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Tuning the work functions of materials is of practical interest for maximizing the performance of micro-

electronic and (photo)electrochemical devices, as the efficiency of these systems depends on the ability

to control electronic levels at surfaces and across interfaces. Perovskites are promising compounds to

achieve such control. In this work, we examine the work functions of more than 1000 perovskite oxide
surfaces (ABOs) using data-driven (machine-learning) analysis and identify the factors that determine
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their magnitude. While the work functions of the BO,-terminated surfaces are sensitive to the energy of
the hybridized oxygen p bands, the work functions of the AO-terminated surfaces exhibit a much less
trivial dependence with respect to the filling of the d bands of the B-site atom and of its electronic

affinity. This study shows the utility of interpretable data-driven models in analyzing the work functions

rsc.li/pccp

1 Introduction

The work function measures the energy of extracting an electron
from a material. Understanding trends in the work function is
technologically important to thermionics,' optoelectronics, electro-
chemistry, and photocatalysis,””® - with one primary example being
the possibility to optimize the activity of a surface by tuning its
electronic affinity.” Perovskites are a remarkably versatile class of
materials that can be synthesized with controlled purity and
relatively high yield.'">™**> Due to the interplay between their struc-
tural, chemical, and electronic characteristics, perovskites are
promising candidates for achieving sensitive control of the work
function. Fig. 1 compares the work functions of elemental metals™®
with those of perovskite oxides; it is apparent that perovskites show
a wide distribution of work functions, providing a rich composi-
tional space for the design of e.g. thermionic converters (requiring
low work functions)** and photovoltaic hole collectors (requiring
high work functions).
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of cubic perovskites from a limited number of electronic-structure descriptors.

In this work, we develop a data-driven understanding of the
work functions of perovskite oxides in their prototypical cubic
symmetry. For comparison, Fig. 2 shows the work functions of
10 representative perovskites in the orthorhombic (Pnma) and
cubic (Pm3m) phases along their [001] surface facets. These
results highlight a strong correlation between the work functions
of these structures, indicating that the high-symmetry, cubic phase
may provide a reliable basis to infer the work functions of low-
symmetry, perovskite-related structures featuring octahedral rota-
tions. Examining cubic structures is also relevant to high-entropy
perovskites™ that tend to spontaneously adopt high symmetry.'>'¢
We thus present a detailed analysis of the dependence of the work
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Fig. 1 Distribution of the computed work functions for elemental metals™ and
cubic perovskites. Perovskites show a broad distribution of work functions.
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Fig. 2 Comparison of the computed work functions along the [001]
direction for a representative set of 10 perovskite oxides with space groups
Pm3m and Pnma. The selected compositions are ABOz where A = Ca or Sr
and B = Ti, V, Cr, Mn or Fe. The overall coefficient of determination (R?) and
root mean squared error are of 0.929 and 0.237 eV, respectively.

functions of cubic perovskites as a function of composition and
termination using extensive computational data.

2 Computational method

2.1 Crystal structures and first-principles calculations

A perovskite crystal structure with formula ABO; is shown in Fig. 3.
The B-site cation is octahedrally coordinated to oxygen, and,
typically, a larger A-site cation adopts a twelve-fold coordination
with the surrounding oxygen atoms. The cubic perovskite phase
exists in nature (e.g. SrTiOz and SrVO;), while many other lower-
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Fig. 3 A perovskite unit cell is composed of the A cation at the center of
the unit cell, and the B cation octahedrally coordinated with the oxygen
(top). The elemental compositions that are used to construct the perovs-
kites are highlighted in the periodic table (bottom).
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symmetry stable structures are also found. Compared to the
ideal cubic structure, distortions such as octahedral rotations
and cations displacements may occur, and some of them are
responsible for functional properties such as ferroelectricity.'”
Nevertheless, we adopt the cubic phase as a simple template for
statistical analysis, as discussed above and justified in Fig. 2.

Following ref. 18 and 19, we select the constituent metal
cations based on their propensity to form a stable cubic phase.
The elements that are considered in this work are highlighted in
Fig. 3. The A-site elements include the main-group metals, while
the majority of the B-site elements belong to the transition metal
series. Considering the alternating AO and BO, layers, we con-
struct two types of interfaces along the [001] direction, as shown
in Fig. 4. Using the optimized bulk structures, each slab geometry
is built symmetrically with 9 ionic layers. The periodic slabs are
separated by 14 A of vacuum. Only the two outermost layers are
allowed to move during geometry optimization.

