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ABSTRACT

One-bit quantization has attracted considerable attention in
signal processing for communications and sensing. The arc-
sine law is a useful relation often used to estimate the normal-
ized covariance matrix of zero-mean stationary input signals
when they are sampled by one-bit analog-to-digital convert-
ers (ADCs)—practically comparing the signals with a given
threshold level. This relation, however, only considers a zero
threshold which can cause a remarkable information loss. For
the first time in the literature, this paper introduces an ap-
proach to extending the arcsine law to the case where one-bit
ADCs apply time-varying thresholds. In particular, the pro-
posed method is shown to accurately recover the variance and
autocorrelation of the stationary signals of interest.

Index Terms— Arcsine law, covariance matrix, one-bit
quantization, time-varying thresholds.

1. INTRODUCTION

Digital signal processing typically requires the quantization
of the signals of interest through analog-to-digital converters
(ADCs). In high resolution settings, a very large number of
quantization levels is required in order to represent the orig-
inal continuous signal. However, this leads to some difficul-
ties in modern applications where the signals of interest have
large bandwidths, and may pass through several RF chains
that require using a plethora of ADCs. Moreover, the over-
all power consumption and manufacturing cost of ADCs, and
chip area grows exponentially with the number of quantiza-
tion bits. Such drawbacks lend support to the idea of utilizing
fewer bits for sampling. The most extreme version of this
idea would be to use one-bit quantization, in which ADCs
are merely comparing the signals with given threshold lev-
els, producing sign (±1) outputs. This allows for sampling
at a very high rate, with a significantly lower cost and energy
consumption compared to conventional ADCs [1–4].
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In the context of one-bit sampling, until recently, most re-
searchers approached the problem of estimating signal param-
eters by comparing the signal with a fixed threshold, usually
zero. This introduces difficulties in the recovery of the signal
amplitude. On the other hand, recent works have shown en-
hanced estimation performance for the signal parameters by
employing time-varying thresholds [5–10].

The arcsine law is a fundamental statistical property of
one-bit sampling [11–14], which connects the covariance of
an unquantized signal with that of its quantized counterpart
[3,15]. An important disadvantage of the arcsine law is, how-
ever, that the one-bit quantization threshold is considered to
be zero, which leads to a considerable loss of information.
In this paper, we present a new approach to extending the
arcsine law in the time-varying sampling thresholds, which
can recover the covariance values of the input unquantized
signal with high accuracy. To this end, we present a corre-
lation recovery formula in Section 2 which does not seem
to be amenable to analytical manipulation. In Section 3, we
propose a one-point piece-wise Padé approximation (PA) ap-
proach to recast our integrands as rational expressions which
are readily integrable. Next, we formulate an estimation crite-
rion to recover our desired parameters. Section 4 is dedicated
to the numerical results, while Section 5 concludes the paper.

2. PROBLEM FORMULATION

We consider a similar setting as in [11], with a zero-mean sta-
tionary Gaussian input signal x ∼ N (0,Rx), where Rx is
a Toeplitz matrix associated with the autocorrelation function
of x denoted asRx. Suppose xi and xj are the ith and jth en-
tries of x, and y = f(x) is the output process, where f(x) is
the sign function. The autocorrelation function of the output,
denoted by Ry(l), with l = |i − j|, is connected to that of x
via the arcsine law [11–13]:

Ry(i, j) = Ry(l) = E {yiyj} =
2

π
sin−1

(
Rx(l)

Rx(0)

)
, (1)

where yi and yj are the ith and jth entries of y, and Rx(l)
denotes the input signal autocorrelation for the lag l.



We consider a non-zero time-varying Gaussian thresh-
old τ that is independent of the input signal with the distribu-
tion τ ∼ N (d = 1d,Σ). We define a new random process
w such that w = x − τ . Clearly, w is a Gaussian stochastic
process with w ∼ N (−d,Rx + Σ = P ). Suppose wi and
wj are the ith and jth entries of w (i 6= j), and that pl and
p0 denote the autocorrelation term for lag l = |i − j| and
variance of w, respectively. The autocorrelation of f(wi) and
f(wj) is given by [11]:

Ry(i, j)=
1

2π
√
p20 − p2l

∫ ∞
−∞

∫ ∞
−∞

f(wi)f(wj)e
λ(d)dwidwj

(2)
where λ(d) is defined as

λ(d)=
(wi + d)2p0 + (wj + d)2p0 − 2pl(wi + d)(wj + d)

−2(p20 − p2l )
.

