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Abstract— Accurate and objective monitoring of a fracture’s
healing process is both essential to patient quality of care, as well
as determination of the chances of nonunion and postoperative
intervention. In recent years, due to industrialization, injury
rates in developing countries, notably road traffic injuries
(RTIs), have drastically increased. This has led to many fracture
patients in ill- equipped countries, such as Kenya with only 60
orthopedic surgeons for a population of 36.9 million, not having
any rigorous rehabilitation protocol or quality postoperative
care. This work focuses on the development of a telemetric gait
analysis insole that works in conjunction with a mobile
application and convolutional neural network. This technique
automates the tedious process of tracking postoperative fracture
rehabilitation by analyzing ground reaction forces (GRFs) of
patients which correlate well with weight-bearing ability,
fracture healing, and delayed union. 4 force-sensitive resistors
(FSRs) are placed in the insole under the primary areas for force
measurement. An Arduino microcontroller compiles the data
and sends it to a Python program via a Bluetooth module. The
Python program performs peak analysis on the data to
determine the average peak Vertical Ground Reaction Force
(VGREF) of the strides to measure if a patient is properly healing.
As a further step, we employ a 1D-CNN to differentiate between
healed and healing patients to automatically find which patients
have nonunions. With these methodologies we are able to
automatically diagnose rural patients with nonunions based on
only ground reaction force measurements at minimal costs and
without an on-site physician.

Keywords— Telemetry, Gait Analysis, Insole, Weight-Bearing,

Peak Analysis, Convolutional Neural Network
I. INTRODUCTION

A. Motivation

1) Lower Extremity Injury Prevalence: The economic
boom occurring in developing countries comes at the cost of
new and challenging problems, including the rapid increase
of Road Traffic Injuries (RTIs) with the urbanization of rural
areas. There is often a lack of legislation regulating the
education of the local population on how to navigate the new
infrastructure being constructed in their areas. This results in
a higher prevalence of fractures and lower-extremity injuries
in developing countries, accounting for more than 1.27
million deaths per year, and more deaths than HIV/AIDS,
Tuberculosis, and Malaria combined [1]. However, the
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number of RTI injuries is more jarring, with 20-50 injured
due to RTTIs for every RTI related death [2].These 60 million
injured patients expected in the next ten years place a
significant burden on local, unequipped medical facilities [3].
This problem of exorbitant amounts of injuries is compounded
by the lack of qualified specialists and an excessive number of
under-qualified physicians referred to as Rural Medical
Practitioners (RMPs) who have no formal education. These
RMPs tend to over prescribe painkillers, inplace of legitimate
procedures, taking advantage of their uneducated clientele [4].

2) Delayed-Union and Nonunion: Approximately 5% to
10% of fractures worldwide proceed to nonunion, which is
the improper bonding of a fracture (Fig. 1)[5]. This leads to
permanent disabilities and a significantly higher use of
healthcare resources, which often cannot be provided.
Classically, the reasons for delayed-union and nonunion are
complications including inadequate reduction, loss of blood
supply, and infection, all of which are extremely prevalent in
developing areas [6]. A well designed postoperative
rehabilitation protocol can be implemented to identify any
stagnations in the healing process; however, physicians in
rural areas often cannot provide quality postoperative care,
leaving their patients without outpatient facilities after

surgery.
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Fig. 1. X-Ray of a Humeral Nonunion[7]

978-0-7381-2500-8/21/$31.00 ©2021 IEEE



3) Benefits of Early Partial Weight-Bearing: Early
weight-bearing is often absent from many rural rehabilitation
protocols, with “just rest” being prescribed, as that is
mistakenly seen as the best way to heal a fracture. However,
early partial weight-bearing has been found to improve
fracture healing, maintain bone stock and density, and keep
the fracture and implants aligned early in the recovery
process [8]. This research aims to promote early partial
weight-bearing by providing the tools to safely execute the
process.

B. Background

1) Telemetric Medicine: Telemetric medicine is a
budding subfield of biomedical engineering that allows for
patient-doctor communication from ranges of thousands of
miles away. This has massive potential in addressing the
problem of a lack of qualfied specialists, by giving under-
served communities access to the qualfied specialists that
they need. Currently telemetric medicine has been limited to
first world countries, where elderly and disabled patients who
are not capable of traveling to a hospital can be provided with
quality care from the comfort of their home. However,
current trends have shown rapid increases in the number of
smartphones available to rural populations in developing
countries due to a decline in phone prices. This has allowed
for fast data transmission to these areas, as vaccine reminders
and natural disaster alerts have become commonplace. This
research takes advantage of this framework by allowing for
direct patient to doctor communication over long distances.

