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Abstract— Accurate and objective monitoring of a fracture’s 

healing process is both essential to patient quality of care, as well 

as determination of the chances of nonunion and postoperative 

intervention. In recent years, due to industrialization, injury 

rates in developing countries, notably road traffic injuries 

(RTIs), have drastically increased. This has led to many fracture 

patients in ill- equipped countries, such as Kenya with only 60 

orthopedic surgeons for a population of 36.9 million, not having 

any rigorous rehabilitation protocol or quality postoperative 

care. This work focuses on the development of a telemetric gait 

analysis insole that works in conjunction with a mobile 

application and convolutional neural network. This technique 

automates the tedious process of tracking postoperative fracture 

rehabilitation by analyzing ground reaction forces (GRFs) of 

patients which correlate well with weight-bearing ability, 

fracture healing, and delayed union. 4 force-sensitive resistors 

(FSRs) are placed in the insole under the primary areas for force 

measurement. An Arduino microcontroller compiles the data 

and sends it to a Python program via a Bluetooth module. The 

Python program performs peak analysis on the data to 

determine the average peak Vertical Ground Reaction Force 

(VGRF) of the strides to measure if a patient is properly healing. 

As a further step, we employ a 1D-CNN to differentiate between 

healed and healing patients to automatically find which patients 

have nonunions. With these methodologies we are able to 

automatically diagnose rural patients with nonunions based on 

only ground reaction force measurements at minimal costs and 

without an on-site physician. 
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I. INTRODUCTION  

A. Motivation 

1) Lower Extremity Injury Prevalence: The economic 

boom occurring in developing countries comes at the cost of 

new and challenging problems, including the rapid increase 

of Road Traffic Injuries (RTIs) with the urbanization of rural 

areas. There is often a lack of legislation regulating the 

education of the local population on how to navigate the new 

infrastructure being constructed in their areas. This results in 

a higher prevalence of fractures and lower-extremity injuries 

in developing countries, accounting for more than 1.27 

million deaths per year, and more deaths than HIV/AIDS, 

Tuberculosis, and Malaria combined [1]. However, the 

number of RTI injuries is more jarring, with 20-50 injured 

due to RTIs for every RTI related death [2].These 60 million 

injured patients expected in the next ten years place a 

significant burden on local, unequipped medical facilities [3]. 

This problem of exorbitant amounts of injuries is compounded 

by the lack of qualified specialists and an excessive number of 

under-qualified physicians referred to as Rural Medical 

Practitioners (RMPs) who  have no formal education. These 

RMPs tend to over prescribe painkillers, in place of legitimate 

procedures, taking advantage of their uneducated clientele [4]. 

 

2) Delayed-Union and Nonunion: Approximately 5% to 

10% of fractures worldwide proceed to nonunion, which is 

the improper bonding of a fracture (Fig. 1)[5]. This leads to 

permanent disabilities and a significantly higher use of 

healthcare resources, which often cannot be provided. 

Classically, the reasons for delayed-union and nonunion are 

complications including inadequate reduction, loss of blood 

supply, and infection, all of which are extremely prevalent in 

developing areas [6]. A well designed postoperative 

rehabilitation protocol can be implemented to identify any 

stagnations in the healing process; however, physicians in 

rural areas often cannot provide quality postoperative care, 

leaving their patients without outpatient facilities after 

surgery. 

 
Fig. 1. X-Ray of a Humeral Nonunion[7] 
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3) Benefits of Early Partial Weight-Bearing: Early 

weight-bearing is often absent from many rural rehabilitation 

protocols, with “just rest” being prescribed, as that is 

mistakenly seen as the best way to heal a fracture. However, 

early partial weight-bearing has been found to improve 

fracture healing, maintain bone stock and density, and keep 

the fracture and implants aligned early in the recovery 

process [8]. This research aims to promote early partial 

weight-bearing by providing the tools to safely execute the 

process. 

