Model-Based Deep Learning for One-Bit
Compressive Sensing

Shahin Khobahi*, Student Member, IEEE, and Mojtaba Soltanalian, Senior Member, IEEE

Abstract—In this work, we consider the problem of one-bit
deep compressive sensing from both a system design and a
signal recovery perspective. In particular, we develop hybrid
model-based deep learning architectures based on the deep
unfolding methodology. We further interpret the overall data-
acquisition and signal recovery modules as an auto-encoder
structure allowing for learning task-specific sensing matrix, quan-
tization thresholds, as well as the latent-parameters of iterative
first-order optimization algorithms specifically designed for the
problem of one-bit sparse signal recovery. The proposed model-
based deep architectures have the ability to adaptively learn the
proper quantization thresholds, paving the way for amplitude
recovery in one-bit compressive sensing. We further show that
the proposed methodology implicitly learns task-specific sensing
matrices with very low coherence, which is highly desirable in
a compressive sensing setting. Due to the model-based nature of
the proposed deep architecture, it enjoys from the interpretability
and versatility of model-based techniques as well as benefiting
from the expressive power of data-driven methods. Specifically,
owing to its model-based nature, it has far fewer parameters and
requires far less samples for training as compared to black-box
machine learning models. Our results demonstrate a significant
improvement compared to state-of-the-art algorithms.

Index Terms—Compressive sensing, low-resolution signal pro-
cessing, one-bit quantization, deep unfolding, deep neural net-
works, model-based deep learning, autoencoders

I. INTRODUCTION

In the past two decades, compressive sensing (CS) has
shown significant potential in enhancing sensing and recovery
performance in signal processing, occasionally with simpler
hardware, and thus, has attracted noteworthy attention among
researchers. CS is a method of signal acquisition which en-
sures the exact or almost exact reconstruction of certain classes
of signals using far less number of samples than what is needed
in the Nyquist sampling regime [|]—where the signals are
typically reconstructed by finding the sparsest solution of an
under-determined system of equations using various available
means.

In a practical setting, each measurement is to be digitized
into finite-precision values for further processing and storage
purposes, which inevitably introduces a quantization error.
This error is usually modeled as an additive Gaussian noise,
independent of the input source signal; an approach that does
not perform well in extreme cases of quantization. One-bit CS
is one such extreme case where the quantizer is a simple sign

This work was supported in part by U.S. National Science Foundation Grant
CCF-1704401.

S. Khobahi and M. Soltanalian are with the Department of Electrical and
Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607
(*Corresponding author: skhoba2@uic.edu).

comparator and each measurement is represented using only
one bit information » € {£1} [2]-[6]. One-bit quantizers are
not only low-cost and low-power hardware components, but
also much faster than traditional scalar quantizers, accompa-
nied by great reduction in the complexity of hardware im-
plementation. Several algorithms have been introduced in the
literature for efficient reconstruction of sparse signals in one-
bit CS scenarios (e.g., see [2]-[7] and the references therein).
A detailed discussion of such algorithms is provided in Sec II.

Notation: We use bold lowercase letters for vectors and bold
uppercase letters for matrices. (-)7, and (-)¥ denote the vec-
tor/matrix transpose, and the Hermitian transpose, respectively.
1 and O are the all-one and all-zero vectors. ||x||,, denotes the
¢,-norm of the vector x defined as (Ek\:c(k)|")% x(i) de-
notes the i-th element of the vector « and A(4, j) denotes the
ij-th element of the matrix A. Diag(x) denotes the diagonal
matrix formed by the entries of the vector argument x. The op-
erator >~ denotes the element-wise vector inequality operator.

A. Background and Relevant Prior Art

One-bit compressive sensing is mainly concerned with the
following data-acquisition model:

r = sign(®x — b), (D

where € R™ denotes a K -sparse source signal, ® € R™*"
is the sensing matrix, and b € R™ denotes the quantization
thresholds vector. In addition to the mentioned advantages of
using one-bit ADCs for data-acquisition purposes, the use of
one-bit information offers increased robustness to undesirable
non-linearities in the data-acquition process. Furthermore,
there exists strong empirical evidence that recovering a sparse
source signal from only one-bit measurement can outperform
its multi-bit CS counterpart [4], [8].

In this works, we seek to take a deeper look at the one-
bit CS arena from both a system design perspective related
to the design of task-specific high-quality sensing matrices ®
and one-bit quantization systems (i.e., designing task-specific
qunatization thresholds b), and the development of accurate
and efficient task-specific signal reconstruction techniques for
one-bit signal recovery in a CS setting. In the following, we
go into the details of each aspect and give an overview of the
existing methodologies.

Sensing Matrix Design. From a system design point of
view, the most relevant factors to be taken into account are
the sensing matrix and the one-bit quantization thresholds used
for data-acquisition. In particular, two key requirements of a
CS-based signal reconstruction algorithm are the sparsity of

the underlying signal of interest and the incoherence which is
mainly related to the underlying sensing matrix ® employed
at time of the acquisition. It can be shown that one can recover
the underlying sparse signal from the linear compressive mea-
surements with overwhelming high probability if the sensing
matrix have a low coherence property [9]. Accordingly, such
performance guarantees is based upon the Restricted Isometric
Property (RIP) which is at the heart of CS theory. Specifically,
for a sensing matrix ®, and two sparse vectors and vy, the
RIP can be stated as follows:

L =llz = ylz < @@ -3 < 1 +)]z—yl3,
where v € (0,1). In short, for a matrix ® satisfying the
RIP condition, we have that the distance of any two vectors
(signals) is maintained up to the bounding factors {1—9,1+4}
after applying the transformation ®. Accordingly, one can
perform an almost perfect reconstruction of an sparse signal
with high probability when the RIP condition is met by
the measurement matrix [!]. Nonetheless, certifying the RIP
condition for a given matrix is a difficult task in general and it
has been shown to be an NP-hard problem [10]. Consequently,
there exist two main strategies in employing sensing matrices
for CS in the literature: The first one considers the deployment
of random matrices at the time of acquisition, while the other
approach makes use of task-specific deterministic sensing
matrices. Having said that, in a general CS setting, the works
of [11], [12] have shown that random sensing matrices (e.g.,
Gaussian matrices) satisfy the RIP condition with a very high
probability, hence providing mathematical ground-work for
robust sparse signal recovery. Taking this into consideration,
many signal reconstruction techniques, including but not lim-
ited to basis pursuit techniques, can be shown to provably
recover a sparse signal when random matrices are employed
[13]. Nonetheless, using random matrices is not applicable
in many applications due to the imposed randomness in
the measurement system [l3]. More importantly, in many
applications the sensing matrix must be designed in a fashion
to account for the intricate physical model of the system
and the measurement model. In such applications, one can
resort to a deterministic design (in contrast to a purely random
linear measurement) of the sensing matrix to accommodate for
the measurement medium of interest. However, as previously
mentioned, it is a very difficult task to verify the RIP condition
for a matrix, and it cannot be easily used as an objective for
a deterministic design of sensing matrices. Note that there
exist several alternative measures for quantifying the quality
of a sensing matrix. The most notable one and widely used
metric is the mutual coherence [14], which is a mathematically
tractable alternative metric for measuring the incoherence
required by the compressed sensing theory and the success of
many basis pursuit algorithms. Specifically, let & denote the
column-normalized version of the sensing matrix ® and define
the Gram matrix M £ & &. Then, the mutual coherence of
a sensing matrix ® is given by

pw(®) = max [M(i,j)|. (2)
i#£]

Furthermore, the off-diagonal entries {| M (i, j)|}:x; represent
the coherence coefficients of the sensing matrix ®. Briefly

speaking, the mutual coherence factor p(®) provides a mea-
sure of the worst-case similarity between the columns of ®,
and furthermore, a high mutual coherence results in a signif-
icant degradation in the performance of basis pursuit signal
recovery techniques [15]. Hence, it is highly desirable to have
a sensing matrix with low mutual coherence, corresponding to
a Gram matrix M close to identity I.

Designing task-specific and deterministic sensing matrices
with low-coherence is an active research area in various
fields such as coding and communication [16], quantum signal
processing [17], machine learning [18], radar signal processing
[19], among many others. Perhaps, one of the most interest-
ing of these applications is the one-bit compressive sensing
area. To the best of our knowledge, there exist no existing
work in the literature that studies the design of task-specific
deterministic sensing matrices in a one-bit CS setting and its
advantages over using random matrices. Hence, one of the
main motivations of this work is to address this issue and to
propose a unified framework that allows for designing task-
specific deterministic sensing matrices that can handle the
severe non-linearity imposed by the one-bit quantization at
the time of acquisition, which further allows for a significant
improvement of the signal reconstruction accuracy at the time
of inference. The proposed methodology does not require an
explicit optimization over the mutual coherence which may
be difficult to handle from an optimization point of view.
Indeed, we empirically show that the proposed methodology
implicitly learns task-specific sensing matrices with very low
mutual coherence leading significantly enhancing the signal
reconstruction accuracy.

We conclude this part by emphasizing that although it
is common to consider the problem of one-bit CS (or CS
in general) and the design of task-specific sensing matrices
for such systems from a purely mathematical point-of-view,
the development of CS and one-bit CS-based hardware data
acquisition systems is still a great challenge in practice.
The successful implementation of such systems might require
further integration of theory and practice, considering various
limitations of physical hardware.

Low-Resolution Quantization and Signal Recovery. The
other factor that affects the performance of the signal recovery
in a one-bit CS setting is the choice of the quantization thresh-
olds. There exist two strategies to be undertaken regarding the
qunatization thresholds: The first one is concerned with setting
the quantization thresholds to zero while the other way is to
consider non-zero thresholds. In both settings, the current one-
bit CS recovery algorithms typically exploit the consistency
principle, which represents the fact that the element-wise prod-
uct of the sparse signal and the corresponding measurement is
always positive [2], i.e. 7 © (®x — b) = 0. However, most of
the existing literature on one-bit CS considers zero-level one-
bit quantization thresholds (i.e., b = 0) leading to a total loss
of amplitude information during the data-acquisition process.
Hence, by comparing the signal level with zero, one can only
recover the direction of the source signal, i.e. /|x||2, and
not the amplitude information . In its most general form,
any solution * to the one-bit CS problem should: (i) satisfy
the sparsity condition, i.e. ||z*|o < K with K = ||«||o, and

(ii) achieve consistency, i.e. r® (®x* —b) > 0. As mentioned
above, most of the existing literature on the problem of one-bit
CS recovery problem considers the case of b = 0. In such a
case, the solution to the one-bit CS problem can be expressed
as:
x* = argmin ||z||p s.t. r = sign(Px).
x

The above program is NP-hard and mathematically intractable
[4]. However, there exist several powerful iterative algorithms
to find «* (for the case of b = 0) that rely on a relaxation of
the £y-norm to its convex hull (i.e., using ¢;-norm in lieu of
£y-norm) to obtain an estimate of the support of the true source
signal by restricting the feasible solutions to the unit-sphere,
ie. ||z|2 = 1.

