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We consider the design of private prediction markets, financial markets designed to elicit predictions about

uncertain events without revealing too much information about market participants’ actions or beliefs. Our

goal is to design market mechanisms in which participants’ trades or wagers influence the market’s behavior

in a way that leads to accurate predictions, yet no single participant has too much influence over what others

are able to observe.We study the possibilities and limitations of suchmechanisms using tools from differential

privacy. We begin by designing a private one-shot wagering mechanism in which bettors specify a belief

about the likelihood of a future event and a corresponding monetary wager. Wagers are redistributed among

bettors in a way that more highly rewards those with accurate predictions. We provide a class of wagering

mechanisms that are guaranteed to satisfy truthfulness, budget balance on expectation, and other desirable

properties while additionally guaranteeing ϵ-joint differential privacy in the bettors’ reported beliefs, and

analyze the trade-off between the achievable level of privacy and the sensitivity of a bettor’s payment to her

own report. We then ask whether it is possible to obtain privacy in dynamic prediction markets, focusing

our attention on the popular cost-function framework in which securities with payments linked to future

events are bought and sold by an automated market maker. We show that under general conditions, it is

impossible for such a market maker to simultaneously achieve bounded worst-case loss and ϵ-differential

privacy without allowing the privacy guarantee to degrade extremely quickly as the number of trades grows

(at least logarithmically in number of trades), making such markets impractical in settings in which privacy

is valued. We conclude by suggesting several avenues for potentially circumventing this lower bound.
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1 INTRODUCTION

Betting markets of various forms—including the stock exchange [18], futures markets [28], sports
betting markets [15], and markets at the racetrack [30]—have been shown to successfully collect
and aggregate information. Over the last few decades, prediction markets designed specifically for
the purpose of elicitation and aggregation, have yielded useful predictions in domains as diverse
as politics [3], disease surveillance [27], and entertainment [25].
The desire to aggregate and act on the strategically valuable information dispersed among em-

ployees has led many companies to experiment with internal prediction markets. An internal cor-
porate market could be used to predict the launch date of a new product or the product’s eventual
success. Among the first companies to experiment with internal markets was Hewlett-Packard,
which endowed each trader with a small budget of real money [26]. Microsoft [2] and Google [9]
began experimental markets using their own internal currencies in 2003 and 2005, respectively.
Intel, Ford, GE, Siemens, and others have engaged in similar experiments [6].

Proponents of internal corporate markets often argue that the market structure helps in part
because, without it, “business practices...create incentives for individuals not to reveal their in-
formation” [26]. However, even with a formal market structure in place, an employee might be
hesitant to bet against the success of their team for fear of insulting her coworkers or angering
management. If an employee has information that is unfavorable to the company, then shemay not
report it if her pessimistic belief can be traced back to her. In Microsoft internal prediction mar-
kets [2], the authors anecdotally report that trading revealed information that employees were
unwilling to share directly with their manager. If employees expected their manager to identify
individual trades, then they may not have traded so honestly. Waggoner et al. [31] and Frongillo
and Waggoner [14] argue the merits of privacy features in prediction markets, both from first
principles and as a tool to enable mechanisms for purchasing training data for machine learning
models.
If an employee has information that is unfavorable to the company, then she might choose

not to report it, leading to predictions that are overly optimistic for the company and ultimately
contributing to an “optimism bias” in the market similar to the bias in Google’s corporate markets
discovered by Cowgill and Zitzewitz [9].
To address this issue, we consider the problem of designing private predictionmarkets. A private

market would allow participants to engage in the market and contribute to the accuracy of the
market’s predictions without fear of having their information or beliefs revealed. The goal is to
provide participants with a form of “plausible deniability.” Although participants’ trades or wagers
should together influence the market’s behavior and predictions, no single participant’s actions
should have too much influence over what others can observe. We formalize this idea using the
popular notion of differential privacy [11, 13], which can be used to guarantee that any participant’s
actions cannot be inferred from observations.
We begin by designing a private analog of the weighted score wagering mechanisms first intro-

duced by Lambert et al. [23]. A wagering mechanism allows bettors to each specify a belief about
the likelihood of a future event and a corresponding monetary wager. These wagers are then col-
lected by a centralized operator and redistributed among bettors in such a way that more accurate
bettors receive higher rewards. Lambert et al. [23] showed that the class of weighted score wager-
ing mechanisms, which are built on the machinery of proper scoring rules [17], is the unique set
of wagering mechanisms to satisfy a set of desired properties such as budget balance, truthfulness,
and anonymity. We design a class of wagering mechanisms with randomized payments that main-
tain the nice properties of weighted score wagering mechanisms in expectation while additionally
guaranteeing ϵ-joint differential privacy in the bettors’ reported beliefs. We discuss the trade-offs
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that exist between the privacy of the mechanism (captured by the parameter ϵ) and the sensitivity
of a bettor’s payment to her own report, and show how to set the parameters of our mechanisms
to achieve a reasonable level of the plausible deniability desired in practice.
We next address the problem of running private dynamic prediction markets. We consider the

setting in which traders buy and sell securities with values linked to future events. For example, a
marketmight offer a securityworth $1 ifMicrosoft Bing’smarket share increases over the next year
and $0 otherwise. A risk neutral trader who believes that the probability of Bing’s market share
increasing isp would profit from buying this security at any price less than $p or (short) selling it at
any price greater than $p. The market price of the security is thought to reflect traders’ collective
beliefs about the likelihood of this event. We focus on cost-function prediction markets [1, 8] such
as Hanson’s popular logarithmic market scoring rule [19]. In a cost-function market, all trades are
placed through an automated market maker, a centralized algorithmic agent that is always willing
to buy or sell securities at some current market price that depends on the history of trade via a
potential function called the cost function.We askwhether it is possible for amarketmaker to price
trades according to a noisy cost function in a way that maintains traders’ privacy without allowing
traders to make unbounded profit off of the noise. Unfortunately, we show that under general
assumptions, it is impossible for a market maker to achieve bounded loss and ϵ-differential privacy
without allowing the privacy guarantee to degrade very quickly as the number of trades grows. In
particular, the quantity eϵ must grown faster than linearly in the number of trades, making such
markets impractical in settings in which privacy is valued. We suggest several avenues for future
research aimed at circumventing this lower bound.
There is very little prior work on the design of private prediction markets, and to the best of our

knowledge, we are the first to consider privacy for one-shot wagering mechanisms. Most closely
related to our work is the recent paper of Waggoner et al. [31] who consider a setting in which
each of a set of self-interested agents holds a private data point consisting of an observation x and
corresponding labely. A firmwould like to purchase this data to learn a function to accurately pre-
dict the labels of new observations. Waggoner et al. propose a mechanism that provides incentives
for the agents to reveal their data in such a way that the firm is able to solve its prediction task
while maintaining privacy of the agents’ data (see Section 2 for a formal privacy definition). The
authors mention that similar ideas can be applied to produce privacy-preserving prediction mar-
kets, but their construction requires knowing the number of trades that will occur in advance to
set parameters. The most straightforward way of applying their techniques to prediction markets
results in a market maker falling in the class covered by our impossibility result, suggesting that
such techniques cannot be used to derive a privacy-preserving market with bounded loss when
the number trades is not bounded. As a follow up to Waggoner et al. [31] and the impossibil-
ity results in Section 4 (which appeared in an earlier conference version of this article), Frongillo
and Waggoner [14] showed that these impossibility results could be circumvented by imposing a
transaction fee, which subsidizes the arbitrage that results from the differential privacy.
Ghosh et al. [16] considered private peer-prediction mechanisms for agents who experience an

explicit cost for privacy leakage associated with revealing their data. Peer-prediction mechanisms
are similar to our wagering mechanisms, in that both use strictly proper scoring rules (Defini-
tion 5) to incentivize truthful reporting of predictions. These classes of mechanisms differ in that
peer-prediction does not coordinate payments across agents and thus does not satisfy budget bal-
ance like weighted-score wagering mechanisms do. For example, if all agents correctly predict the
outcome in a peer-prediction mechanism, then they will all receive the maximum payment, and
the market maker’s loss could scale linearly with the number of agents. Additionally, Ghosh et al.
focused on the relationship between differential privacy and agents’ privacy costs. Their main
result is a truthful peer-prediction mechanism that ensured most participants were sufficiently
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15:4 R. Cummings et al.

compensated for their privacy costs under some Bayesian assumptions on the distribution of cost
parameters.
Finally, Cummings et al. [10] studied a highly stylized model of private prediction markets, as

an application of their more general results on private equilibrium computation and selection.
Their model is closest to a one-shot version of our cost-function market maker in Section 4, where
each player can buy or sell a single share independently for d commodities, but players must
decide their trades simultaneously and they can only trade once. The mechanism of Cummings
et al. [10] introduced a mediator to help players coordinate on equilibrium prices in this market,
despite the one-shot nature of the game. Players report their valuations for each commodity to the
mediator, who private computes (and publicly announces) equilibrium prices. This differs from our
cost-function market maker in several important ways: our mechanism allows prices to change
dynamically as more trades occur, traders are allowed to make multiple trades, and we do not
assume the existence of a trusted mediator who can help coordinate trader actions. Given our
result of Section 4 on the impossibility of private dynamic market mechanisms, the introduction
of a coordinating mediator may be a promising alternative when appropriate in practice.