B. Background 

1) Telemetric Medicine: Telemetric medicine is a 

budding subfield of biomedical engineering that allows for 

patient-doctor communication from ranges of thousands of 

miles away. This has massive potential in addressing the 

problem of a lack of qualfied specialists, by giving under-

served communities access to the qualfied specialists that 

they need. Currently telemetric medicine has been limited to 

first world countries, where elderly and disabled patients who 

are not capable of traveling to a hospital can be provided with 

quality care from the comfort of their home. However, 

current trends have shown rapid increases in the number of 

smartphones available to rural populations in developing 

countries due to a decline in phone prices. This has allowed 

for fast data transmission to these areas, as vaccine reminders 

and natural disaster alerts have become commonplace. This 

research takes advantage of this framework by allowing for 

direct patient to doctor communication over long distances. 
 

2) Review of Gait Analytics Systems: Currently a 

majority of gait analysis is performed in two specific 

methods: a laboratory with force plates and 3-D motion 

tracking or in a doctor’s office with a clinician making visual 

observations. The first method is extremely expensive and 

provides highly specialized and unnecessary data points 

while the second method is very subjective and is often not 

repeatable over several trials and patient visits. The benefits 

of insole-based gait analytics have been identified as an cheap 

and accurate alternative to laboratory and clinician-based gait 

analysis. Gait analysis systems measure a range of data types 

including foot angle, stride distance, step distance, step count, 

cadence, and speed [9]. Accelerometers are used for stride 

length and velocity, gyroscopes are used for orientation, flex-

sensors are used for plantar and dorsi-flexion, electric field 

sensors are used for height above the floor, and finally force-

sensitive resistors are used for force parameters which is the 

focus of this work[10]. 

 

3) Weight-Bearing Ability: Weight-bearing ability of the 

afflicted limb has been shown to greatly correlate with 

radiological evidence of fracture union and overall healing 

(Fig. 2) [5]. According to a study by S. Morshed, 84% of 

patients indicated that weight-bearing ability was the most 

important clinical criteria for diagnosis of delayed union and 

nonunion. Despite weight-bearing ability being the most 

critical factor in the diagnosis of nonunion, it is not often used 

due to the subjectivity of clinical observation and patient 

feedback being very unreliable and incomparable over the 

long term. This research presents an objective method to track 

weight-bearing ability, and allows for repeatability- crucial in 

the tracking of a patient’s rehabilitation protocol. 

 

 
Fig. 2. Graph depicting relationship between weight-bearing and fracture 
healing [11] 

 

4) Ground Reaction Force and Biomechanics: The 

method utilized to measure weight-bearing ability is the 

temporospatial gait parameter known as vertical ground 

reaction force (VGRF). In biomechanics, it is defined as the 

force exerted by the ground on the body, when in contact with 

the ground. Research has also suggested that ground reaction 

forces correlate well with callus mineralization and, more 

importantly, weight-bearing [12]. Therefore, an increase in 

ground reaction force indicates increased healing for the 

patient. While weight-bearing is subjective, ground reaction 

force measurements provide healthcare providers with a 

singular statistic that can be stored and automatically 

processed by computers in a setting where human 

involvement is scarce and valuable. The VGRF graph (Fig.3) 

displays the active peak, the point of greatest force in the gait 

cycle, which is the target statistic the insole aims to measure. 

