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Abstract

We develop a long-time moving window framework using Molecular Dynamics (MD) to model shock wave propagation
through a one-dimensional chain of atoms. The moving window formulation “follows” a propagating shock wave allowing us
to model shock wave propagation much longer than conventional non-equilibrium MD (NEMD) simulations. This formulation
also significantly decreases the required domain size and thus reduces the overall computational cost. The domain is divided
into a purely atomistic “window” region containing the shock wave flanked by boundary or “continuum” regions on either end
which incorporate continuum shock conditions. Spurious wave reflections are removed by employing a damping band method
using the Langevin thermostat applied locally to the atoms in each continuum region. The moving window effect is achieved
by adding/removing atoms to/from the window and boundary regions, and thus the shock wave front is focused at the center
of the window region indefinitely. We simulate the shock through a one-dimensional chain of copper atoms using either the
Lennard-Jones, modified Morse, or Embedded Atom Model (EAM) interatomic potential. We first perform verification studies
to ensure proper implementation of the thermostat, potential functions, and damping band method, respectively. Next, we track
the propagating shock and compare the actual shock velocity and average particle velocity to their corresponding analytical
input values. From these comparisons, we optimize the linear shock Hugoniot relation for the given “lattice” orientation and
compare these results to those in literature. When incorporated into the linear shock equation, these new Hugoniot parameters
are shown to produce a stationary shock wave front. Finally, we perform one-dimensional moving window simulations of an
unsteady, structured shock up to a few nanoseconds and characterize the increase in the shock front’s width.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

The propagation of shock waves in materials is an important scientific phenomenon that has been widely studied
for many decades; see, for example, [1,2] and the references therein. It is thus well known that the shock response of
a material at any length scale is inextricably linked to its response at lower length scales. At the macroscopic scale,
shock waves can lead to damage, plastic deformation, and fracture of the material. At the micro- and meso-scale,
shock waves can interact with the microstructure causing complex behavior including scattering, grain rotations,
pore collapse, phase transformations, dislocation and void generation, and grain crushing [3-5].
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Because shock phenomena at the lower length scales influence behavior at the higher length scales, the
shock response of materials has been modeled extensively at the atomistic level using non-equilibrium Molecular
Dynamics (NEMD) simulations since the 1960s [6]. In the past two decades, these NEMD shock simulations
have been expanded to very large-scale domains and used to model increasingly complex events [7-17]. These
simulations typically involve several millions of atoms (~ O(10° — 10”)) subjected to flyer-plate loading scenarios.
Such simulations have been used to study void nucleation [14], dislocation generation [18], twinning [19] and
even shock induced spallation [4,15,20]. However, because of limited domain sizes, NEMD shock methods can
suffer from wave reflections off the domain boundary. Such incidents lead to transient effects and drastically
reduce the total simulation time. Additionally, NEMD shock simulations typically result in unrealistic strain rates
(10'° — 102571 [1]. Such strain rates are rare and orders of magnitude higher than those observed in experiments
and practical scenarios (10° — 108s71).

To overcome some of the drawbacks with NEMD methods, alternative atomistic frameworks have been developed
to model shock waves. Two of these methods are the uniaxial Hugoniostat [21-24] and the multiscale shock
technique (MSST) [25,26]. The uniaxial Hugoniostat method compresses the crystal instantaneously to the final
shocked volume and then couples the system to a thermostat which guarantees that the final Hugoniot state is
reached. This framework has been shown to reproduce defects generated by the shock wave and is an order of
magnitude less expensive than classic NEMD simulations. However, the Hugoniostat is an equilibrium method
which merely reproduces the final shocked state in the domain, so the study of a shock’s steadiness and structure
as well as its interaction with other shocks and defects is limited. On the other hand, MSST performs long-time
shock simulations on small atomistic domains for a much lower computational cost than conventional NEMD shock
simulations. MSST can also simulate multiple shock waves in the atomistic domain. While this technique permits
the shock to be controlled based on prescribed continuum constraints, MSST does not allow information such as
defects and heat to be transferred between the atomistic and continuum regions. As a result, the scalability of MSST
to a fully-coupled atomistic/continuum scheme is restricted.

While modern atomistic methods have been very successful in modeling shock waves and characterizing how
defects influence shock propagation, such schemes still suffer from various limitations as described above. Existing
concurrent schemes such as the quasi-continuum (QC) method [27-31], the coupled atomistic discrete dislocation
(CADD) method [32-36], as well as multiscale micromorphic molecular dynamics (MMMD) and multiresolution
molecular mechanics (MMM) [37-40] have been developed to overcome some of these drawbacks. However, a
concurrent multiscale scheme is needed that would allow the atomistic region containing the shock wave to follow
the shock. This would require simultaneously refining the continuum region as well as coarsening the atomistic
region at the speed of the propagating shock wave. Such a framework would permit microstructural defects and the
resulting scattered elastic waves to consistently cross the interface to the continuum region. This paper presents a
first step towards that concurrent atomistic/continuum scheme by developing a moving window atomistic framework
to follow a propagating shock wave through a material.

In this work, we develop a long-time moving window atomistic framework using Molecular Dynamics (MD) to
model shock wave propagation through a one-dimensional chain of atoms. This framework employs techniques
similar to those applied in the uniaxial “Hugoniostat method by using the planar shock jump conditions and
Hugoniot equation of state (EOS) to study the classic Riemann problem of a single propagating shock. The domain
is divided into an inner “window” region containing the shock wave flanked by a “boundary” region on both sides.
This boundary region is modeled after the “damping band” method presented in [33] which applies a Langevin
thermostat locally to continuum atoms in a “stadium” fashion and linearly increases the damping coefficient across
the thermostatted region. Our method differs from [33] because it is purely atomistic and thus does not further
couple the stadium boundary region to an outer continuum region. The damping band regions absorb and abate
any impinging waves thus largely eliminating transient wave reflections. The atoms in the boundary regions are
governed by continuum shock equations and act as boundary conditions for the window atoms.

The motion of the domain is achieved by consistently adding and removing atoms to and from the boundary
and window regions. This moving window technique is similar in principle to moving boundary conditions used
in works such as [41] and [42] to model dynamic crack propagation, while incorporation of a shock wave into the
moving window framework is inspired from [43] and [44]. Ordinarily, the simulation time of a shock propagating
in an atomistic domain would be vastly limited due to wave reflections off the boundary. The moving window
formulation allows us to model the propagating shock much longer than conventional NEMD shock simulations
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by focusing the shock front at the center of the window region for the entire simulation. We emphasize that the
framework, in its current state, is not a truly concurrent atomistic/continuum scheme in that it lacks a continuum
region with finite element-type mesh points. The scope of this work is therefore limited to ensuring that the small
domain formulation can follow a shock wave for a long time without artificial wave generation and reflection.

Next, we use this method to calculate the shock Hugoniot relation of single-crystal copper along the [110]
close packed lattice direction. Much work has been done on shock kinetic relations and the linear Hugoniot
relationship between shock velocity and particle speed. This includes extensive experimental calibration of the linear
relation [45,46], as well as theoretical investigations into the origins of the shock kinetic relation [47]. Additionally,
many computational studies have been performed which use MD to measure the shock Hugoniot along different
orientations of an FCC copper lattice [8,10,48,49]. While the MD work has shown large anisotropic behavior for
shock propagation along different crystal directions of single-crystal copper, experimental studies have shown no
crystal orientation dependence of the shock velocity vs. particle velocity Hugoniot curve [50].

