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Abstract: Fluidic artificial muscles (FAMs), also known as McKibben actuators, are a class of fiber-
reinforced soft actuators that can be pneumatically or hydraulically pressurized to produce muscle-
like contraction and force generation. When multiple FAMs are bundled together in parallel and
selectively pressurized, they can act as a multi-chambered actuator with bioinspired variable recruit-
ment capability. The variable recruitment bundle consists of motor units (MUs)—groups of one of
more FAMs—that are independently pressurized depending on the force demand, similar to how
groups of muscle fibers are sequentially recruited in biological muscles. As the active FAMs contract,
the inactive/low-pressure units are compressed, causing them to buckle outward, which increases
the spatial envelope of the actuator. Additionally, a FAM compressed past its individual free strain
applies a force that opposes the overall force output of active FAMs. In this paper, we propose a model
to quantify this resistive force observed in inactive and low-pressure FAMs and study its implications
on the performance of a variable recruitment bundle. The resistive force behavior is divided into
post-buckling and post-collapse regions and a piecewise model is devised. An empirically-based
correction method is proposed to improve the model to fit experimental data. Analysis of a bundle
with resistive effects reveals a phenomenon, unique to variable recruitment bundles, defined as free
strain gradient reversal.

Keywords: fluidic artificial muscles; McKibben actuators; variable recruitment

1. Introduction

The McKibben actuator has received growing interest in the soft robotics community
due to its high power density, inherent compliance, and simple design. It consists of an
inner elastic bladder that is wrapped around by an outer braided mesh with a double-
helical pattern. One end of the bladder is closed off while the other end is used to provide
pressure to the bladder, either pneumatically or hydraulically. As the bladder expands due
to internal pressure, the braided mesh constrains the bladder to expand radially while
contracting axially. Due to this kinematic relationship of the braided mesh, the McKibben
actuator has conventionally been used as a tensile actuator. When a constant pressure is
applied, the actuator maintains an equilibrium force–strain state. In terms of control, the
actuator can be said to be stable in open loop in response to constant pressure, while any
displacement from its equilibrium state results in an opposing force [1]. Thus, it can be
characterized as an active spring, a classification that can also be applied to a biological
muscle, which is why it is also commonly referred to as a fluidic artificial muscle (FAM), a
term that will be used interchangeably in this paper.

Due to this biomimetic behavior of FAMs, researchers have used it in a myriad of
robotic applications, including robotic arms, prosthetics, and orthoses [2–7]. Although
typically used as contractile actuators, modifications to the design have allowed them to be
used as extensile or bending actuators [8]. Recent studies have extended the use of the FAM
to multi-chambered bundles with variable recruitment functionality [9–12]. Rather than a
single FAM acting in isolation, multiple FAMs are bundled together in parallel connected
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by rigid end plates to form a single actuator, as shown in Figure 1. The idea of variable
recruitment is biomimetic, based on the hierarchical scheme in which subgroups of muscle
fibers, or motor units (MUs), within a mammalian muscle tissue are sequentially activated
in order from smallest to largest, a concept known as Henneman’s size principle [13].
Compared to a single FAM with equivalent cross-sectional area, the variable recruitment
bundle can achieve higher efficiencies. By adaptively recruiting the number of active MUs
to meet the load demand, the bundle has the potential to reduce the losses that arise from
throttling down the supply pressure. As a result, the variable recruitment bundle has a
higher efficiency over a larger force–strain space than a single actuator with equivalent
cross-sectional area [9,10]. In addition, by selecting the size and number of FAMs in a MU
for a desired force, the force sensitivity can be controlled, allowing for more precise control
of the actuator force. The efficiency gains of variable recruitment have been demonstrated
experimentally for both pneumatic and hydraulic systems [12,14]. In addition, real-time
switching control schemes for variable recruitment have been developed and tested [10,15],
and it has been shown that the use of variable recruitment in a hydraulic system with an
intermittent pump operation scheme can increase both efficiency and bandwidth when
compared to a single actuator [15]. Due to both the compliant and hierarchical nature of
variable recruitment, FAM bundles can experience a unique phenomenon during actuation:
the compression and buckling of inactive MUs. These inactive FAMs generate a resistive
force as the bundle contracts, resulting in a bundle force output and free strain that is lower
than what would be predicted using a model or experimental characterization of a single
FAM and applying it to a bundle [9].
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Figure 1. Variable recruitment fluidic artificial muscle (FAM) bundle that consists of multiple
motor units (MUs) in parallel connected at each end by rigid plates. A MU is the smallest unit of
activation and can consist of one or more FAMs. Inactive/low-pressure MUs buckle outward as
active MUs contract.

Previous analytical variable recruitment studies have not accounted for resistive
forces within a bundle, relying on either ideal virtual-work based models, such as the one
presented by Tondu, or semi-empirical corrected models, such as the one presented by
Meller et al. [1,14]. These semi-empirical models correct the ideal model by accounting
for pressure-dependent free strain that exists due to bladder elasticity, but they do not
examine FAM forces past free strain, and therefore cannot account for resistive forces of
buckled or post-free strain FAMs within a variable recruitment bundle. In all the variable
recruitment simulations or controller developments that exist in the literature, the force
exerted by FAMs past free strain is assumed to be zero; in essence, the FAM is assumed to
neither contribute positively nor negatively to overall bundle force production. However,
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resistive forces have been experimentally observed to contribute negatively to bundle force
production [16,17]. In this paper, we propose a method of modeling these resistive forces
and study their implications on the overall force output of a variable recruitment bundle.
It is important to understand to what extent these resistive forces affect overall bundle
performances, as this information will aid in the development of optimal bundle designs
for a given application as well as improved variable recruitment controller performance.
It should be noted that, although the motivation for modeling the resistive force comes
within the context of a variable recruitment bundle, the analysis can be extended to any
FAM that is compressed past its free strain.

The remainder of this paper is organized in the following way. In Section 2, conven-
tional methods of modeling the quasi-static force output up to free strain are introduced,
giving us insight into how the total force can be decomposed. Section 3 begins with a
qualitative description of the different regions of resistive force in FAMs compressed past
free strain. The modeling of resistive force for each region is discussed in detail in the same
section. In Section 4, the implications of resistive forces on the overall performance of a
variable recruitment bundle are explored. In Section 5, an empirically-based correction
method is proposed to better match experimental results. Section 6 presents a phenomenon
we refer to as bundle free strain gradient reversal and discusses its implication to bundle
design. The conclusions of the paper are presented in the final section.