2) Review of Gait Analytics Systems: Currently a
majority of gait analysis is performed in two specific
methods: a laboratory with force plates and 3-D motion
tracking or in a doctor’s office with a clinician making visual
observations. The first method is extremely expensive and
provides highly specialized and unnecessary data points
while the second method is very subjective and is often not
repeatable over several trials and patient visits. The benefits
of insole-based gait analytics have been identified as an cheap
and accurate alternative to laboratory and clinician-based gait
analysis. Gait analysis systems measure a range of data types
including foot angle, stride distance, step distance, step count,
cadence, and speed [9]. Accelerometers are used for stride
length and velocity, gyroscopes are used for orientation, flex-
sensors are used for plantar and dorsi-flexion, electric field
sensors are used for height above the floor, and finally force-
sensitive resistors are used for force parameters which is the
focus of this work[10].

3) Weight-Bearing Ability: Weight-bearing ability of the
afflicted limb has been shown to greatly correlate with
radiological evidence of fracture union and overall healing
(Fig. 2) [5]. According to a study by S. Morshed, 84% of
patients indicated that weight-bearing ability was the most
important clinical criteria for diagnosis of delayed union and
nonunion. Despite weight-bearing ability being the most
critical factor in the diagnosis of nonunion, it is not often used
due to the subjectivity of clinical observation and patient
feedback being very unreliable and incomparable over the

This article is based upon work supported by the National Science
Foundation under Grant No. 1818694.

long term. This research presents an objective method to track
weight-bearing ability, and allows for repeatability- crucial in
the tracking of a patient’s rehabilitation protocol.
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Fig. 2. Graph depicting relationship between weight-bearing and fracture
healing [11]

4) Ground Reaction Force and Biomechanics: The
method utilized to measure weight-bearing ability is the
temporospatial gait parameter known as vertical ground
reaction force (VGRF). In biomechanics, it is defined as the
force exerted by the ground on the body, when in contact with
the ground. Research has also suggested that ground reaction
forces correlate well with callus mineralization and, more
importantly, weight-bearing [12]. Therefore, an increase in
ground reaction force indicates increased healing for the
patient. While weight-bearing is subjective, ground reaction
force measurements provide healthcare providers with a
singular statistic that can be stored and automatically
processed by computers in a setting where human
involvement is scarce and valuable. The VGRF graph (Fig.3)
displays the active peak, the point of greatest force in the gait
cycle, which is the target statistic the insole aims to measure.
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Fig. 3. Vertical Ground Reaction Force graph over a single stride [13]
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Fig. 4. 1-D CNN architecture for time series classification [14]

5) Review of 1-D Convolutional Neural Network and
Time-Series Classification: For further analysis of a patient’s
gait patterns we utilized a 1-Dimensional Convolutional
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Neural Network (CNN) that was designed for the use case of
time series classification. Traditionally, CNNs have been
used for imaging classification (2-D), and have more recently
transitioned to speech and time series classification(1-D)
[14]. In this work a time series is defined as a sequence of
univariate data points indexed in the order of time such as the
VGREF values depicted in Fig. 3. Time series such as ECG
values are some of the most common datatypes in medical
research with 1-D CNNs being utilized on ECGs extensively
[15]. The CNN architecture utilized in this work is the Omni-
scale CNN (OS-CNN) which is novel in that the model treats
the identification of the kernel size as a learning process
rather than a hyper-parameter [16]. An input time-series is
passed through three convolution layers that learn weights,
then a global average pooling layer that down samples, and
then a fully-connected layer for classification (Fig. 4.).

II. MATERIALS AND INSOLE DESIGN

A. Insole Design Criteria

The insole was chosen as the primary data acquisition
device due to the low relative cost in comparison to force
plates. Force plates are traditionally used in gait analysis but
are not viable due to their extremely high cost. The insole was
also designed to be less than 300 grams, as any heavier weight
has been found to greatly alter gait parameters, resulting in
inaccurate data [10]. Small, individual sensors were used in
place of larger sensors, minimizing hysteresis and inaccuracy
in measurements across multiple trials.

B. Force-Sensitive Resistors and Placement

The insole uses 4 force-sensitive resistors (FSRs) which
utilize polymer-thick film technology and provide a resistance
differential based on the force exerted. Polymer-thick film
sensors are constructed by the deposition of several dielectric
layers via a screen-printing process, making them extremely
cheap and lightweight compared to their capacitive sensor
counterparts. To maximize cost efficiency, 4 locations on the
sole of the foot, which were identified via a pedobarograph
(Fig. 5) to have the greatest concentration of force, are where
the FSRs would be placed. The locations on the sole of the foot
determined to have the greatest concentrations of force were
under the big toe, metatarsal head I, metatarsal head V, and the
heel [17].
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Fig. 5. Pedobarograph representing areas of highest force concentration [18]

C. Hardware Structure and Data Pathway

The data from the FSRs is then sent to a Velcro strap
ankle-mounted Arduino Nano microcontroller. The Arduino
microcontroller compiles the data and uses a Bluetooth
module to send the data via Bluetooth low energy signals
(Fig. 6). In gait analysis, wireless technology is heavily
utilized and beneficial as wired technology greatly affects the

target gait parameters, resulting in nonrepresentative data.
The data is then received by the data analytics software,
which is written in the Python programming language.

