3724

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Learning-Based Quality Management for
Approximate Communication in Network-on-Chips

Yuechen Chen

Abstract—Current multi/many-core systems spend large
amounts of time and power transmitting data across on-chip
interconnects. This problem is aggravated when data-intensive
applications, such as machine learning and pattern recognition,
are executed in these systems. Recent studies show that some
data-intensive applications can tolerate modest errors, thus open-
ing a new design dimension, namely, trading result quality for
better system performance. In this article, we explore applica-
tion error tolerance and propose an approximate communication
framework to reduce the power consumption and latency of
network-on-chips (NoCs). The proposed framework incorporates
a quality control method and a data approximation mechanism
to reduce the packet size to decrease network power consumption
and latency. The quality control method automatically identifies
the error-resilient variables that can be approximated during
transmission and calculates their error thresholds based on the
quality requirements of the application by analyzing the source
code. The data approximation method includes a lightweight
lossy compression scheme, which significantly reduces packet size
when the error-resilient variables are transmitted. This frame-
work results in fewer flits in each data packet and reduces
traffic in NoCs while guaranteeing the quality requirements of
applications. Our cycle-accurate simulation using the AxBench
benchmark suite shows that the proposed approximate commu-
nication framework achieves 62% latency reduction and 43%
dynamic power reduction compared to previous approximate
communication techniques while ensuring 95% result quality.

Index Terms—Accuracy management, approximate communi-
cation, network-on-chips (NoCs), reinforcement learning (RL).

I. INTRODUCTION

PPROXIMATE communication leverages the error toler-

ance of the approximate computing application [1]-[5]

to enhance communication efficiency in multicore

systems [6]-[15]. A major problem faced by approxi-

mate communication is quality management: how can the

accuracy of transmitted data be adjusted without missing the
quality requirement on the application’s results?

To solve this issue, quality management techniques are

developed to control the accuracy of transmitted data by

Manuscript received April 17, 2020; revised June 12, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current version
October 27, 2020. This work was supported by NSF under Grant CCF-
1812495, Grant CCF-1565273, and Grant CCF-1953980. This article was
presented in the International Conference on Hardware/Software Codesign and
System Synthesis 2020 and appears as part of the ESWEEK-TCAD special
issue. (Corresponding author: Yuechen Chen.)

The authors are with the Department of Electrical and Computer
Engineering, George Washington University Washington, DC, USA (e-mail:
yuechen@gwu.edu; louri@gwu.edu).

Digital Object Identifier 10.1109/TCAD.2020.3012235

, Member, IEEE, and Ahmed Louri, Fellow, IEEE

providing approximation information [9]-[13]. The approxi-
mation information contains an approximation indicator and
approximation level. The approximation indicator identifies
error-resilient data in the communication traffic; the approxi-
mation level specifies the error margin for data approximation.
To ensure the application can yield useful results, the qual-
ity management technique: 1) predicts the quality loss in the
result caused by approximating the data in the network and
2) chooses the approximation level for the data which predicts
tolerable quality loss by the application. The key to effective
quality management is to accurately predict the quality loss
in the result, which requires a careful examination of the rela-
tionship between the data accuracy in packets and the result
quality.

Current techniques [6]-[12], [14] rely on experienced pro-
gram designers to manually identify the error-resilient variable
in the source code for data approximation during communica-
tion. Moreover, they rely on programmers to predict the quality
loss in the results and manually assign the approximation level
for each error-resilient variable. These techniques face two
limitations.

1) Manually annotating the error-resilient variable limits
the opportunity for packet approximation during com-
munication: Manual annotation can only approximate
the variables that are explicitly defined by programmers
but not intermediate variables. For example, when exe-
cuting d = a+(bxc), a, b, c, and d can be approximated
through manual annotation, but the product of b and c is
not accessible by programmers. Moreover, as software
engineers focus on the algorithm design and possess
little information on on-chip traffic, the manually anno-
tated variables only generate few approximable packets.
As a result, the fully accurate data packets occupy
more than 70% of the total communications, hindering
the further improvement of the network performance.
Fig. 1 shows the amount of approximated on-chip traf-
fic using the techniques proposed in AxBA [12] and
the quality control framework [11]. Manual annotation
approximates 27% of the total on-chip traffic on aver-
age. However, the rest 73% of the data packets also have
the potential of being approximated, which can be fully
explored by automatic variable annotation.

2) Predicting result quality loss involves intensive engineer-
ing work and limits the application of approximate com-
munication: The relation between the accuracy of trans-
mitted data and the application output quality highly
depends on the algorithm used by the applications.

0278-0070 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LOURI: LEARNING-BASED QUALITY MANAGEMENT FOR APPROXIMATE COMMUNICATION IN NETWORK-ON-CHIPS

2
©35%
S
&£ 30%
©
5 25%
a
© 20%
1]
©
E 15%
§ 10%
2 5%
<

0%

blackscholes fft inversek2j jmeint jpeg kmeans Average
N AxBA Quality Control Framework
Fig. 1. Percentage of approximated data packets in communication traffic.

Current approximate computing applications contain
multiple nonlinear functions, such as artificial neural
networks, to meet the demand for solving complicated
problems. For nonlinear functions, the relation between
the accuracy of transmitted data and the application
output quality also becomes nonlinear, which makes it
difficult to predict the quality loss in the results. Thus,
relying on human engineers to estimate the quality loss
in results is neither accurate nor reliable.

Therefore, approximate communication frameworks require

a quality management technique to automatically explore the
opportunities for data approximation in an approximate com-
puting application. Considering that different approximate
computing application allows diverse types of error, in this
article, we explore the use of reinforcement learning (RL) to
automatically examine the error tolerance of applications and
trade the result quality for less network latency and power
consumption. The proposed technique includes a static code
analyzer and an RL-assisted dynamic code analyzer. The static
code analyzer extracts the algorithmic features of variables,
which potentially affect the quality of results. The dynamic
code analyzer monitors the cache miss to estimate the com-
munication frequency of each variable. The RL evolves the
optimal configuration of the approximation levels for variables,
which can result in maximized communication efficiency yet
ensures result quality. Specifically, the contributions of this
work are as follows.

1) We propose an accuracy management technique that
exploits RL to automatically annotate variables and
adjust accuracy for the variables to improve the
performance of on-chip interconnect while ensuring
result quality.

2) We implement a static code analyzer and a dynamic code
analyzer to extract the algorithmic and communication
features of variables.

3) We conduct performance evaluation which shows the
proposed framework reduces network latency and
dynamic power by 36% and 46%, respectively, com-
pared to AxBA [12], while ensuring a 95% result
quality.

II. MOTIVATION AND CHALLENGES

In this section, we first detail our motivation to use
reinforcement learning (RL) in quality management and
then present the challenges of implementing the proposed
techniques.

3725

A. Motivation

Use of Reinforcement Learning for Quality Management:
The proposed automatic annotation for quality management
has two objectives: 1) maximizing the data approximation and
2) ensuring the result accuracy. To achieve these two objec-
tives, the machine learning (ML) algorithm chooses an approx-
imation level for each variable based on the on-chip traffic
pattern and the algorithm used in the application. ML algo-
rithms are classified into three basic categories: 1) supervised
learning; 2) unsupervised learning; and 3) RL [16].

