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Abstract. Video super-resolution, which attempts to reconstruct high-
resolution video frames from their corresponding low-resolution versions,
has received increasingly more attention in recent years. Most existing
approaches opt to use deformable convolution to temporally align neigh-
boring frames and apply traditional spatial attention mechanism (convo-
lution based) to enhance reconstructed features. However, such spatial-
only strategies cannot fully utilize temporal dependency among video
frames. In this paper, we propose a novel deep learning based VSR algo-
rithm, named Deformable Kernel Spatial Attention Network (DKSAN).
Thanks to newly designed Deformable Kernel Convolution Alignment
(DKC Align) and Deformable Kernel Spatial Attention (DKSA) mod-
ules, DKSAN can better exploit both spatial and temporal redundancies
to facilitate the information propagation across different layers. We have
tested DKSAN on AIM2020 Video Extreme Super-Resolution Challenge
to super-resolve videos with a scale factor as large as 16. Experimental
results demonstrate that our proposed DKSAN can achieve both better
subjective and objective performance compared with the existing state-
of-the-art EDVR on Vid3oC and IntVID datasets.

Keywords: Video Super-Resolution, Deep Learning, Deformable Ker-
nels, Deformable Convolution Network, Attention Mechanism.

1 Introduction

Video Super-Resolution (VSR) refers to the task of reconstructing high-resolution
(HR) video frames from their corresponding low-resolution (LR) observation
data. Similar to image super-resolution, VSR aims at faithful recovery of im-
portant image structures (e.g., edges and textures) and has been widely used in
practical applications from video surveillance [26] and high-definition Television
(HDTV) [24] to video coding and streaming [31]. Existing VSR research can
be mainly classified into two subfields, enhancing spatial super-resolution and
enhancing temporal super-resolution. The former focuses on super-resolving LR
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2 X. Xu et al.

video frames to approximate HR video frames to improve visual quality of video;
while the later refers to interpolate new frames between neighboring frames for
the purpose of increasing video frame rate (e.g., from 30fps to 60fps). Different
from Single Image Super-Resolution (SISR) which only needs to consider the
information from spatial domain, both spatial and temporal dependencies have
to be utilized by VSR algorithms in order to optimize their performance. In par-
ticular, how to effectively exploit temporal redundancy by motion compensation
techniques has remained one of the key technical challenges in the task of VSR.

In order to explore the potential benefit from temporal information of VSR,
several existing approaches [5],[20],[23],[34] have used a sequence of consecutive
LR frames (including one reference frame and several neighboring frames) as
inputs to reconstruct the HR frame corresponding to the reference LR frame. To
better exploit temporal dependency among multiple LR frames, the consecutive
frames need to be aligned before the reconstruction of the HR frame. One of
the most popular motion estimation methods, optical-flow estimation [11], is
often considered and has been adopted by several VSR approaches [21],[25],[2].
However, VSR based on rigid motion estimation has to suffer from the potential
problem arising from misalignment. For example, it is well known that there
are two plagues with optical flow estimation: occlusion and aperture problems
[29]. VSR based on incorrect motion estimation results may introduce undesired
blurring and misregistration artifacts to the reconstructed HR frames.

In view of the weakness of rigid motion estimation approaches, alternative
methods - namely deformable motion estimation - have been proposed as well.
Recently, deformable convolution [4],[42] has become more and more popular as
a supplementary module to video frame alignment. Several VSR works such as
[35],[30],[33] have already successfully applied varying forms of deformable con-
volution alignment module to temporally align neighboring frames with respect
to the reference frame, which demonstrates improved motion compensation when
compared with optical-flow-based methods. However, existing deformable align-
ment modules still learn the motion parameters via several standard convolution
layers with fixed kernel configurations, which can not extract accurate motion
information especially in the presence of large and deformable motion (e.g., in
sport video). By contrast, deformable kernels [8] can adapt effective receptive
fields [22] (i.e., the support of filters) by weighting the per-pixel contribution,
which is expected to be capable of characterizing more sophisticated motion
information.