2. Quasi-Static Modeling of Tensile Force Generation

Prior to modeling the resistive force, we first need an understanding of the quasi-static
forces in the tensile force generation regime (i.e., for strains less than the FAM free strain).
Chou and Hannaford [18] proposed a model based on the balance between the virtual
work done by the equilibrium force F and internal pressure P, which is expressed as:

− Fδl = PδV , (1)

where δl is the variation of axial length and δV is the variation of the fluid volume upon
which the pressure acts. A kinematic relationship can be derived between the instantaneous
radius r, and length l, of the actuator based on the initial braid angle α0 of the braided
mesh, given as:

r = r0


√

1− cos2α0(l/l0)
2

sinα0

 , (2)

where r0 is the initial radius and l0 is the initial length of the braided mesh. By combining
these equations, the expression for Fmesh can be expressed in terms of the internal pressure
P, and strain ε.

Fmesh = πr2
0P
(

1
tan2α0

(ε− 1)2 − 1
sin2α0

)
(3)

This force will be referred to in this paper as the mesh force, as it expresses the force
due to the internal pressure that is converted into axial force using the kinematic constraints
of the braided mesh. From this formulation, we can see that the force output is a function
of strain. Since the advent of this model, researchers have further developed models to
account for the wall thickness of the bladder, tapered geometry of the bladder at its ends,
and friction between the bladder and braided mesh [1,19]. Although this model gives us
the relationship between the pressure and the axial force output of the actuator due to the
kinematic constraint imposed by the braided mesh, it is not able to predict the pressure-
dependent nature of free strain. For a given pressure, maximum actuator force occurs at
zero strain, which is also known as the blocked force condition. The strain at which the
force is zero is known as the free strain, which is constant for all pressures when using
Equation (3). Experimental observation of isobaric force–strain curves tells us that the
free strain increases with increasing pressure [14]. This pressure-dependent nature of free
strain can be accounted for by the bladder elastic forces that oppose the mesh force output.
Therefore, the bladder elastic forces are an integral component in understanding the force–
strain relationship and have been incorporated into many models. Klute and Hannaford
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use the Mooney-Rivlin strain energy function W, and apply the principle of virtual work to
model the elastic bladder force [20]. Kothera et al. further improved the elastic force term
of the model by accounting for changes in bladder thickness [21]. Including the elastic
bladder force term, the total force of a FAM is expressed as:

Ftotal = Fmesh + Fbladder = P
dV
dL
−Vb

dW
dL

, (4)

where Vb denotes the volume of the bladder. Other models take a force balance approach
to model the elastic forces by analyzing the stresses developed in the bladder in the hoop
and axial directions [22,23]. The mesh force derived from this approach matches the results
from the virtual work balance method, as expected. For this study, the model developed
by Klute and Hannaford will be used for forces up to free strain, with the addition of an
empirical correction factor that will be discussed in detail in Section 5.

For the tensile force generation regime of the FAM, we note from the models discussed
previously that the total axial force production of the actuator can be divided into two
components: The contractile force generated by fluid pressure acting on the braided mesh
due to the mesh kinematics, and the opposing force that acts against contraction due to
the elasticity of the bladder. This idea serves as a basis for understanding the force–strain
behavior of a FAM and is valid for force past free strain as well. Therefore, in modeling the
resistive forces, the mesh and bladder forces will be modeled separately and summed to
give the total force in the resistive force regime.

3. Resistive Force Modeling
3.1. Experimental Observations of Post-Free Strain FAM Behavior

Prior to presenting the modeling of the resistive force in the post-free strain (com-
pressive) regime, we first present a qualitative description of the post-free strain behavior
of a FAM based on our experimental observations. From these observations, the FAM
behavior can be divided into two distinct regions: (1) The post-buckling region and (2)
the post-collapse region. Immediately after the actuator is compressed past free strain and
enters the resistive force–strain regime, the actuator exhibits deflection in the transverse
direction due to buckling of the bladder. This behavior is referred to as the post-buckling
region. While classical column theory predicts that an axially-loaded, hollow cylindrical
column, such as the FAM bladder, will experience linear axisymmetric deformation until
a critical load is reached, experimental investigations have established that the classical
critical load often overpredicts the load at which buckling occurs in practice [24]. The
actual buckling load has been shown to be highly sensitive to geometric imperfections,
both in the buckling specimen and in the end constraints of the column [25]. McKibben
actuators in practical applications often operate in conditions in which the end constraints
may not be perfectly aligned or are subject to perturbations. Therefore, in keeping with
our experimental observations, we assume that the FAM bladder enters post-buckling
immediately beyond the free-strain condition.

As compressive strain is further increased, a second region of behavior begins when
the bladder tube collapses; this region is referred to as the post-collapse region. In the
literature on the bending of a hollow cylindrical beam with internal pressure, collapse
is considered a structural failure that occurs due to significant deformation of the cross-
sectional area of the beam from its circular shape [26]. For a column with clamped-clamped
end constraints, the maximum internal moments occur at each end and at the middle.
When this moment exceeds the collapse moment, the bladder folds upon itself, effectively
acting as a “hinge”. The end of the post-buckling region is defined by the collapse moment
and the system then transitions to the post-collapse region.

The post-buckling and post-collapse regions make up the post-free strain regime of
a McKibben actuator and govern the generation of resistive force. Figure 2 shows the
FAM (a) at free length; (b) at free strain, which defines the beginning of the post-buckling
region; (c) during the post-buckling region; and (d) during the post-collapse region in
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which the internal moment generated has reached the collapse moment. The post-collapse
region follows immediately after collapse and continues for the remaining strain range
until the maximum strain of the actuator is reached. The following sections will address
the quasi-static force modeling of each region.
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up to free strain (b), and into the resistive force regime. In the post-buckling region (c), the bladder
is deformed into the first mode shape of a clamped-clamped column. The bladder enters the post-
collapse region (d) as the bladder cross-section deforms from its initial circular shape.

3.2. Post-Buckling Region

The axial force required to maintain static equilibrium of the bladder in the post-
buckling shape is solved using the principle of virtual work. For equilibrium, the first
variation of the total potential energy, which is the potential energy stored in the bladder
due to bending minus the work done to the system by external forces, needs to be zero and
is expressed as:

Fbδx = δUb , (5)

where Fb is the additional force exerted by the bladder past free strain, and x is the amount
of compression past free strain. Ub is the potential energy stored due to bending of the
bladder expressed as:

Ub =
∫ L

0

EI
2

κ2dz , (6)

where E is the Young’s modulus of the bladder material, I = 0.25π
(

r4
0 − r4

inner,0

)
and is the

second moment of inertia, and κ is the curvature due to the bent shape.
From classical beam theory, the curvature can be approximated as:

κ =
d2y
dz2 . (7)

The transverse deflection y of the bladder in the post-buckling region is given as:

yz = ymaxφz = ymax2cos2πLz − 1, (8)

which is expressed by multiplying the maximum transverse deflection ymax, at the middle
of the column and the first mode shape of a clamped-clamped column, φ(z). This first
mode shape is used, as higher mode shapes for a column under axial load occur only when
the corresponding nodal points are physically restrained [24], which is not true for the
case we are analyzing. The bladder is first assumed to have no axial deformation, which
allows us to solve for ymax by setting the expression for the axial deformation of a largely
deformed column to zero [27].