The most notable works which considers a zero quantization
thresholding scheme are as follows. In [2], the authors assume
a zero-level quantization threshold and propose an iterative al-
gorithm called renormalized fixed point iteration (RFPI) where
a convex barrier function is used to enforce the consistency
principle (as a regularization term in the objective function).
A detailed analysis of the RFPI algorithm is provided in Sec.
IL. It is worth mentioning that in a traditional CS setting, one
consider the under-sampled measurements (i.e., m < n), how-
ever, the over-sampling regime is beneficial and of paramount
interest in a one-bit CS setting in that the use of one-bit ADCs
provide a cheap and fast way to acquire measurements and
to potentially go beyond the limitations of the traditional CS
methods. Another such reconstruction algorithm can be found
in [3], referred to as restricted step shrinkage (RSS), for which
a nonlinear barrier function is used as the regularizer to en-
force the consistency principle. Compared to RFPI algorithm,
RSS has three important advantages: provable convergence,
improved consistency, and feasible performance [20]. Ref. [4]
introduces a penalty-based robust recovery algorithm, called
binary iterative hard thresholding (BIHT), in order to enforce
the consistency principle. Contrary to RFPI algorithm, BIHT
exploits the knowledge of the sparsity level of the signal as
input, and was shown to be more robust to outliers and have
a superior performance than that of the RFPI method in some
cases (at the cost of knowing the sparsity level of the source
signal a priori). Both RFPI and BIHT, however, only consider
a zero-level quantization threshold, as a result, the amplitude
information is lost due to comparing the acquired signal with
zero. In [5] and [6], authors proposed modified versions of
RFPI and BIHT, referred to as noise-adaptive renormalized
fixed point iteration (NARFPI) and adaptive outlier pursuit
with sign flips (AOP-f), that are more robust against bit flips
in the measurement vector (that occur due to the presence
of noise). In [21], the authors lay the ground work for a
theoretical analysis of noisy one-bit CS problem based on
a convex programming approach for the problem of one-bit
sparse signal recovery in a noisy setting.

There exist limited work on employing non-zero quan-
tization thresholds in a one-bit CS setting. Recently, the
authors in [8] considered the problem of one-bit CS signal
reconstruction in a non-zero quantization thresholds setting
that enables the recovery of the norm of the source signal,
i.e. recovering ||x||2. However, the proposed method in [8]

still fails to accurately recover the amplitude information
of the source signal, and does not offer a straight-forward
method to design the quantization thresholds. Although the
one-bit CS has a deterministic system model, the authors in
[22] consider a non-zero quantization scheme and provide a
Bayesian formulation of the problem upon which a generalized
approximate message passing (GAMP) algorithm is used for
signal recovery purposes. Furthermore, non-zero quantization
thresholds for one-bit compressive systems has been adopted
in other fields such as one-bit compressive radar systems [19].

In light of the above, it is of paramount importance to
develop computationally efficient one-bit CS models that can
incorporate non-zero quantization thresholds to allow for
recovering the amplitude information. Additionally, the vast
literature on the one-bit CS recovery problem, does not yet
tap into the potential of the available data at hand (to improve
the performance recovery). One can significantly benefit from
a methodology that can facilitate not only incorporation of
the domain knowledge on the problem (i.e., being model-
driven), but also the available data at hand to go beyond the
performance of the traditional sparsity aware signal processing
techniques in a one-bit CS scenario.

There has recently been a high demand for developing
effective real-time signal processing algorithms that use the
data to achieve improved performance [23]-[28]. In particular,
the data-driven approaches relying on deep neural architec-
tures such as convolutional neural networks [23], deep fully
connected networks [24], stacked denoising autoencoders [25],
and generative adversarial networks [29] have been studied for
sparse signal recovery in generic quantized CS settings. we
note that, parameterized mathematical models discussed above
play a central role in understanding and design of large-scale
information systems and signal processing methods. However,
they often cannot take into account the intricate interactions
innate to such systems. On the contrary, purely data-driven
approaches, and specifically deep learning techniques, do not
need explicit mathematical models for data generation and
have a wider applicability at the cost of interpretability. The
main advantage of the deep learning-based approach is that
it employs several non-linear transformations to obtain an
abstract representation of the underlying data. Data-driven
approaches, on the other hand, lack the interpretability and
trustability that comes with model-based signal processing.
They are particularly prone to be questioned further, or at least
not fully trusted by the users, especially in critical applications.
Furthermore, the deterministic deep architectures are generic
and it is unclear how to incorporate the existing knowledge
on the problem in the processing stage. The advantages
associated with both model-based and data-driven methods
show the need for developing frameworks that bridge the gap
between the two approaches.

The recent advent of the deep unfolding framework [30]—
[35] and the corresponding deep unfolding networks (DUNs)
has paved the way for a game-changing fusion of models and
well-established signal processing approaches with data-driven
architectures. In this way, we not only exploit the vast amounts
of available data, but also integrate the prior knowledge of
the system model in the processing stage. Deep unfolding

relies on the establishment of an optimization or inference
iterative algorithm, whose iterations are then unfolded into
the layers of a deep network, where each layer is designed to
resemble one iteration of the optimization/inference algorithm.
The resulting hybrid method benefits from low computational
cost (in execution stage) of deep neural networks, and at
the same time, from the versatility and reliability of model-
based methods; thus, appears to be an excellent tool in real-
time signal processing applications due to the smaller degrees
of freedom required for training and execution (afforded by
integration of the problem-level reasoning, or the model). A
detailed analysis of the deep unfolding methodology for the
problem of one-bit CS is provided in Sec. III.

B. Contributions of the Paper

In this paper, we propose a novel hybrid model-based and
data-driven methodology (based on DUNs) that addresses the
drawbacks of both purely model-based (such as the discussed
RFPI and BIHT algorithm) and purely data-driven approaches.
The resulting methodology is far less data-hungry and assumes
a slight over-parametrization of the system model as opposed
to traditional deep learning techniques with extremely large
number of variables to be learned. In particular, the proposed
method seeks to bridge the gap between the data-driven and
model-based approaches in the one-bit CS paradigm, resulting
in a specialized architecture for the purpose of sparse signal re-
covery from one-bit measurements. In particular, the proposed
methodology allows for learning task-specific sensing matrices
with very low mutual coherence factor, as well as learning
data-specific quantization thresholds. Furthermore, we propose
a novel model-based interpretable deep learning model for
sparse signal recovery in a one-bit CS setting and show that
the proposed methodology outperforms the existing state-of-
the-art methodologies in the area of one-bit CS. The proposed
framework can be seen as a unification of system design and
signal recovery techniques, allowing for a joint optimization
of all system parameters. The contributions of this paper can
be summarized as follows:

e We propose a novel hybrid model-based and data-driven
one-bit compressive autoencoding (AE) methodology that can
deal with the optimization of the sensing matrix ® (learning
task-specific deterministic sensing matrices), the one-bit quan-
tization thresholds b, and the latent-variables of the decoder
module according to the underlying distribution of the source
signal. Hence, such a methodology allows for quick adaptation
to new data distributions and environments.

o To the best of our knowledge, this is the first attempt in the
one-bit CS paradigm that allows for joint optimization of the
quantization thresholds and sensing matrix, also facilitating the
recovery of the amplitude information of the source signal. We
show that by using the proposed AEs, one can significantly
improve upon existing iterative algorithms and gain much
higher accuracy both in terms of recovering the magnitude
and the support of the underlying source signal.

e The proposed methodology exhibits performance that goes
beyond the traditional one-bit CS state-of-the-art and allows
for designing sensing matrices that are distribution-specific.

In conjunction to learning task-specific ®, the quantization
thresholds can also be learned in a joint manner such that the
learned parameters improve the signal reconstruction accuracy
and speed.

e We propose two generalized optimization algorithms that
can be used as standalone algorithms for recovering the
amplitude information of the source signal by utilizing non-
zero quantization thresholds.

Organization of the Paper: The remainder of this paper is
organized as follows. In Sec. II, we discuss the general prob-
lem formulation and system model of the one-bit compressive
sensing problem and propose two general algorithms that pave
the way for incorporating non-zero quantization thresholds.
The proposed one-bit compressive autoencoding methodology
is presented in Sec. III. The loss function characterization and
training method for the proposed model-based deep architec-
tures are discussed at the end of Sec. III. In Sec. IV, we investi-
gate the performance of the proposed methods through various
numerical simulations and for various scenarios. Finally, Sec.
V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we are interested in a one-bit CS measurement
model (i.e., the encoder module) with dynamics that can be
described as follows:

Encoder Module: r = sign(®x — b), 3)

where ®™*" denotes the sensing matrix, b € R™ is the
quantization thresholds, and € R" is assumed to be a K-
sparse signal. Having the one-bit measurements of the form
(3), one can pose the problem of sparse signal recovery from
one-bit measurements r by solving the following non-convex
program:

Po: min |[z[o, s.t. r=sign(®x —b), 4)

xzeR

where the constraint in (4) is imposed to ensure a consistent
reconstruction with the available one-bit information. Further
note that the one-bit measurement consistency principle in (4)
can be equivalently expressed as

R(®x - b) = 0, (5)

where R = Diag(r).

Let us first consider the scenario in which the quantization
thresholds b are all set to zero. In this case, the non-convex
optimization problem Py can be further relaxed and expressed
as a well-known non-convex ¢;-minimization program on the
unit sphere [2]:

Py: min x|, st. R®x >0, |z|2=1, (6)
x

where the ¢;-norm acts as a sparsity inducing function. The
intuition behind finding the sparsest signal on the /5 unit-
sphere (i.e., fixing the energy of the recovered signal) is
two-fold. First, it reduces the feasible set of the optimization
problem as the amplitude information is lost, and second, it
avoids the the trivial solution of & = 0. By comparing the
acquired data y = ®x with non-zero quantization thresholds,
the constraint defined in (5) not only reduces the feasible set of

the problem by defining a set of hyper-planes where the signal
can reside on, but also, implicitly exclude the trivial solution.
There exists an extensive body of research on approximately
solving the non-convex optimization problem P; (e.g., see
[2]1, [3], [5], [36]1, [37], and the references therein). The most
notable methods utilize a regularization term R(s) to enforce
the consistency principle via a penalty term added to the /;-
objective function, viz.

& = argmin |z|j; + aR(R®x), s.t. |z|2 =1, (7
xzeR™

where o > 0 is the penalty factor.