We start with the experimentally known linear law for polycrystalline bulk copper [2,45,46] and perform moving
window simulations using shock velocities obtained from the known kinetic relation. Next, we provide modifications
to the linear law using the one-dimensional chain of atoms to ensure a stationary shock wave. This new relation
between shock velocity and particle velocity is defined as the shock Hugoniot curve along the [110] direction of a
single-crystal copper lattice and compared to other MD studies. Finally, we use this optimized Hugoniot data along
with the moving window to follow a structured shock up to a few nanoseconds and characterize the shock front’s
width. The shock’s width is observed to increase with time which implies that the shock wave is unsteady. This
is consistent with the findings of other early MD studies which used a one-dimensional chain of atoms to model
shock wave propagation [6,51-54].

The paper is organized as follows: Section 2 outlines the classic Riemann problem of a single propagating shock
wave with constant states across it and relates a one-dimensional chain of atoms to a bulk FCC copper lattice.
Section 3 presents the computational components of the framework as well as describes the application of the jump
parameters and origination of the shock. Section 4 discusses the Langevin “damping band” technique and shows
how it is implemented in the atomistic domain. Section 5 describes the moving window formulation and relates it
to previous works. Section 6 presents detailed verifications of every component of the framework (some of which is
found in the appendix). Section 7 uses the moving window framework to follow a propagating shock and calculate
the shock velocity vs. particle velocity Hugoniot along the [110] direction of a single-crystal copper lattice. This
shock Hugoniot is shown to be in very good agreement with the results of other MD studies. Finally, Section 8
performs long-time simulations of the shock up to a few nanoseconds and characterizes the shock’s structure while
relating the results to early 1D shock studies.

2. Problem statement

We model a shock wave using the conservation of momentum, continuity equation, Hugoniot EOS, and a
thermodynamic relationship. At the continuum level, the one-dimensional shock equations are given by the following
jump conditions [2]:

[o] + pU[v] = 0 (1)
[v] + Us[e] =0 )
where o, €, p and v denote stress, strain, density, and particle velocity respectively. The speed of the propagating

shock front is Uy, and [-] denotes the change in the given quantity across the shock. The shock jump equations are
supplemented by an empirically observed linear relation between shock velocity and particle velocity,

U, = Co + S[v]. 3)

Here, S is a dimensionless, empirical parameter representing the slope of the shock velocity vs. particle velocity
Hugoniot curve, and Cj is the sound velocity in the material at zero stress. Egs. (1), (2), and (3) lead to the standard
Hugoniot stress—strain relationship given by

pCilel

= T+ S @
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Fig. 1. Riemann problem of a shock wave with constant states ahead of and behind the shock front.

where compression stress and strain are considered positive. The Hugoniot stress—strain relationship forms the basis
of modern equations of state. In this work, we use the Hugoniot EOS (4) for the sake of simplicity and to quickly
compute shocked states. Finally, the temperature change across the shock can be calculated by solving the following
differential equation:

ar TC d
Cy <d_> _ v =E<—0> -7 @)
€)y l—€e 2\de/, 2

where Cy is the volumetric specific heat capacity, and y is the Mie—Gruneisen parameter for the material (2.0 for
copper [2]).

The state of the material is described by the state variables (v, €, 8) on either side of the shock, where 6 denotes
temperature. Given a shock velocity U and state (v—, €, 07) of the unshocked material, Egs. (1), (2), (4), and
(5) can be used to compute the state (v", €™, 1) and stress o of the shocked material. In this paper, we present a
moving window framework to simulate long-time shock wave propagation using atomistics given continuum shock
states ahead of and behind the shock. In this sense, we study the classic Riemann problem of a single shock wave
with constant states on either side as shown in Fig. 1.

We study shock wave propagation through an idealized, one-dimensional, “close packed” chain of copper (Cu)
atoms. The lattice points in the one-dimensional chain are chosen to represent copper atoms and hence are each
assigned a mass of 63.55 amu. For the potential functions used in this work (Lennard-Jones, modified Morse, and
EAM), the equilibrium spacing between copper atoms in a one-dimensional setting is given as ry = 2.5471 A. This
corresponds to the spacing between atoms along the close packed direction of a bulk FCC copper lattice. Therefore,
we define the idealized, one-dimensional chain of copper atoms as “close packed”. In a three-dimensional sense,
this framework approximates a planar elastic shock propagating along the [110] direction of a single-crystal copper
lattice and corresponds to the condition of uniaxial strain for a continuum along this orientation. This statement
requires some further elaboration and justification.

In a series of papers in the 60 s and 70 s exploring shock wave propagation and its structure, it was discovered
that while a one-dimensional system can be used to recover a linear Hugoniot relation, the width of the observed
1D shock wave increased linearly [51-56]. The transition from unsteady to steady waves (with constant width) in
three-dimensional lattices for shocks above a critical strength was later found to be due to the “increase in coupling
between vibrational excitations normal and transverse to the direction of shock wave propagation” [57]. Plastic
deformation and the associated transverse atomic motion, which is obviously never possible in a one-dimensional
chain, was thus found to be the key to steady wave behavior in three-dimensional lattices [7,58,59]. However,
one-dimensional chains can still be used to study weak shocks where plastic deformation is minimal [6].

It should be emphasized that the early MD simulations of shock waves in 1D were all performed along the
[100] lattice direction. More recent computational studies have measured the shock Hugoniot along different
orientations of a single-crystal copper lattice and discovered large anisotropic behavior along the various crystal
directions [8,10,48,49]. Specifically, [8] found that shocks propagating along the [110] direction exhibited a leading
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solitary wave train, spreading out as time progressed, which was not observed in the other cases. Along this
orientation, the atoms displaced primarily along the shock direction and very little, if at all, in the transverse
directions. They concluded that shocks along the [110] direction exhibited effectively one-dimensional behavior
comparable to what had been observed in cases of a one-dimensional chain of hard rods [53]. This was seen for
both the Lennard-Jones and EAM potentials.

Building upon this, we relate a shock wave propagating through a one-dimensional, “close packed” chain of
copper atoms to a planar elastic shock propagating along the [110] direction of a single-crystal copper lattice. We
maintain low particle velocities (< 1.6 km/s) as well as temperatures below the melting temperature of copper
(1358 K [2]) to study weak shocks. This minimizes plastic behavior such as dislocation generation and void
nucleation in the shocked region. We note, however, that some plastic behavior may still occur. Since the one-
dimensional framework is fundamentally incapable of capturing plastic effects (and the associated transverse atomic
displacements), we should still expect to observe the shock front increase in thickness. This is consistent with our
observations in Section 8.

We first run simulations using the experimentally known Hugoniot parameters of polycrystalline bulk copper:
S = 1.49 and Cy = 3.94 km/s [1,45,46]. We use these values as an initial guess of the linear shock parameters
and later utilize the moving window technique to obtain values which produce a stationary shock wave. This is
accomplished by plotting the average shock velocity vs. particle velocity for a number of different input shock
speeds and using a linear regression analysis to fit the data. The slope of this regression equation is the new S
value and the y-intercept is the new Cj value. This new relation between shock velocity and particle velocity is
then defined as the shock Hugoniot curve along the [110] direction of a single-crystal copper lattice and is shown
to be in very good agreement with the results of other MD studies. This analysis is presented in Section 7.

3. Description of the atomistic framework

The one-dimensional framework is implemented using an in-house C++ code. We utilize a chain of N lattice
points each of mass m = 63.55 amu — the mass of an individual copper atom. The equilibrium spacing between
atoms in a monoatomic chain is determined by the potential function, and each potential (Section 3.3) assumes an
equilibrium spacing of ry = 2.5471 A for copper in a one-dimensional setting. This corresponds to the spacing
along the [110] direction of a bulk copper lattice, so we characterize our system as an idealized, one-dimensional,
“close packed” chain of copper atoms where x; denotes the instantaneous position of the ith atom at time ¢.

