extended to the complex case in [12, 13], requiring at least 4N — 4 measurements.
Other sufficient conditions for unique recovery include minimum phase signals [14], sparse
signals with non-periodic support [15], and signals with collision-free [16]. For s-sparse sig-
nals in RY, the number of Fourier magnitude measurements is in the order of O(s log(N/s))
[17, 18], while min{2s,2n — 1} for random measurements [19].

In addition to taking more measurements than the ambient dimension, one often relies
on regularization to refine the solution space with an attempt to reduce ambiguities. Stem-
ming from image processing, a common choice is a gradient-type formalism. For example,
Chang et al [20] considered the total variation, which is the /; norm of the gradient for phase
retrieval. Computationally, many optimization algorithms can be used to solve the (regularized)
phase retrieval problems, including alternating projections [21], Wirtinger flow [22], alternat-
ing direction method of multipliers (ADMM) [20], and a preconditioned proximal algorithm
[23].

This paper contributes to a new set of characterization theorems for phase retrieval, indicat-
ing that gradient-based regularization is redundant to the magnitude measurements. We also
impose additional constraints on the underlying signal in order to resolve the ambiguities. In
particular, we focus on binary signals [24] due to its simplicity and a wide variety of appli-
cations such as bar code [25, 26] and obstacle detection [27]. Specifically for phase retrieval,
binary signals are considered in magnetism to describe the x-ray energies of some chemical
compound films such as the SmCOs film [28], and in block copolymers to describe films [29].
It was observed empirically in [30] that incorporating a box constraint into the ADMM frame-
work, referred to ADMMB, often gives an exact recovery of binary signal, which motivates us
to give a theoretical explanation. In this paper, we prove that the phase retrieval problem with
binary constraint is equivalent to phase retrieval with box relaxation. We describe a new type of
trivial ambiguities for binary phase retrieval and show that unique recovery is possible under
certain conditions. A related work [31] proved binary signals that cannot be uniquely recovered
by Fourier magnitude is a zero-measure set. Finally, we take the noise into consideration and
develop a denoising algorithm.

Our contributions are three-fold: (1) we give a characterization theorem (theorem 3.5),
revealing the fact that || V"x ||, is completely determined by |Fx| for an arbitrary integer
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order n. (2) We give thorough analysis of phase retrieval problem in a binary setting. We
show that the box relaxation to binary constraint is equivalent to the original binary phase
retrieval problem (theorem 4.1). We then describe a new type of ambiguities and guarantee the
uniqueness of binary phase under certain conditions. (3) We conduct a series of error analysis
(propositions 5.1, 5.2 and corollary 5.3) of phase retrieval, which motivates a new denoising
scheme.

The rest of the paper is organized as follows. In section 2, we set up notations and review
some practical ways of taking magnitude measurements. In section 3, we give a new charac-
terization theorem and discuss its consequences. In section 4, we prove that the phase retrieval
of binary signals can be relaxed to the box constraint. Furthermore, we show it is possible to
relax the set of vectors having the same norm to its convex hull. In section 4.1, we describe
a new type of ambiguities for binary signals and show that the unique recovery of binary sig-
nals is possible under some special circumstances. Several extensions from the Fourier case to
other types of sampling schemes are presented in section 4.2. In section 5, we estimate recover
accuracy with respect to noise and propose a denoising algorithm that empirically yields better
performance compared to a naive approach. Section 6 concludes the paper. Appendix provides
all the proofs for the theorems presented.

2. Preliminaries

2.1. Notations

Letx, y € CV be arbitrary signals, we define some notations that are used throughout the paper:

e x; denotes the kth entry of x, i.e. x = (x¢, x1, X2, . . . ,aveDT

e || x ||, denotes the ¢,-norm of x, i.e. ||x||, = (ZQ’:_(} |xk\”)%, where p > 0. For p = 0, we
define || x [|o to be the £y ‘norm’ by counting the number of its nonzero elements.

e ¢;’s denotes the standard basis in CV, i.e. the vector with a 1 in the kth coordinate and 0’s
elsewhere, e.g., eo = (1,0,0,...,0)T ande; = (0,1,0,...,0)T.

o Fy oy : CNV — CM denotes the matrix representing discrete Fourier transform (DFT), i.e.

1 1 1
w wz wN—l
2 4 2AN—1)
Froy = 1 w w S w i 2.1)
1 M1 2D M-DI-D)

=2mi . . . .
where w = e . Note that ﬁ}_zvazv is unitary. If M > N, we refer it as an oversampling
Fourier matrix.

o We define

X Oy = (X0¥0, X1Y15- - - » XN—1YN—1),

where ® denotes the Hadamard product (i.e. entrywise multiplication).
e The discrete (periodic) convolution x°y is defined by

N-1
X% D);= > XV b mod N» (2.2)
k=0

forj=0,1,...,N— 1.
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e The (regular) autocorrelation is defined by

N—-1
(AUt()); = > X+ %% 2.3)
k=0

wherej= —-N+1,-N+2,...,N—land x;, =0,Vk < Oand k > N — 1.
e By replacing the zero boundary condition in the regular autocorrelation with periodic
boundary condition, we consider periodic autocorrelation defined as

N-1
(AUL(X)); = > X)) mod N¥E (24)

k=0
forj=0,1,...,N— . These definitions will be used in the proofs of some interesting

results.
For the rest of the paper, we denote Fn_,y by F, Fn_u by Fur, and omity,oqy if the context
is clear.

2.2. Sampling schemes

In practice, there are numerous ways [32—37] to take magnitude measurements of a signal. This
paper develops new theoretical characterizations in PR focusing on the following sampling
schemes.

e Classic Fourier transform. One aims to find an unknown signal x € CV from the
magnitude measurements b := | Fx|, i.e.