Among the numerous iterative algorithms available for
tackling the optimization problem in (7), we plan to utilize
and improve upon the state-of-the-art renormalized fixed-
point iterations (RFPI) [2], and the Binary Iterative Hard
Thresholding (BIHT) [4] algorithms as the starting point for
our proposed hybrid model-aware deep architecture for the
problem of one-bit compressive sensing. To this end, we
interpret a one-bit CS setting as a single auto-encoder (AE)
module allowing for an optimization over all system parametes
(i.e., the sensing matrix, quantization thresholds, and the laten
variables of first-order optimization techniques). Namely, in
the subsequent sections, we use the mentioned algorithms
as a base-line to design the decoder module of our one-bit
CS AE. In particular, we unfold the iterations of the two
specialized algorithms onto the layers of a deep neural network
in a fashion that each layer of the proposed deep architecture
mimics the behavior of one iteration of the base-line algorithm.
Next, we perform an end-to-end learning approach by utilizing
the back-propagation method to tune the parameters of both
the decoder and the encoder functions of the proposed one-bit
compressive AE.

A. Renormalized Fixed-Point Iteration (RFPI)

The RFPI algorithm considers a one-bit CS data acquisition
model where the quantization thresholds are all set to zero.
With ¢ = R®x and b = 0, the RFPI algorithm utilizes the
following regularization term to enforce the consistency con-
straint in (6): R(c) = 5 ||p(c)||3, where p(c) £ max{—c,0},
and the function max is applied element-wise on the vector
arguments. Note that the function p(-) can be expressed in
terms of the well-known Rectifier Linear Unit (ReLU) function
extensively used by the deep learning research community, i.e.
p(e) = ReLU(—c). Briefly speaking, the RFPI algorithm is a
first-order optimization method (gradient-based) that operates
as follows: given an initial point o on the unit-sphere (i.e.,
[[zoll2 = 1), the gradient step-size ¢ and a shrinkage thresholds
« (or equivalently the penalty term), at each iteration ¢, the
estimated signal z; is obtained using the following update
steps:

di=VaR(2)|,_, =~ (R®)" p(R®x;_1), (8a)
ti=(1+6d] z;_1) z;—1 — 5d,;, (8b)
v; = sign (t;) © ReLU (|¢;| — (6/a)1), (8¢)
z = — (8d)

lvlle”

After the descent in (8a)-(8b), the update step in (8c) corre-
sponds to a shrinkage step. More precisely, any element of the
vector t; that is below the threshold ¢/« will be pulled down
to zero (leading to enhanced sparsity). Finally, the algorithm
projects the obtained vector v; on the unit sphere to produce
the latest estimation of the signal. Note that the latter step
is necessary due to the fact that a zero-threshold vector (i.e.,
b = 0) is employed at the time of the data acquisition, and
hence, the amplitude information is lost.

While effective in signal reconstruction, there exist several
drawbacks in using the RFPI method. For instance, it is
required to use the algorithm on several problem instances,
while increasing the value of the penalty factor o at each
outer iteration of the algorithm, and to use the previously
obtained solution as the initial point for tackling the recovery
problem for any new problem instance. Moreover, it is not
straight-forward how to choose the fixed step-size and the
shrinkage threshold, that may depend on the latent-parameters
of the system. In fact, it is evident that by carefully tuning
the step-sizes and the shrinkage threshold 7 = d/a, one
can significantly boost the performance of the algorithm, and
further alleviate the mentioned drawbacks of this method. In
what follows, we extend the above iterations in a fashion that it
allows for incorporating the non-zero quantization thresholds,
and hence, enabling us to effectively recover the amplitude
information of the source signal.

A.1. Extending the RFPI framework to non-zero quan-
tization thresholds:

Recall that our focus is on the following encoding (measure-
ment) model with an arbitrary threshold vector b:

r = sign(®x — b). 9)
Therefore, the problem of one-bit CS signal recovery with a
non-zero quantization threshold vector can be cast as:

min ||, st. R(®x —b) > 0.
zeR"

(10)
Inspired by the regularization-based relaxation employed in
[2], we relax the above program and cast it as follows:

. 1
Pr: min |21+ Sl (R(®z - b)) [(1)

Note that the second term in the objective function above
applies a quadratic penalty to the negative entries of the vector
R (®x — b), i.e., the ones which are not consistent with the
acquired one-bit measurements.

In this work, we consider an iterative first-order optimiza-
tion solver to tackle the above optimization problem. Specifi-
cally, we make use of the proximal algorithm [38] to derive the
updating steps required to solve Ps. Let f(x) := g(x) + h(x)
be a composite convex objective function and consider the
following optimization problem:

() = g(=) + h(z).

Furthermore, define the proximal operator prox,, () for a
given convex differentiable function h(x) as follows:

min

xzeR"™ (12)

1
prox,,(z) = argmin h(z) + — |z —all, (13)
z€ER™ 2a

where o > 0. Then, starting from an initial point xy and
a step-size § € (0,1), the overall updating equations of the
proximal gradient method for solving (12) can be expressed
as:

Tit1 = proxyy, (€; — 0Vzg(®)|z=z,) (14)

where it can be shown that for a convex function h, the
proximal operator is monotone and the above mapping (14)
has a fixed point, coinciding with the global solution of
(12) [38]. Evidently, the proximal gradient algorithm is well
suited for tackling our optimization problem P,. In order to
find the updating steps specific to our problem, we consider
the splitting of the objective function in (11) into g(x) =
(1/2)||p(R(®x — b))||3, and h(x) = ||z||;. In the following,
we first derive the gradient calculations of the function g(x),
and then, proceed with presenting the final update equations
akin to our optimization problem at hand based on (14).

Gradient calculation of g(x): Recall that the function
p(xr) = max{—x,0} is applied element-wise on the vector
argument. Let [z]; represent the i-th element of the vector x,
¢; be a column-vector denoting the i-th row of the sensing
matrix ®, and r; and b; represent the i-th one-bit measurement
and quantization threshold, respectively. Define

([p(R(®z — b))];)*

(p(ri(¢Ta —b,)))”

3 (15)
1
2
B {;(riy (¢Tx —b,)" it r; (¢Ta —b;) <0,
0

gi(x)

else.
(16)

Note that 7; € {£1} and the term (r;)*> = 1 is provided
to obtain a concise representation later. Using the above
definition, we have that g(x) = >, g;(«), and the convexity
of each sub-function g;(x) renders the overall function g(x)
convex. Now, assuming (¢7 x — b;) # 0, the gradient of the
sub-function g;(x) can be expressed as:

Vagi(@) = p(ri(d] @ — b;))(—ri¢) (17)
_ {ri (¢pTx — b)) (—rips) if r; (¢Tx —b;) <0,

0 else.

Furthermore, note that ¢;(x) is convex, and hence, in the case
of (¢Tx — b;) = 0, the set of subgradients of the function
are given by the convex hull {\ (¢7x —b;) (—¢;) : A €
[0,1]} 3 p(ri(dFx — b;))(—rip) (ie., the term (17) is a
subgradient as well). Therefore, the gradient of the overall
objective function g(x) can be compactly expressed as:

Vag(®) = Z Vagi(x) = —(R®)"p (R (®x — b)). (18)

The final step is to derive the proximal operator for the func-
tion A(x). The proximal operator can be analytically derived
for many convex functions including the one considered in
this work. In particular, the proximal mapping for the function
h(x) = |lx|1 is given by the well-known (element-wise)
soft-thresholding function (defined below), which recasts the

overall update equation given in (14) for solving our problem
P> as follows:

Tit+1 = ProXyy, (fz) (19)
=sign (¢;) © max {|t;| — (6/a)1,0}, and (20)
t~i =T; — 5vmg(a3)|m:mi7 (21)

where all the functions above are applied element-wise on the
vector argument. Generally speaking, the performance and the
convergence of the above iterations depends heavily on the
choice of step-size J and the thresholding factors «. In the
following section, we show how the above iterations can be
unfolded onto the layers of a deep neural network allowing
for obtaining an enhanced first-order optimizer.

The proposed algorithm for solving the optimization prob-
lem P, associated with the incorporation of non-zero quanti-
zation thresholds is summarized below.

The Proposed Generalized RFP Iterations:

d;=—(R®)" p(R(®x;_1 — b)), (22a)
ii =Tj—1 — 5Cii, (22b)
@; = sign (¢;) ®ReLU (|t;| — (6/a)1), (22¢)

where (22a) corresponds to computing the gradient at the
current point, while the step (22b) can be viewed as taking
a descent step on the one-sided /o-norm using the obtained
gradient, and (22c) corresponds to applying the proximal
mapping operator. In the rest of this paper, we refer to the
iterations presented in (22) as Generalized RFPI (G-RFPI).

B. Binary Iterative Hard Thresholding Algorithm (BIHT)

The BIHT algorithm is a simple, yet powerful, first-order
iterative reconstruction algorithm for the problem of one-bit
CS where the sparsity level K is assumed to be known a priori.
BIHT iterations can be seen as a simple modification of the
iterative hard thresholding (IHT) algorithm proposed in [39].
Similar to the RFPI algorithm, the BIHT method considers a
zero-level quantization threshold. However, in contrast to the
RFPI algorithm, it exploits the knowledge of the sparsity level
K of the signal of interest. In other words, the BIHT algorithm
is designed to tackle the following counterpart of Py:

Ps: min |[p(R®x) |1, st. ||z)o=K, |x]2=1, (23)
TER™

where p(c) = max{—c,0} and R = Diag(r) as before. Note
that the one-sided ¢; objective function above (also related to
the hinge-loss) enforces the consistency principle previously
introduced in (6), and that by solving the above optimization
problem, we are working to achieve maximal consistency
with the one-bit measurements 7. It is worth mentioning that
one can also consider different objective functions, and not
necessarily an ¢; objective, as long as it promotes the data
consistency principle (e.g., {2 norm). For a detailed analysis
of different candidates for the objective function and their
properties, see [39].

The BIHT iterations are described as follows. Let ¢ =
R®x, and define F(c) = ||p(c)|ls. Furthermore, let
OF () :={f : F(x) — F(y) > (f,z —y)} denotes the sub-
differential set of F at the point € R™. Then, given an initial

point x, the sparsity level K, and one-bit measurements r
(or equivalently R), at the ¢-th iteration, the BIHT algorithm
updates the current estimate of the signal x; through the
following steps:

Uiy =x; —O0f; = + g@T (r —sign(®x;_1)), (24a)
(24b)

where f;_1 € 0F(x) denotes a sub-gradient of the one-side ¢;
objective function in P5 at x;, § > 0 governs the fixed gradient
step-size, and the projection operator H () is defined such
that it retains the largest K elements (in magnitude) of the
vector argument, and set the rest of the elements to zero. Note
that the term (—1/2)®7 (r — sign(®x)) is a sub-gradient of
the objective function at point « (more details is provided in
subsection B.1 below).