3.1. Geometry and boundary conditions

The atomistic chain is split into three sections as illustrated in Fig. 2. The outer atoms (in blue) are called
continuum atoms (CA) while the inner atoms containing the shock wave front (SWF) are called window atoms
(WA). The continuum Riemann states (v, €, 8) are imposed on the CA regions using standard algorithms for applying
strain, mean particle velocity, and temperature (Langevin thermostat) [60]. The WA region is governed by classic
MD equations. To ensure semi-infinite regions on either side of the shock wave, a semi-periodic boundary condition
method is employed. To achieve this, the continuum atoms at the ends of the chain (x( and x ) are made neighbors
with the continuum atoms at the WA/CA interfaces (xwa,0 and xw4 r respectively). The continuum atoms and
window atoms near the WA/CA interfaces interact with each other to ensure smooth information transfer between
the two regions.

3.2. Initialization of the shock wave

Typically, shocks are modeled with MD by subjecting a large-scale atomistic domain to flyer-plate (or “piston”)
loading scenarios leading to very high strain rates in the shocked material. In contrast, the present formulation
initializes the shock wave using techniques inspired from the uniaxial Hugoniostat method [21-24]. This formulation
uses the Hugoniot conservation relations of mass, momentum, and energy across the shock front (“jump conditions™)
to simulate the final state of the material after the shock has traveled through the domain. Therefore, the Hugoniostat
method does not actually simulate the transient processes at the shock front but rather uses the Hugoniot relations
as constraints to find the final states on the Hugoniot curve. At time zero, the volume is fixed by allowing the atoms
to vibrate around unconstrained lattice sites in the cold, unshocked solid. Then, a uniaxial strain is applied from
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Fig. 2. Schematic of the atomistic framework. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

which the final state is reached, and the shock velocity (Usg) and particle speed (v) can be derived through the jump
conditions. The final Hugoniot temperature is achieved by coupling the strained system to a feedback thermostat
to constrain the internal energy according to the energy conservation equation. The Hugoniostat method has been
shown to successfully reproduce the Hugoniot curve as well as the defect structures produced by the shock wave.

The present formulation is similar to the Hugoniostat method in that it uses the Hugoniot jump conditions to
characterize the shock wave and then couples a thermostat to a section of the domain, so the prescribed temperature
from Eq. (5) is obtained in the shocked material. Our framework differs, however, because the thermostat is applied
only to the CA regions, allowing us to simulate the shock and evaluate its structure. To maintain consistency, we
always define the SWF to originate at the center of the WA region. All the atoms to the right of the SWF constitute
the unshocked material, while all the atoms to the left of the SWF constitute the shocked material. For every shock
simulation, the unshocked state of the material is specified as follows: (v~ = 0 km/s, e~ = 0, 6~ = 298 K). It
should be noted that the Hugoniot parameters are typically reported for a material with this initial state [2]. However,
the framework will be valid for other unshocked states, provided suitable Hugoniot parameters in Eq. (3) can be
obtained. The unshocked (initial) temperature is imposed on the CA region to the right. Since the CA region is
coupled to the WA region, this ensures that all of the unshocked material maintains a mean temperature of 298 K
as shown in [33].

We then choose a shock wave velocity and use Eqs. (2) and (3) to obtain the mean particle velocity and strain
for the shocked material. This mean particle velocity represents a new equilibrium velocity for the atoms in the
shocked region, and the integration algorithm is updated accordingly. The imposed strain causes the shocked region
to compress uniaxially, and the atoms obey the Cauchy—Born rule such that their positions in the chain follow the
overall strain of the shocked region. The non-zero particle velocity and compressive strain cause the shocked region
to reach the final state and produce a forward propagating shock wave starting at the center of the WA region. The
temperature rise from the shock wave is calculated from Eq. (5) and imposed in the left CA region which causes the
shocked material to maintain this mean temperature [33]. The parameters (v*, €t, 6T) represent the entire state of
the shocked material. It should be noted that the size of CA regions are chosen such that they are far away from the
SWEF (the non-equilibrium region). As discussed in [7], the shock velocity vs. particle velocity Hugoniot relation
links a given initial equilibrium state to all possible final equilibrium states for planar shock waves. Therefore, the
CA damping bands are in regions of “local” equilibrium, ensuring the validity of applying thermostats onto strained
sections of the domain [21].

3.3. Interatomic potentials

In this work, we use the Lennard-Jones (LJ), modified Morse, and Embedded Atom Model (EAM) interatomic
potential functions to study the dependence of the Hugoniot parameters on potentials in a one-dimensional setting.
This analysis is presented in Section 7.2.

The LJ potential only considers nearest-neighbor interactions and is represented most commonly as [61,62],

|: o\ 2 N Yo 12 Yo 6
-2 -] [ (2
Xij Xij Xij Xij
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where € is the depth of the potential well, o is the finite distance at which the inter-particle potential is zero,
xjj = |x; — xj| is the absolute distance between particles i and j, and r( is the distance at which the potential
reaches the minimum. The parameters for copper are given as follows: € = 0.4093 eV and o = 2.338 A [63].

Like LJ, the modified Morse potential [64,65] only considers nearest neighbor interactions. The expression is
given by

Vixij) = _Do [672‘4@(*"/*’0) - ZBe’A("U”O)/‘/E] . (7
2B —1
Here, we use the following parameters for copper: rp = 2.5471 A, A = 1.1857 A=, Dy = 0.5869 eV, and
B = 2.265 [65]. MacDonald and MacDonald [64] modified the standard Morse potential to improve the agreement
with experimental values for the thermal expansion of copper [65].
Finally, the Embedded Atom Model (EAM) potential [66] is given by the expression

Vxij)=F Zp(xij) +%Z¢(xij)- ®)
i#] i#]

In this case, the total energy of a particular atom is a function of all the atoms within a cutoff radius r. = 5.507
A. Here, ¢ is a pair-wise potential function, p is the contribution to the electron charge density from atom j at
the location of atom i, and F is an embedding function that represents the energy required to place atom i into
the electron cloud [67]. As shown in [68], the EAM potential works very well for purely metallic systems with
no directional bonding and thus provides a robust means of calculating approximate structure and energetics of
materials. In our case, we use the EAM potential file produced by Mishin [69].

3.4. Integration algorithm

To integrate the equations of motion, we utilize the well-known velocity Verlet algorithm [70] as seen below for
1D:
i (f
fi®)

x; (t+6t) =x; (1) +v; (t) 6t +
2m

S\ s f0)
vi<t+3)—vl(t)+2_m

fi (¢ +6t) = f; (x; (t + 1))
6t)+8_tf,~(t+8t)

it +6t)=v [t + —
v(+)v<+2 2 m

where x;, v;, and f; denote the position of the ith particle, its velocity, and the net force acting on it respectively.
The time step used in the integration algorithm was chosen to be §¢ = 0.001 ps = 1 fs. The velocity Verlet algorithm
is adapted in the presence of the Langevin thermostat as explained in Section 4.

(€))

4. Langevin thermostat with stadium damping

In this work, we use the “damping band” method developed by [33] to incorporate a thermostat into each CA
region. This method is based on the “stadium boundary conditions” proposed by [71] along with the Langevin
thermostat employed by [72]. Compared to other approaches, the damping band method is more ad hoc and does
require some experimentation to fit the optimal parameters (length of the damped region and value of the maximum
damping parameter) for a given application. However, it regulates the temperature of the entire CA region; and, at
the same time, prevents spurious reflections by absorbing and dampening any artifact waves that impinge on the
WA/CA interfaces [33,73]. Additionally, this method allows disturbances in particle velocities to propagate through
the atomistic domain without being artificially suppressed by a global thermostat since local temperature fluctuations
are not felt by the thermostat until phonons arrive at the WA/CA interface [74].

