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Abstract
Recovering a signal from its Fourier magnitude is referred to as phase retrieval,
which occurs in different fields of engineering and applied physics. This paper
gives a new characterization of the phase retrieval problem. Particularly useful
is the analysis revealing that the common gradient-based regularization does
not restrict the set of solutions to a smaller set. Specifically focusing on binary
signals, we show that a box relaxation is equivalent to the binary constraint for
Fourier-types of phase retrieval. We further prove that binary signals can be
recovered uniquely up to trivial ambiguities under certain conditions. Finally,
we use the characterization theorem to develop an efficient denoising algorithm.

Keywords: binary signals, box relaxation, ambiguities, phase retrieval

(Some figures may appear in colour only in the online journal)

1. Introduction

In many fields of physics and engineering, one can only measure the magnitude of the Fourier
transform of a discrete signal x ∈ CN . Denote the discrete Fourier transform byF . Recovering
x from |Fx| is referred to as phase retrieval (PR), since the phase is completely lost in measure-
ments. Phase retrieval originated from x-ray crystallography [1, 2], trying to determine atomic
and molecular structures of a crystal. This approach was later used to reconstruct an image
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of a sample with resolution at a nano-meter scale from its x-ray diffraction pattern, known as
coherent diffraction imaging (CDI) [3]. The PR techniques now occur in various applications
such as astronomy [4] and laser optics [5]; please refer to [6] for a contemporary overview.

Phase retrieval is a very challenging problem largely due to its nonconvexity and solu-
tions being non-unique [7]. Specifically for the nonuniqueness (a.k.a. ambiguities), there are
trivial ambiguities and non-trivial ambiguities [6]. Trivial ambiguities of |F y| = |Fx| can be
summarized as follows:

global phase shift: yk = xk · eiφ0
conjugate inverse: yk = x−k
spatial shift: yk = xk+k0 ,

(1.1)

where the indices are taken cyclically up to N, ·̄ denotes the complex conjugate, and φ0 ∈
[0, 2π), k0 ∈ Z are the phase shift and spatial shift, respectively. Note that every combination
of (1.1) is also a trivial ambiguity. Non-trivial ambiguities of one-dimensional signals can be
classified by the roots of the Z-transform of the autocorrelation of the signal [8], while almost
all multi-dimensional signals only have non-trivial ambiguities [9], since the Z-transform of
their autocorrelation being reducible is of measure zero in the space of all polynomials [8, 10].

For unique recovery of a real signal of size N in up to trivial ambiguities, at least 2N− 1
randommeasurements are needed, provided the samplingmatrix has full spark [11]. This result
was later extended to the complex case in [12, 13], requiring at least 4N− 4 measurements.
Other sufficient conditions for unique recovery include minimum phase signals [14], sparse
signals with non-periodic support [15], and signals with collision-free [16]. For s-sparse sig-
nals in RN , the number of Fourier magnitude measurements is in the order of O(s log(N/s))
[17, 18], while min{2s, 2n− 1} for random measurements [19].

In addition to taking more measurements than the ambient dimension, one often relies
on regularization to refine the solution space with an attempt to reduce ambiguities. Stem-
ming from image processing, a common choice is a gradient-type formalism. For example,
Chang et al [20] considered the total variation, which is the �1 norm of the gradient for phase
retrieval. Computationally,many optimization algorithms can be used to solve the (regularized)
phase retrieval problems, including alternating projections [21], Wirtinger flow [22], alternat-
ing direction method of multipliers (ADMM) [20], and a preconditioned proximal algorithm
[23].

This paper contributes to a new set of characterization theorems for phase retrieval, indicat-
ing that gradient-based regularization is redundant to the magnitude measurements. We also
impose additional constraints on the underlying signal in order to resolve the ambiguities. In
particular, we focus on binary signals [24] due to its simplicity and a wide variety of appli-
cations such as bar code [25, 26] and obstacle detection [27]. Specifically for phase retrieval,
binary signals are considered in magnetism to describe the x-ray energies of some chemical
compound films such as the SmCO5 film [28], and in block copolymers to describe films [29].
It was observed empirically in [30] that incorporating a box constraint into the ADMM frame-
work, referred to ADMMB, often gives an exact recovery of binary signal, which motivates us
to give a theoretical explanation. In this paper, we prove that the phase retrieval problem with
binary constraint is equivalent to phase retrieval with box relaxation.We describe a new type of
trivial ambiguities for binary phase retrieval and show that unique recovery is possible under
certain conditions. A related work [31] proved binary signals that cannot be uniquely recovered
by Fourier magnitude is a zero-measure set. Finally, we take the noise into consideration and
develop a denoising algorithm.

Our contributions are three-fold: (1) we give a characterization theorem (theorem 3.5),
revealing the fact that ‖ ∇nx ‖2 is completely determined by |Fx| for an arbitrary integer
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order n. (2) We give thorough analysis of phase retrieval problem in a binary setting. We
show that the box relaxation to binary constraint is equivalent to the original binary phase
retrieval problem (theorem 4.1). We then describe a new type of ambiguities and guarantee the
uniqueness of binary phase under certain conditions. (3) We conduct a series of error analysis
(propositions 5.1, 5.2 and corollary 5.3) of phase retrieval, which motivates a new denoising
scheme.

The rest of the paper is organized as follows. In section 2, we set up notations and review
some practical ways of taking magnitude measurements. In section 3, we give a new charac-
terization theorem and discuss its consequences. In section 4, we prove that the phase retrieval
of binary signals can be relaxed to the box constraint. Furthermore, we show it is possible to
relax the set of vectors having the same norm to its convex hull. In section 4.1, we describe
a new type of ambiguities for binary signals and show that the unique recovery of binary sig-
nals is possible under some special circumstances. Several extensions from the Fourier case to
other types of sampling schemes are presented in section 4.2. In section 5, we estimate recover
accuracy with respect to noise and propose a denoising algorithm that empirically yields better
performance compared to a naïve approach. Section 6 concludes the paper. Appendix provides
all the proofs for the theorems presented.

2. Preliminaries

2.1. Notations

Let x, y∈ CN be arbitrary signals, we define some notations that are used throughout the paper:

• xk denotes the kth entry of x, i.e. x = (x0, x1, x2, . . . , xN−1)T .
• ‖ x ‖p denotes the �p-norm of x, i.e. ‖x‖p = (

∑N−1
k=0 |xk|

p)
1
p , where p > 0. For p = 0, we

define ‖ x ‖0 to be the �0 ‘norm’ by counting the number of its nonzero elements.
• ek’s denotes the standard basis in CN , i.e. the vector with a 1 in the kth coordinate and 0’s
elsewhere, e.g., e0 = (1, 0, 0, . . . , 0)T and e1 = (0, 1, 0, . . . , 0)T.