εaxis =
dx
dz

+
1
2

(
dy
dz

)2
= 0 (9)
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ymax =

√
4x
(

L f s − x
)

π
, (10)

where εaxis is the strain along the axis of the column, which should not be confused with
actuator strain. The first term in Equation (9) simply is the strain in the axial direction due
to extension. The second term is the contribution of finite rotations in the column to axial
strain. The transverse deflection is expressed in terms of the actuator length at free strain L f s,
which is shown in Figure 3. Substituting the equations for maximum transverse deflection
and curvature into Equation (6) and performing the integral gives us an expression of the
energy stored in the bladder as a function of the amount compressed.

Ub =
4EIπ2x(
L f s − x

)2 (11)

Actuators 2021, 10, 42 6 of 24 
 

mode shape is used, as higher mode shapes for a column under axial load occur only 

when the corresponding nodal points are physically restrained [24], which is not true for 

the case we are analyzing. The bladder is first assumed to have no axial deformation, 

which allows us to solve for 𝑦𝑚𝑎𝑥  by setting the expression for the axial deformation of a 

largely deformed column to zero [27].  

𝜀𝑎𝑥𝑖𝑠 =
𝑑𝑥

𝑑𝑧
+
1

2
(
𝑑𝑦

𝑑𝑧
)
2

= 0 (9) 

𝑦𝑚𝑎𝑥 =
√4𝑥(𝐿𝑓𝑠−𝑥)

𝜋
 , (10) 

where 𝜀𝑎𝑥𝑖𝑠 is the strain along the axis of the column, which should not be confused with 

actuator strain. The first term in Equation (9) simply is the strain in the axial direction due 

to extension. The second term is the contribution of finite rotations in the column to axial 

strain. The transverse deflection is expressed in terms of the actuator length at free strain 

𝐿𝑓𝑠, which is shown in Figure 3. Substituting the equations for maximum transverse de-

flection and curvature into Equation (6) and performing the integral gives us an expres-

sion of the energy stored in the bladder as a function of the amount compressed.  

 

Figure 3. Parameters of McKibben actuator at free strain (a) and in post-buckling state (b). 

𝑈𝑏 =
4𝐸𝐼𝜋2𝑥

(𝐿𝑓𝑠 − 𝑥)
2 (11) 

Performing the first variation of Equation (11) and substituting into Equation (5), 

the axial force exerted by the bladder due to bending is expressed as: 

𝐹𝑏 =
4𝐸𝐼𝜋2(𝐿𝑓𝑠+𝑥)

(𝐿𝑓𝑠−𝑥)
3  . (12) 

It should be noted that the force from Equation (12) is derived under the assumption 

that no axial deformation occurs. Thus, the arc length of the bladder remains constant and 

equal to the bladder length at free strain. However, this is not representative of the actual 

system in which stresses in the axial direction cause some amount of deformation and 

shortening of the arc length. This change in arc length is not the same as that of a simple 

column under axial load, as the braid kinematics affect the bladder length as well. More-

over, the actual system is far from ideal, as it contains geometric imperfections, as dis-

cussed previously. As a simple approximation of these effects, we propose an equivalent 

Figure 3. Parameters of McKibben actuator at free strain (a) and in post-buckling state (b).

Performing the first variation of Equation (11) and substituting into Equation (5), the
axial force exerted by the bladder due to bending is expressed as:

Fb =
4EIπ2

(
L f s + x

)
(

L f s − x
)3 . (12)

It should be noted that the force from Equation (12) is derived under the assumption
that no axial deformation occurs. Thus, the arc length of the bladder remains constant
and equal to the bladder length at free strain. However, this is not representative of the
actual system in which stresses in the axial direction cause some amount of deformation
and shortening of the arc length. This change in arc length is not the same as that of a
simple column under axial load, as the braid kinematics affect the bladder length as well.
Moreover, the actual system is far from ideal, as it contains geometric imperfections, as
discussed previously. As a simple approximation of these effects, we propose an equivalent
spring system to approximate a corrected bladder force F′b in the post-buckling region that
accounts for axial deformation and non-ideal conditions.

Consider a system of springs that consists of a transverse spring and two springs
oriented in the axial direction of the bladder, as shown in Figure 4. The transverse spring
constant k1 represents the bending rigidity of the bladder and any compression in the axial
direction results in deformation of the transverse spring, causing an opposing axial force.
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The force expression derived in Equation (12) can be considered to be the case in
which the axial spring constant k2 is a very large value, such that no deformation occurs in
those springs. Calculating Fb and using the corresponding value of ymax as the deformation
in the transverse spring, an expression for equivalent spring stiffness k1 can be found as:

k1 =
2Fb

ymaxsinθscosθs
, (13)

θ′s = cos−1

(
L f s − x
L f s − 2l

)
, (14)

where θ′s is the angle between the vertical axis and the axial spring, and θs is a special
case for when the deformation in the axial spring l = 0 in (14). For a given amount of
compression x, let us assume this spring stiffness is constant; yet it varies as the actuator
is compressed and x changes. Given a value for k1 and assuming a value for k2 as the
axial rigidity of the bladder, a relationship can be derived between the deformation in the
transverse spring with axial deformation y′max and l.

y′max =
k2

k1

4l
sinθ′s

(15)

The corrected post-buckling force with axial deformation is expressed as:

F′b =
1
2

k1y′maxsinθ′scosθ′s =
y′maxsin2θ′s
ymaxsin2θs

Fb . (16)

Note that F′b only accounts for the additional force exerted by the bladder past free
strain. The total bladder force is a sum of the bladder force required to reach free strain
Fbladder

(
ε f ree

)
, which is the bladder force from Equation (4) evaluated at free strain ε f ree,

and F′b. Furthermore, the total force in the post-buckling region is the sum of forces due to
the braided mesh and the bladder, just as it is with the force before free strain. In the typical
case of tensile contraction, the mesh deforms axisymmetrically by expanding radially while
contracting axially. In such a case, the mesh force is a function of the instantaneous actuator
length, as expressed in the ideal mesh force equation. Following the same principle, the
mesh force in the post-buckling region remains a function of the braided mesh length;
however, that mesh length is no longer the length of the actuator. Since the mesh deforms
asymmetrically with some transverse deflection, mesh force becomes a function of the
arc length of the buckled shape. The asymmetric mesh force is denoted F′mesh, for which
computation is identical as Equation (3) but uses the arc length instead of actuator length.
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The difference between Fmesh and F′mesh is illustrated in Section 3.4. The forces up to free
strain for both cases are obviously the same. However, as free strain is reached, the solid
lines show axisymmetric deformation, while the dashed lines show the forces as the bladder
is bent into its post-buckling shape.