Fig. 6. Insole hardware wiring including an Arduino Nano and HC-O6
Bluetooth Module

III. DATA ANALYSIS SOFTWARE

A. Python Code and Peak Analysis

The Python program performs peak analysis to acquire the
active loading peak of the ground reaction force. Table 1 is an
example of an acquired raw dataset in newtons that requires
peak analysis. Each data point in Table 1 is taken every 30
milliseconds from the insole and is stored in the table. Fig. 7
is a plot of the data in Table 1 and depicts how peak analysis
functions. The red point in each step represents the active
loading peak or the max VGRF for that step. An algorithm
included within the code performs this process by defining a
step as an array of non-zero digits separated by zeroes, where
the largest value in that array is extracted and tagged as the
VGREF of that individual step. When analyzed intuitively, the
non-zero digits are the instances when the foot is in contact
with the ground, while the zero digits are when the foot is in
the air, providing no data to the force sensors. To provide
robust and accurate data, the program is designed to average
the VGRF value over multiple strides (N>6) during the trial,
as to negate any outlying force values. 6 strides were chosen
as it is the minimum value of steps needed to provide
representative gait analysis data including ground reaction
force [19].
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Fig. 7. Peak Analysis Visualization

Table 1. Consecutive VGRF Values (Newtons) Acquired from Insole (Left to
Right and Top to Bottom)

0 0 0 0
203.2 364.8 389.6 406.4
429.2 403.2 324.8 194.4

0 0 0 0
183.2 348.8 367.2 373.6
388.4 364.8 0 0

0 0 0 0
208.8 336.0 365.6 372.8
393.6 404.0 212.8 0
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B. Smartphone Application

To provide patient-centered care, a mobile app was
developed through the program MIT App Inventor that
provides the patient with data and communication tools that
allows for proper management of their injury (Fig 8). The
application includes access to the cloud database, a graph of
weekly values, and emailing functionality. The design is
focused on simplicity of use and upon initialization of the app,
the user is shown a welcome screen in which they can visit
their history or begin a test. Patient history includes a table and
graph of weekly data to aid patients in visualization of the
healing progress of their fracture. To perform automatic risk
analysis, the application tags patients with stagnation or
reversal of VGRF as high risk and tags patients with increases
in VGRF as low risk. Testing is done over individual IP
servers in order to protect privacy and connect with the API
database.

Table of Week by Risk Analysis
Week data Performed
Graph of Week
by Week data
Emailing Functionality for
Direct Patient-Doctor
C ication

[ Begin Trial via IP Trial Result ]

server Returned

H

Fig. 8. Mobile Application Initialization Pathway

C. 1-D CNN for State of Healing Classification

In addition to peak analysis which determines progression
of healing, we also developed a neural network for the
purpose of state of healing classification. The neural network
provides more clinically relevant data than simple peak
analysis.

1) Data Collection: For this work, we used the ground
reaction force dataset known as GaitRec [20]. The dataset
was collected by Austrian Workers’ Compensation Board
(AUVA) who have been using GRF assessments to treat
fracture patients for more than two decades. Data was
recorded by asking patients and healthy controls to walk
unassisted for approximately 10m with two embed force
plates. Each patient would walk for 10 total trials and would
revisit every week until a medical professional deemed the
fracture as healed. Three GRF signals were extracted
(vertical, anterior-posterior, and medio-lateral) as well as
center of pressure (COP). For the purpose of this work we
used solely the vertical GRF values as they have been shown
to correspond the greatest with fracture healing status [12].

2) Preprocsseing: The patients were also separated into
classes based on their type if injury (hip, knee, ankle, and
calcaneus). Previous research has aimed to differentiate the
injury classes via machine learning, but the aim of this
research is to classify based on state of healing so the
calcaneus class was chosen to reduce variability among
patients [20]. Among calcaneus patients, subjects with left
side injury and both legs injured were excluded as well as

patients that had large gaps in rehabilitation timeline. The two
classes in our research were patients on their final day of
rehabilitation when they were deemed as healed vs patients
throughout the remainder of the healing process. This
allowed us to classify patients based on their state of healing
which was determined by the doctor on-site.