The step (24a) can be interpreted as taking a descent step
using the computed sub-gradient of the objective function (23),
while the projection step in (24b) can be viewed as a projection
of u,; onto the support set of K -sparse signals. Once the above
iterations terminate either by fully satisfying the consistency
principle (i.e., obtaining * such that F(x*) = 0), or by
achieving a maximum number of iterations, the ultimate step
to be taken is projecting the final estimate «* onto the unit-
sphere, viz. * « x*/||x*||2. Note that this is in contrast to
the RFPI algorithm as the BIHT iterations does not require a
normalization step as in (8d) at each iteration.

Tit1 =Mk (i),

B.1. Extending the BIHT framework to non-zero quan-
tization thresholds:

The extension of the BIHT iterations to incorporate the non-
zero thresholds vector b is straight-forward. In the case of
non-zero quantization thresholds, we cast the signal recovery
problem as

min F@) = o (R@z b)) |1, st. |zl =K, @5)
where R = Diag(r) and r = sign(®ax — b). Further note that
the unit-ball constraint has been dropped due to the fact that
the amplitude ambiguity is resolved by employing non-zero
quantization thresholds.

In order to tackle the optimization problem (25), we make
use of the well-known iterative hard thresholding algorithm
(IHT) extensively used in the literature for general CS prob-
lems. In particular, the updating steps of the iterative hard
thresholding algorithm is consist of taking a descent step on
the objective function in (25) followed by a projection operator
denoted by Hj. Starting from a K-sparse initial point xg, the
overall updating equation of the IHT algorithm for recovering
the underlying K -sparse solution is given by:

Tit1 = Hi(xi —0f;), (26)

where f; € OF(x) at ;, and 6 > 0 denotes the step-size.
Similar to the steps we took in (9)-(22), and extending the
analysis provided in [4], we define F(x) =). fi(x), where
the convex sub-function f; is given by:

filz) = lp (R (®x —b))];| 27)
_ {|¢>iTx bl it (@fe—b) <0, 0
0 else.

Assuming (¢7x — b;) # 0, the gradient of the sub-function
fi can be expressed as follows:

Ve fi(z) = —% (ri —sign(¢p] © — b;)) ¢;
_ {sign(gbfw — b)) if i (¢Tx —b;) <0,

(29)

0 else.

In the case of (¢7x — b;) = 0, since the sub-function f; is
convex, we have the sub-gradients of f;(x) given by the set

Ofi(x) = {—;\(n— —sign(¢ x — b)) : A € [0, 1}} (30)

> —% (r; — sign(¢p] & — b;)) ¢;. 31)
Hence, considering that F(x) =), fi(x), we have
f= f%{)T (r — sign(®x — b)) € IF(x). (32)

Consequently, the updating steps of the IHT algorithm defined
in (26) for solving the optimization problem (25) can be
expressed as:

The Proposed Generalized BIHT Iterations:

w; =i+ éch (r —sign(®x;_; — b)), (33a)

2
x, =Hg (uw;), (33b)

Note the exception that in the proposed generalized BIHT
iterations, there is no need for the normalization of the
obtained estimate of the signal x* after the update steps
terminate. This is due to the fact that a non-zero quantization
threshold vector is employed at time of the encoding, and
hence, the amplitude information is not fully lost. In the rest
of this paper, we refer to the above iterations as Generalized
BIHT (G-BIHT) algorithm.

Although simple and powerful, the BIHT algorithm requires
a careful choice of the gradient step-size J for convergence and
stability, and there is no straight-forward method to properly
choose the gradient step-size. Moreover, it only utilizes a fixed
step-size through all iterations. This motivates the development
of a methodology by which one can design a decoder function
that exploits adaptive gradient step-sizes, which can result in
a significant improvement of the performance of the BIHT
algorithm.

In the next section, we discuss a slight over-parametrization
of the iterations of RFPI, G-RFPI, BIHT, and G-BIHT algo-
rithms that paves the way for the design of our proposed one-
bit compressive AE and for jointly designing the parameters
of the encoder function defined in (3) parametrized on the
sensing matrix ®, the quantization thresholds b, and the design
of a set of decoder functions based on the discussed iterative
optimization algorithms.

III. THE PROPOSED MODEL-BASED DEEP LEARNING
MODELS FOR ONE-BIT CS

We pursue the design of a novel model-driven one-bit
compressive sensing-based autoencoder deep architecture that
facilitates the joint design of the parameters of both the

encoder and the decoder module when one-bit quantizers
with non-zero thresholds are employed in the data acquisition
process (i.e., the encoding module) for a K-sparse input
signal * € R". In particular, the decoder module can be
seen as model-based deep architecture which is derived upon
unfolding the iterations of first-order optimization techniques
provided above onto the layers of a deep neural network.

In general terms, a AE is a generative model comprised of
an encoder and a decoder module that are sequentially con-
nected together. The purpose of an AE is to learn an abstract
representation of the input data, while providing a powerful
data reconstruction system through the decoder module. The
input to such a system is a set of signals following a certain
distribution, i.e. * ~ D(x), and the output is the recovered
signal from the decoder module &. Hence, the goal is to jointly
learn an abstract representation of the underlying distribution
of the signals through the encoder module, and simultaneously,
learning a decoder module allowing for reconstruction of the
compressed signals from the obtained abstract representations.
Therefore, an AE can be defined by two main functions: i) an
encoder function f{"°°%r : R™ ~— R™, parameterized on a
set of variables Y'; that maps the input signal into a new
vector space, and ii) a decoder function f.I}ZCOder :R™ — R"
parameterized on Y5, which maps the output of the encoder
module back into the original signal space. Hence, the govern-
ing dynamics of a general auto-encoder can be expressed as
@ = fRecoder o fEncoder () where @ denotes the reconstructed
signal.

In light of the above, we seek to interpret a one-bit CS
system as an AE module facilitating not only the design of
the sensing matrix ® and the quantization thresholds b that
best captures the information of a K-sparse signal when one-
bit quantizers are employed, but also to learn the parameters
of an iterative optimization algorithm specifically designed for
the task of signal recovery. To this end, we modify and unfold
the iterations of the proposed G-RFPI algorithm defined in
(22), and the GBIHT method defined in (33) onto the layers
of a deep neural network and later use the deep learning tools
to tune the parameters of the proposed one-bit compressive
AE.

A. Structure of the Encoding Module

In its most general form, we define the encoder module of
the proposed AE based on our data-acquisition model defined
in (3), as follows:

f%‘l?()der(m) — ngn((I):D - b), (34

where Y1 = {®,b} denotes the set of learnable parameters
of the encoder function, and sign(x) = tanh(t - x), for a
large ¢ > 0 (f was set to 50 in numerical investigations). Note
that we replaced the original sign function with a smooth
differentiable approximation of it based on the hyperbolic
tangent function due to the fact that the sign function is not
continuous and its gradient is zero everywhere except at the
origin. Hence, the use of it would cripple stochastic gradient-
based optimization methods (later used in back-propagation
method for deep learning).

B. Structure of the Decoding Module

In this part, we describe the different scenarios under which
we pursue the design of our decoder function by using the
RFPI, BIHT, and the suggested G-RFPI and G-BIHT itera-
tions. In particular, we fix the total complexity of our decoding
module by fixing the total number of iterations allowed for
the mentioned optimization iterations. Next, we slightly over-
parameterize each iteration/step of the mentioned algorithms to
increase the per-iteration degrees-of-freedom of each method
and to further account for the learnable latent variables in the
system. Finally, we unfold the iterations of each algorithm
onto the layers of a deep architecture such that each layer
of the deep network resembles one iteration of the base-line
algorithm. We then seek to learn the parameters of both the
decoder and encoder function using the training tools already
developed for deep learning. We consider the following cases
to design our decoder function:

e Learned RFPI (L-RFPI): We consider the RFPI iterations
defined in (8) as our base-line but slightly over-parametrize its
iterations by introducing a gradient step-size §; and a shrink-
age thresholds vector T; for each iteration i. This is in contrast
to the original RFP iterations where a fixed gradient step-size
J, and shrinkage threshold 7 = (§/a)1 were employed for
all iterations. Hence, the proposed unfolded over-parametrized
iterations are much more expressive. The decoder function
will be parameterized on Yo = {8;, 7;} 27}, and the encoder
function will be parametrized on the set Y1 = {®} (note that
b=0).

e Learned BIHT (L-BIHT): We consider the unfolding of the
iterations of the BIHT defined in (24) similar to the previous
case and by introducing per-iteration gradient step-sizes J;
in lieu of a fixed gradient-step size along all iterations. In
this case, the decoder function will be parametrized on the
set Yo = {4;}, while the set of parameters of the encoding
module is Y1 = {®}; both are to be learned.

e Learned G-RFPI (LG-RFPI): We consider the unfolding
of the proposed Generalized RFPI iterations in (22) in a non-
zero quantization thresholds setting. We over-parameterize
the iterations of the proposed G-RFPI by parametrizing the
decoder function on the set Yo = {J;, 7}, and this
time, by parameterizing the encoder function on both the
sensing matrix and the quantization thresholds vector, i.e.
Y, ={®,b}.

e Learned G-BIHT (LG-BIHT): We consider the unfolding
of the G-BIHT iterations defined in (33) in a similar manner,
i.e. by parameterizing the decoder function on Yo = {&;} .
However, similar to the previous case, we further parametrize
the encoder function on the quantization thresholds vector in
conjunction with the sensing matrix, i.e. Y1 = {®, b}.

C. The Proposed One-Bit Compressive Autoencoding Ap-
proach

In the following, we describe the design of four novel
deep architectures based on the above mentioned structures
and discuss the governing dynamics of the proposed one-bit
compressive sensing-based AE.

L-REPI Deep Architecture - g, (3 R,)

Encoder Module

et |

(a)

Fig. 1.
parameters are highlighted in red color.

C.1. L-RFPI-Based Compressive Autoencoding:
In this case, we consider the following parameterized encoder
function:

fheoder (1) — sign(®a), where Ty = {®}.

(35)

As for the decoder function, and based on the RFPI iterations
in (8), define g4, : R — IR™ as follows:

(% .
9o, (z; @, R) = m, with (36a)
v = sign (t) @ ReLU (|t| — 74), (36b)
t=(1+06d"2)z—d4d, (36¢)
d=—(R®" p(R®z), (36d)

where ¢; = {7;,0;} represents the parameters of the function
Js;» and 7; € R™ denotes the sparsity inducing shrinkage
thresholds vector, and ¢; represents the gradient step-size at
iteration ¢. Next, we define the proposed L-RFPI composite
decoder function as follows:

f‘JI)'CQCOder(ZO) = 9¢r_1 °Y9¢pr_2°C " 9Ge; ©Ggy (ZO; q)v R)7 37

where Yo = {¢;}2' represents the learnable (tunable)
parameters of the decoder function, and z; is some initial
point of choice. Note that we have over-parameterized the
iterations of the RFPI algorithm by introducing the new
variable 7; at each iteration for the sparsity inducing step in
(36b). Moreover, in contrast with the original RFPI iterations,
we have introduced a new step-size J; at each step of the
iteration as well (see Eq. (36c)). Therefore, the above decoder
function can be interpreted as performing L iterations of the
original RFPI algorithm with an additional L(n+1)—2 degrees
of freedom (as compared to the base algorithm) expressed in
terms of the set of the shrinkage thresholds 7; and the gradient
step-sizes ;, i.e. {Ti,d; 122", As areslt, the proposed decoder
function is much more expressive than that of the iterations
of RFPI algorithm. A depiction of the computation dynamics
of the ¢-th layer of the proposed L-RFPI deep architecture is
provided in Fig. 1(a).

