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ABSTRACT: Understanding structural stability and phase transformation of nanoparticles under high pressure is of great scientific 
interest, as it is one of the crucial factors for design, synthesis, and application of materials. Even though high-pressure research on 
nanomaterials has been widely conducted, their shape-dependent phase transition behavior still remains unclear. Examples of phase 
transitions of CdS nanoparticles are very limited, despite the fact that it is one of the most studied wide band gap semiconductors. 
In this study, we have employed in-situ synchrotron wide-angle X-ray scattering (WAXS) and transmission electron microscopy 
(TEM) to investigate the high-pressure behaviors of CdS nanoparticles as a function of particle shapes. We observed that CdS na-
noparticles transform from wurtzite to rocksalt phase at elevated pressure in comparison to their bulk counterpart. Phase transitions 
also vary with particle shape—rod-shaped particles show a partially reversible phase transition and the onset of the structural phase 
transition pressure decreases with decreasing surface-to-volume ratios, while spherical particles undergo irreversible phase transi-
tion with relatively low phase transition pressure. In addition, TEM images of spherical particles exhibited sintering-induced mor-
phology change after high-pressure compression. Calculations of the bulk modulus reveals that spheres are more compressible than 
rods in the wurtzite phase. These results indicate that the shape of the particle plays an important role in determining their high-
pressure properties. Our study provides important insights into the understanding of the phase-structure-property relationship, 
which may guide future design and synthesis of nanoparticles for promising applications. 

Wide band gap II-VI semiconductor nanoparticles have 
been intensively studied in recent years owing to their large 
optical absorption coefficients and high emission quantum 
efficiencies.1 These nanoparticles have been considered as 
excellent candidates for various applications, such as thin film 
solar cells,2 lasers,3 chemical and biological sensors,4 transis-
tors,5 transparent electronics,6 and so on. In addition, their 
widely tunable band gaps and possibilities of doping with var-
ious metal ions allow great design and fabrication flexibility.1,7 
Among these materials, CdS nanoparticles have been proven 
to possess excellent electronic and optical properties for solar 
cells,8-9 photocatalysis,10 and batteries.11  

In general, the properties of nanoparticles can be greatly af-
fected by their size, shape, and crystal structure. Understand-
ing structural stability is one of the key factors for determining 
optimal nanoparticle design and applications. It is well known 
that high-pressure studies are a powerful method for character-
izing the phase stability and transformation of materials, and 
prior high-pressure experiments on nanoparticles have re-
vealed their unique pressure-dependent properties. For exam-
ple, greater phase transition pressure has been observed for 
nanoparticles, relative to the bulk.12-13 In addition, the phase 
transition pressure has been reported to shift with particle size 
for CdSe quantum dots14-16 and iron oxide nanoparticles17. In 



 

addition to crystal structural changes, high-pressure has re-
cently been applied as a controlled and effective means to alter 
nanomaterial morphologies at the mesoscale, leading to obser-
vations of new nanostructures that are difficult to obtain 
through solution synthesis methods.18-28  

 

Figure 1. Transmission electron microscopy (TEM) images of (a) 
spherical CdS nanoparticles, (b) short CdS nanorods, and (c) long 
CdSe/CdS core/shell nanorods.  

At ambient pressure, CdS can crystallize in either wurtzite 
(WZ) or zinc blende (ZB) structures. Bulk CdS undergoes 
phase transition from WZ to rocksalt (RS) at 2.6 GPa.29 Previ-
ous studies on pressure tuned phase transition of CdS nanopar-
ticles have revealed that both nanoparticle size30-31 and dop-
ing32-33 can affect the phase transition behaviors, but the effect 
of particle shape has not yet been systematically studied. In 
fact, how the shape of the particle influences the phase transi-
tion has been rarely scrutinized. Lee et al.34 theoretically pre-
dicted that the phase transition pressure of CdSe nanorods 
decreased with rod length. Park et al.35 studied the shape-
dependent compressibility in rice-shaped and rod-shaped TiO2 
nanoparticles. To more thoroughly understand the shape ef-
fects on high-pressure phase transition of nanoparticles, de-
tailed experimental studies on different kinds of nanoparticles 
are still needed. In this work, a systematic high-pressure study 
of CdS particles possessing various particle shapes was carried 
out by using in-situ synchrotron wide angle X-ray scattering 
(WAXS) and TEM.  
Table 1. Sizes and surface-to-volume ratios of CdS nano-
particles. 