In this paper, we propose a novel Multi-Frame based Deformable Kernel
Spatial Attention Network (DKSAN) for video extreme super-resolution (the
upscaling factor is as large as 16). Inspired by EDVR [35] which applies de-
formable convolution [42] to temporally align neighboring frames with reference
frame, we have designed a new module not based on optical flow estimation,
called Deformable Kernel Convolution Alignment (DKC Align) module, to en-
hance deformable convolution [42]. The key idea is to combine deformable kernel
with deformable convolution to extract and improve not only global but also lo-
cal edge and texture features while aligning the neighboring frames with respect
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to the reference frame. Moreover, we have developed a Deformable Kernel Spa-
tial Attention (DKSA) module to further enhance the spatial details of recon-
structed feature maps, which extends the previous spatial attention works such
as [35],[13],[38]. The novelty of DKSA module lies in that the deformable kernel
[8] can better represent spatially-localized edge and texture features which are
often important for the task of VSR than conventional convolution based spatial
attention.

2 Related Works

Unlike image super-resolution which deals with reconstructing missing informa-
tion in the spatial domain only, VSR has to not only reconstruct the missing
high-frequency information in the spatial domain but also consider the motion-
related consistency across different video frames in the temporal domain. In this
section, we briefly review existing VSR approaches based on multi-frame such as
[35],[30],[36],[13],[33],[2], optical flow [11] alignment and deformable convolution
[42] alignment.
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Fig. 1. Overview of DKSAN, ⊕ denotes element-wise sum.

2.1 Video Super-Resolution

One of the early works of applying optical-flow to VSR problems in order to
utilize temporal and spatial information is [19]. In this work, a draft-ensemble
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strategy was introduced to use two robust optical flow methods: TV-l1 flow and
MDP flow to overcome the difficulty with large motion variation and then com-
bine SR drafts via a deep convolutional neural network to generate the final
SR result. Later, [15] proposed to use optical-flow to estimate motion compen-
sation of consecutive LR frames and wrapped them as inputs of the CNN to
generate SR frames. Those two-stage approaches are not optimal solution since
they separate the motion compensation from frame reconstruction. To explore
potential benefits of end-to-end learning architecture for VSR problem, a novel
end-to-end deep CNN to joint train the estimation of optical flow and spatio-
temporal networks called ESPCN was developed in [2]. In [28], a new layer called
sub-pixel motion compensation (SPMC) was introduced to handle inter-frame
motion alignment; it also applied a ConvLSTM [37] architecture for reconstruc-
tion and testing. Another work [9] proposed a recurrent back-projection network
(RBPN) with encoder-decoder mechanism to extract spatial and temporal infor-
mation. In [14], dynamic upsampling filters (DUF) was developed to avoid use
the explicit motion compensation by computing pixels of local spatio-temporal
neighbors of LR frames to learn implicit motion compensation. Most recently,
a novel temporal group attention (TGA) framework [13] was proposed to group
the input frames (7 frames) as three groups then generate temporal spatial at-
tention maps to reconstruct the missing details in the reference frame. Another
recent work [40] proposed to learn self-supervised motion representation, task-
oriented flow (TOFlow), instead of fix optical flow as the motion compensation
module for VSR problem.