2 TOOLS FROM DIFFERENTIAL PRIVACY

We formalize privacy using the now-standard notion of differential privacy, which was introduced
by Dwork et al. [11]. All tools here are framed in the standard terminology of differential privacy,
which inherently a language of databases and algorithms. We refer readers who have background
primarily in prediction markets to Section 2.1 for a framing of this terminology in the language of
prediction markets.
The most basic version of differential privacy is used to measure the privacy of a randomized

algorithm’s output when given as input a database D with n entries from some input domain I.
Differential privacy is often studied in settings in which the n entries are provided by n agents,
each of whom would like to keep their entry private. Two databases D and D ′ are said to be
neighboring if they differ only in a single entry. Differential privacy requires that the distribution
of the algorithm’s output given D is close to the distribution of its output given any neighboring
database D ′. For these definitions, it is enough to view an algorithm as a randomized function
mapping inputs to outputs; we are not concerned with the precise way in which the outputs are
computed. In the following definitions, we restrict to real-valued outputs for consistency with the
algorithms used in this article.

Definition 1 (Differential Privacy [11]). For any ϵ,δ ≥ 0, an algorithm M : In → R is (ϵ,δ )-

differentially private if for every pair of neighboring databasesD,D ′ ∈ In and every subsetS ⊆ R,

Pr[M (D) ∈ S] ≤ eϵPr[M (D ′) ∈ S] + δ .
If δ = 0, then we say thatM is ϵ-differentially private.

As ϵ approaches 0, it becomes increasingly more difficult to distinguish neighboring databases,
leading to a higher level of privacy. As ϵ grows large, the privacy guarantee grows increasingly
weak. There is generally no consensus about what constitutes a good value of ϵ , and the strength
of the guarantee needed may depend on the application. We discuss this point more later in the
context of our results.
We note that differentially private algorithms with finite ϵ must necessarily either be random-

ized or produce the same output on all databases [13]. The magnitude of noise that must be added
to preserve differential privacy scales with the sensitivity of the function being evaluated, which
is the maximum change in the function’s value that can arise from changing a single entry in
the database. Intuitively, since differential privacy guarantees that changing a single entry of the
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input should be indistinguishable in the output, any differentially private mechanism must add
noise on this order to mask such a change. In our results, we will ensure bounded sensitivity of
the mechanisms that we privatize, which is necessary to bound the scale of noise that we add.
We sometimes abuse terminology and say that a random variable (such as a bettor’s profit) is

differentially private. This should be taken to mean that the algorithm used to compute or generate
the realization of the value of the random variable is differentially private.
In the context of mechanism design, differential privacy is often too strong of a notion. Suppose,

for example, that the algorithmM outputs a vector of prices that each of n agents will pay based
on their joint input. While we may want the price that agent i pays to be differentially private
in the input of the other agents, it is natural to allow it to be more sensitive to changes in i’s
own input. To capture this idea, Kearns et al. [21] defined the notion of joint differential privacy.
Call two neighboring databases D and D ′ i-neighbors if they differ only in the ith entry. Suppose
thatM now outputs one element for each agent i ∈ {1, . . . ,n}. LetM (D)i denote the element of
the output corresponding to agent i , and let M (D)−i denote the vector of outputs to all agents
excluding agent i . Then joint differential privacy is defined as follows.

Definition 2 (Joint Differential Privacy [21]). For any ϵ,δ ≥ 0, an algorithm M : In → R
n is

(ϵ,δ )-joint differentially private if for every i ∈ {1, . . . ,n}, for every pair of i-neighborsD,D ′ ∈ In ,
and for every subset S ⊆ R

n−1,

Pr[M (D)−i ∈ S] ≤ eϵPr[M (D ′)−i ∈ S] + δ .
If δ = 0, then we say thatM is ϵ-joint differentially private.

Joint differential privacy is still a strong requirement. It protects the privacy of any agent i from
arbitrary coalitions; even if all other agents shared their private output, they would still not be
able to learn too much about the input of agent i .
One useful tool for proving joint differential privacy is the billboard lemma [20]. The idea behind

the billboard lemma is quite intuitive and simple. Imagine that we display some message publicly
so that it is viewable by all n agents, as if posted on a billboard, and suppose that the algorithm
to compute this message is ϵ-differentially private. If each agent i’s outputM (D)i is computable
from this public message along with i’s own private input, thenM is ϵ-joint differentially private.

Lemma 2.1 (Billboard Lemma [20]). SupposeM : In → R is (ϵ,δ )-differentially private. Con-

sider any set of functions Fi : Ii ×R→ R
′, where Ii is the i-th entry of the input data. The com-

position {Fi (
∏

i D,M (D))} is (ϵ,δ )-jointly differentially private, where
∏

i is the projection to i’s

data.

The definitions above assume the input database D is fixed. Differential privacy has also been
considered for streaming algorithms [5, 12]. Let N = {1, 2, 3, . . .}. Following Chan et al. [5], a

stream σ ∈ IN is a string of countable length of elements in I, where σt ∈ I denotes the ele-
ment at position or time t and σ1, ...,t ∈ It is the length t prefix of the stream σ . We useM (σ1, ...,t )

to denote the output of a streaming algorithmM run on σ1, ...,t . Two streams σ and σ ′ are said to
be neighbors if they differ at exactly one time t .
A streaming algorithmM is said to be unbounded if it accepts streams of indefinite length, that

is, if for any stream σ ∈ IN ,M (σ ) ∈ R
N . In contrast, a streaming algorithm is T -bounded if it

accepts only streams of length at most T . Dwork et al. [12] consider only T -bounded streaming
algorithms. Since we consider unbounded streaming algorithms, we use a more appropriate defi-
nition of differential privacy for streams adapted from Chan et al. [5]. For unbounded streaming
algorithms, it can be convenient to let the privacy guarantee degrade as the input stream grows in
length. Chan et al. [5] implicitly allow this in some of their results; see, for example, Corollary 4.5
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in their paper. For clarity and preciseness, we explicitly capture this in our definition. Here and
throughout the article, we use R+ to denote the nonnegative reals.

Definition 3 (Differential Privacy for Streams). For any non-decreasing function ϵ : N → R+ and

any δ ≥ 0, a streaming algorithmM : IN → R
N is (ϵ (t ),δ )-differentially private if for every pair

of neighboring streams σ ,σ ′ ∈ IN , for every t ∈ N , and for every subset S ⊆ R
t ,

Pr[M (σ1, ...,t ) ∈ S] ≤ eϵ (t )Pr[M (σ ′1, ...,t ) ∈ S] + δ .
If δ = 0, then we say thatM is ϵ (t )-differentially private.

Note that we allow ϵ to grow with t , but require that δ stay constant. In principle, one could
also allow δ to depend on the length of the stream. However, allowing δ to increase would likely
be unacceptable in scenarios in which privacy is considered important. In fact, it is more typical
to require smaller values of δ for larger databases, since for a database of size n, an algorithm
could be considered (ϵ,δ )-private for δ on the order of 1/n even if it fully reveals a small number
of randomly chosen database entries [13]. Since we use this definition only when showing an
impossibility result, allowing δ to decrease in t would not strengthen our result.
We discuss how the particular streaming algorithms of Chan et al. [5] andDwork et al. [12] could

be applied in the context of dynamic prediction markets and the relationship to our lower bounds
in Section 4. In our application to dynamic prediction markets, we will also allow the elements
of the data stream to be chosen adaptively, as current trades can depend on past market states.
Further discussion of this adaptivity and its implications on privacy is deferred to Section 4.

2.1 Differential Privacy in the Language of Prediction Markets

In this subsection, we will reframe the above definitions and terminology in the language of the
predictionmarkets used in this article. This is intended for readers who have background primarily
in prediction markets and are less familiar with the privacy literature.
A database D ∈ In can be thought of as a vector of reported predictions, one from each of the

n players. In our weighted score wagering mechanisms of Section 3, each bettor reports her belief
about the probability of a future outcome ω; in our dynamic prediction markets of Section 4, each
trader reports a trade he would like to execute.1 A database is simply a collection of these reports.
A pair of databasesD andD ′ are neighbors if one player unilaterally changes her report betweenD
andD ′, and all other players keep their reports fixed. In predictionmarkets, the relevant outcome of
a function on D could be the market maker’s aggregate prediction based on reports, or the current
market price based on all previous trades (as in the dynamic markets of Section 4).
Differential privacy ensures that if a single player changes her report, the probability of any

outcome S occurring cannot change by more than a multiplicative eϵ factor. This means that
when players of the game observe the outcome S, they are unable to make strong inferences
about the reports of others. When considering static mechanisms in Section 3, where the market
collects a single prediction from each bettor, we use the standard definition of differential privacy
(Definition 1). When we move to considering dynamic mechanisms in Section 4, where the market
maker collects trades in an online fashion, we require the dynamic variant of differential privacy
(Definition 3).
Prediction markets additionally produce a vector of profits, one to each player, which may be a

function of other players’ reports. For weighted score wagering mechanisms in Section 3, player
i’s profit will explicitly depend on the accuracy of her prediction relative to the predictions of
all other players. For the dynamic prediction markets of Section 4, player i’s profit will depend

1Technically, each trader can execute more than one trade. This detail is deferred to Section 4.
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on the current market price, which is a function of all previous trades made by other players. A
privacy-preserving market maker should be concerned about information leakage across players
from these profit functions. However, requiring profit functions to be differentially private would
be detrimental to incentives and truthfulness properties, because then a player’s profit would be
nearly independent of her own report. Joint differential privacy addresses this issue by requiring
the profit of player i to be differentially private in the reports of all other players, but allows player
i’s profit to depend arbitrarily on her own report.