CdS Shape Average Size 
(nm) 

Surface Area 
(nm2) 

Surface to 
volume 

ratio (nm-1) 
Spheres 5.3±0.9 86.9 1.1 
Short Rods 6.9±0.9 (width) 

20.1±5.1 (length) 512.4 0.7 

Long Rods 2.9±0.7 (width) 
34.9±5.6 (length) 328.5 1.5 

 
CdS nanoparticles were synthesized in three distinct shapes 

as previously reported.36-38 TEM was used to characterize the 
morphology of nanoparticles, and representative images are 
shown in Figure 1. All three types of CdS nanoparticles are 
monodisperse in size and uniform in shape. The average parti-
cle size and surface-to-volume ratio of different nanoparticles 
are summarized in Table 1. The average sizes were obtained 
by sampling at least 100 individual nanoparticles. It should be 
noted that the long CdSe/CdS core/shell nanorods are compa-
rable with the other two samples in the current studies because 
the contribution of CdSe core to the overall pressure-induced 
behaviors can be neglected due to its relatively small volume 
ratio.39-40 

 

Figure 2. Wide-angle X-ray scattering (WAXS) patterns under 
various applied pressure: (a) CdS nanospheres, (b) short CdS 
nanorods and (c) long CdSe/CdS core/shell nanorods. Pressures 
labeled with letter r are during decompression processes. The 
black, blue, and red curves represent the WZ, RS, and WZ/RS 
mixture crystal structures, respectively. Red asterisks mark dif-
fraction peaks from the rhenium gaskets.  

These CdS nanoparticles were then drop casted onto Si wa-
fers to form uniform films, and small pieces of the resulting 



 

films were scratched off and loaded into sample chambers of 
the diamond anvil cells (DACs) for high-pressure experiments. 
The DAC was compressed quasi-hydrostatically up to 15 GPa 
using silicon oil as pressure transmitting medium and WAXS 
experiments were performed after each pressure point was 
reached and stabilized. The resulting X-ray scattering patterns 
of different samples at different pressures are compiled in 
Figure 2. At ambient pressure before compression, the WAXS 
patterns of all three CdS nanoparticles can be indexed accord-
ing to the hexagonal WZ crystal structure (wurtzite CdS, 
JCPDS card number 75-1545). With increasing pressures, all 
WAXS peaks shifted to higher q values, corresponding to 
smaller d spacings resulting from shrinkage of the nanoparticle 
atomic lattice under applied pressures. Clear phase transitions, 
as indicated by appearances of new scattering peaks, were then 
observed at higher pressures. The onsets of such phase transi-
tions occur at ca. 6.0 GPa for nanospheres, ca. 6.9 GPa for 
short nanorods, and 8.0 GPa for long nanorods. These ob-
served new peaks correspond to the cubic RS crystal structure 
(cubic CdS, JCPDS card number 21-829) in all three cases, 
and RS structures were stable up to the highest pressure ap-
plied, i.e., 15 GPa. When the pressure was released back to 
ambient, some of the WZ peaks reappeared in both cases of 
the nanorod samples (Figures 2 (b) and (c)), indicating a par-
tially reversible phase transition process. On the other hand, 
the high-pressure RS phase is maintained at ambient pressure 
for the nanospheres (Figure 2 (a)), representing an irreversible 
phase transition behavior. Compared with bulk materials, WZ-
to-RS phase transitions have been found to take place at higher 
pressures for spherical nanoparticles, which is commonly ex-
plained by the increased surface energy with reducing particle 
size or increasing surface to volume ratio.12 In the cases of our 
present studies, the nanospheres, short nanorods, and long 
nanorods possess surface-to-volume ratios at ca. 1.1 nm−1, 0.7 
nm−1, and 1.5 nm−1, respectively. It is thus expected that the 
long nanorods show the highest phase transition pressure due 
to its highest surface-to-volume ratio. However, the short na-
norods, having lower surface-to-volume ratio than that of the 
nanospheres, display relatively higher phase transition pres-
sure. Furthermore, the WZ-to-RS phase transition was found 
to be irreversible in nanospheres, while such transitions appear 
to be partially reversible in both nanorods with different aspect 
ratios. Our results suggest that, besides considering nanoparti-
cle surface energies, the shape of nanoparticles also plays an 
important role in determining the pressure and reversibility of 
phase transitions. More precise determination and quantifica-
tion of such shape-dependent phase transition effects will re-
quire more detailed and comprehensive studies on larger sets 
of nanoparticles with varying shapes, which is currently un-
derway. 
   After the high-pressure experiments, residues from the 

