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Abstract. On several one-dimensional (1D) and 2D nonbipartite lattices, we
study both free and Hubbard interacting lattice fermions when some magnetic
fluxes are threaded or gauge fields coupled. First, we focus on finding out the opti-
mal flux which minimizes the energy of fermions at specific fillings. For spin-1/2
fermions at half-filling on a ring lattice consisting of odd-numbered sites, the opti-
mal flux turns out to be £7/2. We prove this conclusion for Hubbard interacting
fermions utilizing a generalized reflection positivity technique, which can lead to
further applications on 2D nonbipartite lattices such as triangular and Kagome.
At half-filling the optimal flux patterns on the triangular and Kagome lattice
are ascertained to be +[n/2,7 /2], £[r/2,7/2,0], respectively (see the meaning
of these notations in the main text). We also find that chirality emerges in these
optimal flux states. Then, we verify these exact conclusions and further study
some other fillings with the numerical exact diagonalization method. It is found
that when it deviates from half-filling, Hubbard interactions can alter the opti-
mal flux patterns on these lattices. Moreover, numerically observed emergent flux
singularities driven by strong Hubbard interactions in the ground states— both
in 1D and 2D—are discussed and interpreted as some kind of non-Fermi liquid
feature.

Keywords: Hubbard and related model, quantum frustrated systems, rigorous
results in statistical mechanics
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1. Introduction

The Fermi-Hubbard model is very famous and important [1]. It has appealed to
researchers for decades as the simplest route towards understanding strongly corre-
lated fermionic quantum many-body systems. It is widely believed that the Hubbard
model should be closely related to the essential ingredients of the Mott insulator and

https://doi.org/10.1088/1742-5468 /ab99bf 2


https://doi.org/10.1088/1742-5468/ab99bf

Fermi—Hubbard model on nonbipartite lattices: flux problem and emergent chirality

high-temperature superconductivity [5, 8, 14, 41]. Numerically it has also been studied
extensively [26, 39, 87]. Recently, interest in it has been simulated by ultracold atoms
in experiments [30, 56, 79]. Here for our theoretical interest, we would like to mention
and emphasize three related aspects.

Firstly, since the perturbation theory cannot always provide us with faithful and clear
results if the Hubbard interactions are sufficiently strong, rigorous theorems can provide
many great insights into the nonperturbative features of the Hubbard model [80]. A 1D
bipartite lattice! has been solved exactly and it has been shown that there is no Mott
transition [48, 49]. On 2D bipartite lattices at half-filling, Lieb settled the ground state’s
uniqueness and its total spin up to any finite repulsive Hubbard interaction [45]. If a hole
is doped on 2D bipartite lattices, strong Hubbard interactions can induce an emergent
Nagaoka ferromagnetism [60]. We notice that, both in 1D and 2D, the bipartiteness plays
an important role in many of these significant theorems. It leads to a special kind of
particle—hole transformation, where a minus sign only follows in one of the two bipartite
subsets of the lattice sites. Moreover, quantum Monte Carlo can also avoid the severe
sign problem due to the bipartiteness [57, 75]. Thus a natural question can be asked:
why does the bipartiteness seem to be so essential here? What will happen if we lose
it?

Secondly, without any doubt fermions and gauge fields can indeed emerge from very
different strongly correlated bosonic quantum many-body systems [3, 7, 40, 44, 71]. The
exactly solvable Kitaev honeycomb spin model is supposed to be the most convincing
example, which equivalently turns out to be emergent free Majorana fermions coupled
to a Zy lattice gauge field [33]. These emergent gauge fields living on the lattice links
can form magnetic fluxes, of which the corresponding effective magnetic field can be so
strong that no experiment on Earth can realize it. The low-energy gauge fluctuations
above the mean-field state turn out to be crucial, and even the topology of the gauge
fields plays a significant role [2, 71, 72, 85]. In these kinds of fermion—gauge-field coupled
systems, finding out the optimal flux pattern to minimize the ground state energy at
zero-temperature or the statistical free energy at any finite temperature is called the flux
problem. For Hubbard interacting fermions at half-filling, Lieb solved the flux problem
on generic 2D bipartite lattices with the help of an elegant technique called reflection
positivity [46, 54] (RP) which was first introduced in quantum field theory [65]. Lieb’s
result directly leads to the solution of Kitaev’s honeycomb model. The optimal 7w-flux
Dirac state on a square lattice has been observed numerically in a fermion—gauge-field
coupled system [17]. It is used to serve as a good starting point to construct quantum
spin liquids (QSLs) in the language of fermionic partons [81, 86]. Note that days earlier,
high- T\ superconductivity was also found to be closely related to the flux issue [2, 35].

Thirdly, it is well known that the spin chiral operator x = o1 - (02 X 03) can be
expressed by the flux Berry phase ¢ acquired by fermions hopping along a closed pla-
quette [84]. To be specific, (x) x sin¢, where ¢ is the flux threaded throughout the
plaquette. For 2D bipartite lattices, the typical 0 or m-flux optimal states are nonchi-
ral, where chirality (x) vanishes. Therefore, there does not exist persistent spin current
around the plaquettes induced only by nonzero chirality.

L A bipartite lattice A is theone A = AU B,AN B = 0 and t; = 0if i, j € Aor i,j € B[46], where #; is the fermion hopping amplitude.
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In this sense, in this paper we would like to investigate Hubbard interacting fermions
without bipartiteness any longer, to see its interplay with gauge fields and chirality. We
obtained several new results analytically as well as numerically. The rest of this paper
is organized as follows. In section 2, from noninteracting to interacting cases, 1D lattice
fermions are investigated. The optimal flux for spin-1/2 fermions at half-filling on a
nonbipartite odd-numbered ring is proved and verified numerically no matter whether
the Hubbard interactions are present or not. In section 3, we generalize our technique
to 2D and study the flux problem for the Hubbard model on 2D nonbipartite lattices.
At half-filling, the optimal flux patterns for the triangular and Kagome lattices can be
nailed down. However, when it deviates from half-filling, there are no rigorous analytical
results anymore. Some numerical results are provided and discussed in both 1D and 2D.
In particular, emergent flux singularities driven by strong Hubbard interactions are
addressed and identified as non-Fermi liquid (NFL) features. In section 4, we finish with
a brief summary and discussion.