The Billboard Lemma (Lemma 2.1) is a helpful algorithmic tool for the design of jointly differ-
entially private mechanisms. It says that if the market maker can publish differentially private
statistic, and all players can compute their profit from that statistic, then the profits are jointly
differentially private. For example in our dynamic mechanism, the market maker can publish the
current market price, and a trader can use this to compute her profit from a potential trade.

3 PRIVATE WAGERING MECHANISMS

We begin with the problem of designing a one-shot wagering mechanism that incentivizes bettors
to truthfully report their beliefs while maintaining their privacy. A wagering mechanism allows
a set of bettors to each specify a belief about a future event and a monetary wager. Wagers are
collected by a centralized operator and redistributed to bettors in such a way that bettors with
more accurate predictions are more highly rewarded. Lambert et al. [23] showed that the class
of weighted score wagering mechanisms (WSWMs) is the unique class of wagering mechanisms to
satisfy a set of desired axioms such as budget balance and truthfulness. In this section, we show
how to design a randomized wagering mechanism that achieves ϵ-joint differential privacy while
maintaining the nice properties of WSWMs in expectation.

3.1 Standard Wagering Mechanisms

Wagering mechanisms, introduced by Lambert et al. [23], are mechanisms designed to allow a
centralized operator to elicit the beliefs of a set of bettors without taking on any risk. In this
article, we focus on binarywageringmechanisms, inwhich each bettor i submits a reportpi ∈ [0, 1]
specifying how likely she believes it is that a particular event will occur, along with a wagermi ≥ 0
specifying the maximum amount of money that she is willing to lose. After all reports and wagers
have been collected, all parties observe the realized outcome ω ∈ {0, 1}, indicating whether or not
the event occurred. Each bettor i then receives a payment that is a function of the outcome and
the reports and wagers of all bettors. This idea is formalized as follows.

Definition 4 (Wagering Mechanism [23]). A wagering mechanism for a set of bettors N =
{1, . . . ,n} is specified by a vector Π of (possibly randomized) profit functions, Πi : [0, 1]

n ×R
n
+
×

{0, 1} → R, where Πi (p,m,ω) denotes the total profit to bettor i when the vectors of bettors’ re-
ported probabilities and wagers are p and m and the realized outcome is ω. It is required that
Πi (p,m,ω) ≥ −mi for all p, m, and ω, which ensures that no bettor loses more than her wager.

There are twominor differences between the definition presented here and that of Lambert et al.
[23]. First, for convenience, we useΠi to denote the total profit to bettor i (i.e., her payment from the
mechanism minus her wager), unlike Lambert et al. [23], who use Πi to denote the payment only.
While this difference is inconsequential, we mention it to avoid confusion. Second, all previous
work on wagering mechanisms has restricted attention to deterministic profit functions Πi . Since
randomization is necessary to attain privacy, we open up our study to randomized profit functions.

Lambert et al. [23] defined a set of desirable properties or axioms that deterministic wagering
mechanisms should arguably satisfy. Here we adapt those properties to potentially randomized
wagering mechanisms, making the smallest modifications possible to maintain the spirit of the
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axioms. Four of the properties (truthfulness, individual rationality, normality, and monotonicity)
were originally defined in terms of expected profit with the expectation taken over some true or
believed distribution over the outcome ω. We allow the expectation to be over the randomness in
the profit function as well. We use rand(Π) to indicate the random coins of the profit function Π

in the definitions below, although we may drop this notation later in the article when it is clear
from the context. Sybilproofness was not initially defined in expectation; we now ask that this
property hold in expectation with respect to the randomness in the profit function. We define
anonymity in terms of the distribution over all bettors’ profits, and ask that budget balance hold
for any realization of the randomness in Π.

(a) Budget balance: The operator makes no profit or loss. That is,∀p ∈ [0, 1]n , ∀m ∈ R
n
+
, ∀ω ∈

{0, 1}, and for any realization of the randomness in Π,

n
∑

i=1

Πi (p,m,ω) = 0.

(b) Anonymity: Profits do not depend on the identify of the bettors. That is, for any permu-
tation of the bettors σ , ∀p ∈ [0, 1]n , ∀m ∈ R

n
+
, ∀ω ∈ {0, 1}, the joint distribution over profit

vectors,

{Πi (p,m,ω)}i ∈N ,
is the same as the joint distribution over profit vectors,{

Πσ (i )

(

(pσ −1 (i ) )i ∈N , (mσ −1 (i ) )i ∈N ,ω
)}

i ∈N .

(c) Truthfulness: Bettors uniquelymaximize their expected profit by reporting the truth. That
is, ∀i ∈ N , ∀p−i ∈ [0, 1]n−1, ∀m ∈ R

n
+
, ∀p∗,pi ∈ [0, 1] with pi � p∗,

Eω∼p∗,rand(Π) [Πi ((p
∗, p−i ),m,ω)] > Eω∼p∗,rand(Π) [Πi ((pi , p−i ),m,ω)] .

(d) Individual rationality: Bettors prefer participating to not participating. That is, ∀i ∈ N ,
∀mi > 0, for all p∗ ∈ [0, 1], there exists some pi ∈ [0, 1] such that ∀p−i ∈ [0, 1]n−1, ∀m−i ∈
R
n−1
+

,

Eω∼p∗,rand(Π) [Πi ((pi , p−i ),m,ω)] ≥ 0.

(e) Normality:2 If any bettor j changes her report, then the change in the expected profit to any
other bettor i with respect to a fixed belief p∗ is the opposite sign of the change in expected
payoff to j. That is, ∀i, j ∈ N , i � j, ∀p, p′ ∈ [0, 1]n with p ′

k
= pk for all k � j, ∀p∗ ∈ [0, 1],

∀m ∈ R
n
+
, if

Erand(Π)[Πj (p,m,ω)] < Erand(Π)[Πj (p
′,m,ω)],

then

Erand(Π)[Πi (p,m,ω)] ≥ Erand(Π)[Πi (p
′,m,ω)],

where all expectations are taken with respect to ω ∼ p∗ and the randomness in the mecha-
nism.

(f) Sybilproofness: Profits remain unchanged as any subset of players with the same reports
manipulate user accounts by merging accounts, creating fake identities, or transferring

2Lambert et al. [22] and Chen et al. [7] used an alternative definition of normality for wagering mechanisms that essentially

requires that if, from some agent i ’s perspective, the prediction of agent j improves, then i ’s expected profit decreases. This

form of normality also holds for our mechanism.
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wagers. That is, ∀S ⊂ N , ∀p with pi = pj for all i, j ∈ S, ∀m,m′ ∈ R
n
+
with mi =m

′
i for

i � S and
∑

i ∈Smi =
∑

i ∈Sm
′
i , ∀ω ∈ {0, 1}, the following two conditions hold:

Erand(Π) [Πi (p,m,ω)] = Erand(Π)
[

Πi (p,m
′,ω)
] ∀i � S,

and
∑

i ∈S
Erand(Π) [Πi (p,m,ω)] =

∑

i ∈S
Erand(Π)

[

Πi (p,m
′,ω)
]

.

(g) Monotonicity: The magnitude of a bettor’s expected profit (or loss) increases as her wager
increases. That is, ∀i ∈ N , ∀p ∈ [0, 1]n , ∀m ∈ R

n
+
, ∀Mi > mi , ∀p∗ ∈ [0, 1], either

0 < Eω∼p∗,rand(Π)[Πi (p, (mi ,m−i ),ω)] < Eω∼p∗,rand(Π)[Πi (p, (Mi ,m−i ),ω)]

or

0 > Eω∼p∗,rand(Π)[Πi (p, (mi ,m−i ),ω)] > Eω∼p∗,rand(Π)[Πi (p, (Mi ,m−i ),ω)].

Previously studied wagering mechanisms [7, 22, 23] achieve truthfulness by incorporating
strictly proper scoring rules [29] into their profit functions. Scoring rules reward individuals based
on the accuracy of their predictions about random variables. For a binary random variable, a scor-
ing rule s maps a prediction or report p ∈ [0, 1] and an outcome ω ∈ {0, 1} to a score. A strictly
proper scoring rule incentivizes a risk neutral agent to report her true belief about the likelihood
that ω = 1.