 

 
Fig. 3. Vertical Ground Reaction Force graph over a single stride [13] 

 

 
Fig. 4. 1-D CNN architecture for time series classification [14] 

 

5) Review of 1-D Convolutional Neural Network and 

Time-Series Classification: For further analysis of a patient’s 

gait patterns we utilized a 1-Dimensional Convolutional 
This article is based upon work supported by the National Science 
Foundation under Grant No. 1818694. 
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Neural Network (CNN) that was designed for the use case of 

time series classification. Traditionally, CNNs have been 

used for imaging classification (2-D), and have more recently 

transitioned to speech and time series classification(1-D) 

[14]. In this work a time series is defined as a sequence of 

univariate data points indexed in the order of time such as the 

VGRF values depicted in Fig. 3. Time series such as ECG 

values are some of the most common datatypes in medical 

research with 1-D CNNs being utilized on ECGs extensively 

[15].  The CNN architecture utilized in this work is the Omni-

scale CNN (OS-CNN) which is novel in that the model treats 

the identification of the kernel size as a learning process 

rather than a hyper-parameter [16]. An input time-series is 

passed through three convolution layers that learn weights, 

then a global average pooling layer that down samples, and 

then a fully-connected layer for classification (Fig. 4.).  

II. MATERIALS AND INSOLE DESIGN 

A. Insole Design Criteria 

The insole was chosen as the primary data acquisition 
device due to the low relative cost in comparison to force 
plates. Force plates are traditionally used in gait analysis but 
are not viable due to their extremely high cost. The insole was 
also designed to be less than 300 grams, as any heavier weight 
has been found to greatly alter gait parameters, resulting in 
inaccurate data [10]. Small, individual sensors were used in 
place of larger sensors, minimizing hysteresis and inaccuracy 
in measurements across multiple trials.  

B. Force-Sensitive Resistors and Placement 

The insole uses 4 force-sensitive resistors (FSRs) which 
utilize polymer-thick film technology and provide a resistance 
differential based on the force exerted. Polymer-thick film 
sensors are constructed by the deposition of several dielectric 
layers via a screen-printing process, making them extremely 
cheap and lightweight compared to their capacitive sensor 
counterparts. To maximize cost efficiency, 4 locations on the 
sole of the foot, which were identified via a pedobarograph 
(Fig. 5) to have the greatest concentration of force, are where 
the FSRs would be placed. The locations on the sole of the foot 
determined to have the greatest concentrations of force were 
under the big toe, metatarsal head I, metatarsal head V, and the 
heel [17]. 

 

Fig. 5. Pedobarograph representing areas of highest force concentration [18] 

C. Hardware Structure and Data Pathway 

The data from the FSRs is then sent to a Velcro strap 

ankle-mounted Arduino Nano microcontroller. The Arduino 

microcontroller compiles the data and uses a Bluetooth 

module to send the data via Bluetooth low energy signals 

(Fig. 6). In gait analysis, wireless technology is heavily 

utilized and beneficial as wired technology greatly affects the 

target gait parameters, resulting in nonrepresentative data. 

The data is then received by the data analytics software, 

which is written in the Python programming language. 

 

 
Fig. 6. Insole hardware wiring including an Arduino Nano and HC-O6 

Bluetooth Module 

III. DATA ANALYSIS SOFTWARE 

A. Python Code and Peak Analysis 

The Python program performs peak analysis to acquire the 
active loading peak of the ground reaction force. Table 1 is an 
example of an acquired raw dataset in newtons that requires 
peak analysis. Each data point in Table 1 is taken every 30 
milliseconds from the insole and is stored in the table. Fig. 7 
is a plot of the data in Table 1 and depicts how peak analysis 
functions. The red point in each step represents the active 
loading peak or the max VGRF for that step. An algorithm 
included within the code performs this process by defining a 
step as an array of non-zero digits separated by zeroes, where 
the largest value in that array is extracted and tagged as the 
VGRF of that individual step. When analyzed intuitively, the 
non-zero digits are the instances when the foot is in contact 
with the ground, while the zero digits are when the foot is in 
the air, providing no data to the force sensors. To provide 
robust and accurate data, the program is designed to average 
the VGRF value over multiple strides (N>6) during the trial, 
as to negate any outlying force values. 6 strides were  chosen 
as it is the minimum value of steps needed to provide 
representative gait analysis data including ground reaction 
force [19]. 