As a supervised learning model, the algorithm learns on the
labeled data set, providing an answer that ML can use to eval-
uate its accuracy on training data [17]. Therefore, supervised
learning requires a labeled training data set to train the ML.
Labeling training data requires the user to have the correct
answer for a query, such as a query picture showing a car and
the label “car” In our case, the query is to find the approxi-
mation level for each packet to maximize data approximation
and ensure result accuracy. Considering that manual annota-
tion limits the packet approximation and involves intensive
engineering work, providing the correct answer to the query
is impossible for programmers. Therefore, the supervised
learning model is not suitable for quality management.

An unsupervised learning model, in contrast, eliminates the
need for human involvement and uses ML to extract features
and patterns from unlabeled data [18]. This ML is designed
for exploring uncategorized data without a specific desired
outcome or correct answer. However, because quality man-
agement requires achieving two desired objectives, exploring
opportunities for approximation without the desired outcome
fails to meet the design requirement.

RL involves training with a reward system, providing feed-
back when an artificial intelligence agent performs the best
action in a particular situation [19]. The RL model explores
the design space by randomly selecting an action in the
action space. During variable annotation, RL can automatically
explore the opportunity for data approximation by choosing
an approximation level for each variable. The reward function
can jointly analyze the intensity of the data approximation
and the quality of the results to provide feedback on each
action. The quality of the results can be analyzed by a quality
check function, which is included in the approximate comput-
ing applications [20]. Therefore, RL can be implemented in
quality management and replace inefficient manual annotation.

B. Challenges

Select Representative Features for an Application’s
Algorithm and Communication: Since RL relies on features to
explore the opportunities for data approximation, the selection
of representative features is critical to learning-based qual-
ity control. The relationship between the approximation level
for each variable and the result quality depends on the algo-
rithm implemented in an application. Thus, RL requires the
algorithmic features to predict the impact on result accuracy
when approximating a variable in an application. RL also
needs to analyze on-chip communication pattern to enhance
the performance of the interconnect. Considering that RL

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

3726

annotates error-resilient variables in an application, the com-
munication feature needs to represent the communication
intensity for each variable. Therefore, choosing representative
features for RL is a challenge for the proposed technique.

III. FEATURES FOR REINFORCEMENT LEARNING
A. Algorithmic Features of the Variables

The algorithmic features represent the relationship between
the accuracy loss of each variable and the quality loss in the
result, enabling RL to differentiate between variables in an
application. The proposed variable algorithm features include
position, previous operation, and next operation. The position
of a variable is defined as the number of calculations that a
variable requires to produce a result. The previous operation
generates the variable. The next operation uses the variable as
an argument.

We first investigate the relationship between the accuracy
loss of the variables and the quality loss of the results by
taking the operation (e.g., addition, subtraction, multiplication,
division, etc.) into consideration. Equation (1) shows the case
of ¢ = a+ b, where @ and b are approximated and ¢ is the
result. The previous operation of variable c¢ is plus or minus

¢=a+bh. (1)

Suppose that we use (2) (E,, is the relative error) to measure
the error of value a

la — al

Eyy = . (2)

a

From (2), we can obtain

lc — ¢l

Ey = (3)
c

ad=a-+Ey, xa “)
b=b+Es xb. (5)

Suppose that @ and b have the same error (E,; = E;p = Epap).
We can obtain (6) by combining (1), (4), and (5)

¢c=(a+Ewmp xa)x (b+ Ewp X D). (6)

By combining (3) and (6) with ¢ = a &+ b, we observe that for
+ and — operation, the error tolerances for a and b are equal
to the quality requirement on c.

Equation (7) describes the multiplication of a and b, where
a and b are approximated and ¢ is the result

¢=axb. (7)

By the same theory, we can obtain (8) for the multiplication
operation, where a and b are fully accurate variables and Ei,p
is the relative error

¢ =(a+ Eup x a) X (b+ Enp X b). (®)

By combining (3) and (8) with ¢ = a x b, we find that for
the multiplication operation, E,. = (1 + E.p)* — 1. Therefore,
E,. < error tolerance is ensured when —1 + /T + Epp <
error tolerance for the multiplication operation.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

a o
X X

&
X

—blackscholes
fft

inversek2j

N
X

jmeint

Variable Error Tolerance
w
X

R

0 1 2 3 4
Position

-
xR

0%

Fig. 2. Average error tolerance of variables versus its position. Application
quality loss is 5%. Only variables with the same position value in the
application are approximated.

3 Equation (9) describes the division of a and 15, where a and
b are approximated and ¢ is the result

¢ =a/b.)

For the division operation, we can derive (10), where a and
b are fully accurate variables and E,, and E,; are the relative
errors

¢=(a+Eqxa)/(b+Empxb). (10)

By combining (3) and (10) with ¢ = a/b, we find that for the
division operation, E,. = |1 — (1 + E,,)/(1 + Ew)|. E,. =0
when a and b have the same relative error (E,, = E,5 = Eap)
for the division operation.

From these analyses, we conclude that for a variable ¢ with
different previous operations (e.g., addition, subtraction, mul-
tiplication, division, etc.), the error threshold for a and b is
different when ensuring the same relative error on c. For exam-
ple, when c can tolerate 5% relative error and the operation is
addition or subtraction, both a and b can tolerate 5% relative
error. If the operation is multiplication, both a and b can toler-
ate 2.5% relative error. Moreover, when a and b have different
relative errors or the application uses different error metrics,
the operation can affect the policy on adjusting the approx-
imation level for each variable in the application. Therefore,
when RL adjusts the approximation level for a variable, the
operation can greatly affect the result quality.

Then, we investigate the relationship between the approx-
imation level and result quality by taking the position into
consideration. Equation (11) shows a typical function with two
operations

fla,b,c) =a+ (b x c) (11

where a needs one operation (addition) to generate the result
while b and c require two operations (multiplication and addi-
tion). Therefore, the position values for a, b, and c are 1, 2,
and 2, respectively. Equation (12) shows the case where a,
b, and c are approximated. To make the example simple, we
assume that the error is measured using (2) and, for a specific
operation that the approximation levels of operands are equal

fla,b,c) =a+ (b x o). (12)

Based on the conclusion drawn, when the result error tolerance
is E,, a can tolerate E,, and b and c can tolerate —1++/1 + E,.
For example, the user can tolerate 5% result error, a can be

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LOURI: LEARNING-BASED QUALITY MANAGEMENT FOR APPROXIMATE COMMUNICATION IN NETWORK-ON-CHIPS 3727
coTETEEEEET . N
I} Learning-based Accuracy Management 1
[Reinf R Multi-core
I Source Code : SRS Assembly Architecture
1 Static Algorithmic Learning- with with
Control Flow Graph Code g Assisted . :
1 . feature . Approximate Approximate
I Analysis Dynamic Code fom
Assembly : Load/Store Communication
\ Analysis NoC

Fig. 3. High-level workflow of learning-based accuracy management.

approximated to 5% error, but b and ¢ can be approximated
only to 2.5% error. From this simple example, we observe that
some operations (e.g., multiplication and division) can dra-
matically reduce the approximation level of operands. As the
position value grows, the probability of these operations being
used increases, which significantly affects the approximation
level of the variables.

This effect can be verified by analyzing approximate com-
puting applications. Fig. 2 shows the average error tolerance
of the variables relative to its position in an application when
the quality loss threshold is 5%. Since only variables with
the same position value are approximated, the variable that
stores the result (position 0) can be approximated to 5% error
when the application can tolerate 5% quality loss. To avoid
unsatisfactory result caused by error accumulation during the
execution of applications, the variables that store the inputs
(position > 3) must attain a low error tolerance. Therefore,
in Fig. 2, we observe that the error tolerance of the variables
decreases as the position value increases. Fig. 2 also shows that
for different applications, the variable error tolerance reduces
at a different rate under the same position value interval. Since
the position of a variable affects the relationship between the
accuracy of the variable and the quality loss of the result, RL
can use the position value to categorize variables and choose
the approximation level accordingly.