The basic idea of damping bands is that the dynamics of the atoms in the CA regions are modified by the
Langevin (Brownian) thermostatting algorithm [75,76]. The Langevin thermostat is a stochastic thermostat which



8 A. Davis and V. Agrawal / Computer Methods in Applied Mechanics and Engineering 371 (2020) 113290

adds a random force to the particle motion along with a damping term, ¢. The one-dimensional equations of motion
of the Langevin thermostat for a particle i are as follows:

o [2kz6m -
FO@ = fi () —tmiv; (1) + Thi )
(ﬁi (z)) —0
(iahisp () = b (10)

where « and B denote Cartesian components, m is the mass of atom i, 6t is the MD time step, kg is Boltzmann’s
Constant, and fz,- is a Gaussian random variable with a mean of zero and a variance of one. The continuum atoms are
subjected to continuum states (v, €™, 0%) and (v, €, 07). Since the Langevin thermostat is local in nature, the
target temperatures 1 and 6~ are specified for every atom. We adapt the velocity Verlet algorithm in the presence
of the Langevin thermostat by performing the discretization used in LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) [77]:

V; <l + g) =v;(t) — % <Vl::l(t) + fU,’([)) + 8thT§fl,‘

2 m

ot
xi(t 4+ 6t) = x;(t) + v; ([ + 3) 8t

v (t+8t) =v; (t+8_t>_ﬁ<w+§vi <t—|—ﬁ>>+ athTé‘ﬁi- (11)
2 2 m 2 V m

We note that because of the Verlet scheme, the time step in each velocity update is now % rather than 8r. We

generate a different random vector for each particle during each velocity update. !

To ensure force matching across the WA and CA regions as well as simultaneously absorb impinging waves
effectively and efficiently, we specify the damping factor { to be a function of position relative to the WA/CA
interface. To this end, we utilize the equation developed in [33] which linearly ramps the damping in the CA
regions as the distance from the WA/CA interface increases. This equation is given as follows:

d (x)
v

¢ =20 [1 - (12)
where ¢y equals the maximum damping of 1/2 the Debye frequency of copper (wp), and w is the length of the CA
region. Here, d is the minimum distance from the atom at position x to the end of the chain (either point xy or xp).
For the left and right CA regions, we define d as follows:

dres (x) = abs (x; — xo)
dright (x) = abs (x; — xF) (13)

Hence, for atoms in the CA regions, the damping coefficient varies linearly from zero at the WA/CA interfaces to
o at the ends of the chain. This allows waves to enter the CA region and slowly be absorbed as they propagate to
the end of the chain. This reduces spurious wave reflections and artificial waves introduced at the WA/CA interfaces
and thus prevents artificial heating in the WA region [33,73].

5. Moving window formulation

Purely atomistic simulations of shock wave propagation suffer from limited domain sizes due to the compu-
tational expense associated with modeling large-scale phenomena with just atoms. As a result, the shock cannot
travel far before encountering a boundary, and this vastly limits the overall simulation time. In the present work, we
address this problem by implementing a moving window method which is similar in principle to moving boundary
conditions used in [41] and [42] to model dynamic crack propagation. Incorporation of a shock wave into the
moving window framework is inspired from [43] and [44], where a constant flux of material with a given density
and velocity is fed into the simulation window by inserting a plane of atoms to the right boundary at regular time
intervals.
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Fig. 3. Schematic of the moving window mechanism for a shock wave propagating through the 1D chain.

We introduce a modified version of this moving window method into our formulation to minimize wave
reflections and follow the propagating shock. This will allow us to perform a detailed investigation of the shock
wave jump conditions and Hugoniot EOS from an atomistic point of view. Our moving window atomistic method
is outlined in Fig. 3.

The shock wave front originates at the center of the WA region through the jump conditions and shock Hugoniot
as detailed in Section 3.2 and immediately begins propagating forward into the unshocked material. The moving
window formulation works as follows: After the shock front has traveled a distance of one equilibrium lattice
spacing rg, atom N is set equal to atom N,, atom N, is set equal to atom N3, and so on down the chain up to and
including atom N7, — 1. This process effectively removes the continuum atom at the leftmost end of the chain
while simultaneously shifting every atom to the position of its nearest left neighbor. During this shifting mechanism,
the window atom at the left WA/CA boundary becomes a continuum atom, and the continuum atom at the right
WA/CA boundary becomes a window atom. As a result of this process, atom Nrp,,; is effectively removed, and
hence the rightmost lattice position in the chain is vacant. Therefore, we insert a new N7, atom into the chain with
POSition X711 = XToral—1 + o (unstrained system), velocity v~ = 0, and acceleration a~ = 0. Local atomic energy
fluctuations induced near the right boundary by the insertion of atom N7, are damped by the Langevin thermostat
as in [44]. This shifting/insertion method constitutes the moving window formulation, and it occurs iteratively with
a frequency of T~' = Ug/ry as the simulation progresses. The moving window maintains the shock front at the
center of the WA region indefinitely instead of the shock propagating forward to the right boundary.

An x — t diagram of the moving window method is presented in Fig. 4. An idealized shock wave with speed
Us originates at (x, ) = (0, 0) and travels into the initially undisturbed material. At time ¢ = 0, the shock front is
located at the center of the WA region. The WA regions ahead of and behind the shock are initialized with (v—, €7)
and (v', €™) respectively, and the CA regions ahead of and behind the shock are initialized with (v=, €7, 607)
and (vt et, 01) respectively. When the simulation begins, the shock wave starts to propagate forward through
the unshocked material. The moving window process occurs iteratively with a frequency of T=! = Usg/aq causing
the domain to essentially “follow” the propagating shock. In typical NEMD shock simulations, the shock would
propagate forward and eventually encounter the domain boundary thus limiting the total simulation time. In contrast,
the moving window formulation allows us to perform extremely long-time shock simulations without the total
number of atoms continually increasing as the simulation evolves.

6. Verification

We perform three sets of verifications to ensure that (i) the Langevin thermostat maintains a desired equilibrium
temperature, (ii) the potential functions accurately represent mechanical properties, and (iii) there are no spurious
reflections and artifact waves at the WA/CA interfaces. For the sake of brevity, details on (i) and (ii) are presented
in Appendices A and B respectively. In the first, we found that the Langevin thermostat maintained a canonical
(NVT) ensemble for a range of different input temperatures. This effect was observed regardless of the potential
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Fig. 4. X-t diagram representation of the moving window formulation.

function used. In the second, we found that the LJ and Morse potentials gave accurate tangent moduli values for
a range of input temperatures, and the EAM potential accurately represented both the cohesive energy and bulk
modulus of copper at 0 K. Next, we perform the third “steady state” verification using the atomistic framework
described in Fig. 2.

Before presenting this data, we also explore the effect of w (Iength of the CA region) and ¢y (maximum damping)
in Eq. (12) on the system’s ability to achieve steady state and obtain canonical temperature fluctuations. We varied
the length of each CA region from 3 to 500 atoms and the maximum damping from 0.1 to 1.0 times the Debye
frequency of copper (wp). To preserve the scope of this paper, we do not present the full extent of these simulations.
Rather, we merely highlight the results.

First, we found that the length of the CA region needed to be at least the range of the forces (~ 11 A for the
applied EAM potential). When the CA region contained only 3 atoms (~ 7.67 A), energetic pulses were not properly
damped, and thus traveling waves appeared in the WA region. There was, however, observed to be no upper limit to
the stadium length as any CA region longer than ~ 11 A adequately damped out spurious phenomena and achieved
a steady state. Next, we found that an optimal value for {, was 1/2 wp. If the CA regions were too weakly-damped
(¢o < 0.2wp), the system failed to achieve a canonical ensemble. However, if the CA regions were too over-damped
(%o = 0.9wp), pulses were not smoothly absorbed, and larger fluctuations occurred in the WA region. These results
are consistent with those reported in [33]. Therefore, we conduct all subsequent simulations with 100 atoms in
each CA region and a maximum damping value of ¢y = 1/2 wp. We use a much larger CA region length than
technically necessary for extra precaution and to ensure that all transient phenomena are properly damped over
long-time simulations (~ 3 ns).