2. One-dimensional lattice

2.1. Non-interacting spin-1/2 fermions

First, let us warm up by taking a look at the simplest case, namely fermions living on a
1D lattice, which are always assumed to form a ring. For two branches of nonrelativistic
spin-1/2 free noninteracting fermions o =7, , they can be treated separately as

L-1

Ht - _ZZ <tj7j+1q];acj+170 + hC> . (1)

o j=0

As usual, j+1=(j+ 1) mod L. {c,;(,7 Cio} =0i 05, and {¢i,, ¢jo} = {c;(,7 c; =0
define the complex fermionic operators. t;;;; is the Wannier hopping amplitifde and
|ti+1] = t = 1.0 is set to be the energy unit throughout this paper. A magnetic flux ¢
can be added through appropriate boundary conditions such as ty ;o = e, while for
the others ¢;,,1 = 1.0,7# L — 1. By a discrete Fourier transformation c¢; = ﬁzkeikjck,

Hy = =552 cos k)cl ¢, where k= (214 ¢)/L is constrained by the boundary
condition. [ € Z. The ground state energy is determined by the band fillings given U(1)
conserved particle numbers N; |, which is illustrated in figure 1. It is easy to check that
when Ny = N| = 2n, n € Z,, the optimal flux takes ¢,, = 7. When Ny = N| = 2n +
1, n€Zy, the optimal flux is ¢, = 0. When Ny =2n, N =2m-—1, n,meZ,,
the optimal flux should lie at some value between 0 and 7 to minimize the filling energy
of these two branches of fermions. According to the discussion in appendix A, if we
implement the Jordan—Wigner transformation on these two branches of fermions sep-
arately, different parities would lead to competition when it comes to minimizing the
ground state energies by the natural inequality [63, 64]. Therefore, a chiral optimal
flux can indeed emerge in such a scenario. Generally, this depends on N;; and L as
Bopt = Popt (N1, Ny, L). The optimal flux in this scenario can be determined by certain
transcendental triangular equations, which can be solved numerically. For example, if
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Figure 1. Band of free fermions in 1D.

N, =2,N, =1, at a local minimum we have

2 sin (%) — sin (%L_ ¢) . (2)

Say, L =5, here the optimal flux ¢, ~ 1.9536. However, we found that ¢, is very
special when it comes to the half-filled case, which is independent of the odd L. For
simplicity, here we only focus on the cases with a minimal |SZ,| = 1|N; — N|| on a
nonbipartite odd-numbered ring. Then we have the following lemma:

Lemma 1. For spin-1/2 free noninteracting fermions with a minimal |S;,| on a non-
bipartite odd-numbered ring at half-filling, the optimal fluxes for the ground states are
+7/2, which are independent of the lattice size L.

Proof. See appendix B. [ |
For a finite temperature, we can prove that

Lemma 2. For spin-1/2 free fermions on a ring lattice defined by equation (1), if the
parities of particle numbers Ny are identical, at finite temperature the optimal flux for
the statistical free energy F is 0 or w depending on whether the parity is odd or even,
respectively.

Proof. The basis for spin-1/2 fermions spanning the Hilbert space can be written in a
specific representation [45] |a)+ @ |y),. Expanding the canonical partition function like

Z=tr () = lim tr [V¥(4)], (3)

and

g

L-2
Vig) =1+ 62 <Z clocivio + €%t | oo+ h.c.) , (4)
=0

where § = 8/M. We rewrite V¥ (¢) =5 X*=> T[,X? when we rearrange the
operator string by their spin indices. Then in this representation we have
tr ([[,X,) =tr(X;) -tr(X,). The lowest order nontrivial operator strings take
the form tr(X;) - tr (1)) +tr (1) - tr (X)) = (=) 165D + (—)M 164D, + h.c. =
2(—)M=1D,6" cos ¢ + 2(—)V1Dy6% cos ¢, where Dy = C1™ is the dimension of sub-
Hilbert space corresponding to spin-1 and -] fermions, respectively. If N; and N, share
the same parity, this very term maximizes just like the free spinless fermions discussed in
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appendix A. A higher-order crossed term, such as +25" cos(2¢), maximizes at the same

time. Once the partition function is maximized, free energy F' = —11In Z is minimized.

g -

If the parities of N; and N| are different, at finite temperature there will be some

competition in nontrivial terms such as £2(D; — D;) cos ¢, which maximizes at 0 or =

while the crossed term —2 cos(2¢) maximizes at w/2. Therefore, determining the optimal

flux for the finite temperature free energy F'is hard, and it might differ from the ground
state.

2.2. Turn on Hubbard interactions

When the simplest kind of on-site interaction

HU = UanTnji, (5)

J

is turned on, we have the so-called Hubbard model [21, 28]. Its lattice Hamiltonian
is given by H = H;+ Hy, where repulsive U > 0 is always assumed throughout this
paper. The two branches of fermions gradually begin to interact and get entangled with
each other as U increases from zero. On a bipartite ring lattice at half-filling, we can
expect a four-fold degeneracy at most in terms of free spin-1/2 fermions, since every
branch can contribute a two-fold degeneracy. Recall that Lieb told us that any finite
Hubbard U can split this degeneracy, thereby leaving over a unique ground state [45].
For N = N; + N, =2n, n € Z, the optimal flux for the ground state of the Hubbard
model has been proved [61] to be 0 or 7 depending on the parity of N/2. Thus, it is quite
meaningful to ask—on nonbipartite lattices—how the Hubbard interactions impact on
the comprehensive features of free fermions, including the optimal flux problem.

2.2.1. A numerical example. Now let us carry out some numerical experiments by
the exact diagonalization (ED) technique utilizing the ARPACKPP package [70]. They are
quite simple but very helpful for obtaining some basic intuitions. Let us only consider
three fermions N; = 2, N, = 1. On the one hand, L = 3 means half-filling, as illustrated
in figures 2(a), (c) and (e) with increasing U/t = 0.0, 10.0,100.0, both the ground state
energy E, and finite temperature free energy F' always minimize at ¢,, = £7/2. Not
even a very strong Hubbard interaction affects the optimal flux value.