Based on these observations, the relationship between the
variable accuracy and the result quality loss depends on the
position of the variable and the operation that the variable is
involved in. Therefore the position, previous operation, and
next operation of a variable are selected as the algorithmic
features.

B. Communication Features of Variables

The goal of the proposed quality management technique is
to maximize the number of approximated packets in a network
to reduce network latency and power consumption. Because
the approximated packets are generated by the core as it
accesses error-resilient variables, RL needs the communication
frequency for each variable to maximize data approximation
in communication traffic. For example, in (12), b and c are
fetched from two data sets with 100 floating point numbers
each, and a is a constant number. Suppose each packet trans-
mits only one floating-point number; 200 packets are required
to transmit b and ¢, whereas a needs to be transmitted only
once. Since approximating frequently transmitted variables
introduces a large quantity of approximated packets, approxi-
mating b and ¢ leads to better network performance compared

to approximating a. Thus, the communication frequency for
each variable is used as the communication feature in RL to
analyze on-chip traffic patterns.

IV. LEARNING-BASED ACCURACY MANAGEMENT

The essence of the proposed technique is to automatically
exploit the error tolerance of applications and trade data accu-
racy in the transmitted packets for network performance with
an acceptable quality loss. Reducing data accuracy in the
packets decreases the number of bits inside a packet, which
lowers the power consumption and latency in a network-on-
chip (NoC). The high-level workflow of the learning-based
accuracy management technique is shown in Fig. 3 and con-
sists of two steps: namely, static code analysis and RL-assisted
dynamic code analysis. First, the compiler compiles the source
code and generates the assembly code and the control flow
graph (CFG), which are delivered to the static code analyzer
to extract the algorithmic features of the variables. After that,
the dynamic code analyzer extracts the communication feature
by counting the cache misses for the variables in the appli-
cation. Then, based on these features, the RL in the dynamic
code analyzer categorizes the load/store operations and auto-
matically chooses the approximation level to maximize the
data approximation while ensuring the result quality. The
dynamic code analyzer replaces the load/store operations in the
assembly code with approximate load/store operations, which
contain the approximation level chosen by the RL. Finally,
the assembly code with the approximate load/store operations
is executed in the multicore architecture with the approxi-
mate communication NoC. We present the process of static
code analysis in Section IV-A. Then, we discuss the design
and the operation of the RL-assisted dynamic code analysis
in Section IV-B. In Section IV-C, we discuss the lossy data
compression based on a given approximation level.

A. Static Code Analysis

Fig. 4 shows the working process of the static code ana-
lyzer with an example. The static code analyzer analyzes the
assembly code with CFG and the source code to extract the
algorithmic features of the variables. After the source code is
compiled, the compiler generates the CFG and the assembly
code. Notably, the compiler can break down the complex func-
tion in the source code and generate a CFG that describes the
function in terms of basic operations, such as addition, subtrac-
tion, multiplication, and division. To extract the algorithmic
features for each variable, the code analyzer first identifies the

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

3728

)

Assembly
mov DWORD PTR [rbp-Ox14],edi
mov DWORD PTR [rbp-Ox18],esi

CCode Contral Flow Grah mov DWORD PTR [rbp-Oxlc],edx

int approx (int a, int b, int ¢) E;?R’: ow Grap mov eax,DWORD PTR [rbp-Ox18]

D.21740=b * ¢; imul eax,DWORD PTR [rbp-Ox1cl

|| intd; - - 4 mov edx,eax

d=atb*c; d=D21740+a; mov eax,DWORD PTR [rbp-Ox14]
return d; return d; add eax,edx

} EXIT mov DWORD PTR [rbp-Ox4],eax

Static Code Analyzer

Identify Traverse
Control Flow

Graph

Approximable
Code Section

\ -
Variables’ Algorithmic Feature

/mm
d +
D.21740 e

Null
Null

Null

a
b

\c

N N P P O

Fig. 4. Static code analyzer workflow. The blue arrow indicates the workflow
of the code analyzer. The inputs of the code analyzer are the C code, con-
trol flow graph, and assembly. The output of the analyzer is the algorithmic
features of the variables, which are highlighted in the green box. (The source
code is compiled by the GNU C compiler (GCC) for the X86 instruction
set architecture. The control flow graph and assembly code are generated by
GCC. D.21740 is an intermediate variable created by the compiler.)

approximable code section in the C code, CFG, and assem-
bly, which are highlighted in orange in Fig. 4. Then, the code
analyzer identifies all variables and results in the source code,
CFG, and assembly code, which is highlighted in yellow. In
this case, we can see that a new variable is created by the
compiler (D.21740), which is also treated as a variable. The
code analyzer traverses the CFG and obtains the position value,
previous operation, and the next operation for each variable.

B. Reinforcement Learning-Assisted Dynamic Code Analysis

RL is an ML approach wherein the agent acts as a learner
and a decision maker by interacting with the environment [19].
Fig. 5 shows the dynamic interaction between the RL agent
and the environment. In (D), the agent selects an action a;
from a set of actions, A = {1, ..., K} at time step ¢. In @,
the selected action influences the environment by affecting the
internal state s; and the reward r;. In 3), the effect eventually
results in a new state and reward, sy and ryy1, respectively,
at the next time step ¢ + 1.

In RL, the goal of the agent is to interact with the envi-
ronment by selecting actions in a manner that maximizes the
long-term total rewards R, which is the cumulative sum of all
future rewards. The future rewards are discounted by a factor
y called the discount factor. As y approaches 0, the agent
begins to consider only the current rewards.

In this article, we use a tabular Q-learning to estimate the
long-term reward. A Q-value table is initialized with random
values for all possible (s, a) pairs. At each time step, the Q-
learning chooses actions based on the current Q so that over
many time steps, all actions are taken in all states. In each time
step, the action-value table entry Q(s, a) is updated using (13)
based on action a, reward R, and new state s’

O(s,a) = O(s, a) + a[R+ y xmax Q(s', a) — O(s, a) .
(13)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

@ Action a;at step t
@State s;atstep t
—

RL Agent
> (Dynamic Code Analyzer)
State Reward Action
St re a;
@Return reward r,, for state-action (s, a,)
Environment
(Application)
@New state s,,; at @Interact with
Step t+1 Application
Fig. 5. Agent-environment interaction in RL.
1. Position Number of operation until
result
Algorithmic 2. Previous Operation The operation generated
Feature

this variable

3. Next Operation The next operation of this

variable
Communication
Feature
Data
Approximation

Number of packets
generated by this variable

4. Communication Frequency

Variable’s current
approximation level

5. Approximation Level

Fig. 6. State attributes used in RL.

1) Action Space: The action space consists of different
operations on the approximation level that the dynamic code
analyzer can choose from. Since approximate communica-
tion techniques have different data approximation methods, the
range of approximation levels are different for each approx-
imate communication design. The design of action space
needs to consider that different approximate communica-
tion NoC supports differing ranges of approximation levels.
Because a large action space leads to an exponential increase
in training time, a scalable design with small action space
is required for the proposed quality management technique.
Therefore, we design the RL algorithm with three actions
A = {ap, a1, az}, which represent the reducing approximation
level, the maintaining approximation level, and the increasing
approximation level, respectively. With the proposed action
space, the proposed quality management technique can be
applied to approximate communication techniques with differ-
ent ranges of approximation levels while maintaining a small
action space. Since RL requires choosing the approximation
level for each variable after dynamic code analysis, a new
feature is needed to store the current approximation level.