N—-1
—2mkni
E xe N
k=0

e Oversampling Fourier transform. An M-point (M > N) oversampling discrete Fourier
transform (DFT) of a signal x € CV is defined by

b, = , VYn=0,1,...,N—1.

N—1
—2mkni
xXe M

b, = , Vn=0,1,...,.M—1.

k=0

One wants to recover an N-point signal x based on M measurements of | Fyx|. A typical
choice of M is M = 2N [38], which is experimentally adopted by Miao et al [39]. Also,
a sufficient number of measurements is crucial in avoiding false solutions [40]. However,
we show in theorem 3.6 theoretically that more measurements (i.e. M > N) do not resolve
ambiguities in the noiseless PR problem.

e Short-time Fourier transform (STFT) [34, 41]. Let x € C" be a signal of length N and
w € CY be a window function of length W. The short-time Fourier transform (STFT) of
x with respect to w is defined as

N—1
—2mkni
Znn = ZkamLfke N, 2.5)
k=0
forn=0,1,...,.N—landm=0,1,...,R— 1, where L denotes the separation in time

between adjacent short-times sections, R = [X¥=1] denotes the number of short-time
sections considered, and wy ;=0 forallk < Qand k > W — 1.
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e Frequency-resolved optical gating trace (FROG) [32, 33, 37]. Let

Znn = XnXn+mLs

where L is a fixed integer. The FROG trace is equivalent to the one-dimensional Fourier
magnitude of z,,, for each fixed m, i.e.

2

N—1
. —2mkni
Zum|” = k§zojxkxk+mL v | (2.6)

forn=0,...,N—1,m=0,...,[¥] —1.

Both STFT and FROG make experimentally plausible means of additional phaseless mea-
surements to improve the accuracy of phase retrieval. For example, the STFT measurements
can be obtained by a set of shifted versions of a single mask, while FROG measures the product
of the signal with a shifted version of itself. It was claimed in [41] that the STFT magnitude
leads to better performance than an oversampled DFT with the same number of measurements.

3. Regularization and constraint in phase retrieval

Mathematically, the Fourier-type of phase retrieval problems in one dimensional case is
formulated as follows:

Findx € CY, st |Fyx| =b.

Itis desirable and often necessary to impose some regularization term in order to regularize the
solution and avoid ambiguities in PR as much as possible. A classic choice is the use of || x ||
and || V"x ||, to enforce the smoothness of an underlying signal x, where V" is the nth order
discrete finite difference operator. For simple notations, we define VO := x. In other words, a
regularized PR problem can be expressed as

minimize||V"x|, s.t.|Fx| =b.
X

Unfortunately, theorem 3.1 shows that || V"x ||, is completely determined by |Fx|, which
implies that such gradient-based regularization cannot resolve any ambiguities. But on the
other hand, adding gradient-based regularizations may help to escape from local optima due
to the nonconvex nature of the phase retrieval problem.

Theorem 3.1. Given x,y€ CV, if |Fx|=|Fy|, then | V'x|.=| V"yl2 for all
n=0,1,2,....

One may wonder whether it is helpful to take more measurements and then impose regu-
larizations. Theorem 3.2 implies that the gradient-type regularization is insufficient for the PR
problem with more than phaseless 2N — 1 measurements.

Theorem 3.2. Let M >2N—1, given x,y€ CN, if |Fyx|=|Fuy|, then || V'x|>
=|| V"y ||, foralln =0,1,2,....

Remark 3.3. When N <M < 2N — 1, gradient-based regularization may help. For
example, let x = (0,0,0,0,1,0,1,0,0,1,1)and y = (0,0,0, 1,0,0,0, 1,0, 1, 1). Both of them
are of length 11 and have the same |Fyx| = |Fyy| for M =12, but ||V3x||3 =7.5#7
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= || V|13, where the third order finite scheme V3x is defined by (V3x); := — x40 + X1 —

X1+ %xk+2-
To prove theorems 3.1 and 3.2, we need to review a classical result that Aut(x) is determined
by |Faoy—1x| and vice versa, as stated in theorem 3.4.
Theorem 3.4. ([9, 31]). Given x,y € CV, the following statements are equivalent:
(@) |Fonv-1x] = [Fonv-1)l;
(b) Aut(x) = Aut(y).
We extend this analysis to an arbitrary number of measurements (not just 2N — 1) as well as
to period autocorrelation (from regular autocorrelation). Specifically in theorem 3.5, we show

that when M = N, Aut,(x) and || v % x ||, for v € CV are determined by | Fx|, and vice versa.
A similar result for M > 2N — 1 is presented in theorem 3.6.

Theorem 3.5. Given x,y € CV, the following statements are equivalent:
(a) |Fx| = |Fyl;
(b) Aut,(x) = Aut,(y);

(©) [lvxx] = [loxyll Vv e CN.

Theorem 3.6. Givenx,y<c CN, M > 2N — 1, the following statements are equivalent:
(@) [Fux| = [Fuyl;
(b) Aut(x) = Aut(y).
Also, either (a) or (b) implies that Aut,(x) = Aut,(y) and ||vsx|> = [|vxy||, Yo € CV.

The converse does not necessarily hold.

Remark 3.7. For M < 2N — 1 and M # N, we cannot determine the autocorrelation from M
magnitude measurements of | Fy,(x)|, due to an insufficient number of measurements.

To the best of our knowledge, the equivalence of phaseless measurements to || v * x ||, Vo
is novel in the literature, which leads to useful consequences as characterized in theorems 3.1
and 3.2. In particular, theorem 3.1 directly follows from theorem 3.5 (a) = (c) and the fact that
V'x = v x for some v, € CN. Similarly, theorem 3.2 follows from theorem 3.6.