Remark: Note that the above encoder and decoder function,
once cascaded together, can be viewed as a deep neural
network with (L + 1) layers, where the dynamics of the first
layer is described by the encoder function defined in (35), and
the governing dynamics of the succeeding layers is described
by computations of the form (36a)-(36d). Equivalently, such
a deep architecture can be viewed as a computational graph
with shared variables among the computation nodes, and thus,
its parameters can be efficiently optimized by utilizing known

L-BIHT Deep Architecture -g4, (5 &,r, K)
% Zitl

Encoder Module

r = sign(®x) -

(b)

An illustration of the computation dynamics in ¢-th layer of the proposed (a) L-RFPI and (b) L-BIHT deep architectures, in which the trainable

deep learning tools such as back-propagation. Hence, the goal
is to jointly learn the parameters of such a cascaded network
(i.e., Y1 UY5) in an end-to-end manner by using the available
data at hand coming from the underlying distribution of the
source signal . |
C.2. L-BIHT-Based Compressive Autoencoding:
Similar to the previous case, we consider the same encoding
function parametrized only on the learnable sensing matrix
® in a zero quantization thresholds setting, i.e. Y1 = {®}.
The governing equations for the decoder function in the case
of the proposed Learned BIHT are as follows. We re-define
gs, R™ — R™ as:

for ¢ < L, where (38a)

(38b)

g¢1(za eraK) = HK (U))
v=2z+06®" (r - sién(@z)) ,

with ¢; = {d;}27}, and where we have an added final layer
1 = L, to renormalize the reconstructed signal as,

z

9o (z;®,7) = (39)

S
Therefore, similar to the previous case, the proposed L-BIHT-
based decoder function is defined as:

f‘ID‘e;Oder(zU) =9pr ©YGpr_1 © O Gpy © Ggo (ZO; ® R, K) (40)

We again observe the slight over-parametrization of the L-
BIHT algorithm during the unfolding process. Namely, at
each iteration we are introducing the per-iteration step-sizes
d; to be learned which further enhances the performance of
our iterations (see (38)). In this case, the decoder function
is parameterized only on the gradient step-sizes, i.e. Yo =
{6;}=!. The L-BIHT iterations have an additional (L — 1)
degrees of freedom compared to that of the original BIHT
iterations. Fig. 1(b) illustrates the computation dynamics of
the i-th layer of the proposed L-BIHT deep architecture.

C.3. LG-RFPI-Based Compressive Autoencoding:
We consider the unfolding of iterations of the Learned Gen-
eralized RFPI method according to (22). As previously dis-
cussed, in the generalized iterations of both the RFPI and
BIHT algorithms, the encoder module can be expressed as:

f’];;nlcoder(m) — Sién(@:t - b), (41)

where Yo = {®,b}, and b represents the tunable vector of
quantization thresholds. We follow a similar approach to the

| LG-BIHT Deep Architecture - 94 (% ®,, K)
i

Zi+1
i

Encoder Module

(a)

LG-RFPI Deep Architecture - g4 (5 8,2,b)

Encoder Module

(b)

Fig. 2. An illustration of the computation dynamics in the i-th layer of the proposed (a) LG-BIHT and (b) LG-RFPI deep architectures, in which the trainable

parameters are highlighted in red color.

proposed L-RFPI-Based deep architecture and slightly over-
parameterize the iterations in (22a)-(22c), leading to the design
of the decoder function:

9o, (z;®, R, b) = sign (v) ®ReLU (|Jv| —), with (42a)
v =z — d;d, (42b)
d=—(R®)" p(R(®z-)), (42¢)

where ¢; = {7;,;} represents the parameters of the function
9s,» Ti € R™ denotes the sparsity inducing thresholds vector,
and ¢; represents the gradient step-size at iteration 7. Hence,
the proposed decoder function %e;(’der (z0) can be represented
in the same way as in (37), with Y5 = {¢i}f;01. Note that by
incorporating the non-zero quantization thresholds, there is no
need for an additional normalization term at each iteration. The
above iterations (comprising the decoder function) have the
same degree of freedom as L-RFPI iterations—an additional
L(n+ 1) — 2 model parameters compared to that of the base-
line G-RFPI iterations. Also, note the additional m degrees of
freedom that the encoder function offers in terms of tunable
quantization thresholds vector b (in addition to the sensing
matrix). Fig. 2(b) illustrates the computation dynamics of the
i-th layer of the proposed L-BIHT deep architecture.

C.4. LG-BIHT-Based Compressive Autoencoding:

We consider an encoder function f%“lc"der of the form (41),
where Y1 = {®, b} denotes the learnable sensing matrix and
arbitrary quantization thresholds. Additionally, we present an
over-parameterization of the Genralized BIHT iterations (see
Egs. (33)) and consider the resulting unfolded network as the
blueprint of our decoder. Namely, we define g4, : R™ — R"
as:

g¢i(z;q)7r7baK) :HK (U), with

v=2z+05®" (’I’ - si~gn(<I)Z - b)> ’

(43a)
(43b)

where ¢; = {J;} denotes the set of parameters of the function
gs,- Note that due to employing a non-zero thresholds vector,
we do not need the additional normalization layer as in (39) for
this case. Consequently, the decoder function f%zc"d“ can be
expressed in a similar manner as in (40), with Yo = {6i}iL:_01.
These iterations, similar to L-BIHT case, have an additional
(L — 1) degrees of freedom compared to that of the base-
line G-BIHT iterations; whereas, the encoder function has
an additional m tunable parameters in terms of the one-bit
quantization thresholds compared to that of the L-BIHT-based
AE. Fig. 2(a) illustrates the computation dynamics of the i-th
layer of the proposed LG-BIHT deep architecture.

In the next section, we discuss the training process of the
above proposed one-bit compressive autoencoders. Particu-
larly, we formulate a proper loss function that facilitates the
training of such unfolded deep architectures, and for each
model, we seek to jointly learn the set of parameters of
the entire network (i.e., the encoder and decoder function)
in a end-to-end manner using the available deep learning
techniques.

D. Loss Function Characterization and Training Method

The output of an autoencoder is the reconstructed signal

from the compressed measurements, i.e.
T = f_ll)_zcoder ° f_];_nlcoder(:13),
where © ~ D(x) and & denotes the input and output of the
AE, respectively. The training of an AE should be carried out
: : Decod Encod

by defining a proper loss function G (, Jaoder o faheoder (x))
that provides a measure of the similarity between the input
and the output of the AE. The goal is to minimize the
distance between the input target signal « and the recovered
signal & according to a similarity criterion. A widely-used
option for the loss function is the output MSE loss, i.e.,
Eyp@) {llz — &||3}, and hence, the training loss of such
a system can be formulated as:

G(@: @) = Egup(a) @ — 54 0 S04 ()13}

that is to be minimized over Y; and Y 5. Nevertheless, in deep
architectures with a high number of layers and parameters,
such a simple choice of the loss function makes it difficult to
back-propagate the gradients; in fact, the vanishing gradient
problem arises. Therefore, for the training of the proposed
AE, a better choice for the loss function is to consider the
cumulative MSE loss of the layers. As a result, one can also
feed-forward the decoder function for only | < L layers (a
lower complexity decoding), and consider the output of the [-th
layer as a good approximation of the target signal. For training,
one needs to consider the constraint that the gradient step-
sizes {0;}2°}, and the shrinkage thresholds {7;}~ 7} must
be non-negative. By parameterizing the decoder function on
the step-sizes and the shrinkage step thresholds, we need to
regularize the training loss function ensuring that the network
chooses positive step sizes and shrinkage thresholds at each
layer. With this in mind, we suggest the following loss
function for training the proposed one-bit compressive AE.

Let §i = gg; © Yp;_1 © - © gao © f.‘i.“lc"der(:v), and define the
loss function for training as

L-1
Gr(w®) = Y wille— gi(@)|3 + (44)
=0
accumulated MSE loss of all layers
L—-1 nL—1
A ReLU(—[d];) + A Y ReLU(—[r];),
=0 =0

regularization term for the step-sizes and shrinkage thresholds

where w; denotes the importance weight of choice for the out-
put of each layer, A > 0, [§]; = &;, and 7 = [r{, ..., 7L]
Note that as the information flows through the network, one
expects that as we progress layer by layer, the reconstruction
shows improvement. A reasonable weighting scheme for de-
signing the importance weights w; is to gradually increase
the importance weights as we proceed through the layers. In
this work, we consider a logarithmic weighting scheme, i.e.
w; = log(i+2),for i € {0,..., L —1}. Moreover, in training
the autoencoders based on the BIHT algorithm, we exclude the
last term in (44) as there is no shrinkage thresholds required
for these models.

As for the training procedure, our numerical investigations
showed that an incremental learning approach is most effective
for training of the proposed networks. The details of the
incremental learning method that we employed are as follows.
During the I-th increment round (for I € {0,...,L — 1}),
we seek to optimize the cost function G;(x,#) by learning
the set of parameters ¥; = Y; U {¢;}!_,. At each round
I, we perform a batch learning with mini-batches of size
B. After finishing the I-th round of training, the (I + 1)-th
layer will be added to the network, and the objective function
will be changed to G;y1(x,). Next, the entire network will
go through another batch-learning phase. Interestingly, in this
method of training, the learned parameters from the [-th round
Y; will be used as the initial values of the same parameters
in the next round.

IV. NUMERICAL RESULTS

In this section, we present various simulation results to in-
vestigate the performance of the proposed one-bit compressive
AEs and to further show the effectiveness of our training. For
training purposes, we randomly generate K -sparse signals of
length n = 128, i.e. * € R'?® where the non-zero elements are
sampled from N(0,1). Furthermore, we fix the total number
of layers of the decoder function to L = 30; equivalent
of performing only 30 optimization iterations of the form
(36), (38), (42), and (43). As for the sensing matrix (to be
learned), we assume ® € R512%128 The results presented here
are averaged over 128 realizations of the system parameters.
Similar to [2], we consider the case that m > n, due to the
focus of this study on one-bit sampling where usually a large
number of one-bit samples are available, as opposed to the
usual infinite-precision CS settings.