On the other hand, as we can see in figures 2(b), (d) and (f), L =5 means it is
not half-filled. Firstly, the optimal flux for the ground state can be altered by the
Hubbard interactions. There does not exist a universal optimal flux for the ground
state of the Hubbard model when it is not half-filled. As U/t increases, the optimal
flux for the ground state gradually shifts from the free fermions’ ¢, ~ 1.9536, which is
approximately given by equation (2), to 27 /3. In view of equation (2), it is interesting
to realize that 27 /3 is nothing but the optimal flux solution for the ground state of
these free fermions when L — oco. These two limits U — oo (fixed finite L) and L — oo
(U= 0.0) somehow arrive at the same optimal flux. This implies that in a quantum
many-body system strong interactions can indeed drive some emergent nonpertubative
features which cannot be understood by free or weakly interacting pictures. Secondly,

https://doi.org/10.1088/1742-5468 /ab99bf 6
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Figure 2. The ground state energy FEy and the finite temperature free energy F
of the 1D Hubbard model on a ring with fixed fillings Ny = 2, N| = 1. Vertically
from top to bottom, (a), (b), (¢), (d) and (e), (f) denote U/t = 0.0,10.0,100.0,
respectively. Horizontally from left to right, (a), (c), (e) and (b), (d), (f) denote
the lattice size L = 3,5, respectively. Free energy is computed at § = 1.0. The red
dashed line marks the optimal flux ¢, = m/2 for the ground state energy at half-
filling. The green dashed line marks the optimal flux ¢, ~ 1.9536 for the ground
state energy away from half-filling.

the finite temperature free energy F' does not share the identical optimal flux with the
ground state anymore; its optimal flux is located at ¢ = .

This numerical test, as well as the inspiration of lemma 1, give us faith that the
optimal fluxes ¢,,, = £m/2 always hold for the half-filled Hubbard model sitting on a
nonbipartite odd-numbered ring. Half-filling seems to be a special fixed point. However,
when it deviates from half-filling, it is much more complicated and there seemingly does
not exist a universal conclusion.

2.2.2. Generalized reflection positivity. For the Hubbard interacting fermions, note
that the RP technique can only be applied to a ring comprised of an even number of
sites, hence resulting in the optimal flux of 0 or 7. We succeeded in proving the following
theorem with the aid of a generalized reflection positivity (GRP) technique.

Theorem 3. For a half-filled repulsive Hubbard model with a minimal |S;,,| on a nonbi-
partite odd-numbered ring, at any finite temperature the optimal fluxes for its free energy
F are £7/2.

https://doi.org/10.1088/1742-5468 /ab99bf 7
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)
Figure 3. {i,j, k} represents a half-filled Hubbard model living on a L =3 ring

lattice. {7,7, K} is merely a fictitious reflection of {i,j, k} along the dashed line.
Arrows mark the flux accumulating directions.

Proof. Here we take the simplest case to explain the GRP, as denoted by figure 3,
where a half-filled Hubbard model lives on a triangle {4, 7, k}. We would like to make
a fictitious symmetric reflective copy of the system {44, k} to {7,7,K}. The same as
discussed in reference [46], we are at liberty to choose the gauge as the flux is only
added on the nonintersected links (4, j) and (7, f). The other intersected links can be set
to be ty, = t;, = ¢, although generally they are not © invariant, in which © is comprised
of three steps: geometric reflection R followed by a particle-hole transformation and a
complex conjugation C. If we regard these six sites as a whole system, according to Lieb’s
theorem [46], which is also reviewed in appendix D, the fulfillment of ©(t;;¢} ¢;, + h.c.) =

—tjly;rc}/gci/g + h.c. = —R(ty;jcj»ocjg + h.c.) leads to the maximum of the partition function
of the Hubbard model. Note that {7, 7, '} is merely a fictitious reflective image of the
original system. If we want to separate the whole system and view them as two equivalent
ones, we should make another following complex conjugation t;; = —t; LA t; = tij,
which means ¢; is pure imaginary, and thereupon a 7/2 flux is threaded through the
triangle. Note that the second complex conjugation carried out here is to flip the flux
direction of the reflective mirror system {7, §, ¥} back so as to match the original system
{1,7,k}. It is easy to utilize our GRP for other ring lattices with odd-numbered sites
L > 3 as every nonintersected link contributes a +7/2 gauge flux. When the partition
function is maximized, the free energy F'is minimized. |
In addition, we have some remarks.

(a) We think that it is dangerous to rashly deduce the ground state properties so as
to let 5 — 0o. A possible example is illustrated in figures 2(b), (d) and (f), where
the thermal free energy does not share the same optimal flux with the ground state
when it deviates from half-filling. There possibly exists a phase transition when the
temperature jumps from any finite value to zero. However, for the half-filling, this
somehow turns out to be safe such as the half-filled examples numerically shown
in figures 2, 5 and 10. There the ground state energy always shares the identical
optimal flux with the corresponding finite temperature free energy, at least speaking
in terms of these numerical samples. We think it should have something to do with
the coincidence implied by lemma 1, which suggests that a half-filled nonbipartite
odd-numbered ring happens to be an unrenormalized fixed point, where the optimal

https://doi.org/10.1088/1742-5468 /ab99bf 8
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flux cannot be altered and renormalized by the Hubbard interactions any longer. Let
us take a closer look at the finite temperature partition function of the 1D Hubbard
model away from half-filling. Still suppose the basis spanning the Hilbert space is
written in the representation |a) ®@ |v),, similarly,

Z=tr(e") = lim tr [V¥(¢)], (6)

M—0o0

and

L-2 L-1
V(¢) =1 + (SZ (Z Q];gcj+1,0 + eld)CE_LgCOo —+ h.c. — [ZZ TLJ‘TTLN/) . (7)
o \j=0 =0
We write VM (¢) =Y, X*=>" T[, X as we rearrange the operator string by their
spin indices. Then in Lieb’s representation, we have tr (X) = tr ([[, X,) = tr (X3) -
tr(X,). The lowest order nontrivial term with interactions (— U/#)6 - 6* cos ¢ together
with the purely kinetic contribution term §” cos ¢ gives [1 + (— U/t)6]6" cos ¢, which
maximizes the same way as free fermions at any finite temperature. That is, at finite
temperature, the optimal flux for the free energy of the 1D Hubbard model should
not be affected by any finite Hubbard interaction. Numerical examples also confirm
this as shown in figures 2(b), (d) and (f). However, the optimal flux for the zero-
temperature ground state energy is altered by increasing the Hubbard interactions
when it is not half-filled. Note that if U— oo, the above statement is not valid
anymore since the sign of [1 + (— U/t)d] is not well-defined any longer. One counter-
example we already know is the Nagaoka state [60], which says that the Hubbard
model with one fermion away from half-filling will fully polarize in the limit U — oo.
Long-range hoppings or the 2D Hubbard model can induce the Nagaoka polarization
with large but finite U/t [15].