As the bladder is compressed further and continues to bend, the internal moment
along the beam increases until it reaches the collapse moment. Due to its complex nature,
the collapse moment of elastic inflatable tubes is a standalone research topic and has been
extensively studied in various papers [28–31]. The earliest of models assume a cylindrical
membrane with an applied internal pressure [26]. These models predict a collapse moment
that is a linear function of pressure. Improvements to these models have taken into account
the material properties of the bladder and some have used experiments to correct for
discrepancies [29,30]. The collapse moment adapted in this paper is a classical formulation
in the field of bending inflatable bladders developed by Wood in 1958 [28]:

Mcollapse =
2
√

2
9

πEr0t2
0

√
1

1− ν2 +
4P
E

(
r0
t0

)
, (17)

where t0 is the initial bladder wall thickness and ν is Poisson’s ratio, which is assumed to
be 0.5. Once the maximum internal moment generated in the post-buckled bladder reaches
this collapse moment, the model detailed in this section no longer applies and proceeds to
the post-collapse region, for which the model is described in the following section.

3.3. Post-Collapse Region

The virtual work balance modeling approach taken for the post-collapse region is
similar to that taken for the post-buckling region, but with a different mode shape and
a torsional spring to represent the “hinge” at the middle of the column due to bladder
collapse. The proposed model does not account for the subtle transitional effects that
occur between the post-buckling and post-collapse regions, such as the change in cross-
sectional area. As a result, the resistive force is expressed in terms of two force equations
corresponding to each region, resulting in a piecewise discontinuous model. After the
derivation of the post-collapse force model is described, a simple method of making the
transition between the two regions will be proposed.

The assumed post-collapse mode shape is shown in Figure 5. It consists of two
clamped-free columns connected at their free ends by a torsional spring with constant kr. It
is assumed that the torsional spring does not affect the boundary condition of the columns.
Upon calculating the internal moment along the column based on the post-buckling mode
shape, the magnitude of moment is greatest at each end and at the middle of the column.
From the observation of the fact that FAM collapse occurs at one area at which it is most
vulnerable, the mode shape is devised to create a hinge at the middle of the column which
is represented by a torsion spring with some stiffness. As done for the post-buckling force,
the first variation of the total potential energy is set to zero for equilibrium.

Fcδx = δ(2Uc + Ur) (18)

For the post-collapse region, the strain energy stored in the column consists of energy
stored in each clamped-free column and the torsional spring given as:

Uc =
∫ L/2

0

EI
2

κcdz (19)

and
Ur =

1
2

kr(2θr)
2 , (20)

where κc is the curvature of the clamped-free column, which is approximated by:

κc =
d2yc

dz2 , (21)

where the transverse deflection in the post-collapse region yc is expressed as:
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yc = yc,maxφc(z) = yc, max

(
1− cos

(π

L
z
))

, (22)

where φc is the first mode shape of the clamped-free column. The torsional spring stiffness
kr is formulated by assuming the bladder has collapsed completely such that the inner
walls of the bladder are in contact. Under this assumption, the local radius of curvature is
estimated by the wall thickness. The local cross-sectional area is assumed to be an ellipse
and the second moment of inertia Ir = πr0t0

3/4 is used. Therefore, the torsional spring
stiffness is expressed as:

kr =
EIr

2θrt0
, (23)

where θr is the between the column and the horizontal axis, as shown in Figure 5. The
angular displacement of the torsional spring is 2θr and can be calculated from the slope of
the column’s free end by taking the derivative of the transverse deflection and evaluating
it at the middle. The angle between the column and the horizontal axis is given as:

θr = arctan

(√
x

L f s − x

)
. (24)
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Taking the first variation of the sum of strain energy terms and substituting into (18)
gives the expression for the post-collapse force.

Fc =
IEπ2L f s

4
(

L f s − x
)2 +

2kr

√
x/
(

L f s − x
)

tan−1
(√

x/
(

L f s − x
))

x
(25)

Combining the post-buckling region force from Equations (16) and (25) results in a
piecewise model with a discontinuity at the collapse strain. This is to be expected due to
the change in mode shape. The proposed mode shape used for the post-collapse region is
representative of the column shape at strains much closer to the maximum strain rather
than immediately after the collapse strain. Thus, this mode shape can be used to calculate
the force to which the post-collapse region force converges at large strain. In the actual
system, a much more gradual transition is observed as the cross-sectional area at the
middle of the column deforms from its circular shape to an elliptical shape. The change
in cross-sectional area that contributes to the geometric nonlinearity of the system can be
applied to both the post-buckling and post-collapse regions. The most widely referenced
analysis of this behavior is the study by Brazier on the change in moment due to change



Actuators 2021, 10, 42 10 of 22

in cross-sectional area shape and the theory on inflatable structures [26,31]. However, we
propose a much simpler approach that approximates the transition from the post-buckling
to post-collapse force as a first-order response formulated as the following.

F′c = F′be−β(ε−εc) + Fc

(
1− e−β(ε−ε0)

)
= Fc +

(
F′b − Fc

)
e−β(ε−εc) (26)

The modified post-collapse force begins at the collapse strain εc, and is characterized
by a transition rate constant β, which is a parameter that can be tuned manually or through
parameter optimization based on empirical data.

3.4. Summary of Resistive Force Piecewise Model

The piecewise model for the entire range of strain can summarized as below.

Ftotal =


Fmesh + Fbladder Fmesh > Fbladder

F′mesh + Fbladder

(
ε f ree

)
+ F′b Fmesh ≤ Fbladder and Mb < Mcollapse

F′c Mb ≥ Mcollapse

(27)

The criterion for the first piece is for strains below free strain. For Fmesh and Fbladder,
any of the existing models can be used as long as they can be divided into those two
force components. The second and third pieces are for the post-buckling and post-collapse
regions, respectively.