Definition 5 (Strictly Proper Scoring Rule [29]). A function s : [0, 1] × {0, 1} → R ∪ {−∞} is a
strictly proper scoring rule if for all p,q ∈ [0, 1] with p � q,

Eω∼p[s (p,ω)] > Eω∼p[s (q,ω)].

One common example is the Brier scoring rule [4], defined as s (p,ω) = 1 − (p − ω)2. Note that
for the Brier scoring rule, s (p,x ) ∈ [0, 1] for all p and ω. Any strictly proper scoring rule with a
bounded range can be scaled to have range [0, 1].

The WSWMs incorporate proper scoring rules, assigning each bettor a profit based on how her
score compares to the wager-weighted average score of all bettors, as in Algorithm 1. Lambert
et al. [23] showed that the set of WSWMs satisfy the seven axioms above and is the unique set
of deterministic mechanisms that simultaneously satisfy budget balance, anonymity, truthfulness,
normality, and sybilproofness.

ALGORITHM 1: Weighted-score wagering mechanisms [23]

Parameters: number of bettors n, strictly proper scoringrule s with range in [0, 1]

Solicit reports p and wagers m

Realize state ω

for i = 1, . . . ,n do

Pay bettor i

Πi (p,m,ω) =mi

(

s (pi ,ω) −
∑

j ∈N mjs (pj ,ω)
∑

j ∈N mj

)

end for

3.2 Adding Privacy

We would like our wagering mechanism to protect the privacy of each bettor i , ensuring that
the n − 1 other bettors cannot learn too much about i’s report from their own realized profits,
even if they collude. Note that paying each agent according to an independent scoring rule would
easily achieve privacy, but would fail budget balance and sybilproofness. We formalize our desire
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to add privacy to the other good properties of weighted score wagering mechanisms using joint
differential privacy.

(h) ϵ-joint differential privacy: The vector of profit functions satisfies ϵ-joint differential
privacy. That is, ∀i ∈ N , ∀p ∈ [0, 1]n , ∀p ′i ∈ [0, 1], ∀m ∈ R

n
+
, ∀ω ∈ {0, 1}, and ∀S ⊂ R

n−1
+

,

Pr[Π−i ((pi , p−i ),m,ω) ∈ S] ≤ eϵPr[Π−i ((p
′
i , p−i ),m,ω) ∈ S].

This definition requires only that the report pi of each bettor i be kept private, not the wager
mi . Private wagers would impose more severe limitations on the mechanism, even if wagers are
restricted to lie in a bounded range; see Section 3.3.2 for a discussion. Note that if bettor i’s report
pi is correlated with his wagermi , as might be the case for a Bayesian agent [22], then just knowing
mi could reveal information about pi . In this case, differential privacy would guarantee that other
bettors can infer no more about pi after observing their profits than they could from observingmi

alone.We note that if bettors have immutable beliefs as assumed by Lambert et al. [23], then reports
and wagers are not correlated andmi reveals nothing about pi , although we do not explicitly make
this assumption on bettors’ beliefs.
Unfortunately, it is not possible to jointly obtain properties (a)–(h) with any reasonable mech-

anism. This is due to an inherent tension between budget balance and privacy. This is easy to see.
Budget balance requires that a bettor i’s profit is the negation of the sum of profits of the othern − 1
bettors, i.e.,Πi (p,m,ω) = −

∑

j�i Πj (p,m,ω). Therefore, under budget balance, the othern − 1 bet-
tors could always collude to learn bettor i’s profit exactly. To obtain privacy, it would therefore be
necessary for bettor i’s profit to be differentially private in her own report, resulting in profits that
are almost entirely noise. This is formalized in the following theorem. We omit a formal proof,
since it follows immediately from the argument described here.

Theorem 3.1. Let Π be the vector of profit functions for any wagering mechanism that satis-

fies both budget balance and ϵ-joint differential privacy for any ϵ > 0. Then for all i ∈ N , Πi is

ϵ-differentially private in bettor i’s report pi .

Since it is unsatisfying to consider mechanisms in which a bettor’s profit is not sensitive to her
own report, we require only that budget balance hold in expectation over the randomness of the
profit function. An operator who runs many markets may be content with such a guarantee as it
implies that he will not lose money on average.

(a′) Budget balance in expectation: The operator neither makes a profit nor a loss in expec-
tation. That is, ∀p ∈ [0, 1]n , ∀m ∈ R

n
+
, ∀ω ∈ {0, 1},

n
∑

i=1

Erand(Π) [Πi (p,m,ω)] = 0.

3.3 Private Weighted Score Wagering Mechanisms

Motivated by the argument above, we seek a wagering mechanism that simultaneously satisfies
properties (a′) and (b)–(h). Keeping Theorem 3.1 in mind, we would also like the wagering mech-
anism to be defined in such a way that each bettor i’s profit is sensitive to her own report pi .
Sensitivity is difficult to define precisely, but loosely speaking, we would like it to be the case
that (1) the magnitude of E [Πi (p,m,ω)] varies sufficiently with the choice of pi , and (2) there is
not too much noise or variance in a bettor’s profit, i.e., Πi (p,m,ω) is generally not too far from
E [Πi (p,m,ω)]. For example, a mechanism that provides a nearly constant expected payment for
any report pi would violate the first desideratum, and would not provide particularly strong in-
centives for risk-neutral players to report truthfully. At the other extreme, a mechanism that has
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payments with variance many orders of magnitude larger than their expectation would violate the
second desideratum, as payments would be dominated by the noise.
Before presenting such a mechanism, we first provide some intuition as to why several more ob-

vious approaches fail to yield satisfactory mechanisms. A natural first attempt would be to employ
the standard Laplace Mechanism [13] on top of a WSWM, adding independent Laplace noise to
each bettor’s profit. The resulting profit vector would satisfy ϵ-joint differential privacy, but since
Laplace random variables are unbounded, a bettor could lose more than her wager, which violates
the requirements of a Wagering Mechanism in Definition 4. Adding other forms of noise does not
help: any method of achieving differential privacy that involves first computing the quantity of
interest—such as deterministic WSWM payments or scores s (p,ω)—and then adding mean-zero
noise must add noise with unbounded support [11]. Since the definition of a Wagering Mecha-
nism requires that no player loses more than her wager for any reports p, wagersm, and outcome
ω, it would not suffice for this condition to be satisfied only with high probability, e.g., by adding
noise that is highly concentrated around zero despite its unbounded support. Further, truncating a
bettor’s profit to lie within a bounded range after noise is added could achieve privacy, but would
result in a loss of truthfulness as the bettor’s expected profit would no longer be a proper scoring
rule.

ALGORITHM 2: Private wagering mechanism

Parameters: num bettors n, privacy paramϵ , strictly proper scoringrule s with range in [0, 1]

Fix α = 1 − e−ϵ and β = e−ϵ

Solicit reports p and wagers m

Realize state ω

for i = 1, . . . ,n do

Independently draw random variable xi (pi ,ω) such that

xi (pi ,ω) =

⎧⎪⎪⎨⎪⎪⎩
1 w.p.

αs (pi ,ω )+β
1+β

−β w.p.
1−αs (pi ,ω )

1+β

end for

for i = 1, . . . ,n do

Pay bettor i

Πi (p,m,ω) =mi

(

αs (pi ,ω) −
∑

j ∈N mjx j (pj ,ω)
∑

j ∈N mj

)

end for

Instead, we take a different approach. Like the WSWM, our private wagering mechanism, for-
mally defined in Algorithm 2, rewards each bettor based on how good his score is compared with
an aggregate measure of how good bettors’ scores are on the whole. However, this aggregate
measure is now calculated in a noisy manner. That is, instead of comparing a bettor’s score to
a weighted average of all bettors’ scores, the bettor’s score is compared to a weighted average of
random variables that are equal to bettors’ scores in expectation. As a result, each bettor’s profit is,
in expectation, equal to the profit she would receive using a WSWM, scaled down by a parameter
α to ensure that no bettor ever loses more than her wager, as stated in the following lemma. The
proof simply shows that for each i , E[xi (pi ,ω)] = αs (pi ,ω).

Lemma 3.2. For any number of bettors n > 0 with reports p ∈ [0, 1]n and wagersm ∈ R
n
+
, for any

setting of the privacy parameter ϵ > 0, for any outcome ω ∈ {0, 1}, the expected value of bettor i’s

profit Πi (p,m,ω) under the private wagering mechanism with scoring rule s is equal to bettor i’s

profit under a WSWM with scoring rule αs .
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Proof. For each i ∈ N ,

E[xi (pi ,ω)] =
αs (pi ,ω) + β

1 + β
− β 1 − αs (pi ,ω)

1 + β
= αs (pi ,ω), (1)

and so

E[Πi (p,m,ω)] =mi

(

αs (pi ,ω) −
∑

j ∈N mjαsj (pj ,ω)
∑

j ∈N mj

)

.

This is precisely the profit to bettor i in a WSWM with scoring rule αs . �

Using this lemma, we show that this mechanism does indeed satisfy joint differential privacy as
well as the other desired properties.