2) State Space: A state s is a vector of the characteristics
of a variable, which consists of the application’s algorithmic
features, communication feature, and approximation level, as
shown in Fig. 6. State attributes 1-3 indicate the relation
between variable accuracy and result quality. State attribute
4 indicates the communication frequency of a variable. State
attribute 5 indicates the current approximation level when
loading or storing the variable. The total number of states
depends on the number of variables used in an application.

3) Reward Function: The RL agent uses the reward func-
tion to evaluate the benefit due to the action of a given state.

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LOURI: LEARNING-BASED QUALITY MANAGEMENT FOR APPROXIMATE COMMUNICATION IN NETWORK-ON-CHIPS

Algorithm 1 Reward Function
function R (State s;, Action a;)

if Result Error >Error Threshold and a; != a¢ then
return -1

end if

if s;.Approx Level == Max level and a; == a; then
return -1

end if

if s;.Approx Level == Min Level and a; == ag then
return -1

end if

if a; == ap then
return N, X (s;.Approx Level — 1)

end if

if a, == a; then
return N, X s;.Approx Level

end if

if a; == a, then
return N, X (s;.Approx Level + 1)

end if

end function

In this article, the goal of the RL agent is to enhance the NoC
performance by approximating more packets while ensuring
the result quality. Algorithm 1 shows the reward function used
to calculate the reward for a given state (s;) and action (ay).
In this algorithm, N, and Approx Level represent the total
number of approximated packets and the approximation level,
respectively. To ensure that the result quality and the selected
approximation level are within the acceptable range, the agent
receives —1 reward under three circumstances: 1) when the
result error exceeds the assigned error threshold and the agent
fails to reduce the approximation level (ap); 2) when the
approximation level reaches the upper limit (Max Level) and
the agent continues to increase the approximation level (a3);
and 3) when the approximation level reaches the lower limit
(Min Level) and the agent continues to decrease the approxi-
mation level (agp). Otherwise, the reward function returns the
product of the total number of approximated packets and the
selected approximation level after an action.

4) Learning Parameters: In RL, the learning rate o and
the discount rate y can be tuned. The learning rate « can
be reduced over time and determines how well Q-learning
will converge. It can be shown that for appropriate values of
o, Q-learning converges to the optimal action-value function
and its corresponding optimal policy [19]. As a approaches
0, the agent focuses more on old information. As a result, the
trained model can achieve high accuracy but needs more steps
to converge. On the other hand, as o approaches 1, the agent
focuses more on the most recent information. Therefore, the
RL converges in a small amount of time with low accuracy.
Since the RL in the proposed technique is trained offline, the
accuracy is more important than the speed. Thus, 0.1 is used
as the learning rate (o).

The variable y (where 0 < y < 1) in this equation is the
discount rate, which determines the impact of future rewards
on the total return: as y approaches 1, the agent becomes less

3729

near sighted by giving more weight to future rewards After
extensive experimentation, we selected y as 0.8 to achieve the
maximum network performance while ensuring result accu-
racy. A detailed discussion of how the parameter y impacts
approximation effectiveness is presented in Section V-F.

5) Working Process of Dynamic Code Analysis: The RL-
assisted dynamic code analysis has three working phases:
1) the communication feature extraction phase; 2) the training
phase; and 3) the testing phase.

During the communication feature extraction phase, the
dynamic code analysis tool runs the application by feeding
in part of its query data (training query data). The dynamic
code analyzer counts the cache misses for each variable in the
assembly code to extract the communication feature.

During the training phase, the dynamic code analysis tool
runs the application by feeding in the training query data.
When a cache miss occurs during the loading/storing of a
variable from/to memory, the dynamic code analyzer sends
the variable’s features to the RL model. RL selects an action
from the action space and updates the approximation level
of the variable. Then, the code analyzer continues running
the application with the updated approximation level for the
variable. When the application finishes processing the training
query data, Q(s, @) is updated using Algorithm 1. This pro-
cess is repeated several times until the Q-learning algorithm
converges. A detailed discussion of how various applications
effect the training epoch is presented in Section V-F.

After the training phase, the application is fed a small
amount of its query data (testing query data). When a cache
miss occurs while loading/storing a variable, the dynamic
code analyzer replaces the instruction with an approximate
load/store and sends the algorithmic feature and current
approximation level to the RL model. RL adjusts the approx-
imation level for the approximate load/store operation. The
application is run by the code analyzer until no further approx-
imation level adjustment is performed. In other words, RL
takes action a; (maintaining approximation level) for all error-
resilient variables in the application. Finally, the application
with the approximate load/store is executed in the multicore
architecture with the approximate communication NoC.

Approximate load and store are new types of instructions for
approximate communication in NoCs that are used to approx-
imate data packets. We replace the conventional mov with an
approximate move instruction (amov dist, src, and approxima-
tion level) in the X86 instruction set so that the network can
identify the approximable data in the data packets. In the next
section, we discuss how the network approximates packets
using the amove instructions.

C. Data Approximation Method

Since this work mainly focuses on accuracy management,
we use the idea of data truncation from [14] and [8] to per-
form the data approximation for both the floating point and
integer values. Fig. 7 presents a high-level overview of the
approximate communication NoC design. We modify the base-
line network interface (NI) to include the following additional
components: the data approximation logic and the data recov-
ery logic. The data approximation logic truncates the data

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Integer (31:0)

Approximate

Approximate
Indicator 'y

Indicator

32(31:0)

Approximation

Approximation
Level

Level

Data Truncation

|S & E"p"l Truncated Data | |S & Expol Truncated Data |

<— Int/float Int/float

To Packet Encoder

@ (b)

Data approximation logic design. Data truncation logic removes the
least significant bits based on the approximate level and data type (Int/float).

TABLE I
RELATIONSHIP BETWEEN THE DATA ERROR THRESHOLD AND THE

3730
MEM L2 L2 MEM [s31)]Expo(30:23)] Mantissa(22:0) |
] 1] i [N [ni]
EEERL m—&]
Q o o 7]
c| ° 4 32(31:0)
% g E § Core Core Core Core
3| o NI L1 NI L1 NI L1 NI L1
Z | pata Data . ./ ./ Data Truncation
g [App: Recov Core Core Core Core
(1]
Tt 3 7 NIJ L1 NI L1 NI L1 NIJ L1
: [wf &
¥ | Packet Packet
5 Decod:
2 MEM L2 L2 MEM
= 1 4] i [~ [
‘ Packet
' To Packet Encoder
Network Interface (NI)
Data Read Rep. %
_Pack)et Write Rep. % Flg 8.
<
Read Req, 2
Packet Write Req. | m i
>| [nDahv g Sign (S) Exponent (Expo).
Fig. 7. Multicore architecture with approximate communication NoC. Data

approximation logic (Data Approx) truncates the data based on the approx-
imate level before carrying out packet encoding. Data recovery logic (Data
Recov) recovers the truncated data.

when an approximate load/store misses the cache. Different
from conventional load/store instructions, the approximate
load/store contains an approximation level for the lossy data
compression mechanism to truncate the data. Notably, the
proposed quality management technique can also be applied to
other approximate communication NoC designs with different
approximation level ranges and approximation methods.