All first-principles calculations are managed using the AiiDA
high-throughput calculation infrastructure.”® The self-consistent-
field calculations are performed at the semilocal Perdew-Burke-
Ernzerhorf (PBE) level®' using the pw code of the Quantum
ESPRESSO distribution.”” Ionic cores are represented by norm-
conserving pseudopotentials with a kinetic-energy cutoff of 100 Ry
for the reciprocal-space expansion of the wave functions.”® Bulk
structures are fully optimized through variable-cell calculation,
while sampling the Brillouin zone with a I'-centered Monkhorst-
pack grid of 12 x 12 x 12.>* For slab calculations, a Marzari-
Vanderbilt cold smearing of 0.01 Ry*” is employed to discretize the
Brillouin zone with a reduced k-point mesh of 6 x 6 x 1. In
addition, the Environ module is applied to automatically align the
Fermi level with respect to vacuum.?*® The atomic positions are
then fully optimized until the interatomic forces became smaller
than 0.02 ev A™%,

Based on the optimized perovskite surface, we can calculate
the work functions as

b= ° — Ey, (1)

termination BO; termination

Fig. 4 Surface structures considered in this work: the AO and BO,
terminations.
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where @° is the potential in a vacuum and Ey is the Fermi
energy.

Due to the semilocal PBE approximation, the calculated band
gap and work function are expected to be underestimated."**°
Even though previous work suggests that the work functions of
metals calculated from PBE are consistent with experimental
measurements,>>° there is still a debate about the accuracy of
PBE work functions for perovskite oxides. More generally, the
work functions of metal oxides can be strongly influenced by
surface orientations, terminations, and defects. Studies of Ma
et al. and Guo et al. showed that an accurate description of band
gaps could lead to improved predictions of the work functions
and band edges of semiconductors.’”** Although predicting
absolute work functions using the PBE functional may not be
accurate, Ma et al. and Chambers and Sushko showed that the
PBE approximation is reliable to estimate differences in the work
functions of AO and BO,terminated surfaces.*>** While beyond
the scope of this work, it is expected that hybrid functionals such
as Heyd-Scuseria-Ernzerhof (HSE)** could be more accurate for
evaluating the work functions of perovskite metal oxides. Since
the goal of this study is to understand trends between work
functions and electronic descriptors, we argue that it is suitable
to use the PBE functional.

2.2 Machine-learning method and descriptor selection

On the basis of our computed datasets, we aim to identify the
features that best describe the work functions of the perovs-
kites. To achieve this, we employ a statistical learning method.
We chose our model based on interpretability and perfor-
mance. Here, we use random forest regression,® which is an
ensemble statistical learning method that integrates a number
of decision trees and that returns the average prediction of
these trees.*® In specific terms, given a training set (X, y) where
X is the features and y are the corresponding responses, the
random forest model is trained by repeatedly sampling a subset
x of the training set to form the trees. The quality of the branch
split is measured using the mean squared error (MSE) of the

| N
regression: MSE = I > — f’n)z-
n=1

Table 1 Atomic descriptors that are selected in this work
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For each testing sample x, the prediction is obtained from the
1M
M’Elfm(x),
where M is the total number of trees and f;, stands for the
prediction of each tree model using data x. Random forests are
known to be robust against overfitting, and have been widely
applied for both regression and classification tasks.*” In addi-
tion, random forests offer a means of interpreting the model
using importance ranking and partial dependence analysis.***°
To train the model for predicting the work function, we ‘finger-
print’ the interface structures in our database with a number of
features that are physically meaningful and are expected to be
correlated with the work functions. Some of the selected features
have been shown previously to be critical to describe phase stability,*
thermal conductivity,"' optical absorption,”** superconductivity,**
catalytic activity,”® and fuel-cell performance.*® In total, 38 features
are selected and summarized in Table 1.

All features, except E‘(Z)p and XQBO% are selected for both A and
B elements. We computed the ionization potential IP.,. and
the electron affinity EA., of the atoms using the energy of the
half occupied Kohn-Sham orbital.*® Furthermore, the band
center of orbital ¢ is the energy difference between the
weighted center of the ¢-projected band and the Fermi level
in a crystal:

averaged prediction of the individual trees: f(x) =

_ o Epy(E)E
" Sep,(E)E

and the filling factor of the ¢ band (similarly for e, and t,,
bands) is calculated from

B, (E)E
Jp(E)E

EF, (2)

0p (3)

where p, stands for the projected density of states of the ¢
orbital. This projection is expressed as

pol8) =3 3 [l i) PoE ~ ER)aE, (@

nk,o

where 1, k and ¢ denote the band index, k-points and the spin
states of the wave function y, respectively.
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Experimental and calculated ionization potential and electron affinity
Pauling electronegativity