Theorem 3.3. The private wagering mechanism satisfies (a′) budget balance in expectation, (b)

anonymity, (c) truthfulness, (d) individual rationality, (e) normality, (f) sybilproofness, (g) mono-

tonicity, and (h) ϵ-joint differential privacy.

Proof. Any WSWM satisfies budget balance in expectation (by satisfying budget balance),
truthfulness, individual rationality, normality, sybilproofness, and monotonicity [23]. Since these
properties are defined in terms of expected profit, Lemma 3.2 implies that the private wagering
mechanism satisfies them too.
Anonymity is easily observed, since profits are defined symmetrically for all bettors.
Finally, we show ϵ-joint differential privacy. We first prove that each random variable xi (pi ,ω)

is ϵ-differentially private in bettor i’s report pi , which implies that the noisy aggregate of scores is
private in all bettors’ reports. We then apply the billboard lemma (see Section 2) to show that the
profit vector Π satisfies joint differential privacy.

To show that xi (pi ,ω) is differentially private in pi , for each of the two values that xi (pi ,ω) can
take on, we must ensure that the ratio of the probability it takes this value under any report p
and the probability it takes this value under any alternative report p ′ is bounded by eϵ . Fix any
ω ∈ {0, 1}. Since s has range in [0, 1],

Pr(xi (p,ω) = 1)

Pr(xi (p ′,ω) = 1)
=

αs (p,ω) + β

αs (p ′,ω) + β
≤ α + β

β
=

1 − e−ϵ + e−ϵ
e−ϵ

= eϵ ,

and
Pr(xi (p,ω) = −β )
Pr(xi (p ′,ω) = −β )

=

1 − αs (p,ω)
1 − αs (p ′,ω) ≤

1

1 − α =
1

1 − (1 − e−ϵ ) = eϵ .

Thus,xi (pi ,ω) is ϵ-differentially private inpi . By Theorem 4 ofMcSherry [24], the vector of random
variables (x1 (p1,ω), . . . ,xn (pn ,ω)) (and thus any function of this vector) is ϵ-differentially private
in the vector p, since each xi (pi ,ω) does not depend on the reports of anyone but i . Since we view
the wagersmi as constants, the quantity

X ≡
∑

j ∈N mjx j (pj ,ω)
∑

j ∈N mj

is also ϵ-differentially private in the reports p.
To apply the billboard lemma, we can imagine the operator publicly announcing the quantityX

to the bettors. Given access to X , each bettor is able to calculate her own profit Πi (p,m,ω) using
only her own input and the values α and ω. The billboard lemma implies that the vector of profits
is ϵ-joint differentially private. �
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3.3.1 Sensitivity of the Mechanism. Having established that our mechanism satisfies properties
(a′) and (b)–(h), we next address the sensitivity of the mechanism in terms of the two facets de-
scribed above: range of achievable expected profits and the amount of noise in the profit function.
This discussion sheds light on how to set ϵ in practice.
The first facet is quantified by Lemma 3.2. As α grows, the magnitude of bettors’ expected profits

grows, and the range of expected profits grows aswell.Whenα approaches 1, the range of expected
profits achievable through the private wagering mechanism approaches that of a standardWSWM
with the same proper scoring rule.
Unfortunately, since α = 1 − e−ϵ , larger values of α imply larger values of the privacy parameter

ϵ . This gives us a clear tradeoff between privacy and magnitude of expected payments. Luckily, in
practice, it is probably unnecessary for ϵ to be very small for most markets. A relatively large value
of ϵ can still give bettors plausible deniability. For example, setting ϵ = 1 implies that a bettor’s
report can only change the probability of another bettor receiving a particular profit by a factor
of roughly 2.7 and leads to α ≈ 0.63, a tradeoff that may be considered acceptable in practice.

The second facet is quantified in the following theorem, which states that as more money is wa-
gered by more bettors, each bettor’s realized profit approaches its expectation. The bound depends
on ‖m‖2/‖m‖1. If all wagers are equal, then this quantity is equal to 1/

√
n and bettors’ profits ap-

proach their expectations as n grows. This is not the case at the other extreme, when there are
a small number of bettors with wagers much larger than the rest. The proof uses Hoeffding’s
inequality to bound the difference between the quantitymjx j (pj ,ω) and its expectation.

Theorem 3.4. For any δ ∈ [0, 1], any ϵ > 0, any number of bettors n > 0, any vectors of reports

p ∈ [0, 1]n and wagers m ∈ R
n
+
, with probability at least 1 − δ , for all i ∈ N , the profit Πi output by

the private wagering mechanism satisfies

��Πi (p,m,ω) − E[Πi (p,m,ω)]�� ≤ mi
	


‖m‖2
‖m‖1

(1 + β )

√

ln (2/δ )

2
�
� .

Proof. For any j ∈ N , consider the quantitymjx j (pj ,ω). From Equation (1), E[mjx j (pj ,ω)] =
mjαs (pj ,ω). Additionally, we can boundmjx j (pj ,ω) ∈ [−mjβ,mj ]. Hoeffding’s inequality then im-
plies that with probability at least 1 − δ ,�������

∑

j ∈N
mjαs (pj ,ω) −

∑

j ∈N
mjx j (pj ,ω)

�������
≤ ‖m‖2 (1 + β )

√

ln(2/δ )

2
.

From the definition of the private wagering mechanism and Lemma 3.2, we then have that with
probability at least 1 − δ , for any i ∈ N ,

��Πi (p,m,ω) − E[Πi (p,m,ω)]�� = mi
∑

j ∈N mj

�������
∑

j ∈N
mjαs (pj ,ω) −

∑

j ∈N
mjx j (pj ,ω)

�������
≤ mi

‖m‖2
‖m‖1

(1 + β )

√

ln(2/δ )

2
,

as desired. �

The following corollary shows that if all wagers are bounded in some range [L,U ], profits ap-
proach their expectations as the number of bettors grows.

Corollary 3.5. Fix any L andU , 0 < L < U . For any δ ∈ [0, 1], any ϵ > 0, any n > 0, any vectors
of reports p ∈ [0, 1]n and wagersm ∈ [L,U ]n , with probability at least 1 − δ , for all i ∈ N , the profit
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Πi output by the private wagering mechanism satisfies

��Πi (p,m,ω) − E[Πi (p,m,ω)]�� ≤ mi
	



U
√
nL

(1 + β )

√

ln (2/δ )

2
�
� .

3.3.2 Keeping Wagers Private. Property (h) requires that bettors’ reports be kept private but
does not guarantee private wagers. The same tricks used in our private wagering mechanism
could be applied to obtain a privacy guarantee for both reports and wagers if wagers are restricted
to lie in a bounded range [L,U ], but this would come with a great loss in sensitivity. Under the
most straightforward extension, the parameter α would need to be set to (L/U ) (1 − e−ϵ/n ) rather
than (1 − e−ϵ ), greatly reducing the scale of achievable profits and thus making the mechanism
impractical in most settings.
Loosely speaking, the extra factor of L/U stems from the fact that a bettor’s effect on the profit

of any other bettor must be roughly the same whether he wagers the maximum amount or the
minimum. The poor dependence on n is slightly more subtle. We created a private-belief mech-
anism by replacing each bettor j’s score s (pj ,ω) in the WSWM with a random variable x j (pj ,ω)
that is ϵ-differentially private in pj . To obtain private wagers, we would instead need to replace
the full term mjs (pj ,ω)/

∑

k ∈N mk with a random variable for each j. This term depends on the
wagers of all n bettors in addition to pj . Since each bettor’s profit would depend on n such ran-
dom variables, achieving ϵ-joint differential privacy would require that each random variable be
ϵ/n-differentially private in each bettor’s wager.

We believe that sacrifices in sensitivity are unavoidable and not merely an artifact of our tech-
niques and analysis, but leave a formal lower bound to future work.

4 LIMITS OF PRIVACYWITH COST-FUNCTION MARKET MAKERS

In practice, prediction markets are often run using dynamic mechanisms that update in real
time as new information surfaces. We now turn to the problem of adding privacy guarantees to
continuous-trade markets. We focus our attention on cost-function prediction markets, in which
all trades are placed through an automatedmarket maker [1, 8, 19]. One benefit of this style of mar-
ket is that, contrary to the private wagering mechanisms of Section 3, our private cost-function
market maker will have payments that are deterministic from a trader’s point of view, given the
information available at the time of trade. This is desirable, because empirical findings have shown
that individuals in practice do not understand or like probabilistic payments [32].
The market maker can be viewed as a streaming algorithm that takes as input a stream of trades

and outputs a corresponding stream of market states from which trade prices can be computed.
Therefore, the privacy guarantees we seek are in the form of Definition 3. We ask whether it is
possible for the automated market maker to price trades according to a cost function while main-
taining ϵ (t )-differential privacywithout opening up the opportunity for traders to earn unbounded
profits, leading themarket maker to experience unbounded loss.We show amostly negative result:

to achieve bounded loss, the privacy term eϵ (t ) must grow faster than linearly in t , the number of
rounds of trade.
For simplicity, we state our results for markets over a single binary security, though we believe

they extend to cost-function markets over arbitrary security spaces.