To ensure that the WA/CA interfaces are not introducing spurious waves into the WA region, we prescribe the
same continuum states to both CA regions. In other words, the problem has now moved either to the left of the
shock or the right of the shock in Fig. 4. The average particle velocity of the system should remain equal to the
initial input value with little to no increase in the average amplitude. A change in the average particle velocity
would indicate that the system is not reaching equilibrium, while a large increase in amplitude would mean that
energy is being artificially added to the WA region. Additionally, after a reasonable interval of time, no traveling
waves should appear in the WA region. Such artifacts would mean that waves are not being smoothly absorbed into
the CA regions and instead reflecting off the WA/CA interfaces. The presence of these waves could also mean that
the periodic boundary conditions are improperly implemented.

We perform steady state simulations for a one-dimensional chain of 10,000 copper atoms with all three potential
functions. The Langevin thermostat is applied using the damping band method discussed in Section 4 with
Zo = 1/2wp. We test the ability of the CA regions to equilibrate the system to the average input velocity and
properly absorb waves/energetic pulses. We perform these studies for the following mean input particle velocities:
0,3, 6,9, and 12 A/ps. The first set of results can be seen in Fig. 5, where we plot the average particle velocity of
the one-dimensional chain vs. time. The total run-time for each simulation is 3000 ps (3 ns). We observe that the
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Mean Particle Velocity Calculations for all Three Potentials with Langevin Thermostat
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Fig. 5. Average particle velocity of different systems vs. time for a range of input velocities.

system maintains the initial mean particle velocity for the duration of the simulation for every interatomic potential.
From these results, we conclude that the WA region achieves steady state for long-time simulations.

Finally, we confirm that the average amplitude of the particle velocities remains relatively constant and no large
traveling waves appear throughout the duration of the simulation. Fig. 6 shows three different particle velocity vs.
particle number plots for all three potentials. In each of these graphs, we plot the velocity of each particle at 0
ps and overlay that with the velocity of each particle at 3000 ps for each input velocity (0, 3, 6, 9, and 12 A/ps).
We overlay these sets of data from the beginning and end of the simulation to observe how the average amplitude
changes over time. We observe that in each case, the amplitude of the particle velocities does not increase as the
simulation evolves. In fact, the two sets of data overlap each other almost identically indicating that no artificial
energy is being introduced into the WA region. (We also note that no large traveling waves were observed in the WA
region over the entire run-time.) These results confirm that any waves or pulses encountering the WA/CA interfaces
are traveling smoothly into the CA regions and eventually being damped out. Additionally, the data establish that
the periodic boundary conditions used in the CA regions are implemented correctly.

7. Shock hugoniot results

7.1. Moving window simulations using the polycrystalline EOS parameters

We perform long-time moving window shock simulations through an idealized, one-dimensional, “close packed”
chain of copper atoms. As explained in Section 2, this corresponds to a planar elastic shock propagating along
the [110] direction of a single-crystal copper lattice. The atomistic domain contains a total of 10,000 atoms
with 9800 atoms in the WA region and 100 atoms in each CA region to ensure smooth damping for long-time
simulations. Hence, each CA region is Wlo the size of the overall domain and thus far enough away from the
non-equilibrium shock wave front to be in a region of “local” equilibrium (see Section 3.2 and [7]). Semi-periodic
boundary conditions are enforced as described in Section 3.1, the shock is initialized using the technique described
in Section 3.2, and the moving window is applied as detailed in Section 5. Each simulation is performed for 3000
ps (3 ns) in order to track the motion and evolution of the fully-developed wave.

We conduct these studies for several different shock wave velocities (Ug) using all three potential functions.
However, in the following shock wave plots, we only present data obtained using the EAM potential as the other two
potentials demonstrated similar phenomena. We perform the first set of simulations using the Hugoniot parameters
for polycrystalline copper (Cy = 3.94 km/s and S = 1.49 [46]). As noted in Section 2, these values serve as an initial
guess, and we will derive parameters which produce a stationary shock in Section 7.2. These new EOS parameters
will give us a corrected Hugoniot curve for a shock propagating along the [110] direction of a single-crystal copper
lattice, and we will compare this optimized Hugoniot to those obtained in other MD studies. Fig. 7 shows a moving
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Fig. 6. Steady state plots using the Langevin damping band method with the (a) Lennard-Jones, (b) Morse, and (c) EAM potentials.

window shock simulation for an input shock velocity of Us = 50 A/ps (5.0 km/s). In this case, we overlay the
initial shock wave with its successive positions in 100 ps increments, so we see the evolution of the shock over a
period of 1000 ps.

The moving window method should maintain the shock front at the center of the WA region throughout the
entire simulation. This is not observed in Fig. 7, however, because the experimental Hugoniot parameters used in our
initial guess are derived for polycrystalline copper. Several MD studies have measured the shock Hugoniot along the
different orientations of a single-crystal copper lattice and discovered large anisotropic behavior along the different
crystal directions [8,10,48,49]. Since we are studying a propagating shock along the [110] direction of a copper
lattice, our initial Hugoniot is not suitable for this orientation. Such anisotropic behavior exists because plane-plane
collisions propagate the shock faster along the [110] direction than along the other two directions [10,48]. This
causes the moving window update frequency to “under-predict” the shock velocity causing the shock wave to drift
forward towards the right boundary.

This drifting effect is also observed by plotting the shock front position vs. time for the following input shock
velocities: 47, 50, 54, 58 and 60 A/ps. In Fig. 8 we observe that, in each case, the shock wave travels to the right,
and the speed of this forward motion increases with increasing input shock velocity. (The figure terminates at 500
ps because the 60 A/ps shock encountered the boundary around this time.) These results imply that the WA region
is “falling behind” the forward propagating shock. This lack of agreement between the shock wave velocity and
moving window frequency becomes more pronounced as the input shock velocity increases. Therefore, we must
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Shock Wave Evolution (Us = 50 A/ ps)
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Fig. 7. Propagation of a shock wave using the EAM potential for an input shock velocity of 50 A/ps (5.0 km/s). This simulation was
produced using the shock Hugoniot parameters for polycrystalline bulk copper [46].
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Fig. 8. Position vs. time of the SWF for various input shock velocities using the EAM potential. These were produced using the shock
Hugoniot parameters for polycrystalline copper [46].

calculate the [110] shock Hugoniot by plotting the observed shock velocity vs. particle velocity directly behind the
shock front. These results are presented in Section 7.2.

7.2. [110] shock Hugoniot calculations

To derive new Hugoniot EOS parameters along the [110] direction, we analyze moving window shock simulations
using all three potentials for the following input shock velocities: 47, 50, 54, 58, and 60 A/ps. We track the position
of the SWF as well as the mean particle velocity behind the SWF until the shock impinges upon the right WA/CA
interface (analysis after this point is invalid because the shock gets absorbed). To accomplish this, we fit the shock’s
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EAM Potential with Langevin Thermostat (Us =60 A/ps)
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Fig. 9. Snapshot at 35 ps of a propagating shock with a velocity of 60 A/ps (6.0 km/s).
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Fig. 10. Shock velocity (Us) vs. particle velocity (v) along the [110] crystal direction of copper using the (a) Lennard-Jones potential and
(b) EAM and Morse potentials. These are compared to other NEMD simulation results for a shock along the [110] direction of a copper
lattice found in [10] and [48]. Additionally, we plot experimental Hugoniot data of polycrystalline copper from [46].

particle velocity profile to a hyperbolic tangent function in MATLAB (using the Curve Fitting tool) for different
time steps.