Fig. 7. Peak Analysis Visualization 

Table 1. Consecutive VGRF Values (Newtons) Acquired from Insole (Left to 
Right and Top to Bottom) 

0 0 0 0 

203.2 364.8 389.6 406.4 

429.2 403.2 324.8 194.4 

0 0 0 0 

183.2 348.8 367.2 373.6 

388.4 364.8 0 0 

0 0 0 0 

208.8 336.0 365.6 372.8 

393.6 404.0 212.8 0 
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B. Smartphone Application 

To provide patient-centered care, a mobile app was 
developed through the program MIT App Inventor that 
provides the patient with data and communication tools that 
allows for proper management of their injury (Fig 8). The 
application includes access to the cloud database, a graph of 
weekly values, and emailing functionality. The design is 
focused on simplicity of use and upon initialization of the app, 
the user is shown a welcome screen in which they can visit 
their history or begin a test. Patient history includes a table and 
graph of weekly data to aid patients in visualization of the 
healing progress of their fracture. To perform automatic risk 
analysis, the application tags patients with stagnation or 
reversal of VGRF as high risk and tags patients with increases 
in VGRF as low risk. Testing is done over individual IP 
servers in order to protect privacy and connect with the API 
database. 

 

Fig. 8. Mobile Application Initialization Pathway 

C. 1-D CNN for State of Healing Classification 

In addition to peak analysis which determines progression 

of healing, we also developed a neural network for the 

purpose of state of healing classification. The neural network 

provides more clinically relevant data than simple peak 

analysis. 

1) Data Collection: For this work, we used the ground 

reaction force dataset known as GaitRec [20]. The dataset 

was collected by Austrian Workers’ Compensation Board 

(AUVA) who have been using GRF assessments to treat 

fracture patients for more than two decades. Data was 

recorded by asking patients and healthy controls to walk 

unassisted for approximately 10m with two embed force 

plates. Each patient would walk for 10 total trials and would 

revisit every week until a medical professional deemed the 

fracture as healed. Three GRF signals were extracted 

(vertical, anterior-posterior, and medio-lateral) as well as 

center of pressure (COP). For the purpose of this work we 

used solely the vertical GRF values as they have been shown 

to correspond the greatest with fracture healing status [12]. 

 

2) Preprocsseing: The patients were also separated into 

classes based on their type if injury (hip, knee, ankle, and 

calcaneus). Previous research has aimed to differentiate the 

injury classes via machine learning, but the aim of this 

research is to classify based on state of healing so the 

calcaneus class was chosen to reduce variability among 

patients [20]. Among calcaneus patients, subjects with left 

side injury and both legs injured were excluded as well as 

patients that had large gaps in rehabilitation timeline. The two 

classes in our research were patients on their final day of 

rehabilitation when they were deemed as healed vs patients 

throughout the remainder of the healing process. This 

allowed us to classify patients based on their state of healing 

which was determined by the doctor on-site. 

 

3) OS-CNN Model Development and Testing: 

a) Input Size: The GaitRec dataset included processed 

data that is optimized for machine learning and neural 

network development. This processed data was filtered via a 

2nd order low-pass Butterworth filter that was time 

normalized to 101 time-steps. This time normalization is 

significant as it creates a fixed input size of 101 points which 

the CNN model requires. Without this time normalization the 

time-series input sizes would differ greatly due to the patient 

self-selected pace. 

 

b) Network Architecture: Pytorch, a python-based 

machine learning framework was utilized in conjunction with 

the OS-CNN [16]. The OS-CNN as previously mentioned, 

treats kernel size as an aspect of the learning process rather 

than the traditional method of manually searching for the 

ideal kernel size as a hyper-parameter. The model consists of 

three convolution layers. In the first two convolution layers, 

kernel size is a variable defined as a prime number from 1 to 

N. This allows the model to find and extract the ideal Kernel 

size for the model. In the final convolution layer, the kernel 

sizes are only one and two as to cover all possible integers. In 

traditional CNNs the pooling layer is placed after each 

convolution layer, but in this model a global average pooling 

is utilized after multiple convolution layers. Pooling is 

utilized in CNNs to down sample features and reduce 

dimensionality as to increase the robustness of a model and 

reduce overfitting. Finally, a fully connected layer is used as 

a classifier to choose labels based on the features extracted by 

the model. 