2.2 Deformable Convolution

The inherent limitation with traditional CNNs is the capability of modeling ge-
ometric transformations because of their fixed kernel shape. Although dilated
convolution can alleviate this limitation to some degree, it is still difficult for
standard fixed-shape convolutional kernels to align the key points or salient
features in the input images. To solve this problem, a deformable convolution
network has been developed in [4],[42] to improve the capability of modeling
geometric transformations by adding flexible and learnable offsets. By acquiring
information from other field rather than fixed local area, deformable convolution
networks have been widely used by high-level vision tasks such as object detec-
tion [1] and segmentation [4]. Inspired by [42], a recent work [30] proposed a
temporally-deformable alignment network (TDAN) to adapt deformable convo-
lution to align the consecutive LR input frames at the feature level. Along this
line of research, EDVR [35] designed a more aggressive alignment approach, PCD
align module, to align the neighboring LR frames at different scale levels; also
they proposed a temporal and spatial attention fusion module to future enhance
important features. Another recent work [36] proposed a novel space-time video
super-resolution framework to utilize deformable convolution and deformable
ConvLSTM module to achieve temporal and spatial super-resolution at the same
time. Most recently, [33] introduced another deformable convolution based VSR
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framework called deformable non-local network (DNLN) with non-local atten-
tion module and hierarchical feature fusion block to enhance the global details
between neighboring frames and references. Those deformable alignment based
methods have shown better performance than optical-flow based networks.
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Fig. 2. Overview of DKC Align module. Conv means convolution layer, DKC means
deformable kernel convolution layer and DefConv stands for deformable convolution
layer.

3 Proposed Methodology

The design of DKSAN network can be presented in the order of top-down hi-
erarchy: DKSAN network (Fig. 1) → DKC Align subnetwork (Fig. 2)→ recon-
struction module (Fig. 3).

3.1 Overview: Deformable Kernel Spatial Attention Network

For multi-frame based VSR, we are given a group of 2N+1 consecutive LR frames
ILR
T = {ILR

r−N , . . . , ILR
r−1, I

LR
r , ILR

r+1, . . . , I
LR
r+N}, where ILR

r is denoted as frame at
the center or reference frame and ILR

r−N or ILR
r+N are the neighboring frames of

ILR
r . The goal of multi-frame based VSR is to reconstruct a HR frame Ŷr from
the LR sequence of ILR

T by exploiting both spatial and temporal redundancies in
the sequence. The overall diagram of our proposed networks DKSAN is shown
in Fig. 1. It mainly includes four parts: feature extraction, DKC Align module,

reconstruct module, and upscale module. Different from traditional deep learning
based multi-frame VSR architectures, this work aims at super-resolving the LR
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videos at the extreme cases (e.g., with the scaling factor of 16). Due to large
scaling factor constraint, it is difficult to upscale the LR feature maps to the
target HR ones directly. One-time upscaling approaches such as [35],[30],[13]
tend to introduce undesired blurring and artifacts to super-resolved HR video
frames.
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Fig. 3. Overview of reconstruction module; DKSA is deformable kernel spatial atten-
tion module shown in (b); a light version of DKSA is shown in (c); ⊕ and ⊗ denote
element-wise sum and element-wise product, respectively.

To address this issue, we propose to construct a cascade of upscaling building
blocks to iteratively super-resolve LR features several times (four times to reach
the factor of 16 = 24). Thanks to the cascade architecture, the LR frames can
be super-resolved progressively to reconstruct the unknown HR frames more
accurately than previous one-shot approaches. The whole problem of VSR can
be formulated as follows:

Ŷr = F(ILR
T ) (1)

where ILR
T denotes the consecutive LR frames and Ŷr denotes the super-resolved

reference frame ILR
r . In particular, we extract the preliminary features of all

input frames through the feature extraction which is stacked by several resblocks
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[35] without batch normalization layers. This procedure can be represented by:

Ffea = Eres(I
LR
T ) (2)

where Eres denotes the preliminary feature extraction, the output Ffea is the
extracted feature maps for all input frames. Let define Fn is the neighboring
feature, and Fr is the reference feature separated from Ffea. To align the neigh-
boring feature and the reference feature with the proposed DKC Align module
EDKC Align, we have

FAlign = EDKC Align(Fn, Fr) (3)

Ffusion = WE(FAlign) (4)

where n ∈ [t −N, t +N ] and n 6= r, FAlign is the concatenated aligned feature
maps for each neighboring frame feature with reference frame feature. The details
about this alignment module will be elaborated in section 3.2; WE ∈ R