• FN→M : CN → CM denotes the matrix representing discrete Fourier transform (DFT), i.e.

FN→M =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...
1 ωM−1 ω2(M−1) . . . ω(M−1)(N−1)

⎤
⎥⎥⎥⎥⎥⎦
, (2.1)

where ω = e
−2πi
M . Note that 1√

N
FN→N is unitary. IfM > N, we refer it as an oversampling

Fourier matrix.
• We define

x� y= (x0y0, x1y1, . . . , xN−1yN−1),

where � denotes the Hadamard product (i.e. entrywise multiplication).
• The discrete (periodic) convolution x◦ y is defined by

(x ∗ y) j =
N−1∑
k=0

xky( j−k) mod N , (2.2)

for j = 0, 1, . . . ,N− 1.
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• The (regular) autocorrelation is defined by

(Aut(x)) j =
N−1∑
k=0

x(k+ j)xk, (2.3)

where j = −N+ 1,−N+ 2, . . . ,N− 1 and xk = 0, ∀k < 0 and k > N− 1.
• By replacing the zero boundary condition in the regular autocorrelation with periodic
boundary condition, we consider periodic autocorrelation defined as

(Autp(x)) j =
N−1∑
k=0

x(k+ j) mod Nxk, (2.4)

for j = 0, 1, . . . ,N− 1. These definitions will be used in the proofs of some interesting
results.

For the rest of the paper, we denote FN→N by F , FN→M by FM , and omitmodN if the context
is clear.

2.2. Sampling schemes

In practice, there are numerousways [32–37] to takemagnitudemeasurements of a signal. This
paper develops new theoretical characterizations in PR focusing on the following sampling
schemes.

• Classic Fourier transform. One aims to find an unknown signal x ∈ C
N from the

magnitude measurements b := |Fx|, i.e.

bn =

∣∣∣∣∣
N−1∑
k=0

xke
−2πkni
N

∣∣∣∣∣ , ∀n = 0, 1, . . . ,N − 1.

• Oversampling Fourier transform. An M-point (M > N) oversampling discrete Fourier
transform (DFT) of a signal x ∈ CN is defined by

bn =

∣∣∣∣∣
N−1∑
k=0

xke
−2πkni
M

∣∣∣∣∣ , ∀n = 0, 1, . . . ,M − 1.

One wants to recover an N-point signal x based on M measurements of |FMx|. A typical
choice of M is M = 2N [38], which is experimentally adopted by Miao et al [39]. Also,
a sufficient number of measurements is crucial in avoiding false solutions [40]. However,
we show in theorem 3.6 theoretically that more measurements (i.e.M � N) do not resolve
ambiguities in the noiseless PR problem.

• Short-time Fourier transform (STFT) [34, 41]. Let x ∈ CN be a signal of length N and
w ∈ CW be a window function of length W. The short-time Fourier transform (STFT) of
x with respect tow is defined as

zn,m =

N−1∑
k=0

xkwmL−ke
−2πkni
N , (2.5)

for n = 0, 1, . . . ,N− 1 and m = 0, 1, . . . ,R− 1, where L denotes the separation in time
between adjacent short-times sections, R = �N+W−1

L � denotes the number of short-time
sections considered, and wk := 0 for all k < 0 and k > W− 1.
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• Frequency-resolved optical gating trace (FROG) [32, 33, 37]. Let

zn,m = xnxn+mL,

where L is a fixed integer. The FROG trace is equivalent to the one-dimensional Fourier
magnitude of zn,m for each fixed m, i.e.

|̂zn,m|2 =
∣∣∣∣∣
N−1∑
k=0

xkxk+mL
−2πkni
N

∣∣∣∣∣
2

, (2.6)

for n = 0, . . . ,N − 1,m = 0, . . . , �NL � − 1.

Both STFT and FROG make experimentally plausible means of additional phaseless mea-
surements to improve the accuracy of phase retrieval. For example, the STFT measurements
can be obtained by a set of shifted versions of a single mask, while FROGmeasures the product
of the signal with a shifted version of itself. It was claimed in [41] that the STFT magnitude
leads to better performance than an oversampledDFT with the same number of measurements.

3. Regularization and constraint in phase retrieval

Mathematically, the Fourier-type of phase retrieval problems in one dimensional case is
formulated as follows:

Find x ∈ C
N , s.t. |FMx| = b.

It is desirable and often necessary to impose some regularization term in order to regularize the
solution and avoid ambiguities in PR as much as possible. A classic choice is the use of ‖ x ‖2
and ‖ ∇nx ‖2 to enforce the smoothness of an underlying signal x, where ∇n is the nth order
discrete finite difference operator. For simple notations, we define∇0x := x. In other words, a
regularized PR problem can be expressed as

minimize
x

‖∇nx‖2 s.t. |Fx| = b.

Unfortunately, theorem 3.1 shows that ‖ ∇nx ‖2 is completely determined by |Fx|, which
implies that such gradient-based regularization cannot resolve any ambiguities. But on the
other hand, adding gradient-based regularizations may help to escape from local optima due
to the nonconvex nature of the phase retrieval problem.

Theorem 3.1. Given x, y∈ CN, if |Fx| = |F y|, then ‖ ∇nx ‖2=‖ ∇n y ‖2, for all
n = 0, 1, 2, . . . .

One may wonder whether it is helpful to take more measurements and then impose regu-
larizations. Theorem 3.2 implies that the gradient-type regularization is insufficient for the PR
problem with more than phaseless 2N− 1 measurements.

Theorem 3.2. Let M � 2N− 1, given x, y∈ CN, if |FMx| = |FM y|, then ‖ ∇nx ‖2
=‖ ∇n y ‖2, for all n = 0, 1, 2, . . . .

Remark 3.3. When N < M < 2N− 1, gradient-based regularization may help. For
example, let x = (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1) and y= (0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1). Both of them
are of length 11 and have the same |FMx| = |FM y| for M = 12, but ‖∇3x‖22 = 7.5 
= 7
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= ‖∇3 y‖22, where the third order finite scheme∇3x is defined by (∇3x)k := − 1
2 xk−2 + xk−1 −

xk+1 +
1
2 xk+2.

To prove theorems 3.1 and 3.2, we need to review a classical result that Aut(x) is determined
by |F2N−1x| and vice versa, as stated in theorem 3.4.

Theorem 3.4. ([9, 31]). Given x, y∈ C
N, the following statements are equivalent:

(a) |F2N−1x| = |F2N−1 y|;
(b) Aut(x) = Aut(y).