Bonding covalency with oxygen

s, p and d valence orbital radii of the element®’

Atomic radii and averaged ionic radii

Pettifor’s chemical scale*®

Atomic number

Mendeleev number

p band center in the bulk perovskite

Filling factor of the d band, e, and t,; in the bulk perovskite

Center of the oxygen 2p band in the bulk perovskite

Geometric mean of the electronegativity of the perovskite constituents
on a Mulliken scale
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We note that the inclusion of DFT features requires some
initial bulk calculations. Constructing models using only read-
ily available features such as the elemental properties®® >
would overcome this requirement; however, these DFT features
enable us to establish closer correlation between the work
functions and electronic-structure properties, as further ana-
lyzed and discussed below.

3 Results and discussion
3.1 Random forest regression

We develop the random forest models using the scikit-learn
library.>® The dataset contains 1248 interface work functions
and is composed of an equal amount of AO and BO, surfaces.
Two models are trained independently of the work functions of
the AO and BO, terminations. Before training the models, we
note that some of the selected features are correlated. Although
such correlations would not impact the performance of the
model, they could deteriorate its interpretability. This is
because the correlated features carry similar information, thus
the feature importance would be shared among them, causing
a ‘dilution’ of the importance score across the feature group.
Therefore, we carried out a reduction of the feature dimension
using the Pearson correlation analysis, as detailed in Fig. S1
(ESIt). This process reduces the number of features from 38 to
21 by eliminating the most highly correlated ones. We start the
analysis by using all the features to train the random forest
regression models. For both AO and BO, terminations, we
partition the dataset into 80% and 20% for training and test
sets. Using the training set, the hyperparameters that give the
lowest root mean squared error (RMSE) are selected. The RMSE
is evaluated with fivefold cross-validations. The obtained model
performance is then validated using only the test set. Such an
evaluation is repeated 40 times by shuffling the datasets to
obtain an averaged total performance. By doing so, we can
consistently evaluate the accuracy of the model.

We first aim to identify the features that are relevant to the
work functions. This is achieved by examining their importance
score. In specific terms, the importance of a feature measures
how much the feature would impact the predictions. For
example, we can calculate the importance of a feature by
adding up the weighted variance reduction for all nodes that
use this feature as the splitting feature, and then averaged over
the trees in the trained forests. Based on the importance score,
we perform recursive feature elimination,*>** and then re-train
the model each time to obtain a new importance ranking. To
optimize the performance of the model when each feature is
removed, the hyperparameter is re-selected using the afore-
mentioned process. The resulting model contains a compatible
hyperparameter and a number of features. The averaged RMSE
of the regression with respect to the number of features is
shown in Fig. S2 (ESIt), along with detailed descriptions of the
model constructing process. We found that the averaged RMSE
values of the work function of AO and BO, terminations are
0.468 eV and 0.531 eV, respectively. The averaged predicted
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Fig. 5 Predicted versus computed work functions of AO and BO, termina-
tions. The performance of the random forest regression models is evaluated
by averaging the results from randomly shuffled datasets. The averaged root
mean squared error for AO and BO, terminations are 0.468 eV and 0.531 eV,
with standard deviations of 0.047 eV and 0.048 eV, respectively.

work function @ values are plotted against the DFT values in
Fig. 5(a and b). The prediction accuracy is reasonable considering
that the work functions span a range of 9 eV. For the six most
predominant features that are identified in the models, we
summarize their normalized feature importance in Fig. 6.

Based on the importance ranking, we find that the most
relevant features for both surfaces show a consistent pattern
despite the different surface structures. For the BO, termina-
tions, the work function is strongly influenced by the bulk 2p
band center of oxygen £3,, which has an importance score of
0.44. Following that, two features that are related to the
terminated element, namely 3 and P®, are found to be rela-
tively important for the work functions of BO, terminations.
This indicates that the work function of BO, is largely deter-
mined by its bulk properties. On the other hand, though £, is
still relevant to the AO work functions, it only ranked as the
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Fig. 6 Normalized feature importance of the 6 most relevant features for
AO and BO, terminations.
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fourth most important feature. The first three features are con-
sistently correlated with the surface species of AO terminations;
they are 7%, rg, and Ej. This result shows that, in contrast to BO,
surfaces, the surface contribution to the work function is more
significant than the bulk properties for the AO terminations."*
In general, the machine-learning models correctly recognize the
termination effect, where the valence orbital radii for A and B
elements are predicted to be among the most essential features
for the AO and BO, terminations. In addition, it is known that
the work function is influenced by both bulk and surface
properties.'>**® The machine-learning models correctly capture
this dependence.

