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Corollary discharge is an 

important brain function 

that allows animals to distinguish external from self-generated signals, which is critical 

to sensorimotor coordination. Since discovery of the concept of corollary discharge in 

1950, neuroscientists have sought to elucidate underlying neural circuits and 

mechanisms. Here, we review a history of neurophysiological studies on corollary 

discharge and highlight significant contributions from studies using African mormyrid 

weakly electric fish. Mormyrid fish generate brief electric pulses to communicate with 

other fish and to sense their surroundings. In addition, mormyrids can passively locate 

weak, external electric signals. These three behaviors are mediated by different 

corollary discharge functions including inhibition, enhancement, and predictive 

“negative image” generation. Owing to several experimental advantages of 

mormyrids, investigations of these mechanisms have led to important general 

principles that have proven applicable to a wide diversity of animal species.
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FIGURE 1 | Signal and noise are different among the three electrosensory-mediated behaviors. For electrocommunication, EODs generated from neighboring fish

(dashed blue lines) are signal while self-generated EODs (dashed red lines) are noise(left ). For active electrolocation, self-generated EODs (blue) are signal while

EODs from other fish (red) are noise(middle ). For passive electrolocation, low-frequency weak electric fields generated from aquatic animals (e.g., worm) are signal

(blue) while self-generated EODs (red) are noise(right ).

FIGURE 2 | Efference copy hypothesis from the optokinetic response in blowfly.(A) Optokinetic response. When the external world moves rightward (R), sensory

receptors tells the sensory center about this information. In turn, to stabilize the visual scene, the sensory center sends information about the rightward movement to

the motor center, which executes the effector to move toward the right to maintain a stable visual image.(B) Voluntary movement in a normal fly. When the fly

voluntarily moves leftward (L), rightward visual flow occurs. While the higher center provides the motor center with a command to move leftward, it also provides the

sensory center with an efference copy or corollary discharge about the leftward movement command. This efference copy or corollary discharge signal can nullify the

reafferent sensory signal, resulting in inhibition of the optokinetic response.(C) Voluntary movement in a head-rotated fly. When the 180◦ head-rotated fly moves

leftward, leftward visual flow occurs. While the higher center provides the motor center with a command to move leftward, it also provides the sensory center with an

efference copy or corollary discharge about the leftward movement command. However, since visual flow in the head-rotated fly is to the left rather than to the right,

the efference copy or corollary discharge cannot nullify the reafferent signal, and instead amplifies it, resulting in continuous circling movements due to the

optokinetic response.
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FIGURE 3 | How to distinguish between sensory feedback and corollary discharge in mediating motor-related effects on sensory processing.(A) Natural voluntary

behavior. When a crayfish moves its eye stalk, visual sensory processing may be modulated by corollary discharge signals from the motor control center or sensory

feedback, for example from vestibular, proprioceptive, or coherent wide field visual inputs.(B) Passive movement of sensory organ. When the eye stalk is passively

moved by an experimenter, there is no motor command and no corollary discharge signal. Thus, any effects of eye motion on the processing of visual stimuli must

be due to sensory feedback.(C) Immobilized preparation. When the muscles involved in eye movement are curarized, there is no eye movement in response to a

motor command and there is no reafferent visual input or sensory feedback. Thus, any changes in the processing of visual stimuli in response to motor commands

must be due to a corollary discharge signal. In this case, even though eye movement is blocked, motor command signals from the motor center can be monitored

as fictive movements.
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FIGURE 4 | Electrophysiology in mormyrid fish brains while monitoring EOD command signals and delivering time-locked stimuli.(A) Experimental setup. Although

the fish is curarized to eliminate movement and silence EOD production, EOD commands (EODC) from spinal electromotor neurons can be recorded as fictive EODs

using an extracellular electrode placed next to the tail. Electrosensory stimuli can be delivered at fixed delays relative to the EODC onset. This system allows for the

examination of corollary discharge effects on electrosensory neurons in the brain and to separate corollary discharge effects from the effects of sensory feedback.