We extend this analysis to an arbitrary number of measurements (not just 2N− 1) as well as
to period autocorrelation (from regular autocorrelation). Specifically in theorem 3.5, we show
that whenM = N, Autp(x) and ‖ v ∗ x ‖2 for v ∈ CN are determined by |Fx|, and vice versa.
A similar result forM � 2N− 1 is presented in theorem 3.6.

Theorem 3.5. Given x, y∈ CN, the following statements are equivalent:

(a) |Fx| = |F y|;
(b) Autp(x) = Autp(y);
(c) ‖v∗x‖2 = ‖v∗y‖2 ∀v ∈ C

N.

Theorem 3.6. Given x, y∈ CN, M � 2N− 1, the following statements are equivalent:

(a) |FMx| = |FM y|;
(b) Aut(x) = Aut(y).

Also, either (a) or (b) implies that Autp(x) = Autp(y) and ‖v∗x‖2 = ‖v∗y‖2 ∀v ∈ CN.
The converse does not necessarily hold.

Remark 3.7. ForM < 2N− 1 andM 
= N, we cannot determine the autocorrelation fromM
magnitude measurements of |FM(x)|, due to an insufficient number of measurements.

To the best of our knowledge, the equivalence of phaseless measurements to ‖ v ∗ x ‖2, ∀v
is novel in the literature, which leads to useful consequences as characterized in theorems 3.1
and 3.2. In particular, theorem 3.1 directly follows from theorem 3.5 (a)⇒ (c) and the fact that
∇nx = v∗

nx for some vn ∈ C
N . Similarly, theorem 3.2 follows from theorem 3.6.

4. Box relaxation to binary constraint

We now restrict our attention to binary signals x ∈ {0, 1}N, as another way of imposing addi-
tional prior knowledge to facilitate phase retrieval. Mathematically, we formulate the binary
phase retrieval problem as follows:

Find x ∈ {0, 1}N, s.t. |Fx| = b. (P)

Since the binary constraint is nonconvex, we relax it to a box constraint in a similar way as a
linear problem [42]:

Find x ∈ [0, 1]N, s.t. |Fx| = b. (Q)

Clearly, if (P) has a solution, then (Q) also has a solution. The question is whether we can
recover x from b through (Q). Computationally, the binary constraint in (P) can be posed as a
minimization problemof x(1− x) subject to x ∈ [0, 1]N, which can be solved via the difference
of the convex algorithm (DCA) [43, 44]. Each DCA iteration requires to a subproblem similar
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to the (Q) problem and it takes a few iterations for DCA to converge. Therefore, solving (Q)
is computationally more efficient compared to (P). Theoretically, we prove in theorem 4.1 that
all the solutions to (Q) are solutions to (P) and have the same number of 1’s as the ground-truth
signal.

Theorem 4.1. Given 0 � α < β, x ∈ {α, β}N and y∈ [α, β]N, if |Fx| = |F y|, then
y∈ {α, β}N and yhas the same number of α’s and β’s as x.

If {0, 1}N in problem (P) is replaced by a set such that every element has the same modulus,
one can also relax the problem to its convex hull.

Theorem 4.2. Suppose E is a set of complex number and there exists some constant c > 0
such that |z| = c � for all z ∈ E . Given x ∈ EN and y∈ conv EN, if |Fx| = |F y|, then y∈ EN,
where convE denotes the convex hull of E .

We have a similar version of theorem 4.1 when x ∈ {−1, 1}N.
Corollary 4.3. Given x ∈ {−1, 1}N and y∈ [−1, 1]N, if |Fx| = |F y|, then y∈ {−1, 1}N,
and the number of 1’s in y is the same as the number of 1’s in x or the number of −1 in x.

We then characterize trivial ambiguities for binary phase retrieval in section 4.1 and extend
to other sampling schemes in section 4.2.

4.1. Ambiguities and uniqueness

In addition to trivial ambiguities (1.1) for general PR, there is another type of ambiguity in the
binary setting. For example, one has∣∣F (1, 1, 1, 1, 0, 0, 1, 0, 0, 0)T

∣∣ = ∣∣F (0, 0, 0, 0, 1, 1, 0, 1, 1, 1)T
∣∣ ,

in which the two signals are not related by (1.1), but rather by switching zeros and ones. We
present this ambiguity for binary phase retrieval in corollary 4.5. In fact, this result can be
easily extended to the complex case:

Proposition 4.4. Given x ∈ C
N, |Fx| = |F (c𝟙− x)| if and only if c = 1+e−iθ

N

∑
xi for

some θ ∈ [0, 2π), where 𝟙 denotes the vector of all one’s, i.e. 𝟙 = (1, 1, . . . , 1)T.

Applying proposition 4.4 with θ = 0 and noting that
∑

xi =‖ x ‖0 for binary signal x, one
easily obtains:

Corollary 4.5. Given x ∈ {0, 1}N and N is even, if ‖ x ‖0= N/2, then |Fx| = |F (𝟙− x)|.
As a by-product from the proof of proposition 4.4, we reveal an interesting fact, stating that

if x and y have the same Fourier magnitude, then so do (𝟙− x) and (𝟙− y):

Proposition 4.6. Given x, y∈ {0, 1}N, |Fx| = |F y| if and only if |F(𝟙− x)| = |F (𝟙− y)|.
We show in proposition 4.7 that the exact recovery of x up to trivial ambiguities (1.1) is

guaranteed when ‖ x ‖0� 3 and ‖ x ‖0� N− 3. The proof uses the fact that (Autp(x))k is the
number of pairs of 1’s with distance4 k for a binary signal x ∈ {0, 1}N. The combinatorial
nature of Autp(x) guarantees the uniqueness of x up to trivial ambiguities.

Proposition 4.7. Given x ∈ {0, 1}N, if ‖ x ‖0= 0, 1, 2, 3,N− 3,N− 2,N− 1 or N, then we
can uniquely recover x from |Fx| up to the trivial ambiguities (1.1).

4 Note that it is a wrap-around distance. For example, x0 and xN−1 are considered of distance 1.
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Remark 4.8. The above does not hold for 4 �‖ x ‖0� N− 4 in general. For example,
(0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1)T and (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1)T have the samemagnitude after
Fourier transform, but they are not related to each other by trivial ambiguities.

Next, we would like to discuss the uniqueness in oversampling case. Recall that the
Z-transform of a signal x ∈ CN is defined by

Px(z) =
N−1∑
k=0

xkz
k,

which is a complex polynomial. The reciprocal polynomial P̃x(z) of Px(z) is defined by
P̃x(z) = znPx(z−1), where n is the degree of the polynomial Px(z). If the Z-transform of an
unknown binary signal Px is either reciprocal or irreducible, then x can be recover uniquely
up to conjugate inverse. Using this fact, the exact recovery up to trivial ambiguities in the
oversampling case is characterized in propositions 4.9 and 4.10.