1×1×C is
a 1×1 Conv layer. Conceptually similar to encoder-decoder configuration [3],[9],
the aligned feature FAlign (encoder outputs) will be fed to the reconstruction
module and upscale module for the first-level upscaling (decoder) operation:

Ŷ level1
r = U1(ERecon1(Ffusion)) +B2×(I

LR
r ) (5)

where ERecon1 denotes the first level reconstruction module, U1 is the first level
upscaling module and B2× stands for the Bicubic interpolation with scale factor
of 2; Ŷ level1

r is the 2× SR frame. Finally, to get the extreme super-resolved frame
Ŷr, we repeat another 3 times of reconstruction operation:

Ŷ level2
r = U2(ERecon2(E2(Ŷ

level1
r ))) +B2×(Ŷ

level1
r ) (6)

Ŷ level3
r = U3(ERecon3(E3(Ŷ

level2
r ))) +B2×(Ŷ

level2
r ) (7)

Ŷr = U4(ERecon4(E4(Ŷ
level3
r ))) +B2×(Ŷ

level3
r ) (8)

where E2, E3, E4 are the preliminary feature extractors for each level; U2, U3, U4

denote the upscaling module for each corresponding level, respectively. The de-
tails about the reconstruction module are described in section 3.3 including the
DKSA module.

3.2 Deformable Kernel Alignment Module

Different from previous VSR works which applied optical flow to align neighbor-
ing frames with reference frame, [30] and [35] introduced to utilize modulated
deformable convolution [42] to temporally align the given consecutive frames in
order to add temporal information to VSR frameworks.

Deformable Convolution and Deformable Kernel Inspired by [8],[35], we
propose a new alignment module, DKC Align, to combine the deformable kernel
[8] and deformable convolution [42] as shown in Fig. 2. First, let Fn and F align

n
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denote the input and output feature maps (not the reference frame feature),
Wk represents the weight kernel and pk is the pre-specified offsets for the k-
th location (K is the total sampling location), then the modulated deformable
convolution can be described as follows:

F align
n (p) =

∑

k∈K

Wk · Fn(p+ pk +∆pk) ·∆mk (9)

where F align
n (p) and Fn(p) indicate the feature location p from F align

n and Fn,
∆pk and ∆mk stand for the learnable offset and the modulation scalar, respec-
tively. With ∆pk and ∆mk, the convolution will get the ability to be irregu-
larly dilated to work with important feature points without the shape limitation
of conventional convolution. Such process of deformable convolution can be re-
garded as a strategy of adapting the local receptive field to a support of arbitrary
shape.

To get ∆pk and ∆mk and align the neighboring feature with reference fea-
ture in particular, we first concatenate the neighboring frame feature and the
reference frame feature then fuse them with one Conv2D layer and fed them into
several deformable kernel layers:

∆Pn, ∆Mn = D(f([Fn, Fr])), n ∈ [t−N, t+N ], n 6= r (10)

where f denotes the one Conv2d layer to fuse Fn and Fr, D represents the de-
formable kernel convolution layer. To formally express deformable kernel convo-
lution layer D, let ∆k denote a learnable offset of the kernel W, then deformable
kernel convolution layer can be formulated as:

D =
∑

k∈K

Wk+∆k · f([Fn, Fr])(p+ pk +∆pk), n ∈ [t−N, t+N ], n 6= r (11)