Figure 6 shows the FAM force–strain curve for pressures (a) 0 kPa, (b) 34.5 kPa, (c)
137.9 kPa, and (d) 344.7 kPa for a FAM with an initial outer radius of 6.35× 10−3 m (0.5 in.),
initial bladder wall thickness of 1.6× 10−3 m (0.0625 in.), and initial length of 0.127 m (5 in.).
The initial braid angle was assumed to be 33◦. The bladder is a commercial silicone
tube with a Young’s modulus of 1.78 MPa as determined by a simple uniaxial tensile
test. Figure 6a shows the resistive force of an inactive FAM. As no pressure is applied, no
mesh force is present and only bladder forces exist. Figure 6b shows the resultant total force
Ftotal , as well as the breakdown of all force components shown in Equation (27). The tensile
force region consists of the conventional force–strain relationship up to free strain as shown
by the Klute–Hannaford model. After free strain, the post-buckling region begins, and both
the mesh and bladder forces deviate from the Klute–Hannaford model. In this region, the
bladder is in the post-buckled shape and internal moment is generated along the bladder.
When the maximum value of that internal moment exceeds the collapse moment, the
resistive force shows a decrease in magnitude (i.e., becomes less negative). This happens
during the post-collapse region for which the magnitude of resistive force remains less
than its maximum value at collapse. Figure 6b,c illustrates the resistive force regime at
higher pressures. For the pressure of 137.9 kPa, only the post-buckling region is shown as
the bladder does not collapse before the maximum strain tested. As the applied pressure
increases, the free strain increases, thus decreasing the resistive force regime until it is no
longer of concern when the applied pressure reaches the maximum operating pressure, as
in Figure 6d. Therefore, the significance of the resistive force model is highlighted during
lower pressures when the discrepancy between the resistive model and Klute–Hannaford
model is greater, as shown by the curves Ftotal and Fmesh + Fbladder in Figure 6b. As shown in
Figure 6a,b, the proposed model shows a good qualitative agreement with the low-pressure
FAM behavior past free strain; however, quantitative discrepancies between the model and
experimental data exist. To account for such discrepancies, empirical tuning of parameters
can be performed in both the tensile and resistive force regimes to yield a better match, as
discussed in Section 5.

Figure 7 demonstrates the effect of the transition constant used to characterize the
transition from post-buckling to post-collapse region discussed in Equation (26). Lower
values of βs characterize a gradual transition to the post-collapse state. In generating the
model curves of Figure 6, a preliminary value of 25 was used. The transition constant is
one of the parameters used to empirically tune in Section 5 using an empirically-based
parameter tuning.
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Figure 7. Effect of transition constant β used to characterize the transition from post-buckling to
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dimensions as that of Figure 6 and for an applied pressure of 34.5 kPa.

4. Effect of Resistive Force on Overall Performance of a Variable Recruitment Bundle

The results of this new model are particularly significant within the context of a vari-
able recruitment bundle. A conventional FAM model, such as the ideal or Klute–Hannaford
model, was not intended for forces past free strain and the magnitude of the resistive force
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continues to increase as strain increases past free strain. During operation of a variable
recruitment bundle, inactive or low-pressure FAMs are compressed significantly past their
free strain, for which conventional models would predict a much greater magnitude of
resistive force than what is present. Instead of a steady increase in resistive force magnitude
past free strain, as shown by Fmesh + Fbladder in Figure 6, the proposed model better predicts
the force behavior of FAMs past free strain. Therefore, this model is more suited to predict
the overall force output of a variable recruitment bundle.

The force–strain curves for a simple variable recruitment bundle actuator consisting
of two MUs, each made of one identical FAM, were generated. The bundle can be in two
different states of operation called recruitment states (RSs). The two primary variable
recruitment schemes that have been used in previous work are called batch recruitment
and orderly recruitment [10,32]. Orderly recruitment will be assumed for this analysis, and
Figure 8 shows a graphical depiction of the activation sequence for this recruitment scheme.
In the first recruitment state, only one MU is activated (i.e., pressurized), and the other
MU is inactive. A recruitment state can either be partially or fully activated depending
on the pressure supplied. It is fully activated when the corresponding MU pressure is at
its maximum.
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Figure 8. Orderly recruitment activation scheme for a bundle with two recruitment states (RS),
denoted as RS 1 and RS 2. The bundle is in RS 1 when only the first motor unit (MU) is active. The
bundle is in RS 2 when both MU 1 and MU 2 are active.

4.1. Quasi-Static Force–Strain Space for Variable Recruitment Bundle with Resistive Forces

Figure 9 shows the force–strain curves for a variable recruitment bundle with two
recruitment states with and without resistive forces included in the analysis The force
curves plotted in blue show the force–strain relationship of the first recruitment state. Once
the first recruitment state is fully activated, the bundle can enter its second recruitment
state, during which the first MU stays at its maximum pressure and a second MU is either
partially or fully activated. The red isobaric curves show the force–strain space for the
second recruitment state. To illustrate the increase in pressure of the MU of a recruitment
state, higher pressures are depicted in relatively thicker lines. In this scenario, quasi-static
force curves were plotted for pressures between 0 and 413.7 kPa at 68.9 kPa intervals. The
FAMs used in this simulation are assumed to have an initial length of 0.127 m, initial
outer radius of 0.009 m, a radius-to-wall thickness ratio of 0.25, and an initial braid angle
of 33◦. The force–strain space of Figure 9a is generated by neglecting the resistive forces
and assuming any forces past free strain to be zero. A more realistic case is presented in
Figure 9b, in which the resistive forces are included in the overall bundle force.
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Figure 9. Force–strain space of a variable recruitment bundle with two motor units (MUs) of equivalent cross-sectional area
with (a) resistive forces neglected, and (b) resistive forces considered. (c,d) show zoomed-in views of the force–strain space
near maximum strain with resistive forces neglected and included, respectively. Increasing pressure values are represented
by increasing thickness of lines. In recruitment state 2 (red lines), the pressure applied to MU 1 is constant at 413.7 kPa,
while the pressure applied to MU 2 is indicated in (c,d) to show the progression from inactive to fully active.