Proposition 4.9. Given M � 2N− 1 in the setting of the oversampling Fourier PR,
x ∈ {0, 1}N, if xn = xN−1−n for all n = 0, 1, . . . ,N− 1, then we can recover x uniquely.

Proposition 4.10. Given M � 2N− 1 in the setting of the oversampling Fourier PR, we
can recover a random unknown binary x ∈ {0, 1}N uniquely up to the equivalence relation
defined by yn = xN−1−n with probability at least c

log N for a constant c > 0.

Note that the factor c
log N in proposition 4.10 is a lower bound. In fact, there is a conjecture

in [45] that most of all polynomial with {0, 1} coefficients are irreducible. If it holds, a much
better lower bound can be expected.

4.2. Extensions to other sampling schemes

We extend the analysis of theorem 4.1 to the oversampling case, STFT, and FROG in theorems
4.11–4.14, respectively. Also, it can be extended to {0,α}N, {−α,α}N simply by scaling,
which are omitted.

Theorem 4.11. Let M � N, given x ∈ {0, 1}N, y∈ [0, 1]N, if |FN→Mx| = |FN→M y|, then
y∈ {0, 1}N and ‖ y ‖0=‖ x ‖0.

Theorem 4.12. Given x ∈ {0, 1}N and y∈ [0, 1]N, if x and y have the same STFT under
non-zero constant window, with W � L, as defined in (2.5), then y∈ {0, 1}N.

Theorem 4.13. Given x ∈ {0, 1}N and y∈ [0, 1]N, if x and y have the same FROG trace
(2.6), then y∈ {0, 1}N and ‖ y ‖0=‖ x ‖0.

Theorem 4.14. Given x ∈ {−1, 1}N and y∈ [−1, 1]N, if x and y have the same FROG
trace, then y∈ {−1, 1}N.

Remark 4.15. Unlike corollary 4.3, the number of 1’s in x is not necessarily the same as
the number of 1’s nor −1’s in y. For example, if we take x = (1, 1)T and y= (1,−1)T, then x
and yhave the same FROG trace.

5. Denoising

The preceding sections focus on the noiseless case, where the measured data we obtain is
b = |Fx|. However, noise is inevitable in practice and there is a need to develop denoising

8



Inverse Problems 36 (2020) 095004 W H Wong et al

techniques for phase retrieval. For this purpose, we consider a corrupted measurement
b̃ = b+ η with a noise term η. In the proof of theorem 3.5 (specifically lemma A.1), we
reveal that F−1(b� b) = Autp(x). If the noise η is small enough, then F−1(b̃� b̃) can be
approximated by F−1(b� b), which is equivalent to Autp(x). Proposition 5.1 is about the
approximation error.

Proposition 5.1. Given ε > 0, x ∈ CN\{0}, b = |Fx|, b̃ = b+ η for some noise η ∈ CN,
if ‖η‖∞ < min{ ε

4‖b‖∞ , ε
2 , 1}, then ‖F−1(b̃� b̃)− Autp(x)‖∞ < ε.

Ideally, it would be helpful to analyze the error to the ground-truth signal, which is
unfortunately impossible due to trivial and non-trivial ambiguities.

In the following, we restrict the ground-truth signal x ∈ {0, 1}N and observe a denois-
ing scheme based on proposition 5.1 often gives good results. For binary signal x, we know
Autp(x) ∈ ZN . If the noiseη is small such that ‖F−1(b̃� b̃)− Autp(x)‖∞ < 1/2,we can round
off each entry of F−1(b̃� b̃) to the nearest integer to perform denoising. Since (Autp(x))k is
the number of pair of 1’s with distance k, ‖F−1(b̃� b̃)− Autp(x)‖∞ � 1/2 means the mea-
surements cannot give us the true number of pairs of 1’s with distance k. In this circumstance,
one should not expect to have a successful recovery.

Proposition 5.2. Given x ∈ {0, 1}N\{0}, b = |Fx|, b̃ = b+ η for some noise η ∈ CN, if
‖η‖∞ < 1

8‖x‖0 , then ‖F
−1(b̃� b̃)− Autp(x)‖∞ < 1

2 .

Since ‖x‖0 � N, it is straightforward to have corollary 5.3. We can also express the error
analysis in proposition 5.2 in terms of signal-to-noise ratio (SNR).

Corollary 5.3. Given x ∈ {0, 1}N, b = |Fx|, b̃ = b+ η for some noise η ∈ CN, if ‖η‖∞
< 1

8N , then ‖F−1(b̃� b̃)− Autp(x)‖∞ < 1
2 .

Recall SNR is defined by

SNRdB = 10 log10
‖x‖22
‖η‖22

.

Corollary 5.4 presents a condition to safely round off each entry to 0 and 1.

Corollary 5.4. Given x ∈ {0, 1}N\0, if

SNRdB > 10 log10(64)+ 30 log10‖x‖0,

then ‖F−1(b̃� b̃)− Autp(x)‖∞ < 1
2 .

The proposed denoising scheme, referred to as rounding scheme, is described as follows:
given a corrupted measurement b̃ ∈ CN ,

(a) Round off each entry F−1(b̃� b̃) to nearest integer to get the autocorrelation Autp(x).
(b) Calculate b =

√
F (Autp(x)), where the square root is taken entrywise.

(c) Solve the minimization problem:

x∗ = arg min
x

‖ |Fx| − b‖22 s.t. x ∈ [0, 1]N. (5.1)

(d) Round off each entry of x∗ to be either 0 or 1.

We compare the proposed scheme with a naïve scheme with the following steps: given a
corrupted measurement b ∈ C

N ,

9
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Algorithm 1. Fourier phase retrieval subject to a box constraint (5.1) via ADMM.

Input: b and two positive parameters ρ1, ρ2
Initialize k = 0,w0 = 0, d0 = 0, y0 = 0, z0 = beiφ with a random vector φ
1 while stopping conditions are not satisfied do
2 xk+1 = (ρ1 + ρ2)−1(ρ1F∗zk + F∗dk + ρ2 yk −wk)
3 yk+1 = min(max(xk+1 +wk/ρ2, 0), 1)
4 zk+1 = proxρ1 (Fxk+1 − dk/ρ1)
5 dk+1 = dk + ρ1(zk+1 − Fxk+1)
6 weeks+1 = wk + ρ2(x

k+1 − yk+1)
7 k = k + 1
8 end while
Output the solution x∗ = xk

Figure 1. Influence of ρ1, ρ2 on the naïve scheme (left) and the rounding scheme (right)
in terms of success rates when SNR = 16 dB and ‖xtrue‖0= 5 for xtrue of length 50.

(a) Solve the minimization problem (5.1).
(b) Round off each entry of x∗ to be either 0 or 1.