4. Box relaxation to binary constraint

We now restrict our attention to binary signals x € {0, 1}", as another way of imposing addi-
tional prior knowledge to facilitate phase retrieval. Mathematically, we formulate the binary
phase retrieval problem as follows:

Findx € {0,1}", st |Fx| =b. P)

Since the binary constraint is nonconvex, we relax it to a box constraint in a similar way as a
linear problem [42]:

Findx € [0,1], st |Fx| =b. Q

Clearly, if (P) has a solution, then (Q) also has a solution. The question is whether we can
recover x from b through (Q). Computationally, the binary constraint in (P) can be posed as a
minimization problem of x(1 — x) subjecttox € [0, 11V, which can be solved via the difference
of the convex algorithm (DCA) [43, 44]. Each DCA iteration requires to a subproblem similar

6
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to the (Q) problem and it takes a few iterations for DCA to converge. Therefore, solving (Q)
is computationally more efficient compared to (P). Theoretically, we prove in theorem 4.1 that
all the solutions to (Q) are solutions to (P) and have the same number of 1’s as the ground-truth
signal.

Theorem 4.1. Given 0 < a <3, x€ {a,B} and y€ [a,B1Y, if |Fx|=|Fy|, then
y € {a, B} and y has the same number of o’s and [3’s as x.

If {0, 1}V in problem (P) is replaced by a set such that every element has the same modulus,
one can also relax the problem to its convex hull.

Theorem 4.2. Suppose £ is a set of complex number and there exists some constant ¢ > 0
suchthat |z| = ¢ > forall z € €. Givenx € EN and y € convEV, if | Fx| = | Fy|, theny € EV,
where conv € denotes the convex hull of £.

We have a similar version of theorem 4.1 when x € {—1,1}".

Corollary 4.3. Givenx € {—1,1}N and y € [-1,11", if | Fx| = | Fy|, then y € {—1,1}",
and the number of 1’s in y is the same as the number of 1’s in x or the number of —1 in x.

We then characterize trivial ambiguities for binary phase retrieval in section 4.1 and extend
to other sampling schemes in section 4.2.

4.1. Ambiguities and uniqueness

In addition to trivial ambiguities (1.1) for general PR, there is another type of ambiguity in the
binary setting. For example, one has

)

|F(1,1,1,1,0,0,1,0,0,0)"| = | F(0,0,0,0,1,1,0,1,1, )"

in which the two signals are not related by (1.1), but rather by switching zeros and ones. We
present this ambiguity for binary phase retrieval in corollary 4.5. In fact, this result can be
easily extended to the complex case:

Proposition 4.4. Given x € CV, |Fx| = |F(c1 — x)| if and only if ¢ = ;*%19 > x; for

some 0 € [0,2m), where 1 denotes the vector of all one’s, i.e. 1 = (1,1,...,1)".

Applying proposition 4.4 with § = 0 and noting that > x; =|| x ||o for binary signal x, one
easily obtains:

Corollary 4.5. Givenx € {0,1}" and N is even, if | x ||o= N/2, then | Fx| = | F(1 — x)|.

As a by-product from the proof of proposition 4.4, we reveal an interesting fact, stating that
if x and y have the same Fourier magnitude, then so do (1 — x) and (T — y):

Proposition 4.6. Givenx,y < {0, 1}", | Fx| = |Fy| ifand only if |[F(1 — x)| = |F(1 — y)|.

We show in proposition 4.7 that the exact recovery of x up to trivial ambiguities (1.1) is
guaranteed when || x [[o< 3 and || x ||o> N — 3. The proof uses the fact that (Aut,(x)); is the
number of pairs of 1’s with distance* k for a binary signal x € {0, 1}". The combinatorial
nature of Aut,(x) guarantees the uniqueness of x up to trivial ambiguities.

Proposition 4.7. Givenx € {0,1}", if || x [o=0,1,2,3,N—3,N—2,N — 1 or N, then we
can uniquely recover x from |Fx| up to the trivial ambiguities (1.1).

4Note that it is a wrap-around distance. For example, xy and xy_; are considered of distance 1.
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Remark 4.8. The above does not hold for 4 <|| x ||[o< N — 4 in general. For example,
(0,0,0,0,0,1,0,1,0,0, 1, 1)Tand (0,0, 0,0, 1,0,0,0, 1,0, 1, 1)T have the same magnitude after
Fourier transform, but they are not related to each other by trivial ambiguities.

Next, we would like to discuss the uniqueness in oversampling case. Recall that the
Z-transform of a signal x € C is defined by

N—1
P2 =) xud,
k=0

which is a complex polynomial. The reciprocal polynomial P.(z) of P(z) is defined by
P.(z) = 7'Px(z""), where n is the degree of the polynomial Py(z). If the Z-transform of an
unknown binary signal Py is either reciprocal or irreducible, then x can be recover uniquely
up to conjugate inverse. Using this fact, the exact recovery up to trivial ambiguities in the
oversampling case is characterized in propositions 4.9 and 4.10.

Proposition 4.9. Given M > 2N — 1 in the setting of the oversampling Fourier PR,
x € {0, l}N, ifx, =xy_1_nforalln =0,1,...,N— 1, then we can recover x uniquely.

Proposition 4.10. Given M > 2N — 1 in the setting of the oversampling Fourier PR, we
can recover a random unknown binary x € {0, 1} uniquely up to the equivalence relation

defined by y, = xy_1_, with probability at least IO;Nfor a constant ¢ > Q.

Note that the factor I%%N in proposition 4.10 is a lower bound. In fact, there is a conjecture
in [45] that most of all polynomial with {0, 1} coefficients are irreducible. If it holds, a much
better lower bound can be expected.

4.2. Extensions to other sampling schemes

We extend the analysis of theorem 4.1 to the oversampling case, STFT, and FROG in theorems
4.11-4.14, respectively. Also, it can be extended to {0, a}", {—a, a}" simply by scaling,
which are omitted.