According to [8], deformable convolution can only adapt theoretical receptive
fields by deforming the conventional convolution, but it cannot evaluate the con-
tribution of each grid point. As a complementary tool to deformable convolution
[4],[42], deformable kernel [8] can weigh the contribution of each grid point to
inform the network which point is more important (i.e., adaptive control of effec-
tive receptive fields). The advantage of combining deformable convolution with
deformable kernel is to not only deform the convolution for extracting key grid
points but also adaptively weigh the importance of each point (similar to the in-
troduction of attention mechanism [32]). This way, the deformable convolution
kernel layers will be more sensitive to the key feature points than traditional
convolution layers and capable of extracting richer information to improve the
alignment accuracy and reconstruction quality for our VSR task. Note that pre-
vious work such as EDVR [35] only studies the benefit of deformable convolution
in VSR; while deformable kernel [8] was originally designed for high-level vision
tasks such as object detection and classification. To the best of our knowledge,
this work is the first to leverage of idea of combining deformable convolution
with deformable kernel into the application of VSR.
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Fig. 4. The details of upscale module, the last Conv layer has only 3 feature maps
output in order to generate RGB color frame.

3.3 Reconstruction Module

To get the super-resolved frame Ŷr, the output Ffusion from the DKC Align mod-
ule is fed into the reconstruction module. The reconstruction module includes
several stacked RCAB blocks and the DKSA module (please refer to Fig. 3 (a)):

Frecon = EDKSA(ERCABs(Ffusion)) + Ffusion (12)

where Frecon is the final reconstruction features to be fed into upscale mod-
ule (the architecture of upscale module is shown in Fig. 4 which includes sev-
eral Conv layers, PixelShuffle and LeakyReLU), ERCABs and EDKSA denote
the RCAB blocks and DKSA module. Note that RCAB module has the same
structure as it proposed in RCAN [41] which includes resblock [10] and channel
attention mechanism [12],[41],[39].

Deformable Kernel Spatial Attention Module In order to further cali-
brate output feature maps, we propose to construct a new Deformable Kernel
based Spatial Attention (DKSA) module instead of traditional spatial attention
mechanism. As shown in Fig. 3 (b), in DKSA, we first use one Conv layer to
extract the output of the stacked RCAB blocks, then a couple of stacked De-
formable Kernel Convolution (DKC) layers are placed to further extract key
features from the naive feature map. As discussed in section 3.2, deformable
kernels can better measure the effective receptive field than standard convolu-
tion kernels. Therefore, DKSA can generate improved spatial attention maps to
enforce networks pay more attention to important features such as edges and
textures. Note that Fig. 3 (c) shows a light version of DKSA which is used by
the level-1 reconstruction module.

4 Experimental Results

In this section, we demonstrate the training and test datasets, network setting,
training details, experimental results and ablation study of proposed video ex-
treme super-resolution approach.

4.1 Datasets

In this work, the training data we have used is Vid3oC [16] dataset provided
by AIM2020 Video Extreme Super-Resolution Challenge. The Vid3oC dataset
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Video Name Scale
Bicubic EDVR DKSAN (ours)

PSNR (dB) PSNR (dB) PSNR (dB)

050 x16 25.36 26.75 29.17

051 x16 23.20 23.76 24.72

052 x16 20.57 20.92 21.61

053 x16 21.61 22.15 22.63

054 x16 20.08 20.56 21.15

055 x16 20.01 20.36 21.48

056 x16 21.44 21.33 22.54

057 x16 20.22 20.33 21.66

058 x16 19.55 19.80 21.45

059 x16 20.22 20.92 21.90

060 x16 20.13 20.30 21.38

061 x16 21.08 21.58 22.22

062 x16 21.54 21.58 23.12

063 x16 21.54 22.00 23.26

064 x16 20.46 21.04 21.94

065 x16 22.53 23.41 24.80

Average x16 21.22 21.67 22.81

Parameters - - 20.6M 29.5M

Runtime(s/f) - - 0.87 0.95

Table 1. Quantitative comparison on Vid3oC dataset for scaling factor of 16; s/f means
seconds per frame. Bold font indicates the best result.