Both rounding and naïve schemes require to find a solution to (5.1), which can be solved via
the alternating directionmethods ofmultiplier (ADMM) [46].We summarize in algorithm1 for
Fourier phase retrieval subject to the [0, 1]-box constraint (5.1) via ADMM; for more details,
please refer to [30]. Notice that ADMM requires two parameters: ρ1 and ρ2. We examine the
effects of these two parameters on the naïve scheme and the rouding scheme in terms of suc-
cess rates. We consider a binary vector of length 50 with 5 nonzero element as the ground-truth
xtrue, which is contaminated by noise with SNR= 16 dB. We choose ρ1, ρ2 among a candidate
set of {10−6, 10−5, 10−4, 10−3, 10−2} and plot the success rates in figure 1 based on 1000 ran-
dom realizations; we declare a trial is successful if ‖ |Fxrecovered| − b‖ < 10−6. We observe no
significant difference when ρ1 = ρ2 and hence we choose ρ1 = ρ2 = 10−5 for both rounding
and naïve schemes throughout the experiments. Figure 1 also shows that our rounding scheme
outperforms the naïve scheme when ρ1 = ρ2.

5.1. Fourier phase retrieval

We then compare the performance of both schemes in terms of success rates. We consider the
ground-truth signal xtrue is a binary vector with different combinations of sparsity and noise

10
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Figure 2. Comparison of the naïve scheme (left) and rounding scheme (right) in terms
of success rates of Fourier phase retrieval for a signal of length 50. The value at each
combination of sparsity and SNR is based on 1000 random realizations.

Figure 3. Comparison of the naïve scheme (left) and rounding scheme (right) in terms
of success rates of Fourier phase retrieval for a signal of length 100.

levels in the Fourier measurements. In particular, we examine ten sparsity levels (1, 2, . . . , 10)
and generate the noisy measurements b̃ by adding Gaussian noise with SNR = (36, 32, . . . , 0)
dB. We plot the success rates of recovering signals of length 50 and 100 based on 1000 random
realizations in figure 2 and 3, respectively.Compared to the naïve scheme, the rounding scheme
works much better when the signal is sparse, which is expected by proposition 5.2 that sparser
signals allow for larger tolerance of the noise. According to corollary 5.4, the exact recovery
bound of SNR is calculated as 18+ 30 log10 ‖ x ‖0, which aligns well with figures 2 and 3.
Figure 4 gives some examples on false reconstructions,which implies that one scheme does not
dominate the other, as there exist examples when the naïve scheme succeeds and the rounding
one fails, and vice versa. The conclusion that the rounding scheme is better is based on the
success rates.

5.2. Extension to oversampling Fourier transform

One may extend our method to oversampling schemes to find the periodic autocorrelation or
the regular autocorrelation. We conduct numerical simulations for this case, while leaving the

11
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Figure 4. Failed reconstructions by the naïve scheme (left) and the rounding scheme
(right), when the other scheme succeeds. The ground-truth signals are plotted on the
top, while the reconstructed ones are on the bottom.

Figure 5. Comparison of the naïve scheme (left) and rounding scheme (right) in the case
of oversampled Fourier phase retrieval.

theoretical analysis for the future investigation. When the number of measurements do not
match the number of coefficients in autocorrelation, one can perform a polynomial regression
and round off to the nearest integer to find the autocorrelation, following equation (A.2). The
extension for the rounding scheme is summarized as follows, similar for the naïve scheme.

(a) Use polynomial regression to estimate the degree 2N− 1 polynomial A(z) by
e
2πik(N−1)

M A(e−
2πik
M ) = b̃2k .

(b) Round off each coefficient of A(z) to the nearest integer to get the polynomial B(z) with
Aut(x) as its coefficient.

(c) Calculate bk =
√
e
2πik(N−1)

M B(e−
2πik
M )

(d) Solve the minimization problem:

x∗ = arg min
x

‖ |FMx| − b‖22 s.t. x ∈ [0, 1]N. (5.2)

(e) Round off each entry of x∗ to be either 0 or 1

Again, we compare the performance of the naïve scheme and the rounding scheme in terms
of success rates. We consider the ground-truth signal xtrue is a binary vector of length 50 with
different combinations of sparsity and noise levels.We take 99 oversampled Fourier magnitude

12
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measurements for each signal, i.e. N = 50,M = 99 in (2.1). We consider ten sparsity levels
(1, 2, . . . , 10) and generate the noisy measurements b̃ by adding Gaussian noise with SNR
= (36, 32, . . . , 0) dB. In figure 5, we plot the success rates based on 1000 random realizations,
which shows the rounding scheme outperforms the naïve one.

6. Conclusions

In this paper, we improved upon an autocorrelation-based characterization of Fourier phase
retrieval. We discuss several choices of regularization terms and measurements. Our analysis
suggested that a gradient-based regularization, i.e. ‖ ∇nx ‖2, is redundant to the magnitude
measurements, thus not helpful to phase retrieval. Furthermore, we proved that binary signals
can be recovered by imposing a box constraint. We also presented ambiguities and uniqueness
for binary phase retrieval. Finally, we proposed a denoising scheme suggested by characteri-
zation theorems. Since the proposed denoising scheme involves rounding, it is interesting to
extend to 2D images, in which the measured data are often integer-valued. This will be our
future work. Another future direction involves theoretical analysis of oversampling schemes
and noisy measurements for phase retrieval.
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Appendix A. Proof of theorems 3.5 and 3.6

To prove theorem 3.5, we introduce lemma A.1 and A.2. Note that lemma A.1 is a periodic
version of a similar result in [47, p 215] and lemma A.2 is Parseval’s theorem.

Lemma A.1. F (Autp(x)) = |Fx| � |Fx| , ∀x ∈ CN.

Proof. It is straightforward that for all j = 0, 1, . . . ,N− 1, we have

(F (Autp(x))) j =
N−1∑
m=0

N−1∑
n=0

xn+mxnω
m j

=

N−1∑
m=0

N−1∑
n=0

xmxnω
(m−n) j = (

N−1∑
m=0

xmω
m j)(

N−1∑
n=0

xnωn j)

=(Fx) j(Fx) j = |(Fx) j|2.

�

Lemma A.2 (Application of Parseval’s theorem). Given x, y∈ C
N, if |Fx| = |F y|, then

‖ x ‖2=‖ y ‖2.

13
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Proof. Since 1√
N
F is unitary, we have

‖y‖2 = ‖ 1√
N
F y‖2 =

1√
N
‖ |F y| ‖2 =

1√
N
‖ |Fx| ‖2 = ‖x‖2.