4.1 Standard Cost-function Market Makers

We consider a setting in which there is a single binary security that traders may buy or sell. After
the outcome ω ∈ {0, 1} has been revealed, a share of the security is worth $1 if ω = 1 and $0 oth-
erwise. A cost-function prediction market for this security is fully specified by a convex function
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C called the cost function. We model the market as having one trade per round, and will use t to
index rounds. Let xt be the number of shares that are bought or sold by a trader in the t th trans-
action; positive values of xt represent purchases while negative values represent (short) sales. The
market state after the first t − 1 trades is summarized by a single value qt =

∑t−1
τ=1 xτ , and the t th

trader is charged C (qt + xt ) −C (qt ) = C (qt+1) −C (qt ). Thus, the cost function can be viewed as
a potential function, with C (qt+1) −C (0) capturing the amount of money that the market maker
has collected from the first t trades. The instantaneous price at round t , denoted pt , is the price
per share of purchasing an infinitesimally small quantity of shares: pt = C

′(qt ). This framework
is summarized in Algorithm 3.

ALGORITHM 3: Cost-function market maker (parameters: cost function C)

Initialize: q1 = 0

for t = 1, 2, . . . do

Update instantaneous price pt = C
′(qt )

A trader buys xt ∈ R shares and pays C (qt + xt ) −C (qt )
Update market state qt+1 = qt + xt

end for

Realize outcome ω

if ω = 1 then

for t = 1, 2, . . . do

Market maker pays xt to the trader from round t

end for

end if

The most common cost-function market maker is Hanson’s logarithmic market scoring rule
(LMSR) [19]. The cost function for the single-security version of LMSR can be written as

C (q) = b log(e (q+a)/b + 1),

where b > 0 is a parameter controlling the rate at which prices change as trades are made and a

controls the initial market price at state q = 0. The instantaneous price at any state q is

C ′(q) =
e (q+a)/b

e (q+a)/b + 1
.

Under mild conditions onC , all cost-functionmarket makers satisfy several desirable properties,
including natural notions of no-arbitrage and information incorporation [1]. We refer to any cost
functionC satisfying these mild conditions as a standard cost function. Although the market maker
subsidizes trade, crucially its worst-case loss is bounded. This ensures that the market maker does
not go bankrupt, even if traders are perfectly informed. Formally, there exists a finite bound B such
that for any T , any sequence of trades x1, . . . ,xT , and any outcome ω ∈ {0, 1},

qT+1 · 1(ω = 1) − (C (qT+1) −C (0)) ≤ B,

where 1 is the indicator function that is 1 if its argument is true and 0 otherwise. The first term on
the left-hand side is the amount that the market maker must pay (or collect from) traders when
ω is revealed. The second is the amount collected from traders. For the LMSR with initial price
p1 = 0.5 (a = 0), the worst-case loss is b log(2).

4.2 The Noisy Cost-function Market Maker

Clearly the standard cost-function market maker does not ensure differential privacy. The amount
that a trader pays is a function of the market state, the sum of all past trades. Thus, anyone ob-
serving the stream of market prices could infer the exact sequence of past trades. To guarantee
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privacy while still approximating cost-function pricing, the marker maker would need to modify
the sequence of published prices (or equivalently, market states) to ensure that such information
leakage does not occur.
In this section, we define and analyze a noisy cost-function market maker. The noisy market

maker prices trades according to a cost function, but uses a noisy version of the market state to
mask the effect of past trades. In particular, the market maker maintains a noisy market state
q′t = qt + ηt , where qt is the true sum of trades and ηt is a (random) noise term. The cost of trade
xt is C (q′t + xt ) −C (q′t ), with the instantaneous price now pt = C

′(q′t ). Since the noise term ηt
must be large enough to mask the trade xt , we limit trades to be some maximum size k . Without
such a bound, a single trade would have unbounded sensitivity, since it could move the market
state by an unbounded amount, and the market maker would have to add infinite noise to preserve
differential privacy. A trader who would like to buy or sell more than k shares must do this over
multiple rounds. The full modified framework is shown in Algorithm 4. For now, we allow the
noise distribution D to depend arbitrarily on the history of trade. This framework is general; the
natural adaptation of the privacy-preserving data market of Waggoner et al. [31] to the single
security prediction market setting would result in a market maker of this form, as would a cost-
function market that used existing private streaming techniques for bit counting [5, 12] to keep
noisy, private counts of trades.

ALGORITHM 4: Noisy cost-function market maker (parameters: cost function C , distribution Dover

noise {ηt }, maximum trade size k)

Initialize: q1 = 0

Draw η1 and set q′1 = η1
for t = 1, 2, . . . do

Update instantaneous price pt = C
′(q′t )

A trader buys xt ∈ [−k,k] shares and pays C (q′t + xt ) −C (q′t )
Update true market state qt+1 = qt + xt
Draw ηt+1 and update noisy market state q′t+1 = qt+1 + ηt+1

end for

Realize outcome ω

if ω = 1 then

for t = 1, 2, . . . do

Market maker pays xt to the trader from round t

end for

end if

In this framework, we can interpret the market maker as implementing a noise trader in a stan-
dard cost-function market. Under this interpretation, after a (real) trader purchases xt shares at
state q′t , the market state momentarily moves to q′t + xt = qt + ηt + xt = qt+1 + ηt . The market
maker, acting as a noise trader, then effectively “purchases” ηt+1 − ηt shares at this state for a cost
of

C ((qt+1 + ηt ) + (ηt+1 − ηt )) −C (qt+1 + ηt ) = C (qt+1 + ηt+1) −C (qt+1 + ηt ),

bringing the market state to qt+1 + ηt+1 = q
′
t+1. The market maker makes this trade regardless of

the impact on its own loss. These noise trades obscure the trades made by real traders, opening up
the possibility of privacy.
However, these noisy trades also open up the opportunity for traders to profit off of the noise.

It is important to ensure that bounded worst-case loss is maintained. For the noisy cost-function
market maker, for any sequence ofT trades x1, . . . ,xT , any outcomeω ∈ {0, 1}, and any fixed noise
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values η1, . . . ,ηT , the market maker’s loss is

LT (x1, . . . ,xT ,η1, . . . ,ηT ,ω) ≡ qT+1 · 1(ω = 1) −
T
∑

t=1

(

C (q′t + xt ) −C (q′t )
)

.

As before, the first term is the (possibly negative) amount that the market maker pays to traders
when ω is revealed, and the second is the amount collected from traders (which no longer tele-
scopes). Unfortunately, we cannot expect this loss to be bounded for any noise values; the market
maker could always get extremely unlucky and draw noise values that traders can exploit. Instead,
we consider a relaxed version of bounded loss that holds in expectation with respect to the noise
values ηt .
In addition to this relaxation, one more modification is necessary. Note that traders can (and

should) base their actions on the current market price. Therefore, if our loss guarantee only holds
in expectation with respect to noise values ηt , then it is no longer sufficient to give a guarantee
that is worst case over any sequences of trades. Instead, we allow the sequence of trades to depend
on the realized noise, introducing a game between traders and the market maker. To formalize
this, we imagine allowing an adversary to control the traders. We define the notion of a strategy
for this adversary.

Definition 6 (Trader Strategy). A trader strategy s is a set of (possibly randomized) functions s =
{s1, s2, . . .}, where each st maps a history of trades and noisy market states (x1, . . . ,xt−1,q′1, . . . ,q

′
t )

to a new trade xt for the trader at round t .

Let S be the set of all strategies. With this definition in place, we can formally define what it
means for a noisy cost-function market maker to have bounded loss.

Definition 7 (Bounded Loss for a Noisy Cost-function Market Maker). A noisy cost-function mar-
ket maker with cost function C and distribution D over noise values η1,η2, . . . is said to have
bounded loss if there exists a finite B such that for all strategies s ∈ S , all times T ≥ 1, and all
ω ∈ {0, 1},

E [LT (x1, . . . ,xT ,η1, . . . ,ηT ,ω)] ≤ B,

where the expectation is taken over the market’s noise values η1,η2, . . . distributed according to
D and the (possibly randomized) actions x1,x2, . . . of a trader employing strategy s. In this case,
the loss of the market maker is said to be bounded by B. The noisy cost-function market maker has
unbounded loss if no such B exists.

If the noise values were deterministic, then this definition of worst-case loss would correspond
to the usual one, but because traders react intelligently to the specific realization of noise, we must
define worst-case loss in game-theoretic terms.

4.3 Limitations on Privacy

By effectively acting as a noise trader, a noisy cost-function market maker can partially obscure
trades. Unfortunately, the amount of privacy achievable through this technique is limited. In this
section, we show that to simultaneously maintain bounded loss and achieve ϵ (t )-differential pri-

vacy, the quantity eϵ (t ) must grow faster than linearly as a function of the number of rounds of
trade.
Before stating our result, we explain how to frame the market maker setup in the language of

differential privacy. Recall from Section 2 that a differentially private unbounded streaming algo-
rithmM takes as input a stream σ of arbitrary length and outputs a stream of values that depend
on σ in a differentially private way. In themarket setting, the stream σ corresponds to the sequence
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of trades x = (x1,x2, . . .). We think of the noisy cost-function market maker (Algorithm 4) as an al-
gorithmM that, on any stream prefix (x1, . . . ,xt ), outputs the noisy market states (q′1, . . . ,q

′
t+1).