When an L1 cache miss is caused by an approximate store
operation, a write request is generated by the L1 cache with the
approximation information. The approximation information
includes the address, data type (int/float), and approximation
level. The address and data type identify the error-resilient data
in the write request. The data in the write request are truncated
by the data approximation logic at the core and L1 cache node
based on the approximation level. Then, the write request is
encoded by the packet encoder and injected into the network.
When the shared cache or memory node receives the write
request packet, the data recovery module recovers the trun-
cated data and adds zeros to the truncated part to maintain
the original data format. Then, the write request is sent to
the shared cache or memory, and a write reply is generated
and transmitted to the core and L1 cache node to confirm the
transmission.

When an L1 cache miss is caused by approximate load
operation, a read request is issued by the L1 cache with the
approximation information. Then, the read request is sent to
the packet encoder to generate a read request packet. When the
shared cache or memory node receives the read request, the
approximation information is extracted from the packet and
registered at the NI. When the read reply is generated by the
shared cache or memory, the data approximation logic checks
the approximation information and truncates the data in accor-
dance with the approximation information. Then, the packet
encoder prepares the read reply packet and injects it into the
network. When the read reply packet arrives at the core and
L1 cache node, the data recovery module recovers the data.

APPROXIMATION LEVEL

Data Error Threshold | Approximation Level
0.125 10
0.03125 9
0.0078125 8
0.001953125 7
0.000488281 6
0.00012207 5
3.05176E-05 4
3.05176E-05 3
7.62939E-06 2
4.76837E-07 1
0 0

1) Data Approximation Logic: Table I elucidates the rela-
tionship between the data error threshold and the approx-
imation level. This data approximation logic supports 11
approximation levels ranging from level O to level 10. Level
0 represents the data that are transmitted with 100% accuracy
while level 10 represents data that can tolerate a 12.5% rel-
ative error. The higher the approximation level is, the lower
the data accuracy and the smaller the packet size.

Equation (14) shows the definition of data error threshold,
where a is approximated a and E,, is relative error

la —al
Era =

< data error threshold. (14)

a

Equations (15) and (16) show the representation of single
precision floating point value based on IEEE 754 standard [21]

float = (—1)% x mantissa x 2°*P (15)
23

mantissa = 2"+ Y "X 27* Xz =0or 1). (16)
k=1

Based on (15) and (16), the mantissa always starts with one.

According to the IEEE 754 standard [21], when a data point
is represented in the floating-point format, the first bit of the
mantissa is omitted. We observe that when ¢ bits (of the 23-b
mantissa) are protected, the maximum relative error on this

floating-point data value will be Ziic 41 27, which is less

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LOURI: LEARNING-BASED QUALITY MANAGEMENT FOR APPROXIMATE COMMUNICATION IN NETWORK-ON-CHIPS

Received Data

than 27¢ according to the sum of the geometric sequence
QO ar*=! = a(l — r)/1 — r, where a is the first term,
n is the number of terms, and r is the common ratio in the
sequence). Therefore, using (16), we can deduce the following
expression for the data error tolerance:

error tolerance = 27" (1 < n < 23). 17

In (17) above, the data error tolerance is a number between
0 and 1, and 7 is the number of most significant bits (MSBs)
in the mantissa of this floating-point value. In a floating-point
data value, the 1-b sign and the 8-b exponent (a total of 9 b)
are also critical bits, which must be transmitted. Thus, by trun-
cating 23 —n b, we can ensure the value’s relative error is less
than 27". For example, to satisfy a data error tolerance of
4% (approximation level = 9) for any floating-point value,
we can truncate 18 least significant bits (LSBs), resulting in a
maximum relative error of 3.12%.

Fig. 8(a) highlights the data truncation process when
approximating floating point values. First, the data approxima-
tion logic extracts the sign bit and exponent bits from a floating
point value using a demultiplexer. Then, the least significant
bits of the mantissa are truncated according to the approxima-
tion level. After that, the sign and exponent are added to the
MSB of the truncated data. Finally, the approximated floating
point value is sent to the packet encoder.

Equation (18) shows the representation of a signed inte-
ger. In a signed integer, the MSB represents the sign, and the
remaining 31 b represent the value

31

int = Zxkzk Xx=0or 1).

k=0
We observe that when n bits (of the 31 LSBs) are truncated, the
maximum error caused by truncation will be ZZ:O X 2K (X =
0 or 1). Thus, we can use (19) to calculate the number of bits
(n) to be truncated for a given error tolerance
> ico Xi2*

YoiloXi2k

(18)

error tolerance = Xy =0o0r1). (19)

Fig. 8(b) highlights the data truncation process when
approximating integer values. The data approximation logic
directly sends the data to the data truncation module when
an integer value needs approximation. Then, the data trunca-
tion module eliminates the least significant bits of the integer
according to the approximation level. Finally, the multiplexer
selects the truncated integer and sends the approximated data
to the packet encoder.

2) Data Recovery Logic: Fig. 9 shows the data recovery
logic design. Data recovery has two steps. First, the demul-
tiplexer selects approximated data based on the approximate
indicator. Then, the data recovery logic recovery the data by
filling the truncated least significant bits with zeros. Finally,
the recovered data are sent to core or memory.

V. EVALUATION AND ANALYSIS
A. Experimental Methodology

We evaluate the performance of the learning-based quality
management technique using the GEMS simulator [22] and the

3731

Approximate
Indicator

Filling LSBs with 0

To Core or Memory

Fig. 9. Data recovery logic design.

TABLE 11
SIMULATION ENVIRONMENT SETUP

NoC Parameters Network Type: Garnet 2.0
Topology: 8 X 8 2D mesh

Link Width: 64 bits

Routing Algorithm: X-Y Routing
64 on-chip cores @2 GHz

32 kB L1 instruction cache

32 kB L1 data cache

4-way associative

64-bank fully shared 16 MB

System Parameters

L2 cache
Target Result Quality 95%
Approximate Communication | AxBA [12]

Techniques Used For
Evaluation

Quality Control Framework [11]
Proposed Framework

AxBench benchmark suite [23]. The GEMS5 simulator is mod-
ified to support data truncation by integrating the approximate
data approximation logic and data recovery logic. We obtain
the network latency from the statistics profiled by GEMS when
running AxBench. We use DSENT [24] to capture the dynamic
power consumption of the network. The detailed settings for
the GEMS simulator are shown in Table II.

We implement the proposed technique, including static code
analysis and dynamic code analysis, in Python. Table III shows
data used for RL training/testing and the evaluation metrics
utilized to measure the result quality.

We evaluate the proposed technique by comparing with
AxBA [12] and the quality control framework [11] from
three perspectives: 1) approximation effectiveness; 2) network
latency; and 3) dynamic power consumption. AXBA includes
an accuracy management technique that requires the program
designer to manually annotate the approximable values and
their error tolerances. The quality control framework includes
an accuracy management scheme that allows the network to
adjust the data accuracy after the result quality is measured.
To fairly compare the performances and effectiveness of the
quality control techniques, all the approximate communication
frameworks use data truncation with 11 approximation levels
as the packet approximation method.

B. Approximation Effectiveness
In this article, the effectiveness of the approximate commu-
nication framework is defined by

E=N,xL. (20)

In (20), E is the approximation effectiveness, N, represents
the percentage of approximated data packets, and L shows the

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

3732

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL.