The key difference observed from the force–strain space of a bundle with resistive
effects is an overlapping region between the first and second recruitment states that
becomes prominent during strains near the maximum bundle free strain. As shown in
Figure 9a, the boundary between recruitment states 1 and 2 is distinct when resistive forces
are neglected. As the first MU is fully activated, any additional pressure supplied to the
second MU, transitioning to the second recruitment state, either increases or maintains
the force output of the bundle. In Figure 9c, the pressures applied to MU 2 are indicated
for a bundle model with resistive forces are neglected. When a pressure of 275.8 kPa
is supplied to the second MU, the model predicts that the force will increase for strain
values less than 0.24. However, applying the same pressure for strains greater than 0.24
is predicted to not affect the force output of the bundle. This occurs because free strain is
pressure-dependent and the free strain generated by the MU 2 FAM at these pressures is
less than the bundle strain. Thus, for a specific force–strain output, the required operating
state of the bundle can be easily categorized into either recruitment state 1 or 2. However,
when resistive forces are considered, the negative forces due to resistive effects cause the
forces in recruitment state 2 to actually fall below that of recruitment state 1 for certain
strains. Therefore producing a region of overlap between the domains of each recruitment
state. Within this overlapping region, the bundle can output the same force and strain by
operating in either recruitment state. In fact, as recruitment state 2 is activated and the
pressure in MU 2 is increased, the isobaric force curve of recruitment state 2 recedes back
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into the force–strain space of recruitment state 1, as shown in Figure 9d. The effect of this
phenomenon is discussed in further detail in Section 6.

4.2. Efficiency Analysis for Isobaric and Isotonic Contraction

One of the advantages of variable recruitment lies in its increased overall efficiency.
Therefore, it is worth exploring the efficiencies of variable recruitment bundles when
resistive forces are considered. By choosing a recruitment state that minimizes the energy
input while meeting the force requirements, variable recruitment has the potential to
increase overall efficiency when compared to a single equivalent motor unit (SEMU). The
efficiency of an actuation reaching a given point in the force–strain space from zero strain
is the ratio between mechanical work output and fluid energy input where the expression
for mechanical work output is given as:

Wmech, out =
∫ εL0

0
Fbundledx , (28)

where Fbundle is the sum of all the forces generated by individual FAMs calculated by the
proposed model, including the negative forces caused by resistive effects. The fluid energy
input is defined as:

E f luid, in = Ps∆V , (29)

where Ps is the source pressure applied to the valve before losses due to throttling occur.
The change in volume to reach a specific strain is calculated by subtracting the fluid volume
at that strain value from the initial fluid volume. The fluid volume at a specific strain
value is calculated by solving for inner radius rinner as a function of strain by assuming the
bladder material is incompressible. Finally, the expression for efficiency is as follows:

η =
Wmech, out

E f luid, in
. (30)

To highlight the system efficiency over the entire force–strain space, two simple cases
of quasistatic contraction are considered: isobaric contraction and isotonic contraction.
During isobaric contraction, the pressure supplied to the FAM is kept constant while it
contracts with varying force. For isotonic contraction, the load is kept constant while the
FAM contracts under varying pressure. This is equivalent to moving horizontally through
the force–strain space. For each point in the force–strain space, the efficiency for a FAM
to move from free length to the strain at the specific point is calculated. The resulting
isobaric and isotonic efficiencies for a bundle with two recruitment states are plotted in
Figure 10a,b. As discussed in Section 4.2, an overlapping region exists for an actuator
bundle when resistive forces are considered. The efficiency plots in Figure 10 show only
the higher efficiency value within that region.

To study the potential detrimental impact of resistive forces on the overall efficiency
of a variable recruitment bundle, the average efficiencies with resistive effects considered
and neglected are compared in Figure 10c,d. Prior literature using simpler models that
neglect resistive forces predicted that a variable recruitment bundle would show increased
efficiency compared to a SEMU with identical total cross-sectional area [9,32]. As the
number of MUs (and therefore recruitment states) is increased, the efficiency continues to
increase, but at a decreasing rate. This trend still holds when resistive forces are considered,
producing only a minor decrease in efficiency, as shown in Figure 10c,d. As its name
suggests, resistive forces act against the tensile force output of active MUs and lower the
mechanical work output. However, if the number of recruitment states is increased while
keeping the overall bundle cross-sectional area constant, the slenderness ratio of each MU,
defined as L0/r0, increases. As a result, the resistive force of each MU decreases, along with
the impact it has on the overall efficiency of a bundle. Consider a comparison between a
bundle with two MUs (as simulated in this study) to a bundle with five MUs with the same
overall bundle cross-sectional area. Assume each bundle is operating in its first recruitment
state. For the two-MU bundle, the resistive forces generated by the single inactive MU are
greater than the resistive forces generated by the four inactive MUs in the bundle with
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five MUs. This is because to keep the cross-sectional area of both bundles the same, the
bundle with five MUs must contain FAMs that are much slenderer. The resistive force
model in this paper predicts that resistive forces decrease with slenderness ratio, which is
why we see very little decrease in efficiency, even as the number of MUs within a bundle is
increased. Although not within the context of a variable recruitment bundle, Suzumori
et al. investigated the mechanics of a bundle of multiple thin McKibben actuators, showing
a decrease in bending rigidity of the overall bundle compared to a single large diameter
FAM [33]. Therefore, while resistive forces affect the overall force–strain space, which has
implications on the control and switching of recruitment states (to be discussed further in
the following sections), their overall detriment to the efficiency of the bundle is negligible.
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5. Improving the Model Through Empirical Parameter Tuning

While the model derived above provides a predictive and qualitatively reasonable
analysis for understanding the implications of resistive forces on variable recruitment
bundles, the model can be empirically corrected to improve quantitative agreement with
experimental FAM characterization data. Such semi-empirical modeling has been shown
to useful for model-based feedforward control of artificial muscles [34], and in simulation
tools for understanding the implications of different recruitment strategies [10] or hydraulic
system topologies [15] on FAM actuation systems. Therefore, to further improve the model
to match the force from experiments, a method of force correction was developed. There
are models in the literature that account for advanced effects such as the tapering effect at
the ends of the FAM and the hyperelasticity of the bladder on the tensile force generation



Actuators 2021, 10, 42 16 of 22

of the FAM [19,21–23]. However, it is often the case that the blocked force and free strain is
overpredicted even when calculated with these advanced models, due to uncertainty in the
material properties or imperfections in the components used to build the bladder. Tondu
and Lopez used a tuning parameter that can either be a constant or a function of pressure to
modify the ideal force model shown in Equation (3) to account for the pressure-dependent
free strain [19]. Building upon this method, Meller et al. used an additional parameter
that was acquired from experiment data to correct for the discrepancy in blocked force [14].
These methods were used to modify the ideal force model, which does not consider forces
due to the bladder. Similar to the method proposed by Meller, we employed two tuning
parameters, based on the blocked force and free strain information from experimental data,
to modify both the mesh force (ideal force) and bladder force in the tensile region. After
these two parameters were used to correct for the tensile region in the piecewise model,
additional parameters for the resistive forces were optimized using empirical data.