It is interesting to note that, for both AO and BO, termina-
tions, the energy of the oxygen 2p orbital in the bulk phase
plays a critical role. In fact, E‘;p is an important bulk electronic
predictor that has been used to describe many electronic proper-
ties of perovskites, including vacancy formation energies,’®
oxygen reduction reactivity of oxide fuel cells*® and oxygen
evolution reactivity.”””® Specifically for work functions, Jacobs
et al. have reported E5), as a critical descriptor by exploring 20
technologically relevant perovskite materials that are composed
of Sr and La for the A atoms and 3d transition metals for the B
atoms.'* Here, our data-driven approach corroborates that E5),
remains an effective descriptor even for a wide range of meta-
stable perovskites.

Although it helps identify the most significant features, the
importance score only indicates how much the predictions are
affected by the features, without explaining the specific rela-
tionship. To answer this question, we conduct a partial depen-
dence analysis®® for the two most predominant features. Partial
dependence plots (PDP) illustrate the marginal effect (in the
probabilistic sense) of the selected features on the predictions
after integrating out the other variables. If we only focus on one
specific feature x, the interactions between x and the response
of the target can be estimated by marginalizing the predictions
over all other features. This partial dependence function f;(x)
can be expressed as

1 N

fs(x) = sz(xl-'” ce

n=1

7x.5'71,n’x7"'7xM,H)7 (5)

where f,(x) is approximated by averaging the output of the
trained model for all features except the selected feature x = x
in the dataset. M is the total number of features in the model,
and N is the total number of samples. Similar to the previous
analysis, the PDP is obtained by averaging the results using the
shuftled datasets. In Fig. 7, we illustrate the PDP for both AO and
BO, work functions with respect to E(Z)p and the valence orbital
radii 72 and 5.

Despite different surface structures, we found that the
general trend of how £5, influences @ is universal, as shown
in Fig. 7(a): with a larger separation between E5), and the Fermi
level (more negative band center of O 2p in the bulk), the work
function shows an approximately monotonic decrease. Inter-
estingly, such a correlation starts to break down for the
perovskite interfaces with low work functions, where the work
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function reaches a plateau when E%), is below —4 eV, especially
for AO termination. To explain these trends, we examine the
density of states, and the correlations between Eg’p and the work
function. In general, the low work function of a perovskite
originates from low filling of the d bands, as shown in Fig. 8(a).
One of the representative compounds of this class is Srv0;."*
Thus, as we move across the 3d transition metal series, the d
bands are filled up with electrons and move down to hybridize
with the O 2p band. This can also be understood by analyzing
electron affinities. A more electronegative B site will create a
more covalent bond with oxygen, thus leading to more pro-
nounced band hybridization. A key characteristic for such a
hybridization is that, the band center of oxygen 2p is almost
unchanged with respect to the vacuum level [see Fig. S5(a),
ESIt]. This observation is consistent with previous literature*
and enables one to understand the linear correlation between
E5, and the work functions: with increasing d filling, the d
bands hybridize with the O 2p bands and reduce the energy
separation between the Fermi level and the O 2p band center.
Since E5), remains almost constant with respect to the vacuum
level (indicating moderate charge transfer between the inner
and outer layers), a decrease in the Fermi level and an increase
in the work function are observed.

Yet, we observe that the previously described correlation
breaks down for deep Eﬁ’p levels. To understand these deviations,
we examined the compounds with E(Z)p deeper than —4 eV and
found that those perovskites primarily contain 5d elements,
such as Ta, W and Re. By examining their projected density of
states [see Fig. S5(b), ESIt], we found that the key difference lies
in the stability of the band center for O 2p. In this case, it is
observed that E‘;p is no longer constant (indicating charge
transfer between the inner and outer layers), as depicted in
Fig. 8(b) by the shift of ES), towards the vacuum energy level.
This trends explain the loss of correlation between the E3), level
and the work function of those compounds. We further study
this trend by examining the partial dependence of the work
function with respect to ES), and r for the AO termination in
Fig. 7(b). It is apparent that when ES, is above —4 eV, the
isocontours align horizontally, which indeed confirms the
strong correlation between E9), and the work functions. In
contrast, the isocontours are mostly vertical when E“Zop is deeper
than —4 eV.