39, NO. 11, NOVEMBER 2020

TABLE III
AXBENCH BENCHMARK SUITE [23]

Benchmark | Query Data Size Training Query Data Size Testing Query Data Size Evaluation Metric
blackscholes | 64k floating point (fp) values | 100 floating point (fp) values | 11 floating point (fp) values | Average relative error
fft 5k random fp numbers 128 fp values 16 fp values Average relative error
inversek2j 100k random (x,y) points 100 (x,y) points 10 (x,y) points Average relative error
jmeint 10k pairs of 3D triangles 100 Boolean values 10 Boolean values # of mismatches
jpeg 512 * 512 pixel image 32%*32 pixel image 8*8 pixel image Average pixel diff.
kmeans 512 * 512 pixel image 32*32 pixel image 8*8 pixel image Average pixel diff.
. 4 100%
g _35 k-
§< 3 80%
20 3 a
52 g
£ o025 8 60%
£
=3 2 s
s T 40%
© © 1.5 £
EE H
55 1 5 20%
2705 < I
< 0%
0 blackscholes inversek2j jmeint jpeg kmeans Average
blackscholes inversek2j jmeint jpeg kmeans Average
H AxBA Quality Control Framework Proposed Technique
H AxBA Quality Control Framework Proposed Technique
Fig. 10. Effectiveness of the approximate communication framework. The Fig- 1. Approximated data packets. The quality loss threshold is 5%.
results are normalized with respect to AXBA (higher is better). The quality
loss threshold is 5%. !
_Fos
e X
L . % 206
average approximation level of the packets. An effective qual- =3
ity control method can approximate more packets compared §§°'4
to less effective methods with the same data approximation 2202
method. As shown in Fig. 10, the proposed quality control 0

technique can approximate more data packets than AxBA and
quality control framework. The quality control methods used
in previous approximate communication frameworks rely on
a human engineer to identify error-resilient variables, which
limits the number of approximated data packets. On the other
hand, the proposed technique discovers error-resilient variables
through code analysis, making it 3x and 2x more effective
than AXxBA and the quality control framework, respectively.
The largest effectiveness is achieved (3.9x) when the jmeint
benchmark is executed with the proposed quality management
technique.

The approximation effectiveness can be further verified
by analyzing the percentage of approximated data packets.
As shown in Fig. 11, the proposed framework can approx-
imate 95% of the data packets on average, whereas AxBA
and the quality control framework can approximate only
27% and 28% of the data packet, respectively. The proposed
technique achieves the best approximation effectiveness by
approximating most of the data packets.

C. Network Latency

Fig. 12 shows the evaluation results for the average network
latency normalized with respect to AxBA [12]. The network
latency is defined as the number of clock cycles elapsed
between the injection of a packet at the source node and
the successful delivery of the packet to the destination. The
packet injection process includes data truncation and the
packet encoding process at the source NI. The packet ejec-
tion process includes packet decoding and data recovery at

blackscholes

H AxBA

inversek2j jmeint jpeg kmeans Average

Quality Control Framework Proposed Technique

Fig. 12. Network latency. The results are normalized with respect to AXBA
(lower is better). The quality loss threshold is 5%.

the destination NI. We compare the proposed technique with
AxBA and the quality control framework. As shown in Fig. 12,
the proposed approximate communication framework achieves
an average network latency reduction of 36% compared to
AxBA. The largest network latency reduction in the experi-
ment is achieved for the jmeint benchmark (49% reduction)
while the smallest network latency improvement is obtained
for inversek2j (26%). The proposed technique can achieve this
large latency reduction on the jmeint benchmark due to the
high approximation effectiveness. With the code analyzer, the
proposed technique is 3.9x more effective than AxBA on the
jmeint benchmark, as seen from Fig. 10. The main contribu-
tor to the propagation of approximated packets is automatic
annotation. As a result, the proposed framework is able to
achieve latency reductions of 41%, 37%, 35%, and 31% on the
blackscholes, fft, jpeg, and kmeans benchmarks, respectively,
compared with AxBA. These results show that ML is more
efficient in selecting the approximation level to fully utilize the
error tolerance of the application than having a programmer
select the approximation level.

D. Dynamic Power Consumption

Fig. 13 shows the amounts of dynamic power consumed by
the NoC when different accuracy management techniques are

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LOURI: LEARNING-BASED QUALITY MANAGEMENT FOR APPROXIMATE COMMUNICATION IN NETWORK-ON-CHIPS

(Normalized to AxBA)
o o o
»H (-] -]

o
N

0 | | | ‘ ‘ | |

blackscholes

B AxBA

Dynamic Power Consumption

inversek2j jmeint jpeg kmeans Average

® Quality Control Framework Proposed Technique

Fig. 13. Dynamic power consumption. The results are normalized with
respect to AXBA (lower is better). The quality loss threshold is 5%.

6%

0% II II II II I| II II

blackscholes

]
X

§

N
X

Result Quality Loss
w
X

i
X

inversek2j jmeint jpeg kmeans

Target Result Quality: m95% m90% © 85%

Average

Fig. 14. Application quality loss. The quality loss thresholds are 5%, 10%,
and 15%.

(b)

Fig. 15. Jpeg benchmark result comparison. The quality loss threshold is
5%. The result difference is 1.3%.

used. The dynamic power consumption includes the dynamic
power consumed by both the NI and NoC. As shown in this
figure, the proposed framework achieves an average dynamic
power reduction of 46% compared with AXxBA [12]. The
largest dynamic power reduction in this experiment is achieved
on the jmeint benchmark (52% reduction) while the lowest
dynamic power improvement is obtained for inversek2j (44%
reduction). For the same reason mentioned in the network
latency analysis, the proposed framework is able to signifi-
cantly reduce the number of flits per packet while ensuring
the quality of the result. Therefore, the dynamic power con-
sumption of the proposed framework is reduced by 45%, 44%,
50%, and 40% on the blackscholes, fft, jpeg, and kmeans
benchmarks, respectively, compared with AxBA.

E. Result Quality

The application quality loss is measured using the
application-specific metrics provided in Table III. Fig. 14
shows the application quality loss for different benchmarks
with different target result quality. When the target result qual-
ity is 95%, the average quality loss is 1.14% and the quality

3733

5000

N
a
=)

4000

N
=}
=)

3000

=
o
o

2000

=
=)
=]

Training Epoch
Number of Variables

1000 .
o

blackscholes fft

[
=]

o

inversek2j jmeint jpeg kmeans

muTraining Epoch -o-Number of Variables

Fig. 16. Number of epochs versus the number of variables in the applications.

Discount Rate

4

w oW
o 0

(Normallzed to AxBA)

w
N

Approximation Effectiveness

Fig. 17. Impact of discount rate (y) on approximation effectiveness. The
results are normalized to AXBA for the blackscholes benchmark. The quality
loss threshold is 5%.

loss for all the benchmarks is less than 5%. The approxi-
mate computing application can tolerate these errors caused
by approximate communication. Fig. 15 compares the accurate
results obtained on the jpeg benchmark with the approximate
results yielded by the proposed framework. The difference
between the two outputs is negligible and unrecognizable by
human vision. When the targeted result quality is reduced to
90% and 85%, the average quality loss is 2.98% and 4.92%,
respectively. From Fig. 14, the quality loss for all the bench-
marks is less than 10% and 15%, when the target result quality
is 90% and 85%, respectively. These results indicate that the
proposed quality control technique restrains the quality loss in
an acceptable amount for all the benchmarks.

FE. Sensitivity Analysis

Application: Fig. 16 shows the number of epochs to
train different RL for different applications. The increase of
variables in the application expands the Q table, therefore
increases the number of epochs. In Fig. 16, we can see that as
the number of variables increases in an application, the train-
ing epoch also increases. Especially, more training epoch is
needed for the benchmarks that have quality metrics other than
relative error. However, because training and testing processes
are performed before the execution of the application, a high
training epoch does not affect the running of the application.
Moreover, due to the advancement of the specialized accel-
erator and heterogeneous architecture, the execution time for
training and testing can be significantly reduced.

