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ABSTRACT

Co-array-based Direction of Arrival (DoA) estimation using Sparse
Linear Arrays (SLAs) has recently gained considerable attention
in array processing thanks to its capability of providing enhanced
degrees of freedom for DoAs that can be resolved. Additionally,
deployment of one-bit Analog-to-Digital Converters (ADCs) has
become an important topic in array processing, as it offers both
a low-cost and a low-complexity implementation. Although the
problem of DoA estimation form one-bit SLA measurements has
been studied in some prior works, its analytical performance has
not yet been investigated and characterized. In this paper, to pro-
vide valuable insights into the performance of DoA estimation from
one-bit SLA measurements, we derive an asymptotic closed-form
expression for the performance of One-Bit Co-Array-Based MUSIC
(OBCAB-MUSIC). Further, numerical simulations are provided to
validate the asymptotic closed-form expression for the performance
of OBCAB-MUSIC and to show an interesting use case of it in
evaluating the resolution of OBCAB-MUSIC.

Index Terms— One-bit quantization, sparse linear arrays, di-
rection of arrival (DoA) estimation, performance evaluation.

1. INTRODUCTION

The problem of Direction of Arrival (DoA) estimation is of cen-
tral importance in the field of array processing, with many applica-
tions in radar, sonar, and wireless communications [1–3]. Estimating
DoAs using Uniform Linear Arrays (ULAs) is well investigated in
the literature; a number of algorithms such as Maximum Likelihood
(ML) estimation, MUSIC, ESPRIT and subspace fitting have been
presented and their performance thoroughly analyzed [4–6]. How-
ever, it is widely known that ULAs are not capable of identifying
more sources than the number of physical elements in the array [2,
6]. To transcend this limitation, exploitation of Sparse Linear Arrays
(SLAs) with particular geometries, such as Minimum Redundancy
Arrays (MRAs) [7], co-prime arrays [8] and nested arrays [9] has
been proposed. These architectures can dramatically boost the de-
grees of freedom of the array for uncorrelated source signals such
that a number of sources, significantly larger number than the num-
ber of physical elements in the array, can be identified. In addi-
tion, the enhanced degrees of freedom provided by these SLAs can
improve the resolution performance appreciably compared to ULAs
[9]. These features have spurred further research on DoA estimation
using SLAs in recent years. A detailed study on DoA estimation via
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SLAs through an analysis of the Cramér-Rao Bound (CRB) has been
conducted in [10]. Further, several approaches for DoA estimation
via SLAs have been proposed in the literature. In general, exist-
ing estimators can be classified under two main groups: 1. Sparsi-
ty-Based Methods (SBMs), 2. Augmented Covariance-Based Meth-
ods (ACBMs). SBMs estimate DoAs by imposing sparsity con-
straints on source profiles and exploiting the compressive sensing
recovery techniques [11–13]. However, in ACBMs, DoAs are esti-
mated by applying conventional subspace methods such as MUSIC,
ESPRIT on an Augmented Sample Covariance Matrix (ASCM) de-
veloped from the original sample covariance matrix by exploiting
the difference co-array structure [9, 14, 15]. In addition, the authors
of this paper recently proposed a Weighted Least Squares (WLS) es-
timator capable of asymptotically achieving the corresponding CRB
for DoA estimation via SLAs [16].

The aforementioned techniques for DoA estimation via SLAs
rest on the assumption that the analog array measurements are digi-
tally represented using a significantly large number of bits per sam-
ple such that the resulting quantization errors can be disregarded.
However, the use of high resolution Analog-to-Digital Converters
(ADCs) is impractical in many modern applications due to limita-
tions on power consumption and production cost. As a viable solu-
tion in such cases, deployment of low-resolution ADCs with a high
sampling rate has been proposed in the literature [17–21]. Particu-
larly, use of one-bit ADCs has received the most attention since they
allow for sampling at an extremely high rate with a low cost and low
power consumption. Recently, the problem of DoA estimation from
one-bit data has gained considerable interest in the literature [22–
27]. This problem has been investigated in [22–25] when a ULA is
employed and it has been shown that one-bit quantization leads to a
moderate performance loss compared to the case where infinite-bit
quantized data is used. Further, the problem of DoA estimation from
one-bit SLA data has been addressed in [26, 27]; it has been demon-
strated that the performance degradation due to one-bit quantization
can, to some extent, be compensated using SLAs.