�

Proof of theorem 3.5. (a) ⇒ (b). Suppose |Fx| = |F y|, by lemma A.1, F (Autp(x))
= |Fx| � |Fx|. Hence, Autp(x) = F−1(|Fx| � |Fx|) = F−1(|F y| � |F y|) = Autp(y).

(b) ⇒ (a). Suppose Autp(x) = Autp(y). By lemma A.1, we have |Fx| =
√
F (Autp(x))

=
√
F (Autp(y)) = |F y|, where the square root is taken entrywisely.

(a)⇒ (c). By the convolution theorem, we have ∀v ∈ CN and j = 0, 1, . . . ,N− 1,

(F (v∗x)) j = (Fv) j × (Fx) j,

thus leading to

|(F (v∗x)) j| = |(Fv) j| |(Fx) j| .

Similar result holds for F (v∗y). Since |Fx| = |F y| (by assumption), we have |F (v∗x)|
= |F (v∗y)|, which implies that ‖ v ∗ x ‖2=‖ v ∗ y ‖2 by lemma A.2.

(c) ⇒ (a). Suppose ‖ v ∗ x ‖2=‖ v ∗ y ‖2 for all v ∈ CN . Since F is invertible, we can
choose vk = F−1ek ∈ C

N . Then we have

‖vk∗x‖22 = ‖ 1√
N
F (vk∗x)‖22

=
1
N

N−1∑
j=0

|(F (vk∗x)) j|2 =
1
N

N−1∑
j=0

|(Fvk) j|2|(Fx) j|2

=
1
N

N−1∑
j=0

|(ek) j|2|(Fx) j|2 =
1
N
|(Fx)k|2.

Similarly, we have ‖vk∗x‖22 = ‖vk∗y‖22 = 1
N |(F y)k|2 and hence |Fx| = |F y|. �

Proof of theorem 3.6. (a)⇒ (b) Define

Ax(z) = zN−1
N−1∑

n=−(N−1)

(Aut(x))nzn, (A.1)

and similarly for Ay(z). Note that

e
2πik(N−1)

M Ax(e−
2πik
M ) = |(FMx)k|2 = |(FM y)k|2 = e

2πik(N−1)
M Ay(e−

2πik
M ), (A.2)

for all k = 0, 1, . . . ,M− 1. Since Ax and Ay are polynomials of degree at most 2N− 1, their
coefficients are determined by |FMx| = |FM y|, which is a system of M linear equations with
M � 2N− 1. Thus, Aut(x) = Aut(y).

(b)⇒ (a). Suppose Aut(x) = Aut(y). Then Ax(z) = Ay(z). SinceM � 2N− 1, we have

|(FMx)k|2 = e
2πik(N−1)

M Ax(e−
2πik
M ) = e

2πik(N−1)
M Ay(e−

2πik
M ) = |(FM y)k|2, (A.3)

for all k = 0, 1, . . . ,M− 1.
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FigureB.1. Illustration of theorem 4.1withα = 0 and β = 1when x= (1, 0). The plane
constraint is y1 + y2 = 1, indicated by the red line. The sphere constraint is y21 + y22 = 1,
indicated by the blue circle. The box constraint is 0 � y1, y2 � 1, indicated by the green
square. The solutions to the problem (Q) lie on the intersection of these 3 sets, indicated
by the black points. Both black points are ambiguous due to corollary 4.5.

It remains to prove that (a) implies Autp(x) = Autp(y) and ‖v∗x‖2 = ‖v∗y‖2 ∀v ∈ CN .
This directly follows from (a) ⇒ (b) and (a) ⇒ (c) in theorem 3.5 by considering M = N in
equation (A.3). �

Appendix B. Proof of theorem 4.1 to corollary 4.3

We given a geometry interpretation to facilitate the proof of theorem 4.1. For α = 0 and β = 1,
we have y∈ [0, 1]N. LemmaA.2 implies that ymust lie on a sphere, while

∑
xi =

∑
yi implies

that ymust lie on a plane. Therefore, the solution ymust be on the intersection of these three
sets, as illustrated in figure B.1.

Proof of theorem 4.1. Rewrite |(Fx)0| = |(F y)0|, we know that y lies on the plane
P :

∑
xi =

∑
yi, which is convex. The box constraint y∈ [α, β]N is also convex. Therefore,

we define C :=P ∩ [α, β]N , which is a convex compact set. By Krein–Milman theorem [48,
theorem 3.23], C is the closure of the convex hull of its extreme points.

We claim that the set of extreme points E = {zi}i∈I is a subset of points in {α, β}N with
the same number of α’s and β’s as x. Given w be an extreme point of C, assume that w
does not belong to {α, β}N. Since

∑
wi =

∑
xi and x ∈ {α, β}N, there exists some i < j such

that wi,wj 
= α and β (otherwise, we will have w ∈ {α, β}N). Choose small ε > 0 such that
wi,wj > α+ ε and wi,wj < β − ε. Let w1 = (w0,w1, . . . ,wi + ε, . . . ,w j − ε, . . . ,wN−1)T

and w2 = (w0,w1, . . . ,wi − ε, . . . ,w j + ε, . . . ,wN−1)T. Then w1,w2 ∈ C and w = 1
2 (w1 +

w2), contradicting the fact that w is an extreme point of C. Hence, we have w ∈ {α, β}N. It
follows from

∑
wi =

∑
xi thatw has the same number of α’s and β’s as x. Since E is a finite

set, the convex hull of E is compact and thus equal to C.
Since y∈ C, we write y=

∑
λizi for some 0 � λi � 1,

∑
λi = 1. Since zi has the same

number of α’s and β’s as x, then f(x) = f(zi) for all i ∈ I, where f (w) := ‖w‖22, which is a
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strictly convex function. By lemma A.2, we have f(y) = f(x). If y does not belong to E , then
we have

f (y) <
∑

λi f (zi) =
∑

λi f (x) = f (x)
∑

λi = f (x),

which is a contradiction. So y∈ E , i.e. y∈ {α, β}N and has the same number of α’s and β’s
as x. �

The proof of theorem 4.2 is based on the convexity to show that every y lies in the convex
hull with some entries yi having smaller value than α.

Proof of theorem 4.2. Since x ∈ EN , we have ‖x‖22 = Nc2. By lemma A.2, we have ‖y‖22
= ‖x‖22 = Nc2.

Note that for all i = 1, 2, . . . ,N, yi =
∑

λikzik for some
∑

λik = 1, 0 � λik � 1, zik ∈ E and

|yi| =
∣∣∣∑λikzik

∣∣∣ � ∑
λik |zik| =

∑
λikc = c.

If there exists some yi such that yi ∈ convE\E , then

|yi| =
∣∣∣∑λikzik

∣∣∣ < ∑
λik |zik| =

∑
λikc = c.