Impact of Discount Rate (y): We discuss the impact of dis-
count rate (y) on the approximation effectiveness. Fig. 17
shows the discount rate and approximation effectiveness for
the blackscholes benchmark. The discount rate (y) deter-
mines the impact of future rewards on the total return. As
y approaches 1, the agent becomes less near-sighted by giv-
ing more weight to future rewards. Fig. 17 shows that the
approximation effectiveness improves initially with a larger y.

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

3734

However, aggressively increasing y can also lead to Q-
learning failing to converge, which negatively affects the
system performance. The best performance is achieved when
y equals 0.8.

VI. RELATED WORK

Approximate Communication Techniques: Various approx-
imate communication techniques have been proposed
to enhance the performance of NoCs [6]-[15], [25],
[26]. Betzel et al. [13] conducted a survey on three promising
techniques, namely, compression, relaxed synchronization,
and value prediction, to address communication bottleneck
issues in massively parallel systems for approximate comput-
ing applications. Boyapati et al. [6] and Stevens et al. [12]
proposed lossy data compression techniques to further reduce
the size of error resilience data before packet injection.
Wang et al. [7] and Xiao et al. [10] proposed reducing
network congestion by dropping data in a packet before
injecting it into the network. Xiao et al. [10] explored the
application’s error threshold and proposed an approximation
method for dropping data accordingly.

Quality Control Techniques: In the approximate commu-
nication framework, a quality management system ensures
that the data error can be tolerated by the approximate
computing application [27]-[29]. The proposed approximate
communication techniques [6], [7], [10], [12], [14] include a
software-based quality management framework, which allows
a program designer to assign the error threshold. Significant
approximation errors can be eliminated during approximate
computations when a lightweight result checking system,
such as Rumba [20], is used. ApproxIt [30] proposes a run-
time quality calibration scheme to control the quality of an
approximate computing application with an iterative method.
Approxilyzer [31] provides a solution enabling a quality man-
agement system to quantify the quality impact of a single-bit
error. Laurenzano et al. [32] suggested that the result error can
be controlled by managing the input error. However, these
quality control frameworks require the program designer to
specify the approximable variables, which limits the approx-
imate communication technique in further improving NoC
performance. The proposed quality control framework deter-
mines the error-resilient value through a code analysis, which
further enhances NoC performance with an acceptable quality
loss.

Machine Learning Applied to Computer Architecture
Designs: The field of computer architectural design
using ML has grown significantly in the past few
years [33]. Mandal er al. [34], [35], Kim et al. [36],
and Xiao et al. [37] used ML to manage on-chip resources,
such as the number of active cores, voltage/frequency level,
for heterogeneous architecture. Reinforcement learning and
imitation learning are used for real-time policy adjustment to
achieve better system performance. Xiao ef al. [37] used RL to
map tasks to the specialized accelerator for maximum system
performance. ML in an NoC dynamically explores different
design spaces, such as links, the topology, the error mitigation
policy, etc., and addresses many design tradeoffs [38]-[44].
For example, IntelliNoC [41] uses RL to control the dynamic

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

error mitigation in NoCs. Savva et al. [38] used artificial
neural networks to control the link between two routers.
Approximate communication creates a new dimension for
NoC designs, namely, trading data quality for more efficient
on-chip communication, raising new design spaces for ML
to explore. In this article, we explore the possibility of using
RL to manage data quality.

VII. CONCLUSION

In this work, we proposed a learning-based accuracy man-
agement technique for power-efficient and low-latency NoCs.
The proposed framework uses RL to automatically explore
the error tolerance of an application and automatically adjust
the data accuracy in a packet. RL reduces the latency and
power consumption of an NoC by approximating variables
that require frequent transmission while meeting the quality
requirements of the application. We compared the proposed
technique with previously proposed accuracy management
methods, such as AXxBA and the quality control framework.
Our detailed evaluation showed that the proposed accuracy
management scheme is 3x and 2x better (in terms of the
approximation effectiveness) than AxBA and the quality man-
agement framework, respectively. The proposed technique
reduces the dynamic power consumption and network latency
by 46% and 36%, respectively, compared to AxBA.

ACKNOWLEDGMENT

The authors sincerely thank the reviewers for their helpful
comments and suggestions.

REFERENCES

[1] T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel, and G. Reinman, “The
art of deception: Adaptive precision reduction for area efficient physics
acceleration,” in Proc. 40th Annu. IEEE/ACM Int. Symp. Microarchit.
(MICRO), Chicago, IL, USA, Dec. 2007, pp. 394-406.

[2] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in Proc. 45th Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO), Vancouver, BC, Canada,
2012, pp. 449-460.

[3] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surveys, vol. 48, no. 4, pp. 1-33, Mar. 2016.

[4] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8-22, Feb. 2016.

[5] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE Eur. Test
Symp. (ETS), Avignon, France, 2013, pp. 1-6.

[6] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“APPROX-NoC: A data approximation framework for network-on-chip
architectures,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit. (ISCA), Toronto, ON, Canada, 2017, pp. 666-677.

[7]1 L. Wang, X. Wang, and Y. Wang, “ABDTR: Approximation-based
dynamic traffic regulation for networks-on-chip systems,” in Proc.
IEEE Int. Conf. Comput. Design (ICCD), Boston, MA, USA, 2017,
pp. 153-160.

[8] M. F. Reza and P. Ampadu, “Approximate communication strategies
for energy-efficient and high performance NoC: Opportunities and chal-
lenges,” in Proc. Great Lakes Symp. VLSI, New York, NY, USA, 2019,
pp. 399-404.

[9] V. Fernando, A. Franques, S. Abadal, S. Misailovic, and J. Torrellas,
“Replica: A wireless manycore for communication-intensive and approx-
imate data,” in Proc. 24th Int. Conf. Archit. Support Program. Lang.
Oper. Syst. (ASPLOS’19), New York, NY, USA, 2019, pp. 849-863.

[10] S. Xiao, X. Wang, M. Palesi, A. K. Singh, and T. Mak, “ACDC:
An accuracy- and congestion-aware dynamic traffic control method for
networks-on-chip,” in Proc. IEEE Design Autom. Test Eur. Conf. Exhibit.
(DATE), Florence, Italy, 2019, pp. 630-633.

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

CHEN AND LOURI: LEARNING-BASED QUALITY MANAGEMENT FOR APPROXIMATE COMMUNICATION IN NETWORK-ON-CHIPS

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

Y. Chen and A. Louri, “An online quality management framework for
approximate communication in network-on-chips,” in Proc. ACM Int.
Conf. Supercomput., New York, NY, USA, 2019, pp. 217-226.

J. R. Stevens, A. Ranjan, and A. Raghunathan, “AXxBA: An approximate
bus architecture framework,” in Proc. Int. Conf. Comput.-Aided Design,
New York, NY, USA, 2018, pp. 1-8.

F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and
U. Karpuzcu, “Approximate communication: Techniques for reduc-
ing communication bottlenecks in large-scale parallel systems,” ACM
Comput. Surveys, vol. 51, no. 1, pp. 1-32, Jan. 2018.

Y. Chen, M. F. Reza, and A. Louri, “DEC-NoC: An approximate
framework based on dynamic error control with applications to energy-
efficient NoCs,” in Proc. IEEE 36th Int. Conf. Comput. Design (ICCD),
Orlando, FL, USA, Oct. 2018, pp. 480-487.