3) OS-CNN Model Development and Testing:

a) Input Size: The GaitRec dataset included processed
data that is optimized for machine learning and neural
network development. This processed data was filtered via a
2nd order low-pass Butterworth filter that was time
normalized to 101 time-steps. This time normalization is
significant as it creates a fixed input size of 101 points which
the CNN model requires. Without this time normalization the
time-series input sizes would differ greatly due to the patient
self-selected pace.

b) Network Architecture: Pytorch, a python-based
machine learning framework was utilized in conjunction with
the OS-CNN [16]. The OS-CNN as previously mentioned,
treats kernel size as an aspect of the learning process rather
than the traditional method of manually searching for the
ideal kernel size as a hyper-parameter. The model consists of
three convolution layers. In the first two convolution layers,
kernel size is a variable defined as a prime number from 1 to
N. This allows the model to find and extract the ideal Kernel
size for the model. In the final convolution layer, the kernel
sizes are only one and two as to cover all possible integers. In
traditional CNNs the pooling layer is placed after each
convolution layer, but in this model a global average pooling
is utilized after multiple convolution layers. Pooling is
utilized in CNNs to down sample features and reduce
dimensionality as to increase the robustness of a model and
reduce overfitting. Finally, a fully connected layer is used as
a classifier to choose labels based on the features extracted by
the model.

IV. RESULTS AND DISCUSSION

A. Hysteresis and Quality Analysis of Insole

FSRs are rarely used in biomedical devices, as
consistency and accuracy are one of the most important
criteria for success, and FSRs have classically been more
susceptible to inaccuracies. An experiment was designed to
test the quality of the insole, the extent of hysteresis and the
inaccuracy of the sensor over time. Hysteresis or deviation is
the inaccuracy of a sensor’s indicated values from actual
values which occurs in all sensors and is accounted for. The
graph (Fig. 9) plots sensor hysteresis against hours of use
under the stress from weight that simulates human
locomotion. The control was a singular unoptimized FSR,
and it was compared to the insole designed with optimized
FSRs by placement, size, and resistance. The graph below
shows clear reductions in the amount of hysteresis for the
optimized and designed insole. A 2-Sample T-Test for the
final hysteresis values was performed with 30 trials, using a
significance value of a=.05. The test results in a p-value of
0.021 indicating statistical significance.
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Fig. 9. Hysteresis or inaccuracy overtime: optimized vs unoptimized sensor

B. OS-CNN Performance Evaluation

For performance evaluation we utilized the cross-
validation technique of a train test split with a 80:20 ratio and
a balanced dataset of 50% fractured patients and 50% healed
patients. As a baseline to compare the performance of the OS-
CNN model we tested the dataset on a Support Vector
Machine Model which achieved a 36.78% accuracy. When
tested with an epoch hyperparameter value of 200 the OS-
CNN model achieved an accuracy of 88.76% which is
comparable with clinical observations.

V. CONCLUSION AND FUTURE WORK

A. Conclusion and Real-World Application

This work addresses a commonly overlooked lapse in the
healthcare system of a significant portion of the world’s
population. The addressed issue of increased road traffic
injuries will continue to exponentially grow in coming years.
Novel solutions for the proper healthcare and rehabilitation
of these injuries will be required to maintain a high quality of
life for those afflicted. The hardware utilized is optimized for
the specific use-case of a rural and low-income setting in
conjunction with a software application designed to utilize
the overdeveloped sector of communications technology in
developing countries with many rural villagers owning
smartphones. The convolutional neural network aspect of this
work is a step towards noninvasive, cheap, and automatic
verification of a healed fracture site that could save lives and
monetary capital in terms of travel to hospitals, doctor fees,
and medical equipment that would most benefit the poorest
among us.

B. Future Work

1) CNN-LSTM and Data Collection: With Convolutional
Neural Networks with Long Short Term Memory and the
application of more advanced neural network models, the
accuracy on this dataset could be vastly improved as this
dataset has not been explored extensively in this context. The
hardware in this work could also increase the accuracy of the
models because a downside of neural networks is the vast
amount of data needed to train and create an accurate model
[21]. The data that is collected in the field from this work
could contibute to gait analysis databases and therefore
increase accuracies.

2) Other Gait Disorders: Research has shown that other
common disorders such as Parkinson’s Disease and Cerebral
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Palsy have clear lower-extremity gait related symptoms
[22][23]. The systems and hardware implemented in this
work can be adapted to other gait related disorders such as the
ones mentioned. As the modern hospital moves more towards
the patient’s home, telemetric medicine will become more
commonplace with medical devices such as the one presented
in this work becoming heavily utilized.
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