Theorem 4.11. Let M > N, given x € {0, 1}, y € [0, 11", if | Fnomx| = |Fnomy|, then
y€1{0,1}¥ and || y[lo=|| x [lo.

Theorem 4.12. Given x € {0,1}" and y € [0, 11", if x and y have the same STFT under
non-zero constant window, with W > L, as defined in (2.5), then y € {0, 1}V,

Theorem 4.13. Given x € {0, 1}" and y € [0, 11", if x and y have the same FROG trace
(2.6), then y € {0,1}¥ and || y o= x [l

Theorem 4.14. Given x € {—1,1}" and y € [-1,11", if x and y have the same FROG
trace, then 'y € {—1,1}".

Remark 4.15. Unlike corollary 4.3, the number of 1’s in x is not necessarily the same as
the number of 1’s nor —1’s in y. For example, if we take x = (1, DT and y=(1, —1)T, then x
and y have the same FROG trace.

5. Denoising

The preceding sections focus on the noiseless case, where the measured data we obtain is
b = | Fx|. However, noise is inevitable in practice and there is a need to develop denoising

8
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techniques for phase retrieval. For this purpose, we consider a corrupted measurement
b = b + n with a noise term 7. In the proof of theorem 3.5 (specifically lemma A.1), we
reveal that F~'(b © b) = Aut,(x). If the noise 7 is small enough, then 7~ (b ® b) can be
approximated by F'(b ® b), which is equivalent to Aut,(x). Proposition 5.1 is about the
approximation error.

Proposition 5.1. leen e >0, x € C"\{0}, b = |Fx|, b = b + n for some noise n € CV,
if Inlee < min{W;H -, 5. 1}, then || F~ ' ©b) — Auty(x)]| 0 < €

Ideally, it would be helpful to analyze the error to the ground-truth signal, which is
unfortunately impossible due to trivial and non-trivial ambiguities.

In the following, we restrict the ground-truth signal x € {0, 1}" and observe a denois-
ing scheme based on proposition 5.1 often gives good results. For binary signal x, we know
Aut,(x) € ZN . If the noise 7 is small such that || F (b ® b) — Aut,(x)|| < 1/2, we canround
off each entry of F ‘l(l; ® I;) to the nearest integer to perform denoising. Since (Aut,(x)) is
the number of pair of 1’s with distance , | F~'(b ® b) — Aut,(x)||., > 1/2 means the mea-
surements cannot give us the true number of pairs of 1’s with distance k. In this circumstance,
one should not expect to have a successful recovery.

Proposmon 5.2. Givenx c {0, l}N\{O} b =
Imllc < grapcs then | F~'b © b) —

S if

Since || x]jo < N, it is straightforward to have corollary 5.3. We can also express the error
analysis in proposition 5.2 in terms of signal-to-noise ratio (SNR).

Corollary 5.3. Given x € {0,1}", b = |Fx|, b = b + 1 for some noise n € CV, if |0~
o then | F~1(b © b) — Auty(x)|| o < !

Recall SNR is defined by

[l

Il

Corollary 5.4 presents a condition to safely round off each entry to 0 and 1.

Corollary 5.4. Given x € {0,1}"\0, if

SNRdB =10 loglo

SNR;p > 10 log,,(64) + 30 log,,]x]l0s

then | F~'(b © b) — Aut,(x)||~ <
The proposed denoising scheme, referred to as rounding scheme, is described as follows:

given a corrupted measurement b € CV,

(a) Round off each entry 7! (5 ® 5) to nearest integer to get the autocorrelation Aut,(x).
(b) Calculate b = |/ F(Aut,(x)), where the square root is taken entrywise.
(c) Solve the minimization problem:

x* = arg min|| |Fx| — b|j3 s.t.x<[0,1]". (5.1)

(d) Round off each entry of x* to be either 0 or 1.

We compare the proposed scheme with a naive scheme with the following steps: given a
corrupted measurement b & CV,
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Algorithm 1. Fourier phase retrieval subject to a box constraint (5.1) via ADMM.

Input: b and two positive parameters p,, p,

Initialize k = 0, w® = 0,d° = 0, " = 0,z° = be’® with a random vector ¢
1 while stopping conditions are not satisfied do

2 X = (o + ) (1 FEE 4 Frd o+ poyf — wh)

3 Y = min(max(* ! 4+ wk/p,,0), 1)
4 ! = prox,, (Fx**!' —d*/p))

5 d =d' 4 py @ — FAkt

6 week.\'+l — wk +p2(xk+l _y/<+1)

7 k=k+1

8 end while

Output the solution x* = x*

Naive scheme

Rounding scheme

-5 3

10° 10 10°
oy Py

10 10 10t 10° 102 10°

Figure 1. Influence of p;, p, on the naive scheme (left) and the rounding scheme (right)
in terms of success rates when SNR = 16 dB and || Xre|lo= 5 for xne of length 50.

(a) Solve the minimization problem (5.1).
(b) Round off each entry of x* to be either 0 or 1.

Both rounding and naive schemes require to find a solution to (5.1), which can be solved via
the alternating direction methods of multiplier (ADMM) [46]. We summarize in algorithm 1 for
Fourier phase retrieval subject to the [0, 1]-box constraint (5.1) via ADMM; for more details,
please refer to [30]. Notice that ADMM requires two parameters: p; and p,. We examine the
effects of these two parameters on the naive scheme and the rouding scheme in terms of suc-
cess rates. We consider a binary vector of length 50 with 5 nonzero element as the ground-truth
Xirye, Which is contaminated by noise with SNR = 16 dB. We choose p,, p, among a candidate
set of {10’6, 1075,107%, 1073, 10’2} and plot the success rates in figure 1 based on 1000 ran-
dom realizations; we declare a trial is successful if || | FXecovered| — & < 107°. We observe no
significant difference when p, = p, and hence we choose p; = p, = 107> for both rounding
and naive schemes throughout the experiments. Figure 1 also shows that our rounding scheme
outperforms the naive scheme when p; = p,.