Y. Chen and A. Louri, “An approximate communication framework for
network-on-chips,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 6,
pp. 1434-1446, Jun. 2020.

Y. Kodratoff, Introduction to Machine Learning. St. Louis, MO, USA:
Elsevier, 2014.

M. Kubat, An Introduction to Machine Learning, vol. 2. Cham,
Switzerland: Springer, 2017.

T. Hofmann, “Unsupervised learning by probabilistic latent semantic
analysis,” Mach. Learn., vol. 42. nos. 1-2, pp. 177-196, 2001.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
online quality management system for approximate computing,” in Proc.
ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit. (ISCA), Portland, OR,
USA, Jun. 2015, pp. 554-566.

IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008,
2008.

N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1-7, Aug. 2011.

A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“AxBench: A multiplatform benchmark suite for approximate comput-
ing,” IEEE Design Test, vol. 34, no. 2, pp. 60-68, Apr. 2017.

C. Sun et al., “DSENT—A tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in Proc.
IEEE/ACM 6th Int. Symp. Netw. Chip (NOCS), Copenhagen, Denmark,
May 2012, pp. 201-210.

A. B. Ahmed, D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano,
“AxNoC: Low-power approximate network-on-chips using critical-path
isolation,” in Proc. 12th IEEE/ACM Int. Symp. Netw. Chip (NOCS),
Turin, Italy, Oct. 2018, pp. 1-8.

V. Y. Raparti and S. Pasricha, “DAPPER: Data aware approximate NoC
for GPGPU architectures,” in Proc. 12th IEEE/ACM Int. Symp. Netw.
Chip (NOCS), Oct. 2018, pp. 1-8.

S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability- and accuracy-aware optimization of approximate computa-
tional kernels,” in Proc. ACM Int. Conf. Object Orient. Program. Syst.
Lang. Appl. OOPSLA ’14, 2014, New York, NY, USA, pp. 309-328.
T. Wang, Q. Zhang, and Q. Xu, “ApproxQA: A unified quality assurance
framework for approximate computing,” in Proc. Conf. Design Autom.
Test Eur. (DATE ’17), Leuven, Switzerland, 2017, pp. 254-257.

C. Xu et al., “On quality trade-off control for approximate computing
using iterative training,” in Proc. 54th Annu. Design Autom. Conf. DAC
17, New York, NY, USA, 2017, pp. 1-6.

Q. Zhang and Q. Xu, “Approxit: A quality management framework of
approximate computing for iterative methods,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 39, no. 5, pp. 991-1002,
May 2020.

R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve,
“Approxilyzer: Towards a systematic framework for instruction-level
approximate computing and its application to hardware resiliency,” in
Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Taipei,
Taiwan, 2016, pp. 1-14.

M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang,
“Input responsiveness: Using canary inputs to dynamically steer approx-
imation,” in Proc. 37th ACM SIGPLAN Conf. Program. Lang. Design
Implement., New York, NY, USA, 2016, pp. 161-176.

D. D. Penney and L. Chen, “A survey of machine learning
applied to computer architecture design,” 2019. [Online]. Available:
arXiv:1909.12373.

S. K. Mandal, G. Bhat, J. R. Doppa, P. P. Pande, and U. Y. Ogras, “An
energy-aware online learning framework for resource management in
heterogeneous platforms,” ACM Trans. Design Autom. Electron. Syst.,
vol. 25, no. 3, p. 28, May 2020.

(35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

3735

S. K. Mandal, G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande, and
U. Y. Ogras, “Dynamic resource management of heterogeneous mobile
platforms via imitation learning,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 27, no. 12, pp. 2842-2854, Dec. 2019.

R. G. Kim et al., “Imitation learning for dynamic VFI control in large-
scale manycore systems,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 25, no. 9, pp. 2458-2471, Sep. 2017.

Y. Xiao, S. Nazarian, and P. Bogdan, “Self-optimizing and self-
programming computing systems: A combined compiler, complex
networks, and machine learning approach,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 27, no. 6, pp. 14161427, Jun. 2019.
A. G. Savva, T. Theocharides, and V. Soteriou, “Intelligent on/off
dynamic link management for on-chip networks,” J. Elect. Comput. Eng.,
vol. 2012, p. 6, Jan. 2012.

H. Zheng and A. Louri, “An energy-efficient network-on-chip design
using reinforcement learning,” in Proc. 56th Annu. Design Autom. Conf.
(DAC), New York, NY, USA, 2019, pp. 1-6.

K. Wang, A. Louri, A. Karanth, and R. Bunescu, “High-performance,
energy-efficient, fault-tolerant network-on-chip design using reinforce-
ment learning,” in Proc. Design Autom. Test Eur. Conf. Exhibit. (DATE),
Florence, Italy, Mar. 2019, pp. 1166-1171.

K. Wang, A. Louri, A. Karanth, and R. Bunescu, “IntelliNoC: A holistic
design framework for energy-efficient and reliable on-chip communica-
tion for manycores,” in Proc. ACM/IEEE 46th Int. Symp. Comput. Archit.
(ISCA), Phoenix, AZ, USA, 2019, pp. 589-600.

K. Wang and A. Louri, “CURE: A high-performance, low-power, and
reliable network-on-chip design using reinforcement learning,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 9, pp. 2125-2138, Sep. 2020.
K. Wang, H. Zheng, and A. Louri, “TSA-NoC: Learning-based threat
detection and mitigation for secure network-on-chip architecture,” IEEE
Micro, early access, Jun. 19, 2020, doi: 10.1109/MM.2020.3003576.
H. Zheng and A. Louri, “Agile: A learning-enabled power
and performance-efficient — network-on-chip design,” IEEE
Trans. Emerg. Topics Comput., early access, Jun. 18, 2020,
doi: 10.1109/TETC.2020.3003496.

Yuechen Chen (Member, IEEE) received the mas-
ter’s degree in electrical engineering from George
Washington University, Washington, DC, USA, in
2016, where he is currently pursuing the Ph.D.
degree with the Department of Electrical and
Computer Engineering.

His research interests include approximate com-
puting and network-on-chips.

Ahmed Louri (Fellow, IEEE) received the Ph.D.
degree in computer engineering from the University
of Southern California, Los Angeles, CA, USA, in
1988.

In August 2015, he joined the George Washington
University, Washington, DC, USA, is the David
and Marilyn Karlgaard Endowed Chair Professor of
electrical and computer engineering, where he is also
the Director of the High Performance Computing
Architectures and Technologies Laboratory
(https://hpcat.seas.gwu.edu/Director.html). From

1988 to 2015, he was a Professor of electrical and computer engineering with
the University of Arizona, Tucson, AZ, USA. From 2010 to 2013, he served
as a Program Director in the National Science Foundation’s Directorate for
Computer and Information Science and Engineering. He conducts research
in the broad area of computer architecture and parallel computing, with
emphasis on interconnection networks and network on chips for multicores,
and the use of machine learning techniques for energy-efficient, reliable,
high-performance, and secure many-core architectures and accelerators.

Dr. Louri was recently selected to be the recipient of the IEEE Computer
Society 2020 Edward J. McCluskey Technical Achievement Award, for
pioneering contributions to the solution of on-chip and off-chip communi-
cation problems for parallel computing and manycore architectures. He is
currently serving as the Editor-in-Chief of the IEEE TRANSACTIONS ON
COMPUTERS.

Authorized licensed use limited to: The George Washington University. Downloaded on November 03,2020 at 15:40:40 UTC from IEEE Xplore. Restrictions apply.