In this paper, to provide a better insight into the performance
of DoA estimation using one-bit SLA measurements, we analyt-
ically study the performance of One-bit Co-Array-Based MUSIC
(OBCAB-MUSIC) proposed in [26]. Specifically, we first pro-
vide an asymptotic closed-form expression for the performance of
OBCAB-MUSIC. Then, we use this analytical expression for de-
termining the performance limits of OBCAB-MUSIC including the
impact of SNR and number of snapshots. Numerical simulations
are provided to validate the derived asymptotic closed-form expres-
sion for the performance of OBCAB-MUSIC as well as to show an
interesting use case of predicting the minimum source separation
required for resolving of source DoAs using OBCAB-MUSIC.

Organization: Section 2 describes the system model. Sec-



tion 3 reviews the one-bit co-array-based MUSIC algorithm. The
asymptotic closed-form expression for the performance of OBCAB-
MUSIC is given in Section 4. The simulation results and related
discussions are included in Section 5. Finally, Section 6 concludes
the paper.

Notation: Vectors and matrices are referred to by lower- and
upper-case bold-face, respectively. The superscripts ∗, T , H de-
note the conjugate, transpose and Hermitian (conjugate transpose)
operations, respectively. [A]i,j and [a]i indicate the (i, j)th and ith

entry of A and a, respectively. Â and â denote the estimate of A
and a, respectively. (a1, a2, · · · , an) is an n-tuple with elements of
a1, a2, · · · , an. |A| represents the cardinality of the setA. diag(a)
is a diagonal matrix whose diagonal entries are equal to the elements
of a. TheM ×M identity matrix is denoted by IM . sgn(x) denotes
the sign function with sgn(x) = 1 for x ≥ 0 and sgn(x) = −1
otherwise. The real and image part of a are denoted by <{a} and
={a}, respectively. E{.} stands for the statistical expectation. ⊗
and � represent Kronecker and Khatri-Rao products, respectively.
vec (A) =

[
aT1 aT2 · · · aTn

]T denotes the vectorization op-
eration. A† and Π⊥A indicate the pseudoinverse and the projection
matrix onto the null space of the full column rank matrix AH , re-
spectively.

2. SYSTEM MODEL

We consider a SLA with M elements located at positions
(
m1

λ
2
,

m2
λ
2
, · · · ,mM

λ
2

)
with mi ∈ M. Here, M is a set of integers

with cardinality |M| = M , and λ denotes the wavelength of the
incoming signals. K narrowband signals with distinct DoAs θ =
[θ1, θ2, · · · , θK ]T are assumed to impinge on the SLA from far field.
While the estimation of the number of sources is an important prob-
lem, we assume perfect knowledge of the number of sources here.
The unquantized array measurements at time instance t can be mod-
eled as

y(t) = A(θ)s(t) + n(t) ∈ CM×1, t = 1, · · · , N, (1)

where s(t) ∈ CK×1 denotes the vector of source signals, n(t) ∈
CM×1 is additive noise, and A(θ) = [a (θ1) ,a (θ2) , · · ·a (θK)] ∈
CM×K represents the SLA steering matrix with

a(θi) =
[
ejπ sin θim1 ejπ sin θim2 · · · ejπ sin θimM

]T
, (2)

being the SLA manifold vector for the ith signal. Further, the fol-
lowing assumptions are made on source signals and noise:

A1 n(t) follows a zero-mean circular complex Gaussian distri-
bution with the covariance matrix E{n(t)nH(t)}=σ2IM

A2 The source signal vector is modeled as a zero-mean circu-
lar complex Gaussian random vector with covariance matrix
E{s(t)sH(t)} = diag(p) where p = [p1, p2, · · · pK ]T ∈
RK×1
>0 (i. e., pl > 0, ∀l).

A3 Source and noise vectors are mutually independent.

A4 There is no temporal correlation between the snapshots, i.e.,
E{n(t1)nH(t2)} = E{s(t1)sH(t2)} = 0 when t1 6= t2 and
0 is an all zero matrix of appropriate dimensions.

Based on the above assumptions, the covariance matrix of y(t) is
expressed as

R=E{y(t)yH(t)}=A(θ)diag(p)AH(θ) + σ2IM ∈CM×M. (3)
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Fig. 1. Array geometry of a co-prime array with M = 6 elements:
(a) physical array with M = {0, 2, 3, 4, 6, 9}; (b) difference co-
array withD = {0, 1, 2, 3, 4, 5, 6, 7, 9}.