3

The goal is to find a market maker such thatM is ϵ (t )-differentially private.
One might ask whether it is necessary to allow the privacy guarantee to diminish as the the

number of trades grows. When considering the problem of calculating noisy sums of bit streams,
for example, Chan et al. [5] are able to maintain a fixed privacy guarantee as their stream grows
in length by instead allowing the accuracy of their counts to diminish. This approach does not
work for us; we cannot achieve bounded loss yet allow the market maker’s loss to grow with the
number of trades.
Our result relies on one mild assumption on the distribution D over noise. In particular, we

require that the noise ηt+1 be chosen independent of the current trade xt . We refer to this as the
trade-independent noise assumption.4 The distribution of ηt+1 may still depend on the round t , the
history of trade x1, . . . ,xt−1, and the realizations of past noise terms, η1, . . . ,ηt . This assumption
is needed in the proof only to rule out unrealistic market makers that are specifically designed to
monitor and infer the behavior of the specific adversarial trader that we consider, and the result
likely holds even without it. However, it is not a terribly restrictive assumption as most standard
ways of generating noise could bewritten in this form. For example, Chan et al. [5] andDwork et al.
[12] show how to maintain a noisy count of the number of ones in a stream of bits by computing
the exact count and adding noise that is correlated across time but independent of the data. If
similar ideas were used to choose the noise term in our setting, then the trade-independent noise
assumption would be satisfied. The noise employed in the mechanism of Waggoner et al. [31]
also satisfies this assumption. Our impossibility result then implies that their market would have
unbounded loss if a limit on the number of rounds of trade were not imposed. To obtain privacy
guarantees, Waggoner et al. must assume that the number of trades is known in advance and can
therefore be used to set relevant market parameters.
We now state the main result.

Theorem 4.1. Consider any noisy cost-function market maker using a standard convex cost func-

tionC that is nonlinear in some region, a noise distribution D satisfying the trade-independent noise

assumption, and a bound k > 0 on trade size. If the market maker satisfies bounded loss, then it can-

not satisfy (ϵ (t ),δ )-differential privacy for any function ϵ such that eϵ (t ) = O (t ) with any constant

δ ∈ [0, 1).

This theorem rules out bounded loss with ϵ (t ) = log(mt ) for any constant m > 0. It is open

whether it is possible to achieve ϵ (t ) =m log(t ) (and therefore eϵ (t ) = tm ) for some m > 1, but
such a guarantee would likely be insufficient in most practical settings.
Note that with unbounded trade size (i.e., k = ∞), our result would be trivial. A trader could

move the market price an arbitrary amount in one trade. To provide privacy, the noisy market
state would need to be independent of past trades. The price would not be reflective of trader
beliefs, and the noise could be exploited by traders for profit. By imposing a bound on trade size,
we only strengthen our negative result.
While the proof of Theorem 4.1 is quite technical, the intuition is simple. We consider the be-

havior of the noisy cost-function market maker when there is a single trader trading in the market
repeatedly using a simple trading strategy. This trader chooses a target stateq∗.Whenever the noisy

3Announcing q′
t
allows traders to infer the instantaneous price pt = C

′(q′
t
). It is equivalent to announcing pt in terms of

information revealed as long as C is strictly convex in the region around q′
t
.

4The proof can be extended easily to the more general case in which the calculation of ηt+1 is differentially private in xt ;

we make the slightly stronger assumption to simplify presentation.
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market state q′t is less than q∗ (and so pt < p∗ ≡ C ′(q∗)), the trader purchases shares, pushing the
market state as close to q∗ as possible. When the noisy state q′t is greater than q

∗ (so pt > p∗), the
trader sells shares, again pushing the state as close as possible to q∗. Each trade makes a profit for
the trader in expectation if it were the case that ω = 1 with probability p∗. Since there is only a sin-
gle trader, this means that each such trade would result in an expected loss with respect to p∗ for
the market maker. Unbounded expected loss for any p∗ implies unbounded loss in the worst case—
either whenω = 0 orω = 1. The crux of the proof involves showing that in order achieve bounded
loss against this trader, the amount of added noise ηt cannot be too big as t grows, resulting in a
sacrifice of privacy.
To formalize this intuition, we first give a more precise description of the strategy s∗ employed

by the single trader we consider.

Definition 8 (Target Strategy). The target strategy s∗ with target q∗ ∈ R chosen from a region in
which C is nonlinear is defined as follows. For all rounds t ,

s∗t (x1, . . . ,xt−1,q
′
1, . . . ,q

′
t ) =

{

min{q∗ − q′t ,k } if q′t ≤ q∗,
−min{q′t − q∗,k } otherwise.

As described above, if ω = 1 with probability p∗, a trader following this target strategy makes a
non-negative expected profit on every round of trade. Furthermore, this trader makes an expected
profit of at least some constant χ > 0 on each round inwhich the noisymarket stateq′t is more than
a constant distanceγ from q∗. The market maker must subsidize this profit, taking an expected loss
with respect to p∗ on each round. These ideas are formalized in Lemma 4.2, which lower bounds
the expected loss of the market maker in terms of the probability of q′t falling far from q∗. In this
statement, DC denotes the Bregman divergence5 of C .

Lemma 4.2. Consider a noisy cost-function market maker satisfying the conditions in Theorem 4.1

with a single trader following the target strategy s∗ with target q∗. Suppose ω = 1 with probability

p∗ = C ′(q∗). Then for any γ such that 0 < γ ≤ k ,

E [LT (x1, . . . ,xT ,η1, . . . ,ηT ,ω)] ≥ χ

T
∑

t=1

Pr( |q′t − q∗ | ≥ γ ),

where the expectation and probability are taken over the randomness in the noise values η1,η2, . . .,

the resulting actions x1,x2, . . . of the trader, and the random outcomeω, and where χ = min{DC (q
∗
+

γ ,q∗),DC (q
∗ − γ ,q∗)} > 0.

The proof of Lemma 4.2 makes use of the following technical lemma, which says that it is prof-
itable in expectation to sell shares as long as the price remains above p∗ or to purchase shares as
long as the price remains below p∗. In this statement, q can be interpreted as the current market
state and x as a new purchase (or sale);C ′(q∗)x −C (q + x ) +C (q) ≥ 0 would then be the expected
profit of a trader making this purchase or sale if ω ∼ p∗ = C ′(q∗).

Lemma 4.3. Fix any convex function C and any q∗, q, and x such that q + x ≥ q∗ if x ≤ 0 and

q + x ≤ q∗ if x ≥ 0. Then C ′(q∗)x −C (q + x ) +C (q) ≥ 0.

Proof. Since C is convex, the assumptions in the lemma statement imply that if x ≤ 0 then
C ′(q + x ) ≥ C ′(q∗), while if x ≥ 0 then C ′(q + x ) ≤ C ′(q∗). Therefore, in either case C ′(q + x )x ≤

5The Bregman divergence of a convex function F of a single variable is defined as DF (p, q ) = F (p ) − F (q ) − F ′(q ) (p − q ).
The Bregman divergence is always non-negative. If F is strictly convex, then it is strictly positive when the arguments are

not equal.
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Fig. 1. An illustration of the regions R∗ and R̂ used in the proof of Theorem 4.1.

C ′(q∗)x , and

C ′(q∗)x −C (q + x ) +C (q) ≥ C ′(q + x )x −C (q + x ) +C (q) = DC (q,q + x ) ≥ 0. �

Proof of Lemma 4.2. From the definition of the market maker’s loss, we can rewrite the ex-
pected loss E [LT (x1, . . . ,xT ,η1, . . . ,ηT ,ω)] =

∑T
t=1 E[πt ], where πt is the expected (over just the

randomness in ω) loss of the market maker from the t th trade, i.e.,

πt = C
′(q∗)xt −C (q′t + xt ) +C (q′t ).

By definition of the target strategy s∗ and Lemma 4.3, πt ≥ 0 for all t .
Consider a round t in which |q′t − q∗ | ≥ γ . Suppose first that q′t ≥ q∗ + γ , so a trader playing the

target strategy would sell. By definition of s∗, xt = −min{q′t − q∗,k } ≤ −γ . We can write

πt = C
′(q∗) (xt + γ ) −C ′(q∗)γ −C (q′t + xt ) +C (q′t − γ ) −C (q′t − γ ) +C (q′t )

≥ −C ′(q∗)γ −C (q′t − γ ) +C (q′t )
≥ −C ′(q∗)γ −C (q∗) +C (q∗ + γ )
= DC (q

∗
+ γ ,q∗) ≥ χ ,

where χ is defined as in the lemma statement. The first inequality follows from an application of
Lemma 4.3 with q = q′t − γ and x = xt + γ . The second follows from the convexity of C and the
assumption that q′t ≥ q∗ + γ .