5.1. Fourier phase retrieval

We then compare the performance of both schemes in terms of success rates. We consider the
ground-truth signal x,. is a binary vector with different combinations of sparsity and noise

10
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_Naive scheme Rounding scheme

Number of nonzero elements
=)
o

Number of nonzero elements

32 24 16 8 0 32 24 16 8 0
SNR (dB) SNR (dB)

Figure 2. Comparison of the naive scheme (left) and rounding scheme (right) in terms
of success rates of Fourier phase retrieval for a signal of length 50. The value at each
combination of sparsity and SNR is based on 1000 random realizations.
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Figure 3. Comparison of the naive scheme (left) and rounding scheme (right) in terms
of success rates of Fourier phase retrieval for a signal of length 100.
levels in the Fourier measurements. In particular, we examine ten sparsity levels (1,2, ..., 10)

and generate the noisy measurements b by adding Gaussian noise with SNR = (36,32, ...,0)
dB. We plot the success rates of recovering signals of length 50 and 100 based on 1000 random
realizations in figure 2 and 3, respectively. Compared to the naive scheme, the rounding scheme
works much better when the signal is sparse, which is expected by proposition 5.2 that sparser
signals allow for larger tolerance of the noise. According to corollary 5.4, the exact recovery
bound of SNR is calculated as 18 + 30 logo || x ||o, which aligns well with figures 2 and 3.
Figure 4 gives some examples on false reconstructions, which implies that one scheme does not
dominate the other, as there exist examples when the naive scheme succeeds and the rounding
one fails, and vice versa. The conclusion that the rounding scheme is better is based on the
success rates.

5.2. Extension to oversampling Fourier transform

One may extend our method to oversampling schemes to find the periodic autocorrelation or
the regular autocorrelation. We conduct numerical simulations for this case, while leaving the

1
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il il
|l

Figure 4. Failed reconstructions by the naive scheme (left) and the rounding scheme
(right), when the other scheme succeeds. The ground-truth signals are plotted on the
top, while the reconstructed ones are on the bottom.
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Figure 5. Comparison of the naive scheme (left) and rounding scheme (right) in the case
of oversampled Fourier phase retrieval.

theoretical analysis for the future investigation. When the number of measurements do not
match the number of coefficients in autocorrelation, one can perform a polynomial regression
and round off to the nearest integer to find the autocorrelation, following equation (A.2). The
extension for the rounding scheme is summarized as follows, similar for the naive scheme.

(a) Use polynomial regression to estimate the degree 2N —1 polynomial A(z) by
A5 = .

(b) Round off each coefficient of A(z) to the nearest integer to get the polynomial B(z) with
Aut(x) as its coefficient.

(c) Calculate by = 1/ I Ble )

(d) Solve the minimization problem:

x* = arg min|| |Fyx| — b||3 s.t.x € [0, 1]V (5.2)

(e) Round off each entry of x* to be either O or 1

Again, we compare the performance of the naive scheme and the rounding scheme in terms
of success rates. We consider the ground-truth signal x., is a binary vector of length 50 with
different combinations of sparsity and noise levels. We take 99 oversampled Fourier magnitude

12
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measurements for each signal, i.e. N = 50, M = 99 in (2.1). We consider ten sparsity levels
(1,2,...,10) and generate the noisy measurements b by adding Gaussian noise with SNR
= (36,32,...,0)dB. In figure 5, we plot the success rates based on 1000 random realizations,
which shows the rounding scheme outperforms the naive one.

6. Conclusions

In this paper, we improved upon an autocorrelation-based characterization of Fourier phase
retrieval. We discuss several choices of regularization terms and measurements. Our analysis
suggested that a gradient-based regularization, i.e. || V"x ||, is redundant to the magnitude
measurements, thus not helpful to phase retrieval. Furthermore, we proved that binary signals
can be recovered by imposing a box constraint. We also presented ambiguities and uniqueness
for binary phase retrieval. Finally, we proposed a denoising scheme suggested by characteri-
zation theorems. Since the proposed denoising scheme involves rounding, it is interesting to
extend to 2D images, in which the measured data are often integer-valued. This will be our
future work. Another future direction involves theoretical analysis of oversampling schemes
and noisy measurements for phase retrieval.
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Appendix A. Proof of theorems 3.5 and 3.6

To prove theorem 3.5, we introduce lemma A.1 and A.2. Note that lemma A.1 is a periodic
version of a similar result in [47, p 215] and lemma A.2 is Parseval’s theorem.

Lemma A.1. F(Aut,(x)) = |Fx| © | Fx|, Vxe CV.

Proof. It is straightforward that for allj = 0, 1,...,N — 1, we have

N—1N-1
(FAU@0); => > Xy Xaw™
m=0 n=0
N—1 N—1 N—-1 N—-1
=2 > el = (3w x)
m=0 n=0 m=0 n=0

=(Fx)(Fx); = [(Fx);|*.
O

Lemma A.2 (Application of Parseval’s theorem). Given x,y € CV, if | Fx| = |Fy|, then
1% 2=l y[l2-

13
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. 1 . .
Proof. Since W}— is unitary, we have

1 1 1
= |—=F¥2 = —=l1FN 2 = —=Il|Fx| ]2 = || ]2-
I3l = 2 Pl = <l 5 o = 17 o = [l

O

Proof of theorem 3.5. (a) = (b). Suppose |Fx| = |Fy|, by lemma A.1, F(Aut,(x))
= |Fx| ® | Fx|. Hence, Aut,(x) = F (| Fx| © | Fx|) = F (| Fy| @ | Fy|) = Auty(y).
(b) = (a). Suppose Aut,(x) = Aut,(y). By lemma A.1, we have |Fx| = \/F(Aut,(x))

= /F(Aut,(y)) = | Fy|, where the square root is taken entrywisely.
(a) = (c). By the convolution theorem, we have Vv & CVandj=0,1,....N—1,

(F(v'x); = (Fv)j X (Fx)),
thus leading to
|(F(vxx)),| = [(Fo),| [(Fx),.