IV. RESULTS AND DISCUSSION 

A. Hysteresis and Quality Analysis of Insole 

FSRs are rarely used in biomedical devices, as 

consistency and accuracy are one of the most important 

criteria for success, and FSRs have classically been more 

susceptible to inaccuracies. An experiment was designed to 

test the quality of the insole, the extent of hysteresis and the 

inaccuracy of the sensor over time. Hysteresis or deviation is 

the inaccuracy of a sensor’s indicated values from actual 

values which occurs in all sensors and is accounted for. The 

graph (Fig. 9) plots sensor hysteresis against hours of use 

under the stress from weight that simulates human 

locomotion. The control was a singular unoptimized FSR, 

and it was compared to the insole designed with optimized 

FSRs by placement, size, and resistance. The graph below 

shows clear reductions in the amount of hysteresis for the 

optimized and designed insole. A 2-Sample T-Test for the 

final hysteresis values was performed with 30 trials, using a 

significance value of a=.05. The test results in a p-value of 

0.021 indicating statistical significance. 
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Fig. 9. Hysteresis or inaccuracy overtime: optimized vs unoptimized sensor 

B. OS-CNN Performance Evaluation 

For performance evaluation we utilized the cross-

validation technique of a train test split with a 80:20 ratio and 

a balanced dataset of 50% fractured patients and 50% healed 

patients. As a baseline to compare the performance of the OS-

CNN model we tested the dataset on a Support Vector 

Machine Model which achieved a 36.78% accuracy. When 

tested with an epoch hyperparameter value of 200 the OS-

CNN model achieved an accuracy of 88.76% which is 

comparable with clinical observations. 

V. CONCLUSION AND FUTURE WORK 

A. Conclusion and Real-World Application 

This work addresses a commonly overlooked lapse in the 

healthcare system of a significant portion of the world’s 

population. The addressed issue of increased road traffic 

injuries will continue to exponentially grow in coming years. 

Novel solutions for the proper healthcare and rehabilitation 

of these injuries will be required to maintain a high quality of 

life for those afflicted. The hardware utilized is optimized for 

the specific use-case of a rural and low-income setting in 

conjunction with a software application designed to utilize 

the overdeveloped sector of communications technology in 

developing countries with many rural villagers owning 

smartphones. The convolutional neural network aspect of this 

work is a step towards noninvasive, cheap, and automatic 

verification of a healed fracture site that could save lives and 

monetary capital in terms of travel to hospitals, doctor fees, 

and medical equipment that would most benefit the poorest 

among us. 

B. Future Work 

1) CNN-LSTM and Data Collection: With Convolutional 

Neural Networks with Long Short Term Memory and the 

application of more advanced neural network models, the 

accuracy on this dataset could be vastly improved as this 

dataset has not been explored extensively in this context. The 

hardware in this work could also increase the accuracy of the 

models because a downside of neural networks is the vast 

amount of data needed to train and create an accurate model 

[21]. The data that is collected in the field from this work 

could contibute to gait analysis databases and therefore 

increase accuracies.  

 

2) Other Gait Disorders: Research has shown that other 

common disorders such as Parkinson’s Disease and Cerebral 

Palsy have clear lower-extremity gait related symptoms 

[22][23]. The systems and hardware implemented in this 

work can be adapted to other gait related disorders such as the 

ones mentioned. As the modern hospital moves more towards 

the patient’s home, telemetric medicine will become more 

commonplace with medical devices such as the one presented 

in this work becoming heavily utilized. 
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