The proposed one-bit CS AEs are implemented using the
PyTorch library [40]. The Adam optimizer [41] with a learn-
ing rate of 10~ is utilized for optimization of parameters of

the proposed deep architectures. Due to the importance of re-
producible research, we have made all the codes implemented
publicly available along with this paper.'

As it was previously discussed in Sec. III-D, we employ an
incremental batch-learning approach with mini-batches of size
64 at each round [< 30, and a total number of 200 epochs
per round. For training of the the proposed AEs that are based
on the RFPI iterations, i.e., the L-RFPI and LG-RFPI deep
architectures, we uniformly sample the sparsity level of the
source signal from the set K € {16, 24, 32} for each training
point in the mini-batch. We evaluate the performance of the
proposed methods on target signals with K € {16,32}, as
well as K € {8,40} (which was not presented to the network
during the training phase). Moreover, due to the fact that the
BIHT method and the corresponding one-bit AEs (L-BIHT
and LG-BIHT) require the knowledge of the sparsity level
of the source signal a priori, there is no need to train the
network on various sparsity levels; i.e., the corresponding deep
architectures can be trained for a particular K. Hence, for
the L-BIHT and LG-BIHT deep architectures, we train the
network for source signals with X' = 16, and evaluate the
performace of the resulted networks on K € {16,24}.

In the sequel, we refer to s¢ = s/||s||2 as the normalized
version of the vector s. In all scenarios, in order to have a fair
comparison between the algorithms, the initial starting point
zo of the optimization algorithms are the same.

Performance of the proposed L-RFPI AE:

In this part, we investigate the performance of the proposed
L-RFPI-based AE in recovering the normalized source signal
x, i.e., recovering z¢.

Fig. 3 illustrates Mean Squared Error (MSE) for normalized
version of the recovered signal ¢ versus total number of
optimization iterations i, for 7 € {0,...,29}, and for sparsity
levels (a) K = 8, (b) K = 16, (¢c) K = 32, and (d)
K = 40. We compare the performance of the proposed L-
RFPI algorithm with the standard RFPI iterations in (8a)-(8d),
in the following scenarios:

e Case I: The RFPI algorithm with a randomly generated
sensing matrix whose elements are i.i.d. and sampled from
N(0,1), and fixed values for § and .

e Case 2: The RFPI algorithm where the learned ® is utilized,
and the values for § and « are fixed as in the previous case.
e Case 3: The RFPI algorithm with a randomly generated ®
(same as Case 1), however, the learned shrinkage thresholds
vector {7;}L7; is utilized with a fixed step-size.

e Case 4: The proposed one-bit L-RFPI AE method corre-
sponding to the iterations of the form (36a)-(36d), with learned
(I’, {51 iL:Bl, and {Ti ZL:?}

To have a fair comparison, we fine-tuned the parameters of
the standard RFPI method (Case 1), i.e., the step-size and the
shrinkage threshold «, using a grid-search method. It can be
seen from Fig. 3 that in all cases of K € {8,16, 32,40}, the
proposed L-RFPI method demonstrates a significantly better
performance than that of the RFPI algorithm (described in
Case 1)—an improvement of ~ 10 times in MSE outcome.
Furthermore, the effectiveness of the learned ® (Case 2), and

IThe code is also available at: https:/github.com/skhobahi/deep1bitVAE

https://github.com/skhobahi/deep1bitVAE

MSE(x, x?,) [dB]
MSE(x¢, x7,) [dB]

30 - Sparsity Level K — 32

MSE(x, x*;) [dB]

MSE(x?, x7;) [dB]

i) 5 20 25 10 5 20 5
Optimization lteration i Optimization lteration i

(a) (b)

i) 3) 5 5 0 5] 2
Optimization lteration i Optimization lteration i

(c) (d

Fig. 3. The performance of the proposed L-RFPI method compared to the RFPI algorithm for sparsity levels: (a) K = 8, (b) K = 16, (¢) K = 32, and (d)

K = 40.

Number of Layers L = 30 - Sparsity Level K = 8

Level K = 32

Number of Laye

A
| e N
\
2 R g [[4 IR
5 =3 g = S = N
7 7 = B \ B S
i o ~ vy == i .
[[%] -, (%) v Sea
= ~ s . = J = ==~
B L o e e i A R B ~— T ~—| h
™~ ~— I ——
Optimization Iteration i " Optimization Iteration i Optimization Iteration i Optimization Iteration i
(a) () (©) @

Fig. 4. The performance of the proposed LG-RFPI AE and the proposed G-RFPI method in recovering the amplitude information of the K- sparse signals

for sparsity levels: (a) K = 8, (b) K = 16, (¢) K = 32, and (d) K = 40.

the learned {7;} (Case 3) compared to the base algorithm
(Case 1), are clearly evident, as both algorithms with learned
parameters significantly outperform the original RFPI. Finally,
although we trained the network for K € {16, 24, 32} sparse
signals, it still shows very good generalization properties even
for K € {8,40} (see Fig. 3 (a) and (d)). This is presumably
due to the fact that the proposed L-RFPI-based AE is a hybrid
model-based data-driven approach that exploits the existing
domain knowledge of the problem as well as the available
data at hand. Furthermore, note that the proposed method
achieves a high accuracy very quickly and does not require
solving (7) for several instances as opposed to the original
RFPI algorithm—thus showing great potential for usage in
real-time applications.

Performance of the proposed LG-RFPI AE :

Next, we investigate the performance of the proposed LG-
RFPI AE (see Eqgs. (42a)-(42c)) and the G-RFPI algorihtm
(see Egs. (22a)-(22c¢)) that we specifically designed for incor-
porating arbitrary quantization thresholds at data acquisiton.
We investigate the performance of the proposed method in
both cases of recovering the amplitude information as well as
the normalized signal.

Fig. 4 illustrates the MSE between the source signal « and
the recovered signal &; versus total number of optimization
iterations 4, for ¢ € {0,...,29}, and for sparsity levels (a)
K =8, (b) K =16, (c) K =32, and (d) K = 40. Similar to
the previous case, we consider the following scenarios:

e Case I: The proposed G-RFPI algorithm with a randomly
generated sensing matrix and quantization threhsolds vector,
whose elements are i.i.d. and sampled from N(0, 1), and fixed
values for ¢ and a.

e Case 2: The proposed G-RFPI algorithm where the learned

Number of Layers L = 30 - Sparsity Level K = 24

\ =+=++ Standard RFPI
W === The Proposed G-RFPI Method ||

\i\ —-+ The Proposed LG-RFPI Method

—— The Proposed L-RFPI Method

Optimization lteration i

Fig. 5. The performance of the proposed LG-RFPI AE and the proposed
G-RFPI method in recovering the normalized K-sparse signals for sparsity
level K = 24.

sensing matrix ® and quantization thresholds vector b are
utilized, and the values for § and « are fixed as in the previous
case.

e Case 3: The proposed one-bit LG-RFPI AE method corre-
sponding to the iterations of the form (42a)-(42c), with the
learned ®, b, {4; Z-Lgol, and {7; f;ol.

Note that the focus of this part is on recovering the ampli-
tude information of the underlying K -sparse signal by means
of using arbitrary quantization thresholds. Although the RFPI
method and the proposed L-RFPI AE can only recover the
normalized signal ¢ = x/||z||, we further provide the per-
formance of the L-RFPI method (that significantly outperforms
the RFPI method) in recovering the amplitude information
for comparison purposes. It can be observed from Fig. 4
that the proposed G-RFPI algorithm with randomly generated
sensing matrix and quantization thresholds (Case 1) provides
good accuracy in recovering the amplitude information of
the true signal for sparsity levels K € {8,16,32,40}. This

ard BIHT
== BIHT Algorithm - Random ®, Learned 0
= BIHT Algorithm -
The Proposed L-Bll

MSE(x", x7) [dB]

MSE(x, %) [dB
|

Optimization lteration i

(a) (b)

Optimization lteration i

Fig. 6. The performance of the proposed L-BIHT method compared to the
base-line BIHT algorithm for sparsity levels: (a) K = 16 and (b) K = 24.

is in contrast to the RFPI algorithm and the corresponding
L-RFPI AE where the amplitude information is lost due to
zero quantization thresholds. More precisely, the proposed
G-RFPI algorithm outperforms the RFPI and the L-RFPI
algorithm in terms of recovering the amplitude information
of the signal. One can observe that even with a randomly
generated quantization thresholds (i.e., without learning them),
the proposed G-RFPI method achieve a significantly lower
MSE in terms of recovering the amplitude information of
the source signal as compared to the RFPI and the proposed
L-RFPI method. Hence, the proposed G-RFPI method can
be used as an stand-alone algorithm for one-bit compres-
sive sensing settings with non-zero quantization thresholds,
where both finding the direction of the source signal and the
amplitude information is of great interest. Next, we explore
the effect of learning the distribution-specific (data-driven)
sensing matrix and the quantization thresholds (Case 2). It
is evident from Fig. 4 that compared to the vanilla G-RFPI
method, one can significantly achieve a lower MSE in terms
of recovering the amplitude information by learning a proper
sensing matrix and the quantization thresholds and utilizing
them during the data-acquisition process. Finally, it can be
seen from Fig. 4 that the proposed LG-RFPI AE (Case 3)
significantly outperforms its counterparts by achieving a much
lower MSE very quickly. Moreover, the proposed LG-RFPI
AE shows strong generalization properties for unseen sparsity
levels K € {8,40} (see Fig. 4 (b) and (d)). The fact that such
architectures show great performance in generalization is due
to the model-driven nature of the proposed deep networks.
We conclude this part by comparing the performance of the
proposed LG-RFPI, G-RFPI, and L-RFPI AEs in recovering
the normalized version of the signal . Fig. 5 illustrates the
MSE between the normalized source signal and the recov-
ered signal versus number of iterations i, i.e. MSE(md,:i:g),
for a sparsity level of K = 24. It can be observed from
Fig. 4 that the proposed methods outperform the standard
RFPI iterations and achieve a high accuracy in recovering
x?. Moreover, the proposed L-RFPI AE shows a slightly
better performance than that of the LG-RFPI method. This
is presumably due to the fact that the L-RFPI iterations and
the corresponding deep architecture are specifically designed
and tuned for recovering the normalized source signal while
the proposed G-RFPI and LG-RFPI algorithms are designed
for recovering the amplitude information of the source signal.
Nevertheless, the MSE difference between the LG-RFPI and

C 10 20 30) 10 20 30
Optimization Iteration i Optimization Iteration i

(@ (b)

Fig. 7. The performance of the proposed G-BIHT and the corresponding LG-
BIHT AE in recovering the amplitude information of the signal for sparsity
levels: (a) K = 16, and (b) K = 24.

L-RFPI methods in recovering x?is negligible, and hence, in a
non-zero quantization thresholds setting, it is beneficial to use
the proposed LG-RFPI AE as it shows significant improvement
in the performance of recovering the amplitude information
while maintaining a high performance in recovering x¢ as
well.