(b) Because of the GRP, the original system and the fictitious reflective system share the
same flux to reach the maximum of the partition function at the same time. Thus the
flux period reduces from 27 to m. Numerically we can also see this in figures 2(a),
(c) and (e). ¢ = £7/2 are both optimal fluxes but have opposite chiralities. The
spin chiral order operator x = oy - (03 X 03), which depends on the imaginary part
of the gauge invariant Berry phases, will not only be nonzero but also maximized
with respect to the optimal +7/2 fluxes. At the same time, nonvanishing charge
currents J;; =132, (¢l ¢;o — h.c.) [16, 91] should be observed around the loop lat-
tice. Both time-reversal symmetry 7 and parity symmetry P break spontaneously
and chiral order emerges. However, the combined P7T-symmetry is not broken,
which illustrates a kind of nonrelativistic PT theorem if U(1) symmetry is preserved
[10].

(c) This result reminds us of Haldane’s honeycomb model [23] where there is a chiral
+7/2 flux threaded through each second-neighboring triangle. It is energetically
favored, and time-reversal symmetry 7 and parity symmetry P are spontaneously
broken.

https://doi.org/10.1088/1742-5468 /ab99bf 9
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Figure 4. Carrying out the GRP along the dashed line on a bowtie lattice. Its
fictitious reflection copy is illustrated by gray links.

2.3. Flux singularity as a Luttinger liquid signature

Another important issue to be addressed here is shown in figure 2, where the ground
state energies always exhibit a nonanalytical singularity at ¢ = w. This can be under-
stood easily at least in a free particle picture. As shown in figure 1, in the momentum
space since we have a discrete momentum step Ak = 27/ L, when the threaded flux ¢ is
approaching 7, the momentum shift behaves like 6k = % - I = %Ak. Therefore, there
will be a sudden rearrangement of the particle fillings in terms of the two branches of
fermions when ¢ steps across 7. The finite-size energy gap closes at the same time. Note
that this particular phenomenon stems from nothing but the very special dimensionality
of 1D. In 1D, the Fermi surface shrinks to two disconnected Fermi points, which essen-
tially make 1D fermions an NFL. As is well known, the low-energy physics of 1D fermions
is described by the Luttinger liquid (LL) theory [22, 53, 82], which crucially differs from
higher dimensions. There exist forbidden scattering regions and unrenormalizable gap-
less Fermi momenta [12, 22, 89]. In this sense, when we vary the threaded flux ¢, these
singularities can be regarded as a kind of Luttinger-like NFL smoking-gun evidence [42,
51]. As expected in LL, this flux singularity located at 7 is unchanged, even involving
Hubbard interactions. When it is away from half-filling as shown in figures 2(b), (d)
and (f), the flux singularity at ¢ = 7 is always located there, only its relative energy is
changed by increasing Hubbard interactions. What we find more interesting is that—as
shown in figure 2(f)—with very large U/t = 100.0, sufficiently strong Hubbard interac-
tions can lead to some emergent flux singularities. We attribute these to the emergent
Luttinger-like flux singularities driven by strong Hubbard interactions, which are absent
in free or weakly interacting fermionic states. These states cannot also be adiabati-
cally connected to the noninteracting fermions. As we can see, from the perspective
of the flux issue, doping a half-filled Mott insulator with sufficiently large Hubbard
interactions turns out to make the system dramatically different from the original par-

ent [41]. These emergent flux singularities can only appear in doped cases away from
half-filling.

https://doi.org/10.1088/1742-5468 /ab99bf 10


https://doi.org/10.1088/1742-5468/ab99bf

Fermi—Hubbard model on nonbipartite lattices: flux problem and emergent chirality

3. Two-dimensional lattices

Most of our physical interest lies in 2D. High- T, superconductivity is generally regarded
as a 2D physical problem, where electrons are restricted within each single Cu—O plane
[14, 41]. Free or weakly interacting fermions in 2D are described by Fermi-liquid theory,
which is dramatically different from LL theory. There is a continuous Fermi surface
and no singular scattering occurs. As a matter of fact, decades ago it had already been
proposed by Anderson that strong interactions could lead to some Luttinger-like features
in a 2D Hubbard model stemming from the unrenormalizable quantum phase shift and
singular scatterings [4, 6]. When interactions are increased until they are sufficiently
strong, Fermi-liquid theory will break down and singular scatterings within the Brillouin
zone may OCCur.

3.1. A trial on a bowtie lattice

In 2D, let us begin with a kind of very simple lattice, namely a bowtie lattice consisting
of five sites as illustrated in figure 4. As a generalization of the GRP on 1D rings, we
have the following corollary:

Corollary 3.1. For a half-filled repulsive Hubbard model with a minimal |S;,| defined on
a bowtie as in figure 4, at any finite temperature, the optimal fluxzes for the free enerqgy
F are £m/2 in each triangle.

Proof. Carry on the GRP along the dashed line as illustrated in figure 4. The other
procedures are the same with the 1D ring. |

However, the GRP cannot tell us the sign of the fluxes in each triangle. Due to the fact
that the GRP only requires a half-filled condition while it does not care about whether
U= 0.0 or not, we can thus deduce the flux pattern for interacting fermions from free
fermions at half-filling. In other words, at half-filling, the (G)RP make a continuous
connection between the Hubbard interacting fermions and free fermions. The optimal
flux patterns are the same on both sides.

The optimal flux for free fermions on a bowtie at half-filling turns out to share
the identical sign of 4+ /2. We verified this conclusion for interacting fermions by the
numerical ED as shown in figure 5 and provide some more results deviating from half-
filling as a comparison. We can see that on a 2D bowtie lattice, half-filling is still such a
special filling that the free energy and ground state energy share the same optimal flux,
which is immobile by changing the Hubbard interactions. Otherwise it is not when it is
away from half-filling.

3.2. Triangular and Kagome lattices

Now we turn to the flux problem on more complicated 2D nonbipartite lattices, such
as triangular and Kagome [20, 55, 74|, in terms of free as well as Hubbard interacting
fermions.