Now,

‖y‖22 =
∑

|yi|2 <
∑

c2 = Nc2,

which leads to a contradiction. Thus, we must have yi ∈ E for all i = 1, 2, . . . ,N, i.e. y∈ EN�

Proof of corollary 4.3. The fact that y∈ {−1, 1}N follows from theorem 4.2 directly. Now,
|(Fx)0| = |(F y)0| implies that

∑N−1
i=0 xi = ±

∑N−1
i=0 yi. Denote the number of 1’s in x by nx, and

define ny similarly, then we have nx − (N − nx) = ±(ny−
(
N − ny

)
. We either have nx = ny

or nx = N. The result now follows. �

Appendix C. Proof of propositions 4.4–4.10

Proof of proposition 4.4. Suppose |Fx| = |F (c𝟙− x)|, i.e. (Fx)0 = eiθ(F (c𝟙− x))0 for
some θ ∈ [0, 2π). Thus,

∑
xi = eiθ(Nc−

∑
xi), c = 1+e−iθ

N

∑
xi.

On the other hand, suppose c = 1+e−iθ
N

∑
xi for some θ ∈ [0, 2π). Since Fx+ F (c𝟙−

x) = cF𝟙 = Nce0, one has (Fx) j + (F (c𝟙− x)) j = 0 for j = 1, 2, . . . ,N− 1. In particular,
we obtain |(Fx) j| = |(F (𝟙− x)) j| and clearly |(Fx)0| = |(F (c𝟙− x))0| due to the choice
of c. �

Proof of proposition 4.6. Similar to proposition 4.4, we have

|(F (𝟙− x)) j| = |(Fx) j| = |(F y) j| = |(F (𝟙− y)) j|

for j = 1, 2, . . . ,N− 1. When j = 0, we get

(F (𝟙− x))0 = N − (F (x))0 = N − (F (y))0 = (F (𝟙− y))0.

Therefore, |F (𝟙− x)| = |F (𝟙− y)|. Similar analysis for the other direction. �
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Proof of proposition 4.7. For a binary signal x ∈ {0, 1}N, (Autp(x))k is the number of pairs
of 1’s with distance k. As a result, when ‖ x ‖0 is either too small or too large, the uniqueness
can be guaranteed thanks to the combinatorial nature of Autp(x).

When ‖x‖0= 0, x is the zero vector and hence the recovery is unique.
When ‖x‖0= 1, we get x = ek for some k, which is related by spatial shifts to each other.

Therefore, the recovery is unique up to trivial ambiguities.
When ‖x‖0= 2, we obtain the Autp(x) from |Fx| by theorem3.5.Without loss of generality,

up to spatial shift, we assume x0 = 1. Let k be the smallest positive number such that (Autp(x))k
is nonzero. Since (Autp(x))k is equal to the number of pairs of 1’s with distance k and there
are only two 1’s in x, i.e. only one pair of 1’s. This pair must contain x0. Say the pair contains
x0 and xj. We know that xj and x0 has distance k. Hence, j = k or N− k, i.e. we either have
x0 = xk = 1 or x0 = xN−k = 1, which are spatial shifts of each other.

When ‖x‖0= 3, given |Fx|, we obtain Autp(x). Let k be the smallest positive number such
that (Autp(x))k is nonzero. Since there are three 1’s in x, there are 3C2, i.e. 3 pairs of 1’s in x.
Thus, (Autp(x))k = 1, 2 or 3. By spatial shift, we may assume one of the pairs contains x0 and
xk.

If (Autp(x))k = 2 or 3, then there is still at least one pair of 1’s containing x0 or xk and the
remaining 1. If it contains x0, then the 1 should lie in xN−K since xk is already occupied. If the
pair contains xk, by similar reasoning, the 1 should lie in x2k. In both cases, all three 1’s are
placed and these 2 cases are spatial shift of each other.

If (Autp(x))k = 1, let l be the smallest positive number greater than k such that (Autp(x))l is
nonzero. By considering the position of 1, we have 4 cases: xN−l = 1, xN−l+k = 1, xl = 1 or
xl+k = 1. The cases that xN−l+k = 1 and xl = 1 are impossible, otherwise it will contradicts
the minimality of l, k and the fact that (Autp(x))k = 1, i.e. there is a pair of 1 with distance
(l− k) < lwhile this pair is not the pair corresponding to the pair of distance k. Hence,we either
have x0 = xk = xl+k = 1 or x0 = xk = xN−l = 1. Note that these two cases are equivalent to
each other through conjugate inverse and spatial shift.

The cases when ‖x‖0= N− 3,N− 2,N− 1 orN now follow from above. If ‖ x ‖0= N− 3,
N− 2,N− 1 or N, then ‖𝟙− x‖0 = 0, 1, 2 or 3. Hence, we can recover (𝟙− x) up to trivial
ambiguities. Since x = 𝟙− (𝟙− x), the recovery of x is unique up to trivial ambiguities. �

To prove propositions 4.9 and 4.10, we need to introduce some results in algebra. Specifi-
cally, theorem C.3 and C.4 are summarized from the proof of [31, theorem 2.1].

TheoremC.1 (Theorem1 in [49]) . Let x ∈ {0, 1}N with x0 = xN−1 = 1, the Z-transform
of x is irreducible with probability at least c/log N for some constant c > 0.

Theorem C.2. [50] If an f(x) is 0, 1 reciprocal polynomial and its constant term is 1, then
f(x) is not divisible by a non-reciprocal polynomial in Z[x].

TheoremC.3. Given x ∈ {0, 1}N and Aut(x), if Px(z) is reciprocal, then there does not exist
y∈ {0, 1}N such that y 
= x and Aut(y) = Aut(x).

Proof. Define Ax by equation (A.1). Then Ax = PxP̃x. Write Px = f1f2 . . . fk be its fac-
torization such that each fj is irreducible. It follows from theorem C.2 that each fj is also
reciprocal. If there exists some y∈ {0, 1}N such that Aut(y) = Aut(x). Then PyP̃y = Ay =

Ax = PxP̃x = f 21 f
2
2 . . . f 2k . If fj divides Py, we also have f̃ j = f j divide P̃y, and vice versa. So

(Py/ f1)(P̃y/ f1) = f 22 f
2
3 . . . f 2k . Inductively, we have Py = P̃y = f1 f2 . . . fk = Px, i.e. x = y. �

Theorem C.4. Given x ∈ {0, 1}N, Aut(x), if Px(z) is irreducible, then the only y∈
{0, 1}N satisfying Aut(y) = Aut(x) is either x or z, which is defined by zn = xN−1−n. for
n = 0, 1, . . . ,N− 1.
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Proof. Similar to the above, we have PyP̃y = PxP̃x. Since Px is irreducible, we have either
Px divides Py or P̃y. Suppose the first case. We have P̃x divides P̃y. Together with the fact that
Px divides Py, this implies Px = Py and P̃x = P̃y, i,e, y= x. Similarly, the second case implies
that Py = P̃x, i,e, y is the conjugate inverse of x.