Performance of the proposed L-BIHT AE:

In this part, we investigate the performance of the proposed
L-BIHT AE, and compare our results with the standard BIHT
algorithm. Note that similar to the RFPI method and the
proposed L-RFPI AE, the BIHT algorithm considers b = 0 at
the time of data acquisition. Hence, we investigate the perfor-
mance of the proposed method in recovering the normalized
source signal, i.e. z¢. In particular, we provide the simulation
results for the following cases:

e Case 1: The BIHT algorithm with a randomly generated
sensing matrix whose elements are i.i.d. and sampled from
N(0,1), and fixed value for 4.

e Case 2: The BIHT algorithm with a randomly generated ®
(same as Case 1); however, learned gradient step-sizes d; are
used at each iteration <.

e Case 3: The BIHT algorithm where the learned @ is utilized
and the value for the step-size J is fixed as in Case 1.

e Case 4: The proposed one-bit L-BIHT AE method corre-
sponding to the iterations of the form (38a)-(38b), with the
learned ® and {5;} 2.

Fig. 6 demonstrates the MSE between normalized source
signal x¢, and the recovered signal #¢ versus the number
of optimization iterations ¢, for signals with sparsity levels
(@) K = 16 and (b) K = 24. Note that for learning the
parameters of the proposed L-BIHT algorithm, we trained the
corresponding deep architecture on the sparsity level K = 16,
and we check the generalization performance of the learned
parameters for the case of K = 24. It can be seen from Fig.
6 that in both cases of K € {16,24} the proposed L-BIHT
algorithm demonstrates a significantly better performance than
that of the standard BIHT algorithm (Case 1). Moreover,
the effectiveness of the learned step-sizes {61}52_01 (Case 2),
and the learned sensing matrix ® (Case 3) compared to the
base-line vanilla BIHT algorithm (Case 1) are evident. In
particular, the learned step-sizes (Case 2) results in a fast
descent while the learned ® (Case 3) leads to a lower MSE
compared to Case 2. In addition, we provided the performance
of the standard RFPI algorithm for comparison purposes. It

Number of Layers L = 30 - Sparsity Level Number of La

e —

0 10 20 30 0 10 20 30
Optimization Iteration i Optimization Iteration i

(a) (b)

Fig. 8. The performance of the proposed G-BIHT and the corresponding
LG-BIHT AE in recovering the normalized signal, i.e. &4, for sparsity levels:
(a) K = 16, and (b) K = 24.

can be seen from Fig. 6 that the BIHT algorithm with and
without the learned parameters achieves a better accuracy in
recovering the direction of the source signal compared to the
RFPI method. Also, a comparison between Fig. 6 (a) and Fig. 3
(b) reveals the fact that the proposed L-BIHT AE demonstrates
a far better performance than that of the proposed L-RFPI
AE. This is due to the fact that the BIHT algorithm and the
corresponding proposed L-BIHT AE, exploits the knowledge
of the sparsity level K of the source signal (note the mapping
function H i used in (38a) and (24b)). One can further observe
that even for the unseen case of K = 24, the proposed
method generalizes very well and maintains its accuracy. This
is due the model-driven nature of the proposed L-BIHT AE
architecture. It is worth mentioning that it can be observed
from Fig. 6 that the proposed L-BIHT method converges very
fast (in 10 iterations), achieving a high accuracy—making it a
great candidate for real-time applications. Of course, the trade-
off between using the L-RFPI and L-BIHT is implicit in the
knowledge of the sparsity level of the signal. For applications
where K is known beforehand, the proposed L-BIHT can be
used in that it shows higher accuracy compared to the other
methods. However, the L-RFPI methodology is more flexible
as it does not require knowing the sparsity level of the signal
a priori.

Performance of the proposed LG-BIHT AE:

Finally, we investigate the performance of the proposed G-
BIHT method (see Egs. (33a)-(33b)) and the corresponding
one-bit compressive LG-BIHT AE (see Eqgs. (43a)-(43b))
that are specifically designed to handle non-zero quantization
thresholds b. In particular, we are interested in evaluating
the performance of the proposed methods in recovering the
amplitude information of the source K-sparse signal. Hence,
for this part, we check the MSE between the true signal
x, and the recovered signal &; from the G-BIHT and LG-
BIHT methods for each iteration 7. In addition, we provide
the results for recovering the direction of the source signal ¢
as well. Specifically, we provide the simulation results for the
following cases:

e Case I: The proposed G-BIHT algorithm with a randomly
generated sensing matrix and quantization thresholds vector
where the elements of both are i.i.d. and sampled from
N(0,1), and fixed value for {5;} ="

e Case 2: The proposed G-BIHT algorithm, where the learned
sensing matrix ® and quantization thresholds b are utilized

Number of Layers/Iterations L = 30 Number of Layers/Iterations L = 30

—-5.0

-7.5
—10.0
=125
< —15.0
—17.5
—20.0
—22.5
—25.0

[dB]

X, X

MSE(x, 2¢) [dB]

MSE(

= = Standard RFPI Method
= The Proposed L-RFPI Deep Architecutre

= The Proposed LG-RFPI Deep Architecutre
= = The Proposed G-RFPI Method

4 8 1216 20 24 28 32 36 40 44 48 52 56 60
Sparsity Level

(@ (b)

4 8 1216 20 24 28 32 36 40 44 48 52 56 60
Sparsity Level K

Fig. 9. The generalization performance of (a) the proposed L-RFPI deep
architecture compared to the standard RFPI method in recovering the direction
information, and (b) the proposed LG-RFPI deep architecture and the proposed
G-RFPI method in recovering the amplitude information of the K-sparse
signals for sparsity levels K € {4,5,6,---,64}.

and the values for {d;}~ ;' are fixed as in the previous case.
e Case 3: The proposed one-bit LG-BIHT AE method corre-
sponding to the iterations of the form (43a)-(43b), with learned
®, b and {6;} .

Fig. 7 illustrates the MSE between the true signal x and the
recovered signal &; versus optimization iteration ¢ for sparsity
levels (a) K = 16 and (b) K = 24. We further provide the nu-
merical results for the proposed LG-RFPI AE and the proposed
G-RFPI iterations for comparison. It can be seen from Fig. 7
that the proposed G-BIHT algorithm with randomly generated
latent-variables (Case 1) significantly outperforms its G-RFPI
counterpart, and achieves a high accuracy very quickly. On
the other hand, the proposed LG-RFPI still achieves a lower
MSE compared to the vanilla G-RFPI method. In addition,
a comparison between the performance of the proposed G-
BIHT algorithm with learned ® and b (Case 2) and the
proposed LG-RFPI AE and vanilla G-BIHT (Case 1) reveals
the effectiveness of the learned parameters and the power of
the proposed G-BIHT algorithm. Namely, by utilizing only the
learned ® and b and by using a fixed step size for the G-BIHT
algorithm, one can achieve a superior performance than that
of the LG-RFPI (where all of the learned variables are in use)
and the vanilla G-BIHT method. Finally, it can be observed
from 6(a)-(b) that the proposed LG-BIHT algorithm (Case 3)
significantly outperforms the other methods as it achieves a
much lower MSE very quickly, specifically, compared to the
proposed LG-RFPI AE. The superior performance of the LG-
BIHT algorithm and the corresponding LG-BIHT AE is due
the fact that we are exploiting the knowledge of the sparsity
level K present in the signal. As discussed before, if the
sparsity level is known a priori, it is beneficial to use either
the G-BIHT algorithm (when one do not wish to perform any
learning) or the proposed LG-BIHT methodology. It is worth
mentioning that similar to the previously investigated methods,
the proposed LG-BIHT generalizes very well for K = 24 (see
Fig. 7(b)) even though the sparsity level was not revealed to
the network during the training phase.

Fig. 8 demonstrate the MSE between the direction of the
source signal, i.e. x4, and the recovered direction &9 versus
optimization iteration ¢, for sparsity levels of (a) K = 16
and (b) K = 24. It can be seen from Fig. 8 that the
proposed LG-BIHT method outperforms both the LG-RFPI
method, and furthermore, it achieves a similar MSE to that

TABLE I
Metrics L-BIHT LG-BIHT L-RFPI LG-RFPI Random &
w(®) 0.0415 0.0904 0.0760 0.0852 0.2444
|IM—1|2 21716 87711 6.6117 8.0244 31.3032

of the proposed L-RFPI method. However, the convergence
of LG-BIHT is much faster than that of the L-RFPI method.
Furthermore, the proposed L-BIHT algorithm still achieves a
superior performance than that of the other methods both in
terms of convergence speed and accuracy. This is presumably
due to the fact that the L-BIHT method is specifically designed
and learned to have a high accuracy in finding normalized true

signal 4.

Generalization of the LG-RFPI and L-RFPI Methods:
In this part, we analyze the generalization performance of
the proposed LG-RFPI and L-RFPI deep architectures. We
consider the same simulation setup as in the previous cases,
i.e. both architectures are assumed to have L = 30 layers. We
performed the training of both architectures on a dataset con-
sisting of K -sparse signals where the sparsity level is sampled
uniformly from the set K € {4,8,12, 16,20}, and we evaluate
the generalization performance of both architectures on K-
source signals with sparsity levels K € {4,5,6, - ,64}.

Fig. 9(a) demonstrates the MSE between the direction of
the true source signal, i.e. x4, and the recovered direction

24 versus the sparsity level K = ||z for the proposed
L-RFPI deep architecture. Moreover, Fig. 9(b) demonstrates
the MSE between the the true source signal x and the
recovered signal & versus the sparsity level K for the proposed
LG-RFPI deep architecture, and the proposed base-line G-
RFPI algorithm (provided here for comparison purposes), both
specifically designed to recover the amplitude information of
the source signal. It can be seen from both Figs. 9(a) and
9(b) that the performance of the proposed L-RFPI and LG-
RFPI methodologies is far superior to that of the standard
model-based RFPI methods and the proposed G-RFPI algo-
rithm across all sparsity levels. Interestingly, although the
proposed deep architectures have been trained only on the
sparsity levels K € {4n}>_,, they generalized very well to
higher sparsity levels as well, while outperforming the model-
based algorithms. Such a good generalization performance
is expected due to the model-based nature of the proposed
architecture. This is in contrast to the conventional black-box
deep learning models where the generalization performance
usually degrades significantly as the input deviates from the
distribution of the data points considered for training.

Coherence analysis of the learned sensing matrices:

In this part, we give a detailed analysis of the quality of the
learned sensing matrices obtained by employing each of the
proposed methodologies.