3.2.1. Half-filled free fermions coupled to a Z4 gauge field. We would like to consider
the flux problem of half-filled free fermions both on the triangular and Kagome lattices
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Figure 5. The ground state energy Fy and the finite temperature free energy
F of the Hubbard model on a bowtie lattice. Vertically, (a), (b), (c), (d) and
(e), (f) denote U/t = 0.0,10.0,100.0, respectively. Horizontally, (a), (c), (¢) denote
half-filling Ny =3, N, =2; (b), (d), (f) denote filling Ny = N; = 2. Free energy is
computed at 8 = 1.0. The red dashed line marks the optimal flux ¢ = 7/2 for the
ground state at half-filling.

first. According to our previous discussions, here 4+ /2 fluxes are also strongly implied
in the plaquettes encircled by odd-numbered links. Therefore, we would like to imagine
that there is only a minimal Z, C U(1) gauge field coupled to these lattice fermions. Z,
is the smallest gauge group that possibly supports +7/2 fluxes. A pure Z, lattice gauge
theory should take the form of

H,= —%ZHTZ +h.c, (8)

p lep

where 7, € G = {1, 4, —1, —i} is the gauge connection living on the link [ of each plaquette
p. G is our gauge group. J is the coupling constant. Generically, this Z, gauge field can
be coupled to lattice fermions through

Hf = —ZZ(T,ijl-LUCjU -+ hC) -+ Hg -+ HU. (9)

o (if)
Here for the free fermions with U= 0.0, we only consider the gauge field as a back-
ground, which means J = 0.0. The gauge field does not provide its own dynamics. Given
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(a) (b)

Figure 6. A 2 x 2 enlarged magnetic unit cell with respect to fixed gauge choices.
An arrow denotes the gauge connection exp(+ir/2) fixed on this very link. (a) A
triangular lattice with a flux state labelled by [z, 7. (b) A Kagome lattice with a
flux state labelled by [z, y, 2].

equation (9), exploring the whole phase diagram as well as the phase transitions would
be quite an interesting task, which, however, deviates from the goal of this paper and
will be left for the future.

Since the two branches o =7, | are decoupled and symmetric, if we are on a lattice
with an even number of sites, we can only consider one of them and the Hamiltonian
can be written as H = n'Hn where n = (cy,c1,...,cn1)! assuming there are N sites
consisting of the lattice. We should also assume that the magnetic unit cell can only
be enlarged as much as 2 x 2 greater than the original lattice unit cell. The question
remaining is to find out which flux pattern is optimal to make this fermion—gauge-field
coupled system possess the lowest ground state energy.

For the triangular lattice as shown in figure 6(a), within the enlarged magnetic unit
cell, we have a specific fixed gauge choice, as the arrows indicate, then leave the other
seven links free. The undetermined gauge field connections without arrows can be cho-
sen from the Z, gauge group at liberty. In this sense, there are N’ = 4" = 16 384 kinds
of choice in total. We sought all these possibilities numerically on a 16 x 16 triangular
lattice with periodic boundary conditions (PBC); £[n/2, /2] turn out to be the opti-
mal flux patterns. For the Kagome lattice as shown in figure 6(b), within the enlarged
magnetic unit cell, there are 11 free links determining various flux patterns. We sought
all the N' = 4" = 4194 304 kinds of possibility numerically on a 4 x 4 x 3 Kagome lat-
tice with PBC; +[r/2,7/2, 0] are the two optimal flux patterns for the Kagome lattice.
Some representative flux states and their energy are enumerated in table 1. In figure 7
we also show the finite-size effect of the energy for these flux states. On both triangular
and Kagome lattices, we can see that every rhomboid still prefers a 7 flux while a 0 flux
gives much higher energy. Moreover, these optimal flux states converge more quickly. It
seems that they are much less sensitive to the finite-size effect in comparison with other
flux states.

3.2.2. Turn on Hubbard interactions. As a generalization of 1D rings and a 2D bowtie
lattice, we can carry out the GRP along the dashed lines on these kinds of lattices, as
shown in figure 8. Note that the direct application of our GRP is that every noninter-
sected link will acquire a pure imaginary gauge connection in order to maximize the
partition function. In this sense, we can have the two following corollaries:

https://doi.org/10.1088/1742-5468 /ab99bf 13


https://doi.org/10.1088/1742-5468/ab99bf

Fermi—Hubbard model on nonbipartite lattices: flux problem and emergent chirality

Table 1. The per-site energy of some flux states for half-filled free fermions on a
16 x 16 triangular lattice and a 8 x 8 x 3 Kagome lattice with PBC.

Triangle Kagome
[+7/2,+m/2] —1.201 02 [+7/2,+7/2,0] —0.89912
[, 0] —1.18341 0,0, 7] —0.88413
[+7/2, —m /2] —0.94263 [+7/2,—7/2,0] —0.858 97
(@) —e— [n/2,7/2] (b) —e— [x/2,7/2,0]
0.82 g 0.84 o [0.0.1]
—— [1/2,—7/2] —— [7/2,—7/2,0]
- ——e o
5 -0.98 -0.87} — oo
-1.15 \\» -0.89} T
o B ——
10 20 10 20
L L

Figure 7. Finite-size scaling of the ground state energy for kinds of flux states on
L x L lattices with PBC. (a) Triangular lattice. (b) Kagome lattice.

NN

(a) (b)

Figure 8. Carrying out the GRP on (a) a triangular lattice and (b) a Kagome
lattice. Within a lattice unit cell (shadowed area) of the Kagome lattice there are
three inequivalent sites.

Corollary 3.2. For a half-filled repulsive Hubbard model with a minimal |S7,| defined
on a triangular lattice, the optimal fluxes for its free energy F at any finite temperature
are £m/2 in each triangle.

Corollary 3.3. For a half-filled repulsive Hubbard model with a minimal |S;,| defined
on the Kagome lattice, the optimal flux patterns for its free energy F at any finite
temperature are £m/2 in each triangle and 0 or w in each hexagon.

On the one hand, if only based on the GRP, analytically we still cannot nail down
the sign of the triangle flux +7/2 for the half-filled Hubbard interacting fermions on the
triangular and Kagome lattices. Although Lieb’s original result [47] implies that every
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Figure 9. The ground state energy FEy and finite temperature free energy F' of the
Hubbard model on a triangular lattice consisting of six sites. Vertically, (a), (b),
(c), (d) and (e), (f) denote U/t = 0.0,10.0, 100.0, respectively. Horizontally, (a), (c),
(e) denote half-filling Ny = Ny = 3; (b), (d), (f) denote filling N} =3, N| = 2. Free
energy is computed at 5 = 1.0. The red dashed line marks the optimal flux ¢ = 7/2
for the ground state at half-filling.

rhomboid of a triangular lattice should prefer a 7 flux rather than 0, the RP cannot be
directly applied here since we have an effective next-nearest neighbor hopping for each
rhomboid. As we have mentioned, at the particular half-filling, the (G)RP can make
a bridge between free and Hubbard interacting fermions. It does not matter whether
Hubbard U is zero or not. On the other hand, our numerical study of free fermions
coupled to a static Z, gauge field on triangular and Kagome lattices has shown us the
optimal flux patterns, but we still cannot state them as proof since we have imposed
a magnetic unit cell assumption as well as a finite lattice size. Combining these two
factors, we can at least strongly believe that the optimal flux patterns for the repulsive
Hubbard model at half-filling are +[7/2,7/2] and +[r/2,7/2,0] on the triangular and
Kagome lattices, respectively.