Fig. 9 presents a snapshot at 35 ps of a propagating shock with an input velocity of 60 A/ps (6.0 km/s). We
observe four main components in this shock profile: (i) the mean particle velocity in the shocked material (v™)
derived from Eq. (3), (ii) the actual mean particle velocity behind the SWF obtained from MD, (iii) the position
of the SWF (which is drifting forward), and (iv) the mean particle velocity input by the user in the unshocked
material (v- = 0 km/s). We notice that the actual v* has a mean value which is slightly higher than that of
the analytical v™. This causes the actual € in the shocked material to be higher than the analytical e* which
results in a forward propagating shock wave. Therefore, because we used the polycrystalline Hugoniot parameters
in our moving window simulations, the shock values (v", €™, and Uy) obtained from MD are different from those
calculated using the jump conditions. We use these new MD parameters to derive the shock Hugoniot along the
[110] lattice direction.

Fig. 10 presents Hugoniot curves of the average shock velocity vs. particle velocity along the [110] lattice
direction for all three potentials. These Hugoniots were obtained from the five shock wave trials mentioned
previously, but we emphasize that the results in Fig. 10 are the calculated mean shock/particle velocities from
MD and not their input values. The linear fits to the experimental data of polycrystalline copper by [46] (Us =
3.944-1.49v) as well as NEMD shock simulation results for the [110] direction of perfect single-crystal bulk copper
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by [10] and [48] are also plotted in Fig. 10 for comparison. For each potential, the slope of the linear fit is the new
S value while the y-intercept is the new Cj value.

The results from Fig. 10 imply that single-crystal copper is a highly anisotropic solid as the shock velocity
vs. particle velocity [110] shock Hugoniots for all three potentials deviate significantly from the Hugoniot of the
polycrystalline experiment. Our findings corroborate the anisotropic nature of shock Hugoniots along different lattice
orientations of copper observed in NEMD simulations [8,10], and [48] as well as MSST simulations [49]. The higher
shock wave speeds along the [110] direction are due to plane-plane collisions that propagate the shock faster than
along the [100] direction as mentioned previously.

Our simulation results using the Morse and EAM potentials are in good agreement with both Bringa’s [10] and
Lin’s [48] NEMD results for the low particle velocities studied with the moving window method (v < 1.6 km/s). The
slopes of the Hugoniots (S values) obtained from these two potentials are very similar to the Hugoniot slopes from
the two NEMD studies, but we do observe slight deviations from Bringa’s results in the higher velocity region. This
is attributed to the higher temperature in the unshocked region (298 K) employed in the current simulations [78].
Lin used an initial temperature of 300 K, which is why our moving window results agree more with the results
in [48] over the full range of particle velocities studied. The shock wave velocities (and thus Cy values) obtained
with the Morse and EAM potentials are slightly lower than the shock velocities from the NEMD studies, and this
could be attributed to small transverse effects in a bulk crystal which are unaccounted for in our one-dimensional
atomistic chain.

The same correlation is not observed when using the LJ potential which produced shock velocities and particle
velocities much higher than those in the NEMD simulations. These high shock speeds would result in plastic
behavior which cannot be captured in a one-dimensional framework. Additionally, the slope of the Hugoniot curve
obtained from the LJ potential is much higher than the slopes from any of the other data sets. Finally we note that
LJ is, in general, a poor model for copper. Therefore, we perform all further moving window simulations using
only the Morse and EAM potentials.

The Morse and EAM shock Hugoniot results in Fig. 10 are in good agreement with the NEMD results, and
this provides further confirmation that a shock propagating through a one-dimensional chain of “closed packed”
copper atoms is comparable to a planar shock moving along the [110] direction of a single-crystal copper lattice.
Additionally, these results show that the moving window formulation presented in the current paper can be used
with multiple interatomic potential functions. We observe that EAM produces Cy and S values of approximately
3.577 km/s and 2.84 respectively while Morse produces values of 4.356 km/s and 2.57 respectively. We define these
as the empirical parameters of a linear shock Hugoniot along the [110] direction of a bulk copper crystal and use
them to produce a stationary shock wave in Section 7.3.

7.3. Moving window simulations with new [110] shock Hugoniot

In Fig. 11a, we present the time evolution of a 50 A/ps (5.0 km/s) shock wave over 1000 ps in increments of
100 ps (the total run-time was 3000 ps). This simulation uses the EAM potential and introduces the new [110]
Hugoniot parameters for EAM into Eq. (3). We performed the same MD simulations using the Morse potential
with its new Hugoniot and saw similar results, so we only present and discuss data for the EAM potential here. In
Fig. 11a, we achieve much better agreement between the input shock velocity and MD shock velocity than attained
in Section 7.1. The shock front is now remaining stationary in the atomistic domain and not drifting towards the
right WA/CA interface. It is apparent that when using the new [110] shock Hugoniot parameters, the midpoint of the
shock front maintains its position at the center of the WA region much longer than when using the polycrystalline
Hugoniot parameters which assume that the shock propagates along the [100] lattice direction. This effect is even
more noticeable in Fig. 11b where we plot the shock position vs. time from the new Hugoniot simulations and
compare these results to Fig. 8. Whereas the shock fronts were all drifting forward before, they are now remaining
stationary (as evidenced by the horizontal data points) throughout the duration of each simulation. Therefore, the
moving window update frequency now matches the shock velocity, so the atomistic domain is properly “following”
the propagating shock.

For all of the shock simulations with the new Hugoniot parameters, we do observe an increase in the shock
thickness over time. This effect is evident in Fig. 11a. Although the midpoint of the shock front remains relatively
stationary, the shock “spreads out” across the WA region at higher time steps. This is a consequence of the
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S7hock Wave Evolution with New EOS (Us =50 A/ ps)
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Fig. 11. (a) Propagation of a shock wave using the EAM potential and incorporating the new [110] Hugoniot EOS parameters for EAM
(Us = 50 A/ps). (b) Shock position vs. time when using the new [110] Hugoniot compared to the results from Fig. 8.

shock developing a structure as it propagates. A structured shock wave is a well-established and characterized
phenomenon [79], and it has been observed in many other one-dimensional MD shock simulations [6,51-54]. As
such, care must be taken to ensure that the WA region is sufficiently large to account for the entire structured shock.
Otherwise, the shock wave could potentially “leak™ out of the WA region and impinge on the WA/CA interface
which could result in shock absorption and energy dissipation at higher time steps. Typically, 1D chain shock
simulations result in a linear increase in the shock thickness (unsteady wave) while 3D shock simulations produce
a constant shock thickness (steady wave) [57]. To understand this phenomenon further, we increase the size of the
WA region and perform additional shock simulations using the new [110] Hugoniot parameters. These results are
presented in Section 8.

8. Shock structure analysis

As we saw in Section 7.3, the shock wave was remaining stationary but was also developing a structure and
exhibiting a length scale. In [79], Chhabildas and Assay calculate an upper limit of 3.0 ns and a lower limit of
0.03 ns for the shock rise time (R7y) in copper. Using the new shock Hugoniot for EAM, we perform long-time
moving window simulations using the following shock input velocities: 47, 50, 54, 58, and 60 A/ps. Assuming the
upper limit of 3.0 ns for the shock rise time as well as the highest shock wave velocity of 60 A/ps, we can obtain
a maximum value for the shock thickness (7) as follows:

Ts = Ug x RTs = 60 A/ps x 3000 ps = 180, 000 A. (14)

Since our previous framework contained only 10,000 atoms with an equilibrium spacing of 2.556 A between atoms,
the domain may not have been large enough to accommodate the shock’s width. This could cause part of the shock
to be absorbed into the CA regions and thus dampened out during very long-time simulations (> 1 ns). Hence, we
increase the atomistic domain size to 80,000 atoms (~ 204, 500 A) and perform shock simulations with the new
[110] Hugoniot EOS. (Again, we only show results for the EAM potential as the Morse potential produced similar
results.) Simulations for input shock velocities of, respectively, 50 A/ps and 60 A/ps can be seen in Fig. 12.