Next, we turn our attention to the influence of the valence
orbital radii on the work function. We first discuss the AO
termination, and we highlight different groups of elements in
Fig. 7(c). We found that the work function can be parsed into
three regions: (1) 4, < 1.0 Bohr, (2) 1.0 Bohr < ri < 1.3 Bohr,
and (3) 4 > 1.3 Bohr. In fact, these three regions correspond to
alkali/alkaline-earth metals, transition metals, and post-transition
metals and metalloids. The valence orbital radii have been shown
to capture the periodic trends,*” except for Li and Na due to their
small radii. For elements belonging to the family of post-
transition metals and metalloids, the work function tends to
decrease with respect to the increase of the valence orbital radii.
This can be explained in terms of the electronegativity: alkali/
alkaline-earth metals (larger %) show lower electronegativity

This journal is © the Owner Societies 2021
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Fig. 7 Partial dependence plots for the AO and BO, terminations. (a) Dependence of the work function with respect to the orbital energy E'?p for both
interfaces. (b) Two-variable dependence plots of the work functions of both orbital energy E?p and the orbital radius r for AO-terminated interfaces.
(c and d) Partial dependence of the work function with respect to the radius of the p(d) orbital of the A (B) element for the AO (BO,) termination. The

colored regions represent groups of elements in the periodic table.

compared to that of posttransition metals and metalloids
(smaller 74), thereby yielding smaller work functions. In addition,
because of our choice of A cation across the periodic table, we
observe a clear separation of the work function between surfaces
that are terminated with alkali/alkaline-earth metals and the post-
transition metals/metalloids. The low work function of the alkali/
alkaline terminated perovskites makes them potential candidates
for designing thermionic converters.

We can now discuss the trend between the size of the d
orbital radii of the B atoms (7§) and the work function of BO,
surfaces with similar arguments. Fig. 7(d) shows that the work
functions also decrease with 5. The increasing 2 radii reflect a
decrease in electronegativity, thus causing a diminution in the
work function. Compared to the PDP of the AO surface, we do
not observe significant separation in the dependence of the
work functions as a function of BO, surface interactions. This is
likely due to the fact that the B cations are mainly transition
metals and metalloids, with no alkaline/alkali metals included.

This journal is © the Owner Societies 2021

These partial dependence analyses reveal that the work function
is determined by both bulk electronic properties and surface
electronegativity. By controlling compositions and structures,
these two effects can be leveraged simultaneously to design
materials with desired work functions.

In closing, we underscore the practical importance of our
statistical observations. A low work function is a crucial require-
ment for designing electron emitters and thermionic energy
converters, and we find here that perovskites with alkali or
alkaline-earth metals at the A site are promising candidates for
these applications, as shown in Fig. 7. We conclude that
although the center of the oxygen 2p band is a sensitive
descriptor of the work function for a number of perovskites,
AO-terminated surfaces with shallow Fermi energy are much
better described by the orbital radii of the A-site elements. This
analysis demonstrates the possibility of optimizing the surface
structure and chemistry to effectively reduce the work function
for e.g. thermionic energy conversion.

Phys. Chem. Chem. Phys., 2021, 23, 6830-63887 | 6885



Published on 26 February 2021. Downloaded by Pennsylvania State University on 4/27/2021 2:54:46 PM.

PCCP

Fig. 8 Schematized densities of states for perovskites that contain (a) 3d transition metals and (b
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lines represent the Fermi level and the O 2p band center, respectively.

4 Conclusions

We have examined the work functions of cubic perovskites by
statistical means. We have constructed a database of perovs-
kites and have employed a random forest regression to predict
their work functions, achieving predictive accuracy with only a
few features included. Two central features that primarily
control the perovskite work functions have been identified:
the oxygen 2p band center and the valence orbital radii of the
surface-terminating cations. The oxygen 2p band center is
found to be crucial to the determination of the BO,-
termination work functions, while r2 predominantly influences
the AO-termination work functions. We have explained how
those electronic descriptors affect the work functions of
perovskites using partial dependence analysis, and have
found that the general trends are related to the stability
of oxygen energy levels and atomic electronegativities.
These correlations may benefit the search for metal oxides
with desired surface electronic properties. For instance,
optimizing the compositions of the perovskites to achieve
deep oxygen 2p band centers while simultaneously terminat-
ing the interface with alkali or alkaline-earth elements may
yield optimally low work functions, which are essential for
thermionics. Conversely, the perovskites that have shallow
oxygen 2p band centers, coupled with p-block metal or
metalloid terminations, may be of interest for designing hole
collectors.
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