Modified from Bell (1981). (B) Evoked potentials from the exterolateral nucleus anterior (ELa) in response to stimuli at varying delays following EOD command onset

(0–8 ms) inG. petersii.
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FIGURE 5 | Corollary discharge pathways interact with three distinct electrosensory pathways. While the command nucleus (CN) drives the electric organ to

generate each EOD via the medullary relay nucleus (MRN) and spinal electromotor neurons (EMN), it also provides a corollary discharge via the bulbar

command-associated nucleus (BCA). Knollenorgans, which are dedicated to communication, send their primary afferents to the nucleus of the electrosensory lateral

line lobe (nELL), which receives corollary discharge inhibition from the BCA via the mesencephalic command-associated nucleus (MCA) and the sublemniscal

nucleus (slem). Mormyromast and ampullary receptors, which are dedicated to active electrolocation and passive electrolocation, respectively, send their afferents to

granule cells of the electrosensory lateral line lobe (ELL). Only granule cells that are innervated by mormyromast afferents receive corollary discharge enhancement

from the BCA via the MCA and the medial juxtalobar nucleus (JLm). Both granule cells send their outputs to medium ganglion (MG) cells, which also receive inputs

onto their apical dendrites from parallel fibers that come from the eminentia granularis posterior (EGp), forming cerebellum-like circuits. The EGp provides corollary

discharge inputs to the MG cells via the BCA and the paratrigeminal command-associated nucleus (PCA). In these cerebellum-like circuits, a “negative image” of

expected reafferent input is made through anti-Hebbian spike-timing-dependent plasticity at the synapses between parallel fibers and the apical dendrites of MG

cells. Modified fromBell (1989); Perks and Sawtell(2019).

FIGURE 6 | Corollary discharge inhibition in the nucleus of the nELL. Primary Knollenorgan (KO) afferents form large excitatory synapses onto the soma of adendritic

nELL neurons. The electric organ corollary discharge (EOCD) from the sublemniscal nucleus (slem) also provides inhibitory inputs onto the soma and initial segment

of nELL neurons. In response to an external EOD, (i) KO afferents and (iii) nELL neurons produce spikes whereas (iii) the EOCD is not activated. In response to

self-generated EODs, (ii) slem neurons produce a spike preceding (i) the KO afferent spike, resulting in: (iii) nELL neurons showing an inhibitory postsynaptic potential

that blocks the spiking response to afferent input. Modified fromBell and Grant(1989); Carlson (2009a).
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FIGURE 7 | Modifiable efference copy in an ELL neuron. Raster shows

responses of a cell in the ampullary region of the ELL. Each dot represents a

spike, and each row shows the spiking activity aligned to each EOD

command onset (see alsoFigure 4 . At the beginning of the experiment, the)

EOD command alone did not affect the spiking activity of the cell. When an

electrosensory stimulus was paired with the EOD command, the stimulus

initially evoked a pause-burst spiking response of the cell. After several

minutes of paring, the response to the electrosensory stimulus decreased

dramatically. Upon removal of the electrosensory stimulus, the cell then

showed a response to the EOD command alone. The shape of this response

to the EOD command just after pairing represented a negative image of the

initial response to electrosensory stimulation at the beginning of pairing. As

time passed, the cell no longer responded to the EOD command alone.

Modified from Bell (1989).

FIGURE 8 | Cerebellum-like circuit in the ELL cortex. Mormyromast and

ampullary afferents terminate on granule cells (gran). In the mormyromast

region of ELL, the granule cells receive precisely timed electric organ corollary

discharge (EOCD) input. However, the ampullary region lacks this input (not

shown here). The granule cells provide both excitatory and inhibitory outputs

to the downstream neurons. The large fusiform (LF) cells and the lateral

ganglion (LG) cells receive excitatory and inhibitory inputs from granule cells,

respectively. Medium ganglion (MG) cells are Purkinje-like cells that receive

sensory inputs from granule cells and provide major inhibitory inputs to the LF

cells and LG cells, which send their outputs to higher centers. E cells are

excited by an increase in afferent activity, while I cells are inhibited. Parallel

fibers provide corollary discharge input to the apical dendrites of MG cells, LF

cells, and LG cells directly and indirectly via inhibitory stellate (St) cells. In

addition, the preeminential nucleus provides electrosensory feedback to MG

cells, LF cells, and LG cells. Modified fromSawtell et al.(2005).
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EVOLUTION OF COROLLARY 
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FIGURE 9 | Electromotor network of mormyrids receives inhibitory feedback

from the electric organ corollary discharge pathway. The command nucleus

(CN) controls the timing of EOD production and also gives rise to a corollary

discharge pathway including the bulbar command-associated nucleus (BCA)

and mesencephalic command-associated nucleus (MCA) (see alsoFigure 5 ).

The CN receives excitatory inputs from the thalamic dorsal posterior nucleus

(DP) and the mesencephalic precommand nucleus (PCN). The DP and PCN

both receive inhibitory input from the dorsal ventroposterior nucleus (VPd) of

the torus semicircularis, which receives corollary discharge excitation from the

MCA. Thus, the main sources of excitatory input to the CN receive inhibitory

feedback from the corollary discharge pathway immediately following each

EOD. Modified fromCarlson (2003).
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CONCLUDING REMARK 

FIGURE 10 | Chronological table for major discoveries related to corollary discharge mechanisms.
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