For both shock wave trials, we clearly observe the shock wave maintaining its position at the center of the WA
region over time. Additionally, the entire structured shock is well-contained within the WA region and thus not being
absorbed and dampened by the CA regions. However, as seen in Fig. 13, the shock wave thickness still increases
throughout the entire run-time. For all five shock wave trials, the width increases linearly from O to 500 ps and then
continues to gradually increase from 500 ps to the end of the simulation at 3000 ps. As explained in Section 2,
this phenomenon has been observed in many other one-dimensional shock wave studies. Since the shock width is
seen to increase for all five input shock velocities, we conclude that the one-dimensional moving window atomistic
framework produces unsteady waves in agreement with other 1D chain NEMD shock simulations [6,51-57]. Our
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Fig. 12. Propagation of the shock wave front using the EAM potential for input shock velocities of 50 and 60 A/ps (5.0 and 6.0 km/s).
The atomistic domain now contains 80,000 total atoms.
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Fig. 13. Spatial shock width vs. time for five different shock wave trials with new [110] Hugoniot. The EAM potential was used for these
simulations.

results confirm that such unsteady behavior also occurs in a “close packed” atomistic chain assuming optimized
[110] Hugoniot parameters (as opposed to experimental polycrystalline parameters) are incorporated into the linear
shock Hugoniot.

We note that most of the NEMD “piston-based” shock studies which utilize a one-dimensional chain of atoms
are limited to simulation times of < 100 ps because the number of atoms that have to be included grows as the
shock front recedes from the piston face [44]. In such simulations, a linear increase in the spatial width of the shock
front is observed, and we also observe this linear growth of the shock thickness up to 500 ps in the current moving
window framework. However, as seen in Fig. 13, the shock width growth of the five trials begins to diverge after this
point. This change in growth rate was not observed in previous one-dimensional NEMD simulations due to limited
computational times, and such a phenomenon could be attributed to the minimal transverse motion which occurs
for a shock propagating along the [110] lattice direction [8]. Nonetheless, such a change in the rate of increase of
the shock width is an interesting result of long-time simulations and could be a topic of future study.
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9. Conclusion

In this paper, we developed a moving window framework using MD to model long-time shock wave propagation
through a one-dimensional chain of copper atoms. The framework is composed of a window region containing the
shock wave flanked by boundary or “continuum” regions on either end of the domain. The dynamics of the window
region are governed by the classic MD equations of motion while continuum shock conditions are incorporated into
the boundary regions. The boundary regions utilize the Langevin thermostat along with a linear damping technique
to prevent spurious reflections and absorb any artifact waves that impinge on the WA/CA interfaces. The moving
window focuses the shock wave front at the center of the WA region by adding/removing atoms to/from the WA
and CA regions. This allows us to use relatively small domain sizes to model shock wave propagation much longer
than conventional NEMD shock simulations. In the first part of the paper, we introduced a classic single-wave
Riemann problem and defined the one-dimensional scheme. We then discussed the Langevin damping band method
as well as the moving window formulation, and we extensively verified that each component of the framework was
functioning properly.

In the second part of the paper, we used the moving window framework to follow the propagating shock wave
and calculate the shock velocity vs. particle velocity Hugoniot along the [110] direction of a single-crystal copper
lattice. We observed that the EOS parameters obtained from the Morse and EAM potentials were in good agreement
with the results from other MD studies. We then performed moving window shock simulations with the new EOS
parameters to obtain a stationary shock wave. This allowed us to track the shock wave for a few nanoseconds (much
longer than conventional NEMD shock simulations) and characterize the shock’s structure. We observed a linear
increase in the width of the shock front up to 500 ps followed by a gradual increase until the end of the simulation.
This increase in the shock front thickness was attributed to the fact that the one-dimensional framework is unable
to account for plastic effects and the associated normal/transverse displacements. These results were consistent with
early MD shock wave studies that used a one-dimensional chain of atoms.

In this work, we demonstrate that the moving window formulation can follow a propagating shock wave for long
simulation times (> 1 ns). Additionally, we show that a shock propagating through a “close packed” one-dimensional
chain of atoms can serve as a good approximation for a planar shock wave propagating along the [110] direction
of a bulk single-crystal lattice. Transverse effects appear to be less influential along this lattice orientation [8],
and our derived Hugoniot parameters are shown to be in good agreement with other MD studies [10,48]. Existing
NEMD shock techniques demonstrate distinct Hugoniot equations along the various lattice directions of a bulk
crystal [8,10,48,49] while experimental methods show no such distinction [50]. A higher-dimensional moving
window formulation could be used to resolve such a discrepancy. This higher-dimensional framework could also
be used to follow a shock for very long simulation times and thereby study its structure, characterize its underlying
kinetic relations, and examine its interactions with microstructural boundaries.

The present moving window atomistic framework has the potential to be scaled up to a fully-coupled atom-
istic/continuum framework using methods such as CADD or CAC. Such a concurrent multiscale scheme would
require simultaneous refinement of the continuum region as well as coarsening of the atomistic region at the speed
at which the shock wave moves. This would enable the atomistic region of interest to “follow” the propagating
shock indefinitely. While existing concurrent schemes have been very successful in modeling material defects and
their motion, they have not yet been extended to model shock wave propagation through a material. Therefore, a
multiscale scheme which can follow a propagating shock wave through the coupled domain is very much needed.
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Fig. A.14. Constant temperature NVT results for the Langevin thermostat using (a) Lennard-Jones, (b) modified Morse and (c¢) EAM
potentials.

Appendix A. NVT Ensemble

We perform constant temperature simulations for systems of 10,000 copper atoms using the Langevin thermostat
which is designed to maintain a canonical (NVT) ensemble. We test the performance of the Langevin thermostat
using all three potential functions (LJ, modified Morse, and EAM) at temperatures ranging from 250 K to 1250 K.
Since the melting temperature of copper is 1358 K, we do not perform simulations with higher input temperatures.
The total run-time for each simulation is 3000 ps (3 ns) with an equilibration time of 5 ps. In this case, standard
periodic boundary conditions are enforced such that the leftmost atom interacts with the rightmost atom in the chain
and vice versa. Therefore, we do not enforce the WA/CA domain described in Fig. 2. The results from these MD
simulations can be seen in Fig. A.14.

For all three potential functions, the average temperatures oscillate around their corresponding initial input values
for the entire run-time of 3000 ps. However, we notice that the variance in the average temperature increases with
increasing input temperature. This effect occurs regardless of which potential function is used. Such a phenomenon
makes physical sense because the frequency of oscillation of the particles in a solid increases as the temperature in
the solid is raised. Additionally, we observe that at higher temperatures, the Langevin thermostat equilibrates the
system to the initial input temperature slower than at lower temperatures. This effect is seen for all three potential
functions, and it is most prominent at an input temperature of 1250 K. This is understandable as the Langevin
thermostat is a local thermostat, and hence there is a lack of feedback between the target temperature and input

temperature. From these results, it is apparent that we maintain a canonical (NVT) ensemble for a wide range of
input temperatures.
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Appendix B. Mechanical properties

Verification of the Lennard-Jones and modified Morse potentials is carried out by computing the tangent modulus
of the system over a range of temperatures, while verification of the EAM potential is achieved by computing the
cohesive energy and bulk modulus of the system at O K. In each case, we compare the simulated mechanical
properties to their corresponding literature values for copper.