Similar result holds for F(vxy). Since |Fx| = |Fy| (by assumption), we have |F(v+*x)]
= |F(v+y)|, which implies that || v x x ||,=|| v * y ||, by lemma A.2.

(c) = (a). Suppose || v x x ||;=|| v* y|, for all v € CV. Since F is invertible, we can
choose v, = F e, € CV. Then we have

o3 = | fﬂvk*x)uz
N 1 1 N-1
= o (Fwwn = 3 1o P,
Jj=0 J=0

lel 1
=52 eI = GIFof.
j=0

Similarly, we have [|[vgxx| = [[viyl3 = L|(Fy)l|* and hence | Fx| = |Fy. O
Proof of theorem 3.6. (a) = (b) Define

N—-1

Ay =21 ) (A, (A.1)

n=—(N—1)
and similarly for A,(z). Note that

Zrtk(N 1) 2mik 2mi k}\? 1)) 2mik

e Ax(e™ W) = |(Fux)l* = [(Fuynl” = ¢ Ayle™ M), (A.2)

forallk =0,1,...,M — 1. Since A, and A, are polynomials of degree at most 2N — 1, their
coefficients are determined by |Fyx| = |Fyy|, which is a system of M linear equations with
M > 2N — 1. Thus, Aut(x) = Aut(y).

(b) = (a). Suppose Aut(x) = Aut(y). Then A;(z) = Ay(2). Since M > 2N — 1, we have

2mik(N—1) 2mik Zrlk(N 1)) 2mik

(Fuxn>=e o Ale M )=e Aye™ ) = |[(Fuyils (A3)
forallk=0,1,...,M — 1.

14
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-2 -1.5 -1 -0.5 0 05 1 15 2

Figure B.1. Tllustration of theorem 4.1 with « = Oand = 1 when x = (1, 0). The plane
constraint is y; +y, = 1, indicated by the red line. The sphere constraintis y} 4+ y3 = 1,
indicated by the blue circle. The box constraint is 0 < y,,y, < 1, indicated by the green
square. The solutions to the problem (Q) lie on the intersection of these 3 sets, indicated
by the black points. Both black points are ambiguous due to corollary 4.5.

It remains to prove that (a) implies Aut,(x) = Aut,(y) and [Jvxx|, = [lvxy|, Vv € CV.
This directly follows from (a) = (b) and (a) = (c) in theorem 3.5 by considering M = N in
equation (A.3). O

Appendix B. Proof of theorem 4.1 to corollary 4.3

We given a geometry interpretation to facilitate the proof of theorem4.1. Fora = O and 5 = 1,
we have y € [0, 1]. Lemma A.2 implies that ymust lie on a sphere, while _ x; = Yy, implies
that y must lie on a plane. Therefore, the solution y must be on the intersection of these three
sets, as illustrated in figure B.1.

Proof of theorem 4.1. Rewrite [(Fx)o| = |(FY)|, we know that y lies on the plane
P:> x; = >y, which is convex. The box constraint y € [c, B1V is also convex. Therefore,
we define C := P N [a, 8]V, which is a convex compact set. By Krein—Milman theorem [48,
theorem 3.23], C is the closure of the convex hull of its extreme points.

We claim that the set of extreme points & = {z;};cz is a subset of points in {c, S} with
the same number of o’s and 3’s as x. Given w be an extreme point of C, assume that w
does not belong to {a, B}. Since Y- w; = > x; and x € {a, B}", there exists some i < j such
that w;, w; # « and 3 (otherwise, we will have w € {a, 8}"). Choose small € > 0 such that
wi,w; > a+ € and w,w; < B —e Let wy = (wo, wr,. .., Wi+ €...,w;—€...,wy_1)"
and w;, = (wg, Wy, ..., Ww; —e,...,wj—i—e,...,wN,l)T. Then w;,w, € C and w = %(wl +
w,), contradicting the fact that w is an extreme point of C. Hence, we have w € {a, B}V, It
follows from ) w; = > x; that w has the same number of &’s and 3’s as x. Since & is a finite
set, the convex hull of £ is compact and thus equal to C.

Since y € C, we write y = > _ \z; for some 0 < \; < 1, > \; = 1. Since z; has the same
number of a’s and (3’s as x, then fix) = fiz;) for all i € Z, where f(w):= ||w]|3, which is a
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strictly convex function. By lemma A.2, we have f{y) = f(x). If y does not belong to &, then
we have

FO) <D Nf@) =D Nif(x) = f0) YN\ = fx),

which is a contradiction. So y € £, i.e. y € {«, B}N and has the same number of a’s and 3’s
as x. O

The proof of theorem 4.2 is based on the convexity to show that every y lies in the convex
hull with some entries y; having smaller value than a.

Proof of theorem 4.2. Since x € £V, we have ||x||3 = Nc. By lemma A.2, we have ||y|3
= |lx]l3 = Ne*.
Note that foralli = 1,2,...,N,y; = > Aizi forsome > Ay = 1,0 < A\ < 1,z € € and

yi| = ‘Z AiZik| < Z ik |zik| = Z AikC = c.

If there exists some y; such that y; € convE\E, then

yi| = ‘Z Airzik| < Z ik |zik| = Z Airc = c.