5.1. Tensile Force Correction

The modified model for forces up to free strain is expressed as:

Fmod = C2(Ftotal − C1) , (31)

Fmesh, mod = C2Fmesh , (32)
and

Fbladder, mod = Fmod − Fmesh, mod , (33)

where the forces prior to modification are equivalent to those from Equation (4) and the
strain tuning parameter C1 is found by evaluating the theoretical force at the free strain
obtained from experiment, known as ε f ree,exp, in the equation:

C1(P) = F|ε f ree, exp
. (34)

In addition, the force tuning parameter C2 is expressed in terms of the experimental
block force Fblocked, exp, theoretical block force Fblocked, and C1 as:

C2(P) =
Fblocked, exp

Fblocked − C1
. (35)

Both tuning parameters are functions of pressure that are specific to an actuator.
Note that the unit of C1 is in Newtons and C2 is unitless. Both factors are greater than
zero and have no upper bound. The parameters were obtained by measuring the free
strain and blocked force as functions of pressure, much like the procedure followed by
Meller et al. [14]. As shown in [14], the function for free strain typically followed a low-
order polynomial and blocked force typically increased linearly with pressure with a
positive force x-intercept.

5.2. Resistive Force Correction

Once the forces before free strain were corrected based on empirical data, several
parameters of the proposed model for the post-buckling and post-collapse regions were
optimized based on experimental data. A least-squares fit analysis was conducted to
determine correction factors for the following parameters.

1. Young’s Modulus, E
2. Collapse moment, Mcollapse

3. Transition constant, β
4. Torsional spring stiffness, kr

The resistive force model does not consider the hyperelasticity of the bladder as the
FAM is compressed. The bladder used for the experiments was an off-the-shelf component
without any specification of material properties. To account for such uncertainties, a
correction factor was used to optimize the Young’s modulus and the optimized value was
used across all pressures.

Furthermore, a correction factor was optimized to modify the collapse moment. Wiels-
gosz et al. used a factor of 0.25π to modify the collapse moment as experimental validation
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showed a tendency to overpredict the value [35]. Stephans et al. investigated the correla-
tion of collapse moment to the slenderness ratio of the pressurized cylinder. For cylinders
with low slenderness ratios, the collapse moment tends to be closer to the “classical” for-
mulation, whereas for that of higher slenderness ratios, the collapse moment reaches the
load formulated by Brazier [36]. A similar correction factor is used to modify the collapse
moment given in Equation (17).

The third tuning parameter is the transition rate constant β given in Equation (26),
used in characterizing the transition from post-buckling to post-collapse regions. Lastly, a
correction factor is used to optimize the torsional spring stiffness kr used in Equation (20)
to model the post-collapse “hinge” at the middle of the bladder.

5.3. Experiments to Generate Correction Factors

Experiments were performed on an in-house built linear dynamometer developed
by Chipka et al. [37], as shown in Figure 11. The air pressure applied to the FAMs was
controlled in closed-loop by pneumatic servo valves (FESTO MPYE-5-M5-010-B), while the
drive cylinder is hydraulically powered and controlled by a MOOG Series G761-3005B servo
valve. A Hydraulic power unit (HPU, Haldex GC9500) provided power to a drive cylinder
that was used to control the contraction of the FAM. The FAM was constrained between
two plates with a load cell (Transducer Techniques SSM-1K) to measure the FAM axial
force. Prior to attaching the FAM to both plates, it was pressurized at the maximum test
pressure and allowed to contract freely, and its maximum strain was measured. This value
was used to determine the stroke of the drive cylinder. The FAM was then attached to both
plates separated by the amount of actuator free length which is determined by adjusting
the starting position of one of the plates until the axial force measured was zero. From this
starting position, the FAM was pressurized to the maximum testing pressure and repeatedly
contracted several times prior to collecting force data to account for Mullins effect [38]. Force
data was measured for pressures from 0 to 413.7 kPa (60 psi) in 34.5 kPa (5 psi) intervals.
The position of the drive cylinder was controlled at a sufficiently slow rate to remove any
dynamic effects and yield a quasi-static measurement. The force for two FAMs of different
slenderness ratios were measured to demonstrate its correlation to resistive force magnitude
and support the analytical efficiency hypothesis stated in Section 4.2. An initial radius of
0.0635 m, initial braid angle of 33◦ was used for both FAMs with an initial length of 0.102
and 0.127 m, corresponding to slenderness ratios of 8 and 10, respectively.

5.4. Results from Empirical Parameter Tuning

The correction factors, which are a result of least-squares optimization, are summa-
rized in Table 1. The correction factors for the Young’s modulus, collapse moment, and
transition constant were the same for all pressures. The correction factor for the torsional
spring constant in the post-collapse region showed a dependence on pressure since the
torsional spring constant calculation proposed does not consider the increase in bending
rigidity due to increased pressure.

The measured force data from experiments are shown in Figure 12 along with the
simulated force curves from the empirically corrected model. The force curves from 0 to
137.9 kPa in 34.5 kPa intervals are shown as resistive force, bearing more significance in
low pressure ranges. In the resistive force regime, a good agreement is observed between
the experiments and the corrected model. Free strains for constant pressure force curves
past 137.9 kPa occur closer to the maximum free strain and do not show the collapse of
the bladder. In the tensile force regime, the model blocked force and free strain obviously
match those of the experiment as a result of the empirical tuning described in Section 5.2.
Although the cross-sectional area is the same for both FAMs, a difference in blocked force
is observed due to a difference in bladder force at zero strain. A significant difference in
resistive force magnitude is observed between the two FAMs with different slenderness
ratios. As predicted in the model, the FAM with a lower slenderness ratio exhibited a larger
magnitude of resistive force. This supports the conclusion that efficiency does not decrease
as the number of MUs increases due to slenderness ratio effects, as detailed in Section 4.2.
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Figure 11. Experiment setup using the linear hydraulic dynamometer (LHD) developed by
Chipka et al. [37]. A hydraulic power unit (HPU) is used to actuate the drive cylinder. The fluidic
artificial muscle (FAM) is activated using a pneumatic power supply while the force and contraction
is measured using a load cell and a linear variable differential transformer (LVDT), respectively.

Table 1. Resulting correction factors from empirical parameter tuning.