For the triangular lattice, we have another argument: we can carry out the ordinary
RP along the dashed line as illustrated in figure 8 with a glide geometric reflection R
instead of a direct geometric reflection R, saying that every rhomboid of the triangular
lattice prefers a 7 flux, which coincides with the optimal flux patterns +[r /2, 7/2].
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Figure 10. The ground state energy Fy of the Hubbard model on a 2 x 2 x 3
Kagome lattice with an open boundary condition. Flux ¢ is added through each
triangle while there is no flux threading through the hexagon. (a) Refers to the
half-filled Ny = 6, N| = 6. The dashed line denotes 7/2. (b) Refers to the Nagaoka
ﬁlhng NT = 6, Ni = 5.

3.3. Numerical verification and flux singularities induced by strong Hubbard interactions

Meanwhile, we simulate the interacting fermions by the numerical ED on both triangular
and Kagome lattices as shown in figures 9 and 10. Note that we cannot obtain the free
energy for the Hubbard model up to N = 12 sites by ED but only the ground state
energy because of the iterative algorithm [70].

On the Kagome lattice, the half-filled case shown in figure 10(a) is consistent with
our previous discussion. The optimal flux pattern even up to U/t = 100.0 is still the same
as the free fermions. For the Nagaoka filling, we can see that in figure 10(b) Hubbard
interactions can dramatically change the optimal flux pattern. The optimal flux for free
fermions is located at ¢ ~ 7 /3 there, while with U/t= 100.0, the ground state with
minimal energy is located at ¢ = 0.

For the triangular lattice, by ED we also numerically checked that the energy of flux
state [/2,7/2] was lower than the state [0, 7] [68], which are both w-flux states in a
rhomboid.

For the bowtie lattice, when it is away from half-filling as shown in figures 5(b), (d)
and (f), there is no flux singularity for free fermions. But sufficiently strong Hubbard
interactions can give birth to new emergent flux singularities as shown in figure 5(f). As
discussed in 1D, we think that it is still quite reasonable to regard these very singularities
as some emergent Luttinger-like NFL features driven by strong interactions in 2D [42,
76, 83]. On the Kagome lattice with a Nagaoka filling in figure 10(b), we have also
numerically observed similar emergent flux singularities for U/t = 100.0. This is the
Luttinger-like evidence in pure 2D, which contradicts Fermi-liquid theory.

4. Conclusion and discussion

4.1. Brief summary

In this paper, we did a systematic study on the flux problem of free as well as Hubbard
interacting fermions on nonbipartite lattices. At half-filling, several rigorous results can
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be proved by utilizing the GRP technique. Other fillings are studied numerically. On a
1D nonbipartite odd-numbered ring at half-filling, the optimal flux for the ground state is
at an unrenormalized £+ /2. While away from half-filling, the optimal flux can be altered
by strong Hubbard interactions. In 2D at half-filling, the optimal flux of the Hubbard
model on the triangular lattice, +[r/2, 7/2] states are ascertained as the lowest energy
flux states. For the Kagome lattice, they are £[7/2,7/2,0]. On both the triangular and
Kagome lattice, the chiral order parameter for each triangle, namely oy - (02 X 03), is not
only nonvanishing but also maximized in the lowest energy optimal flux states. We also
addressed and discussed the numerically observed emergent flux singularities driven by
strong Hubbard interactions and attributed them to some Luttinger-like NFL features.
It is easy and straightforward to generalize our results to the extended Hubbard model
[46, 73] while we do not expatiate on it here. For other more complicated nonbipartite
lattices, such as decorated honeycomb [50] and 3D lattices [11, 38], we still draw similar
conclusions if we are in the same fermion—gauge-field scenario, meaning that +7m /2 fluxes
will possibly emerge from the plaquettes with odd-numbered sites.

So far, we can provide a basic answer to the question asked in the introduction
section 1: if we lose bipartiteness, for the half-filled free as well as Hubbard interact-
ing fermions coupled to appropriate gauge fields, time-reversal symmetry 7 and parity
symmetry P break spontaneously. Chiral fermions will emerge. Ground states are not
unique any longer. The sign problem cannot be avoided if simulated by quantum Monte
Carlo.

4.2. Possible implication on quantum spin liquids

As we have mentioned, the fermion-gauge theory coupled scheme is not only a fantastic
scenario but also quite realistic. A pure bosonic model can be written in terms of slave-
fermions [2, 58]. Gauge fields can indeed emerge from these strongly correlated bosonic
quantum systems.

In recent years, the Kagome lattice has attracted a great deal of attention with
respect to the study of QSLs [9, 24, 25, 27, 29, 52, 69, 92]. On the projected mean-
field level of slave-fermions, the Dirac state [0, 0, 7] is always reported to serve as the
parent state for various kinds of QSLs on the Kagome lattice [69]. However, in this
paper we found that for not only free but also Hubbard interacting fermions at half-
filling, the ground state energy of the flux states +[n/2,7/2,0] is lower than the Dirac
state [0,0,7]. Although the ground state wavefunction of the Hubbard model is not
equivalent to the Gutzwiller projected mean-field wavefunctions, we think it is still
meaningful to study QSLs starting from the chiral +[r/2,7/2, 0] states. As well as on
the triangular lattice, these optimal flux states break time-reversal symmetry 7. Even
up to very strong Hubbard interactions, we have demonstrated that the lowest energy
ground state of these half-filled fermion—gauge-theory coupled systems always tends to
select some £7/2 fluxes within the plaquettes enclosed by odd-numbered links.

In this sense, our results strongly imply that time-reversal symmetry breaking chiral
fermions and chiral QSLs [10, 84] may be widely present as well as stabilized by emer-
gent gauge fields in strongly correlated bosonic quantum systems on various kinds of
frustrated nonbipartite lattices. Possible examples have been reported widely such as in
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the references [13, 18, 19, 36, 62, 77, 78, 90]. Note, however, that an emergent Z, gauge
field can only allow a Dirac state which does not break time-reversal symmetry 7. If
+7/2 fluxes are expected, the emergent gauge field must at least be a Z4 one. A U(1)
gauge field is also possible but it is more subtle because of the possible confinement [43,

66, 88].