Now,

I3 =Sl < Y2 = net

which leads to a contradiction. Thus, we must have y; € £ foralli = 1,2,...,N,ie. y€ EVO

Proof of corollary 4.3. The factthaty € {—1, 1} follows from theorem 4.2 directly. Now,
|(Fx)o| = |(Fy)o| implies that > ' x; = +3"7" " yi. Denote the number of 1’s in x by ., and
define ny similarly, then we have n, — (N — ny) = £(n, — (N — ny). We either have n, = n,
or n, = N. The result now follows. O

Appendix C. Proof of propositions 4.4-4.10

Proof of proposition 4.4. Suppose | Fx| = |F(cT — x_)\, ie. (Fx)o = e?(F(cl1 — x)), for
some @ € [0,27). Thus, > x; = e (Nc — Y x;), ¢ = HNL'Q Sxi

On the other hand, suppose ¢ = =2 3™ x; for some 0 € [0, 27). Since Fx + F(cl —
x) = ¢F1 = Ncey, one has (Fx);+ (F(cl —x)); =0 for j=1,2,...,N — 1. In particular,
we obtain |(Fx);| = |(F(1 —x));| and clearly |(Fx)o| = |[(F(cT —x))| due to the choice

of c. O

Proof of proposition 4.6. Similar to proposition 4.4, we have

((F( = x)| = |[(Fx),| = [(Fy;| = [(FOA =)
forj=1,2,...,N— 1. Whenj = 0, we get

(FA=x)o=N—(Fx)o =N = (Fo = (F(T = .

Therefore, | F(1 — x)| = |F(1 — y)|. Similar analysis for the other direction. O
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Proof of proposition 4.7. Forabinary signal x € {0, 1}", (Aut,(x)); is the number of pairs
of 1’s with distance k. As a result, when || x ||o is either too small or too large, the uniqueness
can be guaranteed thanks to the combinatorial nature of Aut,(x).

When || x||o= 0, x is the zero vector and hence the recovery is unique.

When ||x|lo= 1, we get x = ¢ for some k, which is related by spatial shifts to each other.
Therefore, the recovery is unique up to trivial ambiguities.

When || x||op= 2, we obtain the Aut,(x) from | Fx| by theorem 3.5. Without loss of generality,
up to spatial shift, we assume xo = 1. Let k be the smallest positive number such that (Aut,(x)),
is nonzero. Since (Aut,(x)); is equal to the number of pairs of 1’s with distance k and there
are only two 1’s in x, i.e. only one pair of 1’s. This pair must contain x(. Say the pair contains
xo and x;. We know that x; and xo has distance k. Hence, j = k or N — k, i.e. we either have
X0 = x; = 1 or xo = xy_x = 1, which are spatial shifts of each other.

When ||x|jo= 3, given | Fx|, we obtain Aut,(x). Let k be the smallest positive number such
that (Aut,(x)); is nonzero. Since there are three 1’s in x, there are 3C, i.e. 3 pairs of 1’s in x.
Thus, (Aut,(x))r = 1,2 or 3. By spatial shift, we may assume one of the pairs contains xo and
Xk

If (Aut,(x)); = 2 or 3, then there is still at least one pair of 1’s containing xg or x; and the
remaining 1. If it contains x, then the 1 should lie in xy_g since x; is already occupied. If the
pair contains xy, by similar reasoning, the 1 should lie in x;. In both cases, all three 1’s are
placed and these 2 cases are spatial shift of each other.

If (Aut,(x))r = 1, let [ be the smallest positive number greater than k such that (Aut,(x)); is
nonzero. By considering the position of 1, we have 4 cases: xy_; = 1, xy_i4x = 1, x; =1 or
Xi+x = 1. The cases that xy_; 14 = 1 and x; = | are impossible, otherwise it will contradicts
the minimality of /, k and the fact that (Aut,(x))x = 1, i.e. there is a pair of 1 with distance
(I — k) < ['while this pair is not the pair corresponding to the pair of distance k. Hence, we either
have xo = xx = x4 = 1 or xo = xx = xy—; = 1. Note that these two cases are equivalent to
each other through conjugate inverse and spatial shift.

The cases when || x|[p= N — 3, N — 2, N — 1 or N now follow from above. If || x [[(= N — 3,
N—2,N—1orN, then ||[T — x| =0, 1,2 or 3. Hence, we can recover (1 — x) up to trivial
ambiguities. Since x = 1 — (T — x), the recovery of x is unique up to trivial ambiguities. [

To prove propositions 4.9 and 4.10, we need to introduce some results in algebra. Specifi-
cally, theorem C.3 and C.4 are summarized from the proof of [31, theorem 2.1].

Theorem C.1 (Theorem1in[49]). Letx € {0, 1}" withxo = xy_ = 1, the Z-transform
of x is irreducible with probability at least ¢ /log N for some constant ¢ > 0.

Theorem C.2. [50] Ifan f(x) is 0, I reciprocal polynomial and its constant term is 1, then
f(x) is not divisible by a non-reciprocal polynomial in Z,[x].

Theorem C.3. Givenx € {0, 1}" and Aut(x), if Px(2) is reciprocal, then there does not exist
y € {0, 1}V such that y # x and Aut(y) = Aut(x).

Proof. Define A, by equation (A.1). Then A, = P,P,. Write P, = Sfifo - -fi be its fac-
torization such that each f; is irreducible. It follows from theorem C.2 that each f; is also
reciprocal. If there exists some y € {0, I}N such that Aut(y) = Aut(x). Then Pyi’y =A,=
Ay = PyPy = f2f7 ... f2.1f £ divides Py, we also have f; = f; divide Py, and vice versa. So
(Py/ f)(Py) i) = f2f} ... f2. Inductively, we have Py = Py = fifo... fy = Py ie.x =y.0J
Theorem C.4. Given x € {0,1}", Aut(x), if Px(z) is irreducible, then the only y &
{0, 1}V satisfying Aut(y) = Aut(x) is either x or z, which is defined by z, = xy_1_p. for
n=0,1,...,N—1.
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Proof. Similar to the above, we have Py13y = P.P,. Since P, is irreducible, we have either
P, divides Py or P,. Suppose the first case. We have Py divides P,. Together with the fact that
P, divides P, this implies P, = Py and P, = i’y, i,e, y = x. Similarly, the second case implies
that P, = fDx, i,e, yis the conjugate inverse of x.