�

Proof of proposition 4.9. By theorem3.6, Aut(x) is uniquely determinedwhenM � 2N−
1. Note that Px(z), the Z-transform of x, is a reciprocal polynomial since x is equal to its conju-
gate inverse. According to theorem C.3, there does not exist y 
= x such that Aut(y) = Aut(x).
Therefore, we can uniquely recover x from Aut(x) up to trivial ambiguities. �

Proof of propsotion 4.10. Theorem C.1 shows that for a random binary x with
x0 = xN−1 = 1, the Z-transform of x (Px(z)) is irreducible with probability at least c′

log N for

a constant c′ > 0. Note that we have 2N−2 binary signals under the constraint x0 = xN−1 = 1
while we have 2N binary signals in total. For a random binary x, Px(z) is irreducible with prob-
ability at least 1

4
c′

log N = c
log N , where c =

c′
4 > 0 is a fixed constant. The remaining now follows

from theorem C.4 directly. �

Appendix D. Proof of theorems 4.11–4.14

Proof of theorem 4.11. Write |FN→Mx| = |FM→M x̃| with

x̃ = (x0, x1, . . . , xN−1, 0, 0, . . . , 0)
T ∈ {0, 1}M.

Similarly, we write |FN→M y| = |FM→M ỹ| and define ỹ. Note that x̃ ∈ {0, 1}M, ỹ∈ [0, 1]M and
|FM→M x̃| = |FM→M ỹ|. By theorem 4.1 with α = 0 and β = 1, one has ỹ∈ {0, 1}M and ‖ ỹ‖0 =
‖x̃‖0. Since x̃ and ỹ are obtained by appending zeros to x and y, we have y∈ {0, 1}N and
‖y‖0 = ‖ ỹ‖0 = ‖x̃‖0 = ‖x‖0. �

Proof of theorem 4.12. Without loss of generality, we may assume the windowsw is an
all one vector 𝟙 by scaling. Recall the STFT of x is defined by

zn,m =

N−1∑
k=0

xkwmL−ke
−2πkni
N .

SinceW � L, for each l = 0, 1, . . . ,N− 1, there is somem such thatwmL−l = 1. For suchm,
define x̃k = xkwmL−k for all k = 0, 1, . . . ,N− 1 and define ỹin a similar way. Then, x̃ ∈ {0, 1}N
and ỹ∈ [0, 1]N by our assumption onw.

Now, |F x̃| = z·,m = |F ỹ|. Applying theorem 4.1 with α = 0 and β = 1, we have
ỹ∈ {0, 1}N. In particular, yl = ylwmL−l = ỹl ∈ {0, 1}. Since l is arbitrary, we have y∈
{0, 1}N. �

Proof of theorem 4.13. Denote |̂zk,m|2 and |ŵk,m|2 be the FROG trace (2.6) of x and y,
respectively. We consider m = 0 and define z0 = (z0,0, z1,0, . . . , zN−1,0)T and similarly for w0.
As xn ∈ {0, 1}, we obtain zn,0 = x2n = xn and wn,0 = y2n ∈ [0, 1]. Now, our assumption trans-
lates to |̂zk,0| = |ŵk,0| for k = 0, . . . ,N− 1, i.e. |Fz0| = |Fw0|. Since z0 ∈ {0, 1}N and w0 ∈
[0, 1]N, we have w0 ∈ {0, 1}N by theorem 4.1 with α = 0 and β = 1, i.e. wn,0 = y2n ∈ {0, 1}
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for all n = 0, . . . ,N− 1. Therefore, we obtain y∈ {0, 1}N, which implies that y= w0. Since
x = z0, we have |Fx| = |Fz0| = |Fw0| = |F y| and ‖ y ‖0=‖ x ‖0 by theorem 4.1. �
Proof of theorem 4.14. The proof is similar to the proof of theorem 4.13 by noting that
zn,0 = x2n = 1 ∈ {−1, 1} and using theorem 4.3. �

Appendix E. Proof of proposition 5.1 to corollary 5.3

Proof of proposition 5.1.

‖F−1(b̃� b̃)− Autp(x)‖∞ = ‖F−1(b̃� b̃)−F−1(b� b)‖∞

� ‖F−1(b̃� b̃)−F−1(b� b)‖2 =
1√
N
‖b̃� b̃− b� b‖2

� ‖b̃� b̃− b� b‖∞ = ‖2b� η + η � η‖∞

� 2‖b‖∞‖η‖∞ + ‖η‖2∞ <
ε

2
+

ε

2
� ε,

where the first and second inequalities come from the fact that ‖x‖∞ � ‖x‖2 �
√
N‖x‖∞ for

all x ∈ CN and the third inequality comes from the fact that ‖ x� y ‖∞�‖ x ‖∞‖ y ‖∞ for all
x, y∈ CN . �
Proof of proposition 5.2. Note that

bn =

∣∣∣∣∣
N−1∑
k=0

xke
−2πkni
N

∣∣∣∣∣ �
N−1∑
k=0

|xk| = ‖x‖1 = ‖x‖0.

So ‖ b ‖∞�‖ x ‖0.
Let ε = 1/2, we have ‖η‖∞ < 1

8‖x‖0 � 1
8‖b‖∞ = ε

4‖b‖∞ . Also, since x 
= 0, ‖ x ‖� 1.

‖η‖∞ < 1
8‖x‖0 � 1

8 � min{ ε
2 , 1}. The remaining follows from proposition 5.1. �

Proof of corollary 5.3. When x = 0, then b = |Fx| = 0, Autp(x) = 0 and b̃ = b+ η = η.

‖F−1(b̃� b̃)− Autp(x)‖∞ = ‖F−1(η � η)‖∞ � ‖F−1(η � η)‖2

=
1√
N
‖η � η‖2 � ‖η � η‖∞ � ‖η‖2∞ <

1
64N2

<
1
2
.

When x 
= 0, note ‖ x ‖0� N and ‖η‖∞ < 1
8N � 1

8‖x‖0 . The rest is straightforward from
proposition 5.2. �
Proof of corollary 5.4. The inequality

SNRdB > 10 log10(64)+ 30 log10‖x‖0,

is equivalent to
‖x‖22
‖η‖22

> 64‖x‖30. Since x ∈ {0, 1}N, ‖x‖22 = ‖x‖0. Thus, we have ‖η‖2∞ �

‖η‖22 < 1

64‖x‖20
. �
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