Vectorizing the covariance matrix in (3) leads to [10, 14, 16]

r
.
= vec(R) = (A∗(θ)�A(θ)) p + σ2vec(IM ),

= JAd(θ)p + σ2Jg ∈ CM
2×1, (4)

where Ad(θ) ∈ C(2D−1)×K corresponds to the steering matrix of
the difference co-array of the SLA whose elements are located at
(−`D−1

λ
2
, · · · , 0, · · · , `D−1

λ
2

) with `i ∈ D = {|mp − mq| :

mp,mq ∈ M} and D = |D|. Further, g ∈ {0, 1}(2D−1)×1 is
a column vector with [g]i = δ[i − D], and the selection matrix
J ∈ {0, 1}M

2×(2D−1) is represented as follows [10]

J =
[
vec(LTD−1) · · · vec(L0) · · · vec(LD−1),

]
, (5)

where [Ln]p,q =

{
1, if mp −mq = `n,
0, otherwise, with 1 ≤ p, q ≤ M and

0 ≤ n ≤ D − 1.
The difference co-array model in (4) can be perceived to be the

response of a virtual array whose steering matrix is given by Ad(θ)
to the parameter vector with signal powers p in presence of the noise
vector σ2vec(IM ). This virtual array includes a contiguous ULA
segment around the origin with the size of 2v − 1 where v is the
largest integer such that {0, 1, · · · , v − 1} ⊆ D. An illustrative
example of an SLA, the corresponding difference co-array and its
contiguous ULA segment is provided in Fig. 1. It has been shown in
[8–10] that by properly designing SLAs and exploiting the resulting
structure of the source signal covariance matrix efficiently, SLAs
are capable of identifying more sources than the number of physical
elements in the array.

Here it is assumed that each array element is connected to a one-
bit ADC which directly converts the received analog signal into bi-
nary data by comparing the real and imaginary parts of the received
signal individually with zero. In such a case, the one-bit measure-
ments at the mth array element is given by

[x(t)]m =Q([y(t)]m) =
1√
2

sgn (< ([y(t)]m))

+ j
1√
2

sgn (= ([y(t)]m)) . (6)

The problem under consideration is estimation of source DoAs using
one-bit quantized measurements, i.e., X = [x(1),x(t), · · · ,x(N −
1)], collected by the SLA.

3. ONE-BIT CO-ARRAY-BASED MUSIC

In this section, we review the one-bit co-array-based MUSIC al-
gorithm proposed in [26]. This algorithm is based on the arcsin
law [28] which establishes a relationship between the covariance ma-
trix of one-bit data and the covariance matrix of unquantized data.



Indeed, it follows from the arcsin law that [26],

Rx = E{x(t)xH(t)} =
2

π
arcsine(R), (7)

where R = 1
σ2+

∑K
k=1

pk
R denotes the normalized covariance

matrix of y(t) and [arcsine(R)]m,n = arcsin(<{[R]m,n}) +
j arcsin(={[R]m,n}). Reformulating (7) gives the normalized co-
variance matrix of y(t) based on the covariance matrix of one-bit
data as follows:

R = sine(
π

2
Rx). (8)

where [sine(π
2
Rx)]m,n = sin(π

2
<{[R]m,n})+j sin(π

2
={[R]m,n}).

Accordingly, an estimate of the normalized covariance matrix of
y(t) can be derived as [26]

R̂ = sine(
π

2
R̂x). (9)

where R̂x = 1
N

XXH is the sample covariance matrix of the one-

bit data. Then, the normalized ASCM can be constructed from R̂
as [26]

R̂v =
[
TvJ

†r̂ Tv−1J
†r̂ · · · T1J

†r̂
]
∈ Cv×v, (10)

where r̂ = vec(R̂) and Ti is a selection matrix, defined as

Ti =
[
0v×(i+D−v−1) Iv 0v×(D−i)

]
∈ {0, 1}v×(2D−1). (11)

Finally, the DoA estimates are obtained by applying MUSIC to R̂v .

4. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we investigate the asymptotic performance of
OBCAB-MUSIC through the derivation of a closed form expression
for the covariance matrix of the DoA estimation errors. Our main
results are summarized in Theorem 1, Corollary 1 and Theorem 2.