O

Proof of proposition 4.9. By theorem 3.6, Aut(x) is uniquely determined when M > 2N —
1. Note that P,(z), the Z-transform of x, is a reciprocal polynomial since x is equal to its conju-
gate inverse. According to theorem C.3, there does not exist y # x such that Aut(y) = Aut(x).
Therefore, we can uniquely recover x from Aut(x) up to trivial ambiguities. |

Proof of propsotion 4.10. Theorem C.I1 shows that for a random binary x with

X0 = xy—1 = 1, the Z-transform of x (P,(z)) is irreducible with probability at least log ~ for

a constant ¢/ > 0. Note that we have 22 binary signals under the constraint xo = xy_; = 1

while we have 2V binary signals in total. For a random binary x, P,(z) is irreducible with prob-
e U . U N .« .

ability at least %10;—1\/ l%f—N, where ¢ = ¢ > 0Ois a fixed constant. The remaining now follows

from theorem C.4 directly. U

Appendix D. Proof of theorems 4.11-4.14

Proof of theorem 4.11.  Write | Fy_yx| = |FymX| with
¥ = (x0,X1,.-.,xy_1,0,0,...,00" € {0, 1}.

Similarly, we write |Fy_uy| = |Fu_uy| and define y. Note that x € {0, 1}¥, y € [0, 1] and
| FarsmX| = | Farmy|. By theorem 4.1 withaw = O and 3 = 1, one has y € {0, 1}" and ||y||o =
|| X||o- Since X and y are obtained by appending zeros to x and y, we have y € {0,1}" and
[¥lo = 1I¥llo = IXllo = [|x[lo- O

Proof of theorem 4.12. Without loss of generality, we may assume the windows w is an
all one vector 1 by scaling. Recall the STFT of x is defined by

N—1
—2mkni
Znm = ZkamL—ke N
k=0
Since W > L, foreach! =0, 1, ..., N — 1, there is some m such that w,,;_; = 1. For such m,

define X; = xgw,,. 4 forallk = 0,1,...,N — 1 and define yin a similar way. Then, x € {0, 1}V
and y € [0, 11V by our assumption on w.

Now, |Fx| =z, =|Fy. Applying theorem 4.1 with « =0 and =1, we have
y€{0,1}". In particular, y, = yw,—; =3, € {0,1}. Since [ is arbitrary, we have y €

{0, 1} O
Proof of theorem 4.13. Denote [Z,,|* and |tiy.,,|* be the FROG trace (2.6) of x and y,
respectively. We consider m = 0 and define zo = (200, 21,0, - - - » zN_l,o)T and similarly for w.

As x, € {0,1}, we obtain z,9 = x2 = x, and w,o = y> € [0, 1]. Now, our assumption trans-
lates to [Zxo| = |tro| fork =0,...,N — 1, i.e. |Fzo| = |Fwo|. Since zo € {0, 1}" and wy €
[0, 11, we have wy € {0, 1}" by theorem 4.1 with « = 0 and 8 = 1, i.e. w,o = ¥ € {0,1}
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foralln =0,...,N — 1. Therefore, we obtain y € {0, I}N, which implies that y = wj. Since
x = 70, we have | Fx| = | Fzo| = |Fwy| = |Fy| and || y [|o=]| x ||o by theorem 4.1. O

Proof of theorem 4.14. The proof is similar to the proof of theorem 4.13 by noting that
Zn0 = x> =1 € {—1, 1} and using theorem 4.3. O

Appendix E. Proof of proposition 5.1 to corollary 5.3

Proof of proposition 5.1.

|IF 7B @b) — Auty(x)|| = | F ' O b) — F ' © b)|«

<|F'bob)—F ' bob),=—=|bob—bob|,

1
N
<peb-b0blx=2600+n0n|x

€ €
< 2/b]lscllnllc + 1% < RER

where the first and second inequalities come from the fact that ||x||. < [|x[|2 < V/N||x| o for
all x € CV and the third inequality comes from the fact that || x ® y [|.o<|| X ||co|| ¥ || for all
x,yc CV. O

Proof of proposition 5.2. Note that

N—1
—2mkni
Xr€ N

by =

N—1
<3 bl = lxlh = lixllo.
k=0 k=0

S0 [ & [lo<[] x lo- 1 1 _
Let ¢ =1/2, we have [|n|« < o S sl — aps- Also, since x#0, | x]|> L

Ml < m < § < min{$, 1}. The remaining follows from proposition 5.1. O

Proof of corollary 5.3. Whenx = 0, thend = | Fx| = 0, Aut,(x) = 0andb = b + 1 = .

|IF7'® ©b) — Auty(®)]| = [|F ' M O 0l < | F 'm0l

1 - 1
64N% " 27

1 2
= © < O] o S o <
JnImenll < lnonlx < |

When x #0, note || x o< N and |9l < gy < SHJICHO' The rest is straightforward from

proposition 5.2. (]

Proof of corollary 5.4. The inequality

SNRgp > 10 log((64) + 30 log,||x||0

Ilx13

2

e 64||x||3. Since x € {0,1}", ||x|3 = ||x[|o. Thus, we have |n|% <
iz

is equivalent to

1
64]x)2

Imlf3 <
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