DAC cells were dissolved in small amount of toluene and 
drop-cast onto TEM grids, and representative TEM images are 
shown in Figure 3. CdS nanospheres showed insignificant size 
changes after compression. Interestingly, some of the nano-
spheres were observed to sinter into continuous wires that 
have width comparable to that of individual nanospheres (Fig-
ure 3a) and high resolution TEM (HR-TEM) image (Figure 
3d) reveals that the crystal lattice belongs to the RS phase, 
consistent with the WAXS results. The connection between 
sintered nanospheres appears to be non-epitaxial since the 
lattice fringes do not match one another in adjacent spheres as 
observed in HR-TEM images (Figure S1, Supporting Infor-

mation). As for the nanorods, the general shapes remain un-
changed as seen in Figures 3b, 3c and Figure S2. However, the 
lengths of both nanorods have become shorter and less uni-
form. The average length of the short CdS nanorods decreases 
from ca. 20.1±5.1 nm to ca. 16.3±4.5 nm, while that of the 
core/shell long nanorods reduces from ca. 34.9±5.6 nm to ca. 
18.5±5.2 nm. Since the widths of these nanorods remain un-
changed, we suspect that the observed shortening of nanorods 
are resulted from pressure induced breakage, which is more 
severe in the case of the long nanorods.  HR-TEM (Figures 3d 
to 3f) reveals the presence of both the RS (d111 = 0.31 nm) and 
WZ (d100 = 0.35 nm) crystal structures, consistent with the 
WAXS data and confirms that the phase transitions of nano-
rods are partly reversible. 

Figure 3.  TEM images of (a) CdS nanospheres, (b) short CdS 
nanorods, (c) long CdSe/CdS core/shell nanorods after high pres-
sure studies; and high-resolution TEM (HR-TEM) images of (d) 
CdS nanospheres, (e) short CdS nanorods, and (f) long CdSe/CdS 
core/shell nanorods after high pressure studies.  
Evolution of the unit cell volumes as a function of pressure 

is shown in Figure 4. It can be seen that there is ca. 17% vol-
ume reduction from WZ to RS crystal structure, which is in 
good agreement with previous studies.41 The volume change 
versus pressure data were then fitted into the second-order 
Birch-Murnaghan equation of state to calculate the bulk modu-
li of different samples,42-44 
                P=(3/2)B0[(V0/V)7/3-(V0/V)5/3]                  (1) 

where B0 is the bulk modulus. V0 is the volume at zero applied 
pressure and can be calculated from the zero pressure WAXS 
data. The as-calculated bulk moduli of different samples at 
both WZ and RS phases are summarized in Table 2. 

Table 2. Calculated unit cell volumes and bulk moduli of 
the three CdS samples. 

CdS Shape Wurtzite (WZ) Rocksalt (RS) 
V0 (Å3) B0 (GPa) V0 (Å3) B0 (GPa) 

Spheres 98.36 57.89±1.36 158.72 87.97±1.72 
Short Rods 98.92 66.67±1.89 160.91 85.45±1.32 
Long Rods 98.45 67.69±0.75 162.11 88.58±1.05 

 



 

Figure 4.  Pressure dependence of the unit cell volume for (a) 
CdS nanospheres, (b) short CdS nanorods, and (c) long CdSe/CdS 
core/shell nanorods. The black and red dots represent the com-
pression and decompression process, respectively. 
   Materials that show higher bulk modulus values are less 
compressible. The CdS bulk material was reported to have a 
bulk modulus of 54.0 GPa for the WZ phase, and 68.0 GPa for 
the RS phase.45 The bulk moduli of all three samples in both 
WZ and RS phases are higher than that of the bulk CdS, which 
is in agreement with earlier studies.46-47 In addition, WZ parti-
cles are found to be more compressible than RS particles. Bulk 
moduli of nanoparticles in the WZ phase also shows shape-
dependent features, with nanorods being less compressible 
than spherical nanoparticles, while RS phase behaves similar 
for all shapes. A similar trend has been observed for ZnO nan-
owires and nanobelts.48-49 But opposite behavior was also ob-
served for rice-shaped TiO2 nanoparticles.35 Therefore, there is 
still no agreement on how the shape of the particle affect the 
value of the bulk modulus, and more research on other types 
of particles is necessary to fully understand this phenomenon.  

In summary, we have employed high-pressure synchrotron 
WAXS to investigate the effects of particle shape on the phase 
transition behaviors of nanoparticles by applying CdS nano-
particles with three different shapes: CdS nanospheres, short 
CdS nanorods, and long CdSe/CdS core/shell nanorods. The 
results show that the WZ to RS phase transition pressure and 
the process reversibility are both closely associated to the par-
ticles’ sizes and shapes. Spherical nanoparticles were found to 
possess the lowest phase transition pressure and showed sin-
tering phenomena after the high pressure studies. Both nano-
rods showed higher phase transition pressures despite the fact 
that the short nanorods have smaller surface-to-volume ratio 
than that of the nanospheres. On the other hand, both nanorods 
display similar bulk moduli in both WZ and RS phases, but 
differ significantly in phase transition pressures. Furthermore, 
the WZ-to-RS phase changes were found to be irreversible in 
nanospheres but partially reversible in both nanorods. These 
observations clearly demonstrate that the shape plays an im-
portant role in phase changes of nanoparticles under pressure. 
Our study provides a rudimentary understanding of nanoparti-
cle shape-dependent mechanical and phase properties, which 
will contribute to the design and development of novel func-
tional nanomaterials.50-52  
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