Theorem 1. The asymptotic expression (as N → ∞) for the co-
variance between the DoA estimation errors obtained by OBCAB-
MUSIC is given by

Eθk1
,θk2

=
(σ2 +

∑K
k=1 pk)2<{zHk1TJ†MJ†HTHzk2}

Nπ2pk1pk2qk1qk2 cos θk1 cos θk2
, (12)

where

T =
[
TT
v TT

v−1 · · · TT
1

]T ∈ Cv2×(2D−1), (13)

zk =βk ⊗αk, (14)

βk =Π⊥Av(θ)diag(v)a(θk), (15)

αk =A†Tv (θ)ek, (16)

qk =aH(θk)diag(v)Π⊥Av
diag(v)a(θk), (17)

[M]p,q =
1

2

(√
1− [<{[r]p}]2 ×

√
1− [<{[r]q}]2 (18)

+
√

1− [={[r]p}]2 ×
√

1− [={[r]q}]2
)
<{[Σ]p,q}

+
j

2

(√
1− [={[r]p}]2 ×

√
1− [<{[r]q}]2

+
√

1− [<{[r]p}]2 ×
√

1− [={[r]q}]2
)
={[Σ]p,q},

with r = vec(R) and Σ = E{[vec(R̂x) − vec(Rx)][vec(R̂x) −
vec(Rx)]H} ∈ CM

2×M2

.

We note that we have derived a closed-form expression for Σ by
computing the fourth order moments of the orthant probability. Un-
fortunately, this closed-form expression is rather cumbersome and is
derived for each element; we do not provide this expression of Σ due
to the lack of space but we refer the interested readers to the journal
extension of this work [29]. This closed form-expression shows that
Σ is only a function of r.

Corollary 1. The asymptotic expression (as N →∞) for the Mean
Square Error (MSE) of the DoA estimates obtained by OBCAB-
MUSIC is given by

Eθk =
(σ2 +

∑K
k′=1 pk′)

2zHk TJ†MJ†HTHzk

Nπ2p2
kq

2
k cos2 θk

. (19)

Remark 1. It is concluded from Corollary 1 that, similar to
Infinite-Bit Co-Array-Based MUSIC (IBCAB-MUSIC), the MSE of
OBCAB-MUSIC also depends on both the physical and the virtual
array geometries.

Remark 2. Another interesting implication of Corollary 1 is that the
MSE of OBCAB-MUSIC reduces at the same rate as that of IBCAB-
MUSIC with respect to N ; i.e. Eθk ∝

1
N

for both.

Remark 3. It is readily clear from the definition that r is a function
of the SNR not p and σ2. This indicates that M is a function of the
SNR instead of p and σ2. Further, multiplying the numerator and
denominator of (σ2+

∑K
k′=1 pk′)

2/p2
k by 1/σ4 proves that it is also

a function of the SNR not p and σ2. This implies that the MSE of
OBCAB-MUSIC is a function of the SNR instead of p and σ2.

Theorem 2. Assume all sources have equal power p and SNR =
p/σ2. Then, for a sufficiently large SNR, the MSE converges to the
following constant value:

lim
SNR→∞

Eθk =
K2zHk TJ†MJ†HTHzk

Nπ2 cos2 θkq2
k

> 0, (20)

where M is obtained by replacing r in the definitions of M and Σ
(kindly refer to Theorem 1) with r̃ which is defined as

r̃ = J
[ 1

K
Ad(θ)1M + (1− 1

K
)g
]
∈ CM

2×1, (21)

where 1M is the M × 1 all-one vector.

Remark 4. It follows from Theorem 2 that it is not possible to
make the MSE of OBCAB-MUSIC arbitrarily small by increasing
the SNR.

5. SIMULATION RESULTS

In this section, we provide some numerical results to validate the
asymptotic closed-form expression derived for the performance of
OBCAB-MUSIC, as well as to show a representative use case of
predicting probability of resolution. In all simulation results, each
simulated point has been computed by 1000 Monte Carlo repetitions.
In addition, it is assumed that theK independent sources are located
at {−60° + 120°(k − 1)/(K − 1) : k = 0, 1, · · · ,K − 1}. All
sources have an equal power, i.e., pk = p for all k, and the SNR is
defined as 10 log p

σ2 . Throughout this section, we use a nested array
with M = 10 physical elements and the following geometry:

Mnested : {1, 2, 3, 4, 5, 8, 10, 15, 20} . (22)
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Fig. 2. RMSE in degree for θ2 versus the number of snapshots for a
nested array with M = 10 elements and configuration given in (22),
SNR = 3 dB, and K = 12 > M .