Video Name Scale
Bicubic EDVR DKSAN (ours)

PSNR (dB) PSNR (dB) PSNR (dB)

050 x16 21.56 21.81 23.06

051 x16 23.02 24.13 24.92

052 x16 29.56 29.33 31.87

053 x16 24.05 24.51 25.09

054 x16 31.34 33.15 36.18

055 x16 24.39 25.01 26.88

056 x16 31.16 31.93 34.22

057 x16 34.35 35.20 39.75

058 x16 36.00 37.36 38.15

059 x16 30.49 31.37 34.17

Average x16 28.59 29.38 31.43

Table 2. Quantitative comparison on IntVID dataset for scaling factor of 16. Bold

font indicates the best result.
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includes 50 videos for training, 16 sequences with 120 frames each for validation
and 16 sequences with 120 frames each for testing. Note that the ground-truth
of testing data are not released. Therefore, in this paper, we only show the
validation results for Vid3oC dataset. In order to evaluate the validity of our
network, we choose 10 videos (050 to 059) from another dataset, IntVID [16], as
a secondary test dataset. For each video, we extract 14 consecutive frames for
testing.

4.2 Implementation Details

In the proposed DKSAN networks, to compare with EDVR, we set the kernel
size as 3× 3 with 128 filters for most of Conv layers, all deformable kernel layers
and all deformable convolution layers. The kernel size of feature fusion layers is
1 × 1. The reduction ratio of channel attention module is still r = 16 as [41]. 5
resblocks are in feature extractor. The number of RCAB blocks are set to 30,
20, 15, 10 for each level (from 1 to 4) of reconstruction module. The PixelShuffle
layer is the same as [27]. The last Conv layer filter is set to 3 in order to output
color frames.

Bicubic EDVR DKSAN

25.62

Bicubic EDVR DKSAN

23.40

PSNR27.20

23.79

29.74

24.33 PSNR

HR-050_000019

HR-051_000019

Fig. 5. Visual comparison results among competing approaches for Vid3oC dataset
(video 050 and 051) at a scaling factor of 16.

In particular, we randomly crop the 7 low-res frames as small patches with
the size of 32× 32, and crop the corresponding 4th high-res frames with the size
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of 512× 512. The batch size is 16. We augment the training set by random flips
and rotations. The optimizer we used is ADAM [17] with β1 = 0.9, β2 = 0.999.
The initial learning rate is set to 4× 10−4. The total training step is 115k. The
loss function we used is adapted Charbonnier penalty function [18]. The loss can
be defined as eqn. 13 shown as follows:

Loss =

√

||Ŷr − Yr||2 + ξ2 (13)

where ξ = 1× 10−3, Ŷr is super-resolved frame and Yr is target frame (ground-
truth). All experiments are trained on 4 NVIDIA Titan Xp GPUs with PyTorch
framework Implementation.

Note that for fair comparison, we retrain EDVR with the same training
dataset (Vid3oC) and keep most of EDVR setting as the same as the original
implementation to run the experiment except setting the upscale module from
factor 4 to factor 16 in order to make sure EDVR can generate extreme super-
resolved frames.

4.3 Comparison Against State-of-the-Art

Because few existing works related to video extreme super-resolution (with a
scale factor of 16), in this work, we have compared our proposed network against
with Bicubic interpolation and state-of-the-art EDVR.

Table 1 shows the PSNR comparison results, number of parameters and
running time (seconds per frame) of our approach with the competing methods,
Bicubic interpolation and EDVR with the scaling factor of 16 on the validation
set of Vid3oC [16]. From the Table, we can see that our DKSAN method has the
best PSNR scores for all 16 testing videos. The significant PSNR gains (up to
2.4dB) over previous state-of-the-art method EDVR. Since PSNR metrics cannot
always evaluate the subjective quality of images, therefore, a qualitative result
is shown in Fig. 5, we can easily observe that our proposed network DKSAN can
better reconstruct the lines on the wall for “050 000019” and a clearer car for
“051 000019” compared with EDVR.