4.3. Outlook

So far we have studied lattice fermions on several kinds of nonbipartite lattices, especially
at half-filling. We hope to continue to explore the fruitful features of strongly interacting
fermions on nonbipartite lattices away from half-filling. For example, if one hole is doped,
the Nagaoka state emerges on bipartite lattices if Hubbard interactions are sufficiently
strong. However, as far as we know, we do not have much information for the Hubbard
model with Nagaoka filling on nonbipartite lattices yet.

In the continuum limit, a field theoretical description is still needed. In 1D, the
conventional bosonization technique can be applied to the system, which might lead to
some new perspectives and physics. Furthermore, we also know that chiral spin states are
deeply related to the topological Chern—Simons term in field theory, which breaks the
parity symmetry P and time-reversal symmetry 7 simultaneously. Actually, fermion
statistics can also be altered by the gauge fields [32, 59, 67], thus bosons and even
anyons may emerge. Further discussion on the application of our current results towards
quantum Hall effects [31, 37] and topological quantum field theories will hopefully be
addressed in the future.
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Appendix A. One-dimensional free spinless fermions and the Jordan—Wigner
transformation

The Hamiltonian of spinless free fermions on such a lattice can be written as
L-1
HO = —Z (tj_jﬂc}cjﬂ —+ hC> y (10)
Jj=0

the Hamiltonian equation (10) becomes Hy = —3,(2 cos k)cle, if we set t;;,, = 1.0.
Suppose there is a fixed number of N(N < L) spinless fermions living on the ring
and preserve the U(1) symmetry. Different boundary conditions will impose different
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quantization conditions of k. For example, PBC gives kL = 2imw, |l € Z,. If N is even,
there is a two-fold ground state degeneracy. The anti-periodic boundary condition gives
EL = (2l + 1)m,l € Z,. If Nis odd, there is a two-fold ground state degeneracy.

The ground state is simply the one in which the lowest N orbitals are occupied.
More generally suppose there is a flux ¢ € [0, 27) threading the ring, we have the shifted
k= (2lm+ ¢)/L, | € Z,. When it comes to the ground state(s), for N =2n+ 1, n € Z,,
the optimal flux is 0 since the lowest mode with & = 0 can be occupied by one fermion.
For N =2n, n € Z,, the optimal flux is 7 for the sake of symmetric band filling.

On the other hand, we know that 1D spinless fermions can be exactly mapped to a
spin model through the Jordan-Wigner transformation [34]. For j = 0, ¢y = 0, ¢} = oy
and for j > 1,

(11)
where 0* = (0” +i0Y) /2. 0™%* are the Pauli matrices. Specifically, a 1D spin-1/2 XY
model reads

o a x y_y
(tjjrofof +ololy)

— —Z (tj,j+1Q7'+J;+l + hC) y (12)
J

which is equivalent to a hard-core boson model
L-1
H}, = —Z <tj7j+1b;bj+1 + hC) (13)
J

if we identify ot ~ b',0~ ~ b as the creation and annihilation operators of the hard-
core bosons. Assuming ¢;;.; are real and ¢;;;; > 0,Vy, these hard-core bosons are on a
periodic ring without any flux inserted. Note that if we carry out the Jordan—Wigner
transformation of these bosons, a boundary term will appear in the fermionic model like

L-2
HJW = —Z <t]’7j+16;[cj+l + hC) + Q (tL,17062716() + hC) s (14)

=0
where Q = HL:_OI (—aj) = (—)Z/’C}C-’f = (—)¥ is the parity operator. That is, if we require

equations (14§ and (13) to be exactly mapped to each other, the boundary condition
for equation (14) must be compatible with the parity of fermions. If Nis even, @) = +1
denoting that the Jordan—Wigner fermions have an anti-periodic boundary condition
(APBC). In other words, a fictitious m-flux is effectively inserted through the ring. If
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N is odd, @) = —1 denotes a PBC, which means a 0-flux is inserted through the ring.
According to the natural inequality [63, 64] theorem, the ground state energy of these
hard-core bosons will never be greater than spinless fermions if they share the same
form of Hamiltonians like equations (13) and (10). If the parity is compatible with the
boundary condition, meaning that the Jordan—Wigner transformation is exactly valid,
equations (13) and (14) will have the same ground state energies, which means the lower
bound of the natural inequality is touched. Thus we conclude that the optimal flux for
spinless free fermions is 7 or 0 if the particle number is even or odd, respectively. In a
word, the optimal flux states for spinless fermions should be nonchiral, which preserve
the time reversal symmetry.

In the case of finite temperature and free energy F'= —1/81InZ with inversed
temperature 3, we have

Lemma 4. For free spinless fermions with the Hamiltonian defined by equation (10) on
a ring lattice, at any finite temperature the optimal flux for free energy is identical to
the optimal fluz in its ground state, namely 0 or m depending on whether the parity of
the particle number N is odd or even.

Proof. The canonical partition function reads
_ —BHo\ _ 1 M
Z =tr(e"™) = Ag’go tr [VY(9)], (15)

and

L2
V(e —1+5<Z clejpn + e - 1co+hc>, (16)

Jj=0

where we have chosen a specific gauge and defined § = t3/M. For a fixed M, V¥(¢)
can be expanded to a polynomial as VY(¢) = > X,,, where X, is a string of fermionic
operators. First of all, we make it a convention to label all the lattice sites in a 1D
array and then write the basis of the Hilbert space as |a) = {cfc'---]0)} with a fixed
order of lattice fermions. The nonvanishing tr (X)) requires that X must recover a basis
configuration to itself. In this sense, there are two kinds of operator strings: trivial ones
such as 1 and c%cL,1027100 whose contributions are identical to the zero-flux partition
function’s, and nontrivial ones so long as X translates at least one fermion winding
along the ring to acquire a phase e™*. Note that the most significant nontrivial oper-
ator string is to translate one fermion once around the ring as taking the order of §.
If N=2n+1,n € Z,, the number of fermions being crossed is even, and the fermion
sign does not arise there. Therefore, this kind of term takes the form (4€ 4 ¢?)§" =
+26% cos ¢, which maximizes at ¢ = 0. The higher order nontrivial terms looking like
+26%" cos(2¢), +28% cos(3¢), - - - maximize with the same ¢. If N = 2n, n € Z,, thus the
number of fermions being crossed is odd. Therefore, an extra fermion sign will arise and
this kind of term takes the form (—e'¢ — e7¢)§* = —25" cos ¢, which maximizes at ¢ = 7.
The higher order nontrivial contributing terms like +26%** cos(2¢), —26°* cos(36), - - -
which maximize with the same ¢. Once the partition function is maximized, the
corresponding free energy is minimized. |
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Appendix B. Half-filled spin-1/2 free fermions on a nonbipartite odd-numbered
ring