Fig. 2 depicts the Root-Mean-Squares-Error (RMSE) for θ2 in de-
gree versus the number of snapshots for the nested array in (22).
The SNR is assumed to be 3 dB and the number of sources is con-
sidered to be K = 12 > M . Interestingly, Fig. 2 illustrates a
close agreement between the numerical results and the asymptotic
analytical RMSE expression for OBCAB-MUSIC when about 200
or more snapshots are available. Fig. 2 also shows that when a small
number of snapshots is available, for example less than 200, both
IBCAB-MUSIC and OBCAB-MUSIC are confronted with substan-
tial performance degradation. This performance loss is justified by
the subspace swap arising from the inaccurate estimate of the result-
ing augmented covariance matrix. In addition, it is observed that
the RMSEs of IBCAB-MUSIC and OBCAB-MUSIC reduce at an
identical rate by increasing N . This observation is consistent with
Remark 2.
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Fig. 3. RMSE in degree for θ2 versus the SNR for a nested array
with M = 10 elements and configuration given in (22), N = 500,
and K = 12 > M .

Fig. 3 shows the RMSE for θ2 in degree versus the SNR for the
same setup used for Fig. 2. The number of snapshots is considered to
be N = 500. It is observed that there is a close agreement between
the analytical RMSE and simulation results. Further, we see that the
RMSE of OBCAB-MUSIC converges to a constant value as SNR→
∞ which is consistent with Theorem 2 and Remark 4.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Probability of resolution versus source separation in degree
for a nested array with M = 10 elements and configuration given in
(22), N = 500 and SNR = 0 dB.

Fig. 4 depicts the probability of resolution versus the source sep-
aration for IBCAB-MUSIC and OBCAB-MUSIC when the nested
array given in (22) is employed. The number of snapshots and the
SNR are considered to be N = 500 and 0 dB, respectively. In
addition, we consider two sources with equal powers, located at
θ1 = 20° − ∆θ

2
and θ2 = 20° + ∆θ

2
. We define the two sources as

being resolvable if max
i ∈ {1, 2}

|θ̂i− θi| < ∆θ
2

[30]. According to this defi-

nition and making use of two-dimensional Chebychev’s bound [31],
the probability of resolution can be lower bounded as

P(max
i ∈ {1, 2}

|θ̂i − θi| <
∆θ

2
) (23)

= P(|θ̂1 − θ1| <
∆θ

2
, |θ̂2 − θ2| <

∆θ

2
) ≥ 1− 2[E(θ1) + E(θ2)]

∆θ2

+
2
√
E2
θ1

+ E2
θ2

+ 2Eθ1Eθ2 − 4E2
θ1,θ2

∆θ2
,

where E(θ1), E(θ2) and E(θ1, θ2) are given in (19) and (12). The
analytical expression on the right hand side of (23) enables us to pre-
dict the minimum source separation required for achieving a particu-
lar probability of resolution. For example, Fig. 4 shows the predicted
value for the the minimum source separation to achieve a probabil-
ity of resolution greater than 0.9, obtained from (23). It is observed
that the predicted minimum source separation, which is ∆θ = 1.5°,
is in a good agreement with the value obtained from the numerical
simulations, which is ∆θ = 1.3°.

6. CONCLUSION

In this paper, we derived an asymptotic closed-form expression for
the performance of One-Bit Co-Array-Based MUSIC (OBCAB-
MUSIC). This analytical performance enables us to provide some
insights into the performance of OBCAB-MUSIC. For example, it
was shown that the MSE of OBCAB-MUSIC reduces at the same
rate as that of IBCAB-MUSIC with respect to the number of samples
and, moreover, that the MSE of OBCAB-MUSIC converges to a con-
stant value by increasing the SNR. Further, numerical simulations
were provided to validate the asymptotic closed-form expression for
the performance of OBCAB-MUSIC and to show an interesting use
case of it in evaluating the resolution of OBCAB-MUSIC.
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