B.1. LJ and morse potentials

To compute the isothermal elastic modulus in 1D (tangent modulus), we utilize the microscopic elasticity tensor
derived in [60]. The conventional expression for the microscopic elasticity tensor at a temperature 7 is given as
follows [60]:

\%
kpT
where (-) refers to a phase average, kp is Boltzmann’s Constant, V is the volume, and the covariance operator is
defined by

Cov(A,B)=(AB) — (A) (B). (B.2)
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where ¢* is the interatomic force depending only on the distance r*# between the atoms and «“f7% is the bond
stiffness defined by
af 2yyint
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This bond stiffness is interpreted for a simple pairwise potential, where the force on atom « due to atom g depends
only on the distance r*#. Eq. (B.1) can be further simplified by splitting the instantaneous stress terms into kinetic
and potential parts as seen below:
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Substituting o™5! = g K-inst 4 5V+inst jnto the third term of Eq. (B.1) and noting that the cross-terms cancel,
<O,i;(,inslo,i}/,insl> — <O_i;(,insl><o,i}/,inst> (B6)
we get the following:
Cov (o,iij(lst’ O_tnst) Cov ( K inst O_K mar) + Cov ( Vlmt Uk\;,insl) ) (B7)
Then, as shown in [60], the kinetic terms can be reduced as follows:
Cov (o " ™) = (8 + 8udje) N (kT)*. (B.8)
Substituting Eqs. (B.7) and (B.8) into Eq. (B.1), we get the simpler form of the elasticity tensor:
l V ms ms
Cijkt = 7, [(c?jm = Cou (o™ o™ ) + NkaT (5.3 + a[léjk)] : (B.9)
B

Here, the first term is the elasticity at 0 K, the second term is the instantaneous potential energy, and the third term
is the instantaneous kinetic energy. It is noted that the third term goes to zero as 7 — 0 K. Additionally, [80]
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showed that the fluctuation term disappears as the stress and potential terms expand. In this case, ¢ = ¢, where ¢°

is given by Eq. (B.3). We note that the elastic constants associated with shear vanish in the thermodynamic limit,
as shown in [81]. However, Eq. (B.9) still allows us to calculate the elastic constants of solids by replacing the
phase averages with time averages.

The method just described to calculate the spatial elastic modulus is known as the stress fluctuation method
[82-84]. We use this stress fluctuation method to calculate the microscopic elastic (tangent) modulus of a one-
dimensional chain of copper atoms with constant length L and constant temperature 7. For the 1D case, Eq. (B.9)
reduces to the following [65]:

2

1 L ins ,ins
C:Z[ZNkBT+L<CO)_]€Ig_TCOU (AN A t)i| (B.10)

where L is the chain length, and “Cov” is the covariance operator given by Eq. (B.2). Then, the ¢® Born term in
ID is

1 N
=720 D (¢ — ¢/, (B.11)
i=1 j=i+1

where x;; = x; — x;. Finally, the potential part of the instantaneous stress in 1D is given as follows:

N
oVimt = %Z Z @' (xij)xij. ®-12)

We compare the tangent modulus obtained from MD to the tangent modulus obtained from the Quasi-Harmonic
(QH) approximation. The QH approximation for the temperature-dependent stress-free spatial tangent modulus of
a 1D chain of atoms is [60,65]

knT 4) " _ " 2
c:a[¢//(a)+ 8T ¢ (a)p (7) 2(¢ (a)) } (B.13)
2 (¢"(a))
where a = a(T) is the stress-free equilibrium lattice constant at temperature 7. In this case, the temperature
dependence of the equilibrium lattice constant is obtained through the following equation [60]:

kT ¢"(a)
(@) + ——— =0 (B.14)

2 ¢"a)

This requires calculation of third and fourth derivatives of the potential function ¢, making calculations for EAM
cumbersome. We use Eq. (B.13) to obtain the analytic tangent modulus values for the Lennard-Jones and modified
Morse potentials.

We utilize Eq. (B.10) to calculate the microscopic tangent modulus of a one-dimensional chain of 10,000 copper
atoms using the LJ and modified Morse potential functions. We test the performance of each of these potentials using
the Langevin thermostat at various temperatures. For each of the input temperatures, we calculate the corresponding
equilibrium lattice spacing using Eq. (B.14). Using these temperature-dependent lattice spacings, we can obtain the
tangent modulus from MD simulations with Eq. (B.10) and compare this to the value obtained analytically with
Eq. (B.13).

Plots showing the MD and analytic tangent modulus results can be seen in Fig. B.15. Here, we present the analytic
tangent modulus values (blue line) for temperatures ranging from 0 to 900 K, but we limit the MD calculations for
LJ and Morse to 400 K and 450 K respectively. As shown in [65], the MD-derived tangent modulus of the system
becomes non-physical for input temperatures above ~ 450 K. The total run-time for each MD simulation is 3000
ps (3 ns) with an equilibration time of 10 ps. As in Appendix A, each atom is treated as a continuum atom, and
normal periodic boundary conditions are enforced such that the leftmost atom interacts with the rightmost atom and
vice versa. In Fig. B.15, we observe that the calculated tangent modulus values from MD are in close agreement
with the analytic values obtained from the QH approximation. This validates the implementation of Lennard-Jones
and Morse potentials in the code.
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Tangent Modulus as a Function of Temperature using Morse Potential

Tangent Modulus as a Function of Temperature using Lennard-Jones
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Fig. B.15. Tangent modulus results for the Langevin thermostat using the (a) Lennard-Jones and (b) modified Morse potentials.
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Fig. B.16. Potential energy per atom vs. cubic lattice spacing in steps of 0.001 A. Circles are data computed from the EAM potential, and
the line is a parabola fitted to the data.

B.2. EAM potential

To verify the EAM potential, we calculate the cohesive energy E, as well as the bulk modulus B of the system
at 0 K. The cutoff radius for the EAM potential is 5.507 A, and we consider a periodic chain of 500 atoms where
each atom is treated as a window atom. The experimental value of the equilibrium lattice spacing of copper is 3.615
A, so we vary the lattice constant from 3.605 A to 3.625 A in steps of 0.001 A. The potential energy per atom as
a function of the cubic lattice spacing is plotted in Fig. B.16, and the data can be fitted to a parabola.

The minimum of this parabola corresponds to the cube of the equilibrium lattice spacing, ay = 3.615 A. This
matches the experimental data perfectly because ay is one of the fitted parameters of the EAM potential. The
energy per atom at ag is the cohesive energy, E.,;, = —3.540 eV, which is another fitted parameter [69]. Hence,
our implementation of the EAM potential gives an accurate representation of the cohesive energy of copper.

As discussed in [85], the curvature of the parabola at ay can be used to calculate the bulk modulus using

2

0°E
B(V):V<

W)T,S = 4(ay)’(2a) (B.15)

where a is the parabola coefficient, and we multiply by four to account for every atom in the given lattice volume.
Applying this equation to the data in Fig. B.16, we obtained a bulk modulus value of B = 135.4 GPa, which is not
very accurate when compared to the literature value of 140 GPa [69]. To obtain a more accurate bulk modulus, we
compute the E(V) curve again in the range of |a — ap| < 10™* A. Specifically, we perform the calculations in steps
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Fig. B.17. Potential energy per atom vs. cubic lattice spacing in steps of 0.0008 A. Circles are data computed from the EAM potential, and
the line is a parabola fitted to the data.

of 0.0008 A. This plot can be seen in Fig. B.17. The curvature of this new parabola at ay gives a bulk modulus
value of B = 140.6 GPa, which is the fitted bulk modulus of this potential model.
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