In order to quantify the quality of the learned task-specific
sensing matrices, we make use of the mutual coherence metric
defined in (2) as a figure of merit for the learned sensing matri-
ces by the proposed methodologies. Fig. 10 demonstrates the
distribution of the mutual coherence coefficients of the sensing
matrices obtained by the proposed deep architecture as well

as the mutual coherence coefficients of a randomly generated
sensing matrix (used in the previous numerical results). Fur-
thermore, a detailed numerical analysis of ;(®) and the Gram
matrix M is provided in Table I. It can be clearly observed
from Fig. 10 and Table I that the proposed methodologies
result in task-specific sensing matrices with considerably lower
coherence coefficients as compared to that of a randomly
generated one. In Particular, the mutual coherence p(®) is sig-
nificantly lower for the proposed methodologies as compared
to a purely random ®. These observations also support the
superior performance of the proposed methodologies in terms
of signal reconstruction accuracy. In addition, the Gram matrix
associated with the learned sensing matrices admits a structure
far closer to the identity as compared to a random matrix (see
Table). As it was previously mentioned, the design of sensing
matrices with low mutual coherence is the subject of numerous
works in various fields and directly carrying out such a
design is a difficult task in general. Interestingly, although
the framework does not rely on explicit regularization or a
tailored optimization objective to reduce the mutual coherence,
the proposed methodology learns sensing matrices with a
very low mutual coherence, i.e., the proposed methodology is
implicitly biased towards learning high-quality task-specific
sensing matrices. This is presumably due to the model-based
nature of the proposed deep architectures.

V. CONCLUSION

In this paper, we considered the problem of one-bit com-
pressive sensing and proposed a novel hybrid model-driven
and data-driven autoencoding scheme that allows us to jointly
learn the parameters of the measurment module (i.e., the
sensing matrix and the quantization thresholds) and the latent-
variables of the decoder (estimator) function, based on the un-
derlying distribution of the data. In broad terms, we proposed a
novel methodology that combines the traditional compressive
sensing techniques with model-based deep learning—resulting
in interpretable deep architectures for the problem of one-
bit compressive sensing. In addition, the proposed method
can handle the recovery of the amplitude information of the
signal using the learned and optimized quantization thresholds.
Our simulation results demonstrated that the proposed hybrid
methodology is superior to the state-of-the-art methods for the
problem of one-bit CS in terms of both computional efficiency
and accuracy.

REFERENCES

[1] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applica-
tions. Cambridge university press, 2012.

[2] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive sensing,” in
2008 42nd Annual Conference on Information Sciences and Systems,
March 2008, pp. 16-21.

[3] J. N. Laska, Z. Wen, W. Yin, and R. G. Baraniuk, “Trust, but verify: Fast
and accurate signal recovery from 1-bit compressive measurements,”
IEEE Transactions on Signal Processing, vol. 59, no. 11, pp. 5289—
5301, Nov 2011.

[4] L.Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Robust 1-
bit compressive sensing via binary stable embeddings of sparse vectors,”
IEEE Transactions on Information Theory, vol. 59, no. 4, pp. 2082—
2102, April 2013.

Proportion (%)

Method: L-BIHT Method: LG-BIHT

Method: L-RFPI

Method: LG-RFPI Random Sensing Matrix_®

Proportion (%)
Proportion (%)

5
L

0.00 025 000

025

0.00

0.05 0 015 0
Normalized Coherence Coefficients

(d)

005 0 o
Normalized Coherence Coefficients

(a)

005 0 o
Normalized Coherence Coefficients

(©)

Proportion (%)
Proportion (%)

025 000 025 025

0.05 o o
Normalized Coherence Coefficients

(e)

0.05 0 o 0
Normalized Coherence Coefficients

(@

Fig. 10. Distribution of the mutual coherence coefficients associated with the sensing matrix learned through (a) the proposed L-BIHT method (b) the proposed
L-GBIHT method, (c) the proposed L-RFPI and (d) the proposed L-GBRFPI method, where (¢) demonstrates the distribution of the mutual coherence coefficient
of a random generated sensing matrix ® used in the numerical sections. It can be observed that the proposed methodologies implicitly learn sensing matrices
with very low mutual coherence as compared to that of a randomly generated ®.

[5]

[6]

[7]

[9]

[10]

(11]

(12]

[13]
[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Movahed, A. Panahi, and G. Durisi, “A robust RFPI-based 1-bit com-
pressive sensing reconstruction algorithm,” in 2012 IEEE Information
Theory Workshop, Sep. 2012, pp. 567-571.

M. Yan, Y. Yang, and S. Osher, “Robust 1-bit compressive sensing
using adaptive outlier pursuit,” /[EEE Transactions on Signal Processing,
vol. 60, no. 7, pp. 3868-3875, July 2012.

P. Xiao, B. Liao, and J. Li, “One-bit compressive sensing via Schur-
concave function minimization,” IEEE Transactions on Signal Process-
ing, vol. 67, no. 16, pp. 4139-4151, Aug 2019.

K. Knudson, R. Saab, and R. Ward, “One-bit compressive sensing with
norm estimation,” IEEE Transactions on Information Theory, vol. 62,
no. 5, pp. 2748-2758, 2016.

E. J. Candés and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30,
2008.

A. S. Bandeira, E. Dobriban, D. G. Mixon, and W. F. Sawin, “Certi-
fying the restricted isometry property is hard,” IEEE transactions on
information theory, vol. 59, no. 6, pp. 3448-3450, 2013.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Transactions on information theory, vol. 52, no. 2, pp. 489—
509, 2006.

E. J. Candeés and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203-4215,
2005.

S. Foucart and H. Rauhut, “A mathematical introduction to compressive
sensing,” Bull. Am. Math, vol. 54, pp. 151-165, 2017.

M. Elad, Sparse and redundant representations: from theory to applica-
tions in signal and image processing. New York, NY: Springer, 2010.
——, “Optimized projections for compressed sensing,” IEEE Transac-
tions on Signal Processing, vol. 55, no. 12, pp. 5695-5702, 2007.

T. Strohmer and R. W. Heath, “Grassmannian frames with applications
to coding and communication,” Applied and Computational Harmonic
Analysis, vol. 14, no. 3, pp. 257-275, 2003.

Y. C. Eldar and G. D. Forney, “Optimal tight frames and quantum
measurement,” IEEE Transactions on Information Theory, vol. 48, no. 3,
pp- 599-610, 2002.

P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff,
“Fast approximation of matrix coherence and statistical leverage,” The
Journal of Machine Learning Research, vol. 13, no. 1, pp. 3475-3506,
2012.

H. Hu, M. Soltanalian, P. Stoica, and X. Zhu, “Locating the few:
Sparsity-aware waveform design for active radar,” IEEE Transactions
on Signal Processing, vol. 65, no. 3, pp. 651-662, 2016.

Z. Li, W. Xu, X. Zhang, and J. Lin, “A survey on one-bit
compressed sensing: theory and applications,” Frontiers of Computer
Science, vol. 12, no. 2, pp. 217-230, Apr 2018. [Online]. Available:
https://doi.org/10.1007/s11704-017-6132-7

Y. Plan and R. Vershynin, “Robust 1-bit compressed sensing and
sparse logistic regression: A convex programming approach,” IEEE
Transactions on Information Theory, vol. 59, no. 1, pp. 482494, 2012.
U. S. Kamilov, A. Bourquard, A. Amini, and M. Unser, “One-bit mea-
surements with adaptive thresholds,” IEEE Signal Processing Letters,
vol. 19, no. 10, pp. 607-610, 2012.

K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Recon-
net: Non-iterative reconstruction of images from compressively sensed
measurements,” arXiv preprint arXiv:1601.06892, 2016.

M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, “Deep fully-
connected networks for video compressive sensing,” Digital Signal

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

Processing, vol. 72, pp. 9 - 18, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1051200417302130
A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach
to structured signal recovery,” in 2015 53rd Annual Allerton Conference
on Communication, Control, and Computing (Allerton), Sep. 2015, pp.
1336-1343.

N. Shlezinger, Y. C. Eldar, and M. R. Rodrigues, ‘“Hardware-limited
task-based quantization,” IEEE Transactions on Signal Processing,
vol. 67, no. 20, pp. 5223-5238, 2019.

Y. Liao, N. Farsad, N. Shlezinger, Y. C. Eldar, and A. J. Goldsmith,
“Deep neural network symbol detection for millimeter wave communi-
cations,” arXiv preprint arXiv:1907.11294, 2019.

N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “Viterbinet:
A deep learning based Viterbi algorithm for symbol detection,” arXiv
preprint arXiv:1905.10750, 2019.

Y. Wu, M. Rosca, and T. Lillicrap, “Deep compressed sensing,” arXiv
preprint arXiv:1905.06723, 2019.

J.-T. Chien and C.-H. Lee, “Deep unfolding for topic models,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 2,
pp. 318-331, 2017.

S. Khobahi, N. Naimipour, M. Soltanalian, and Y. C. Eldar, “Deep
signal recovery with one-bit quantization,” in 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May
2019, pp. 2987-2991.

J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding:
Model-based inspiration of novel deep architectures,” arXiv preprint
arXiv:1409.2574, 2014.

S. Wisdom, J. Hershey, J. Le Roux, and S. Watanabe, “Deep unfolding
for multichannel source separation,” in /EEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2016,
pp. 121-125.

O. Solomon, R. Cohen, Y. Zhang, Y. Yang, Q. He, J. Luo, R. J. G. van
Sloun, and Y. C. Eldar, “Deep unfolded robust PCA with application
to clutter suppression in ultrasound,” [EEE transactions on medical
imaging, 2019.

S. Khobahi, A. Bose, and M. Soltanalian, “Deep radar waveform design
for efficient automotive radar sensing,” in 2020 IEEE 11th Sensor Array
and Multichannel Signal Processing Workshop (SAM). 1EEE, 2020, pp.
1-5.

Y. Plan and R. Vershynin, “One-bit compressed sensing by linear
programming,” Communications on Pure and Applied Mathematics,
vol. 66, no. 8, pp. 1275-1297, 2013. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21442

Y. Shen, J. Fang, H. Li, and Z. Chen, “A one-bit reweighted iterative
algorithm for sparse signal recovery,” in 2013 I[EEE International
Conference on Acoustics, Speech and Signal Processing, May 2013,
pp. 5915-5919.

N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in optimization, vol. 1, no. 3, pp. 127-239, 2014.

T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and computational harmonic analysis,
vol. 27, no. 3, pp. 265-274, 2009.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

https://doi.org/10.1007/s11704-017-6132-7
http://www.sciencedirect.com/science/article/pii/S1051200417302130
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21442
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21442

	Introduction
	Background and Relevant Prior Art
	Contributions of the Paper

	System Model and Problem Formulation
	Renormalized Fixed-Point Iteration (RFPI)
	Binary Iterative Hard Thresholding Algorithm (BIHT)

	The Proposed Model-Based Deep Learning Models for One-Bit CS
	Structure of the Encoding Module
	Structure of the Decoding Module
	The Proposed One-Bit Compressive Autoencoding Approach
	Loss Function Characterization and Training Method

	Numerical Results
	Conclusion
	References