Firstly, let us suppose L=4n+1,n€Z;. Ny =2n+1,N, =2n. There is ¢ >0

threaded through the ring and the corresponding momentum shift is ¢/L. The ground
state energy of the fermions around this local minimum can be expressed as

Ey = —2t cos ( ) - QtZ cos ( ) - 2tz (2lﬂ+ ¢> ,

n—1

By = —2t cos< > —2tZ < _¢> —2tZ <2l”+¢> .
E() = E()T + E()l‘ 8E0/8¢ =0 gives
2 Sln( > —22 ( _¢> —I—QZ (2l7r+g25> sin (@) =0, (18)

which is accidentally filled with ¢ = 7/2 no matter what L is. Note that we have the

equation
2 sin T + 4 sin m z”: cos 2lm =1 (19)
8n + 2 8n+2) & dn+1) 7

which always holds. Secondly, let us suppose L =4n+3,n€Z,. Ny =2n+2,N, =
2n + 1. Their ground state energies are given by

n+1
20w — 21
Ey = =2t cos( )—QtZCOS( T >—2tz ( 7T+¢>7

By = —2t cos< >—2tz cos<2l”_ >—2tz <2l”+¢>.

E() = E()T + E()l‘ 8E0/8¢ =0 gives

2sm( >—22$ln(

which is still filled with ¢ = 7/2 no matter what L is. Note that the equation

7'(' 7'(' - 2l
2 si 4 si =1 22
Sln<8n+6)+ Sln(8n+6>§cos<4n+3> (22)

always holds. ¢ = —7/2 follows a similar procedure. Thus in a word, as long as L > 1
and L is odd, the optimal fluxes for the ground state of half-filled free spin-1/2 fermions

(17)

> + Qi sin (2lﬁL+ ¢) — sin [2(71 i BW — ¢] =0,

(21)
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are +m /2, which are independent of L finite or not. In reference [47] we find a similar
result while we use different methods.
We can also compute the partition function in the momentum space,

[ cos kel cry
Z =tr(e") = Z<a|ez‘3t;% et )

«

2ty cos k(l Cit 26t> " cos k(:L Crl
=> (yhe 7 e (nle Ul

gy

26t cos k(;tck 26ty cos k’c]\,ck/
=<Z<we f« w>)-<2<n|e o rn>>, (23)

5 n

where we have written a basis as |a) = |v)y+ ® |n),, of which the Hilbert space dimension
. Ny AN,
isD=C,"-C,".

Appendix C. Other fillings on the triangular lattice

Here we compute more cases with different fillings of the Hubbard model on the
triangular lattice as shown in figure C1.

Appendix D. Review of the reflection positivity on a bipartite lattice

Following the reference [46], on a bipartite graph A, the kinetic energy can be defined
as

K = —Ztijczacjg. (24)
17,0

The hopping amplitude satisfies ¢;; = t};, thus the hopping matrix is Hermitian 7'= ',

and the Hubbard term "
1 1
W = ZUJ <nj¢ — 5) (nji — 5) . (25)
J

The Hamiltonian is H = K + W. The Hamiltonian can be written as H = H; + Hp + H].

H; = tchchT + t”cic;. We are at liberty to choose t, = t,. Particle-hole transformation

is defined as 7¢;,,7 " = ¢! and we can find that 7(t;clc;)T ! = t,,;jcic} — —t*,cle;, which

Jij
implies
TK(T)r ' = K(-T%). (26)

Consider the so-called operator reflection ® combined by three transformations:
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Figure C1. The ground state energy Fy and the finite temperature free energy F
of the Hubbard model on a triangular lattice consisting of six sites. Vertically, (a),
(b), (¢), (d) and (e), (f) denote U/t = 0.0,10.0, 100.0, respectively. Horizontally, (a),
(¢), (e) denote half-filling Ny = Ny =4; (b), (d), (f) denote filling Ny =4, N| = 3.
Free energy is computed at 5 = 1.0.

(a) Geometric reflection R.
(b) Particle—hole transformation 7.
(¢) Complex conjugation C, which only operates on the complex amplitude.

For instance,

@(t,,;jcjcj) =C [T(tilj/cz,cj/)T_l} =C (—t;,j,c},c,,;) = —tju,;rc},c,,;r. (27)
Reflection positivity. Using the Trotter expansion we have
_ “BHY\ _ 1 MY _ 7 M
Z=tr (e ) = Tim tr (VY) = lim tr |(ViViVi) "], (28)
where Vi=1—-pBH;/M, V,=exp(—pHr/M), Vr=exp(—SHg/L). Note
that [Vy, Vz] =0. Expanding VY=3>" X* each term has the form X=

aViVea ViVe...ay—1 V. Vg, a; can be one of the three items l,cgcr,—clci. Our

strategy is to move all the left operators to the left without changing the order of the
left operators themselves. One of the major difficulties here is that c,# operators have
to move through cf.
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Because of particle number conservation ( Vi, Vi already conserve the particle on
each side), the number of factor cchr must be equal to the number ¢;cl, otherwise tr(X) =
0. In other words, the density matrix can be represented in the particle-hole symmetric

reduced sub-Hilbert space. Denote the number of pairs cch,,, cicl in the sequence X as

N. The first cl# moves through zero ¢#. The second moves through one. Thus the total
number of induced fermion signsis 0 + 1 +2- - - + (2N) = 2N*, which cancels the fermion
sign.
X can be rewritten as X = X; ® Xz. Then tr(X) = tr(X;) - tr(Xg), and tr(X,)* =
r [©(X )] since particle-hole transformation will not change the Hamiltonian. Thus we
have [tr(X[)|? = tr(X) - tr(Xp)* = tr(XL) tr [O(X )] = tr[ X, ® ©(X)]. Finally,

2

tr (V) | Ztr (XY Ztr X7 - tr(X3)
<> Jer(x7) 2
=S uxgeoxy] > u [Xg ®0o(xD)]. (29)
o 3
Then we have
Lemma 5. For each B > 0 with fized K,
Z(Hp, Hg)* < Z[H.,©(Hy)] - Z[Hg, O(Hpg)]. (30)

Theorem 6. Assume |t;| are © reflection invariant. Z is maximized by putting flux w
in each square face of A.
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