If, instead, q′t ≤ q∗ − γ (so a trader playing the target strategy would buy), then a similar argu-
ment can be made to show that πt ≥ DC (q

∗ − γ ,q∗) ≥ χ .
Putting this all together, we have

E [LT (x1, . . . ,xT ,η1, . . . ,ηT ,ω)] =

T
∑

t=1

E[πt ] ≥
T
∑

t=1

χPr( |q′t − q∗ | ≥ γ ),

as desired. The fact that χ > 0 follows from the fact that it is the minimum of two Bregman di-
vergences, each of which is strictly positive, since C is nonlinear (and thus strictly convex) in the
region around q∗ and the arguments are not equal. �

We now complete the proof.

Proof of Theorem 4.1. We will show that bounded loss implies that (ϵ (t ),δ )-differential pri-

vacy cannot be achieved with eϵ (t ) = O (t ) for any constant δ ∈ [0, 1).
Throughout the proof, we reason about the probabilities of various events conditioned on there

being a single trader playing a particular strategy. All strategies we consider are deterministic, so
all probabilities are taken just with respect to the randomness in the market maker’s added noise
(η1,η2, . . .).
As described above, we focus on the case inwhich a single trader plays the target strategy s∗with

target q∗. Define R∗ to be the open region of radius k/4 around q∗, that is, R∗ = (q∗ − k/4,q∗ + k/4).
Let q̂ = q∗ + k/2 and let R̂ = (q̂ − k/4, q̂ + k/4). Notice that R∗ and R̂ do not intersect, but from any
market state q ∈ R∗ a trader could move the market state to q̂ with a purchase or sale of no more
than k shares. See Figure 1 for an illustration.
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For any round t , let st be the strategy in which stτ = s
∗
τ for all rounds τ � t , but for round t ,

stt (x1, . . . ,xt−1,q
′
1, . . . ,q

′
t ) = q̂ − q′t if |q̂ − q′t | ≤ k (otherwise, stt can be defined arbitrarily). In other

words, a trader playing strategy st behaves identically to a trader playing strategy s∗ on all rounds
except round t . On round t , the trader instead attempts to move the market state to q̂.

For any t , the behavior of a trader playing strategy s∗ and a trader playing strategy st are in-
distinguishable through round t − 1, and therefore the behavior of the market maker is indistin-
guishable as well. At round t , if it is the case that q′t ∈ R∗ (and therefore |q′t − q∗ | ≤ k/4 < k and
also |q′t − q̂ | ≤ 3k/4 < k), then a trader playing strategy s∗ would purchase q∗ − q′t shares, while
a trader playing strategy st would purchase q̂ − q′t . Differential privacy tells us that conditioned
on such a state being reached, the probability that q′t+1 lies in any range (and in particular, in R∗)
should not be too different depending on which of the two actions the trader takes. More formally,
if the market maker satisfies ϵ (t )-differential privacy, then for all rounds t ,

eϵ (t ) ≥
Pr(q′t+1 ∈ R∗ |s = s∗,q′t ∈ R∗) − δ
Pr(q′t+1 ∈ R∗ |s = st ,q′t ∈ R∗)

≥
Pr(q′t+1 ∈ R∗ |s = s∗,q′t ∈ R∗) − δ

Pr(q′t+1 � R̂ |s = st ,q′t ∈ R∗)

=

Pr(q′t+1 ∈ R∗ |s = s∗,q′t ∈ R∗) − δ
Pr(q′t+1 � R

∗ |s = s∗,q′t ∈ R∗)
.

The first inequality follows from the definition of (ϵ (t ),δ )-differential privacy. The second follows

from the fact that R∗ and R̂ are disjoint. The last line is a consequence of the trade-independent
noise assumption. By simple algebraic manipulation, for all t ,

Pr(q′t+1 � R
∗ |s = s∗,q′t ∈ R∗) ≥

1 − δ
1 + eϵ (t )

. (2)

We now further investigate the term on the left-hand side of this equation. For the remainder
of the proof, we assume that s = s∗ and implicitly condition on this.

Applying Lemma 4.2 with γ = k/4, we find that the expected value of the market maker’s loss
after T rounds if ω = 1 with probability p∗ = C ′(q∗) is lower bounded by χ

∑T
t=1 Pr(q

′
t � R

∗) for
the appropriate constant χ . This implies that for at least one of ω = 1 or ω = 0,

E [LT (x1, . . . ,xT ,η1, . . . ,ηT ,ω)] ≥ χ

T
∑

t=1

Pr(q′t � R
∗),

where the expectation is just over the random noise of the market maker and the resulting actions
of the trader. Since we have assumed that the market maker’s loss is bounded, this implies there
must exist some loss bound B such that

B

χ
≥
∞
∑

t=1

Pr(q′t � R
∗). (3)

Fix any constant α ∈ (0, 1). Equation (3) implies that for all but finitely many t , Pr(q′t � R
∗) < α , or

equivalently, for all but finitely many t , Pr(q′t ∈ R∗) ≥ 1 − α . Call the set of t for which this holds
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T . Equation (3) also implies that

B

χ
≥
∞
∑

t=1

[

Pr(q′t+1 � R
∗ |q′t ∈ R∗)Pr(q′t ∈ R∗) + Pr(q′t+1 � R∗ |q′t � R∗)Pr(q′t � R∗)

]

≥
∞
∑

t=1

Pr(q′t+1 � R
∗ |q′t ∈ R∗)Pr(q′t ∈ R∗)

≥ (1 − α )
∑

t ∈T
Pr(q′t+1 � R

∗ |q′t ∈ R∗).

Combining this with Equation (2) yields
∑

t ∈T

1 − δ
1 + eϵ (t )

≤ B

χ (1 − α ) . (4)

Now suppose for contradiction that eϵ (t ) = O (t ). Then by definition, for some constantm > 1

there exists a round τ such that for all t > τ , eϵ (t ) ≤ mt . Then,
∑

t ∈T

1 − δ
1 + eϵ (t )

≥
∑

t ∈T ,t>τ

1 − δ
1 + eϵ (t )

≥
∑

t ∈T ,t>τ

1 − δ
1 +mt

>
1 − δ
m

∑

t ∈T ,t>τ

1

1 + t
.

Since this sum is over all natural numbers t except a finite number, it must diverge, and therefore

Equation (4) cannot hold. Therefore, we cannot have eϵ (t ) = O (t ). �

In the differential privacy literature where a single individual can contribute more than one
data point, there is a distinction between event level privacy and user level privacy. Event level
privacy guarantees differential privacy with respect to a single entry in the database, regardless of
how many other entries that same individual has contributed. In our case, this would correspond
to changing a single trade. User level privacy is a stronger notion, which guarantees differential
privacy with respect to all data points contributed by any individual. In our setting, this would
correspond to changing all trades made by the same bettor. Since user level privacy is a strictly
stronger privacy notion, it is often difficult to design differentially private algorithms that satisfy
user level privacy, particularly where there is no upper bound on the number of entries that each
user can contribute. We note that our impossibility result of Theorem 4.1 is for the weaker notion
of event level privacy, which only strengthens our negative result. Further, we note that although
the target strategy s∗ used in the proof of Theorem 4.1 involved the same trader repeatedly making
trades, the result would also hold if a different trader acted in each round.

5 DISCUSSION

We designed a class of randomized wagering mechanisms that keep bettors’ reports private
while maintaining truthfulness, budget balance in expectation, and other desirable properties of
weighted score wagering mechanisms. The parameters of our mechanisms can be tuned to achieve
a tradeoff between the level of privacy guaranteed and the sensitivity of a bettor’s payment to her
own report. Determining how to best make this tradeoff in practice (and more generally, what
level of privacy is acceptable in differentially private algorithms) is an open empirical question.
While our results in the dynamic setting are negative, there are several potential avenues for

circumventing our lower bound. The lower bound shows that it is not possible to obtain reason-
able privacy guarantees using a noisy cost-function market maker when traders may buy or sell
fractional security shares, as is typically assumed in the cost function literature. Indeed, the adver-
sarial trader we consider buys and sells arbitrarily small fractions when the market state is close
to its target. This behavior could be prevented by enforcing a minimum unit of purchase. Perhaps
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cleverly designed noise could allow us to avoid the lower bound with this additional restriction.
However, based on preliminary simulations of a noisy cost-function market based on Hanson’s
LMSR 19 with noise drawn using standard binary streaming approaches [5, 12], it appears an ad-
versary can still cause a market maker using these techniques to have unbounded loss by buying
one unit when the noisy market state is below the target and selling one unit when it is above.
One could also attempt to circumvent the lower bound by adding a transaction fee for each trade

that is large enough that traders cannot profit off the market’s noise. While the fee could always
be set large enough to guarantee bounded loss, a large fee would discourage trade in the market
and limit its predictive power. A careful analysis would be required to ensure that the fee could be
set high enough to maintain bounded loss without rendering the market predictions useless.
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