To further verify the effectiveness of our proposed method, we selected an-
other dataset, IntVid [16] as a secondary test dataset. From Table 2, we can
easily find out that our proposed DKSAN has the best performance for all 10
testing videos compared with EDVR and bicubic interpolation. A qualitative
result is shown in Fig. 6. For the subject “‘050 0010”, compared with EDVR,
our DKSAN can better recover more details of the rear wing. Taking another
example, in “054 0007”, our DKSAN can reconstruct a much clearer face than
EDVR does.

4.4 Ablation Studies

To investigate the effect of proposed DKC Align module and DKSA module, we
have conducted different strategies to remove the certain components from the
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31.33

LR-Bicubic EDVR

33.47

DKSAN

36.50 PSNR

HR-054_0007

21.70

LR-Bicubic EDVR

21.94

DKSAN

23.25 PSNR

HR-050_0010

Fig. 6. Visual comparison results among competing approaches for IntVID dataset
(video 050 and 054) at a scaling factor of 16.

final framework DKSAN. In particular, we have implemented four competing
models for our ablation studies: 1) training with only resblocks, without channel
attention, alignment and DKSA; 2) training without DKC Align and DKSA
module; 3) training with DKC Align module but without DKSA module; 4)
training with all modules (proposed DKSAN). Note that all experiments are
trained under same dataset and conditions for fair comparison.

Table 3 shows the results, the number of parameters and running time (sec-
onds per frame) of all four strategies mentioned previously with PSNR scores of
each video and average. The backbone result is running only based on resblock,
no channel attention, alignment and DKSA applied. From the results, we can see
that the backbone has the worst performance; adding channel attention module
but without DKC Align and DKSA modules, the result is only 31.27 dB; after
adding DKC Align module, the result is improved to 31.32 dB; finally, we ob-
serve that after adding DKSA module (the full version of DKSAN), the result is
further improved to 31.43 dB (0.4dB and 0.16dB gained when compared with
backbone and w/o Alignment & DKSA respectively) because of the effective
module DKSA.
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Video Name
Backbone w/o Alignment & DKSA w/o DKSA DKSAN (ours)

PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)

050 22.80 22.98 22.87 23.06

051 24.72 24.89 24.89 24.92

052 31.65 31.75 31.85 31.87

053 25.05 25.07 25.18 25.09
054 35.30 35.73 35.86 36.18

055 26.52 26.89 26.69 26.88
056 33.79 33.92 34.33 34.22
057 38.97 39.13 39.27 39.75

058 38.09 38.21 38.30 38.15
059 33.38 34.15 34.16 34.17

Average 31.03 31.27 31.32 31.43

Parameters 26.1M 26.3M 27.0M 29.5M

Runtime(s/f) 0.83 0.89 0.92 0.97

Table 3. Ablation Studies for DKSAN on IntVID dataset for scaling factor of 16.
Backbone means only resblocks used; w/o Alignment & DKSA means DKC Align
and DKSA Module are not applied; w/o DKSA means only the DKSA module is not
applied; s/f means seconds per frame. Bold font indicates the best result.

4.5 AIM 2020 Video Challenge

We have participated in the AIM2020 video extreme super-resolution challenges
which is the second edition of AIM2019 challenges [6]. Our submissions won the
2nd place for both track 1 and track 2 competitions. Note that track 1 is based
on PSNR performance and track 2 is based on perceptual (see the AIM2020
challenge report [7] for more details).

5 Conclusions

In this work, we proposed a multi-frame based VSR networks DKSAN for ex-
treme low-resolution videos. The novel temporal alignment module, DKC Align,
can help the networks to better learn and align the detailed features by improv-
ing both theoretical and effective receptive fields between reference frame and
its neighboring frames. Furthermore, the DKSA module calibrated the recon-
structed features to further enhance the edges and textures at the spatial domain.
Thanks to the newly designed DKC Align and DKSA modules, the proposed ar-
chitecture can reconstruct high-quality HR frames from extreme LR frames and
significantly improve both objective and subjective performance when compared
with state-of-the-art approach EDVR [35].
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