FAM No. Slenderness Ratio, L0/r0

Correction Factors
Transition Constant, β

Young’s Modulus Collapse Moment Torsional Spring Constant

1 8 1.25 1.1 0.87P + 1.25 100
2 10 0.95 0.75 0.92P + 0.83 100
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Figure 12. Result of empirical-based tuning of parameters and comparison to experimental data
for a FAM with (a) slenderness ratio of 8 and (b) slenderness ratio of 10. Forces for 0, 34.5, 68.9,
103.4, and 137.9 kPa are measured and used to optimize the parameters specified in Table 1. The
Young’s modulus, collapse moment, and transition rate constant are independent of pressure, while
the torsional spring stiffness varies with pressure.
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6. Bundle Free Strain Gradient Reversal

The force–strain plots shown in Section 4 of this paper illustrate an interesting phe-
nomenon that occurs within a bundle when resistive forces are considered. When MU 1
reaches source pressure, MU 2 is activated and the bundle transitions between recruitment
states 1 and 2. Once MU 2 is activated, the overall bundle free strain actually begins de-
creasing because resistive forces are stronger in low-pressure FAMs than in inactive FAMs.
As MU 2 pressure is further increased, the free strain continues to decrease, until eventually,
the kinematic forces generated by the FAM in MU 2 overcome the resistive forces, and free
strain begins to increase. We call this phenomenon free strain gradient reversal, and the
point at which the free strain ceases to decrease due to the presence of MU 2 is called the
free strain gradient reversal point. This idea can be more clearly illustrated in Figure 13,
which is a plot of overall bundle free strain vs. MU 2 pressure for different models: the
ideal model, the Klute–Hannaford model [20], the corrected Klute–Hannaford model ne-
glecting resistive forces discussed in Section 5.1, and the corrected Klute–Hannaford model
including resistive forces, as well as a plot for a two-MU experiment. The experiment
results shown in Figure 13 are measurements obtained from the FAM with a slenderness
ratio of 10 in Section 5.4.
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Figure 13. Free strain of actuator bundle versus pressure applied to motor unit (MU) 2 shown for
the ideal model, the Klute–Hannaford model [20], the corrected Klute–Hannaford model neglecting
resistive force, the Klute–Hannaford model including resistive forces, and experimental data. The
pressure of MU 1 is kept constant at 344.7 kPa. The free strain initially decreases in response to
increased pressure in the second recruitment state.

From Figure 13, we can see that previous models did not capture the gradient reversal
phenomenon that exists due to the presence of resistive forces, but the model presented
in this paper demonstrates this behavior. Every data point from the experiments falls
within 10% of the predicted values, with the exception of one, which falls within 15%.
The differences between the model and the experiment are believed to be largely due to
fabrication uncertainties in the FAMs, which were constructed to be identical, but may have
had slightly different free lengths or initial braid angles. Such fabrication discrepancies
result in slightly different blocked force and free strain for the two FAMs, leading to a
different bundle blocked force and free strain than that predicted by the model. We can
investigate this gradient reversal further by considering the purely analytical case of an
actuator bundle consisting of five FAMs. We compare two different bundle configurations:
one bundle with two MUs (MU 1 having one FAM and MU 2 having four FAMs) and
another bundle with five MUs (one FAM per MU). The comparison plot of these two bundle
configurations is shown in Figure 14. The experimental results for a FAM with slenderness
ratio 10 from Section 5.4 are used to generate these plots. Similar to the two-MU bundle in
Figure 13, the pressure of MU 1 is kept at 344.7 kPa.
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Figure 14. Model comparison of bundle free strain vs. the motor unit (MU) pressure while transition-
ing between recruitment states 1 and 2 for a bundle consisting of five FAMs. Pn denotes the pressure
applied to MU n. The black line represents a bundle with two MUs, one containing a single fluidic
artificial muscle (FAM) and the other containing four FAMs. The colored lines represent the different
recruitment states a of a five-FAM bundle that consists of five MUs (i.e., one FAM per MU).

The results from Figure 14 show that, for the two-MU bundle configuration, the
reduction in free strain due to the resistive forces during the transition from recruitment
state 1 to recruitment state 2 is much more pronounced than the reduction in free strain
associated with transitioning from recruitment states 1 through 5 for the five-MU bundle.
This result is particularly significant when considering bundle design, because we can
change the characteristics of a bundle without changing the number of FAMs in the bundle
simply by changing the distribution of MUs within the bundle. In future work, we will
investigate optimal methods to distribute these MUs to accomplish specific actuation tasks.

7. Conclusions

In this paper, the reaction forces of FAMs compressed axially past free strain, defined
in this paper as resistive forces, have been modeled. Furthermore, the effect of resistive
forces on the overall performance of a variable recruitment bundle was brought to attention.
The resistive force of a FAM is divided into two regions: post-buckling and post-collapse.
In the post-buckling region, the additional force required to bend the bladder into the
post-buckling shape was derived using a virtual work balance. To account for geometric
imperfections and axial deformation of the bladder, an equivalent spring system was
proposed to refine the force in the post-buckling region. The termination of the post-
buckling region is determined by when the internal moment generated in the bladder
exceeds the collapse moment. After the bladder collapses, a similar approach is taken
for the post-collapse region, in which a clamped-hinged-clamped mode shape is used to
calculate the force required to bend the bladder into that shape. A first-order response is
used in the post-collapse region to approximately capture the transition from post-buckling
to post-collapse behavior.

To further improve the model to better match experimental results, a technique that
uses two pressure-dependent tuning parameters to correct for the discrepancy in blocked
force and free strain was proposed for forces up to free strain. Unlike other methods in
the literature, the proposed method can modify the mesh and bladder force components.
After tuning the parameters for forces up to free strain, several parameters of the proposed
resistive force model are optimized using empirical data. The Young’s modulus, collapse
moment, and transition rate constant were determined to be constant for a given FAM
geometry and independent of pressure. Only the torsional spring stiffness used in the post-
collapse model was shown to be pressure-dependent. As a result, a viable semi-empirical
physics-based model was validated with experimental results.
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The force–strain space for a bundle with two recruitment was simulated to show
an overlapping region between recruitment state 1 and 2, which was not observed until
resistive forces were considered. An efficiency comparison between bundles with and
without resistive forces showed a negligible amount of difference in both isobaric and
isotonic efficiency, indicating that the presence of resistive forces in FAM bundles do not
preclude variable recruitment from be used as energy-saving strategy. As the number
of recruitment states increased, the slenderness ratio of FAMs increased, resulting in a
decrease in resistive force magnitude. The addition of the resistive force exerted by the
inactive/low-pressure MUs to the force output of active MUs results in a strain-dependent
change in performance when advancing to a higher recruitment state. This free strain
gradient reversal is significant when considering the problem of how to optimize bundle
design how to develop control criteria for switching in between recruitment states, which
is to be investigated in future work.

The post-buckling load-deflection behavior of an inflatable tube under axial load is
a topic of extensive research and not a simple problem when applied to FAMs. However,
a relatively simple solution can be derived using the assumptions in this paper that
will allow us to better evaluate bundle performance and design more effective variable
recruitment controllers.
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