(3)
The autocorrelation function in (2) can be rewritten as

Ry(i, j)=
1

2π
√
p20 − p2l

(∫ ∞
0

∫ ∞
0

eλ(d) dwi dwj

+

∫ 0

−∞

∫ 0

−∞
eλ(d) dwi dwj

−
∫ ∞
0

∫ 0

−∞
eλ(d) dwi dwj

−
∫ 0

−∞

∫ ∞
0

eλ(d) dwi dwj

)
.

(4)

We can simplify (4) using the relation

1

2π
√
p20 − p2l

∫ ∞
−∞

∫ ∞
−∞

eλ(d) dwi dwj = 1. (5)

In fact, using (5) one can verify that

Ry(i, j) =
1

π
√
p20 − p2l

∫ ∞
0

∫ ∞
0

(
eλ(d) + eλ(−d)

)
dwi dwj

− 1.
(6)

By employing polar coordinates wi = ρ cos θ, wj = ρ sin θ,
we can recast the integral in (6) as

Ry(i, j) =
e

−d2
p0+pl

π
√
p20 − p2l

∫ π
2

0

∫ ∞
0

e−βρ
2(
e−αρ + eαρ

)
ρ dρ dθ

− 1,
(7)

where

α =
d (sin θ + cos θ)

p0 + pl
,

β =
p0 − pl sin 2θ

2(p20 − p2l )
.

(8)

Integrating (7) with respect to ρ leads to

Ry(i, j) = Ry(l) =
e

−d2
p0+pl

π
√

(p20 − p2l )

{∫ π
2

0

1

β
+

√
π

β

α

2β
e
α2

4β

−
√
π

β

α

β
Q

(
α√
2β

)
e
a2

4β dθ

}
− 1.

(9)
It remains to evaluate the integral in (9) in terms of p0 and
{pl} which have to be estimated—a task that is central to our
efforts in the rest of this paper. Finding p0 and {pl} results
in input variance and autocorrelation recovery, which can be
achieved by considering the relation:

Rx(i, j) = P (i, j)−Σ(i, j). (10)

For i = j, the input variance is thus given byRx(i, i) = r0 =
p0−Σ(i, i),while for i 6= j, we have the input autocorrelation
for lag l = |i− j| asRx(i, j) = Rx(l) = rl = pl −Σ(i, j).

3. COVARIANCE RECOVERY METHOD

Since evaluating the integral in (9) appears to be difficult, we
resort to rational approximations to facilitate its evaluation. In
Subsection 3.1, a Padé approximation (PA) [16–19] is utilized
to evaluate (9). This lays the ground for the recovery of p0 and
{pl} in Subsection 3.2.

3.1. Proposed Rational Approximations

According to [20], the Q-function is well-approximated with
the sum of exponentials,

Q (x) ≈ 1

12
e

−x2
2 +

1

4
e

−2x2

3 , x > 0. (11)

We further note that the integral in (9) may be evaluated

by substituting D1 (θ; p0, pl, d) =
√

π
β
α
βQ
(

α√
2β

)
e
a2

4β and

D2 (θ; p0, pl, d) =
√

π
β
α
2β e

α2

4β with Padé approximants, that

yield the best approximation of a function by a rational func-
tion of given order through the moment matching technique.

For the sake of completeness, herein we present a brief
introduction of the PA method. Suppose I(t) is an analytic
function at point t = 0 with the Taylor series:

I(t) =

∞∑
n=0

cnt
n, cn ∈ R. (12)

The PA of order [L/M ] for I(t), denoted by P [L/M ](t), is
defined as a rational function in the form [19]:

P [L/M ](t) ,

∑L
n=0 ant

n∑M
n=0 bnt

n
(13)



where the coefficients {an} and {bn} are defined so that

lim
t→0

∑L
n=0 ant

n∑M
n=0 bnt

n
=

L+M∑
n=0

cnt
n +O(tL+M+1) (14)

with b0 = 1. The moment matching technique is a method
widely used to obtain the coefficients of PA. The coefficients
{bn} are obtained through the linear system of equations [19]:

cL−M+1 cL+M+2 · · · cL
...

...
...

...
cL−M+k cL−M+k+1 · · · cL+k−1

...
...

...
...

cL cL+1 · · · cL+M−1




bM

...
bk
...
b1


= −

[
cL+1 · · · cL+k+1 · · · cL+M

]T
(15)

where the matrix in the left-hand side of (15) is a Hankel
matrix. The coefficients {an} are obtained by backsubstitu-
tion [19]:

aj = cj +

min(M,j)∑
i=1

bicj−i, 0 ≤ j ≤ L. (16)

The selection of the PA order is an important task in approxi-
mation; see [19] for a related study. Note that the integration
in (9) occurs in the interval θ ∈

[
0, π2

]
. To have a better

fitness, we use the idea of piece-wise PA. Owing to the fact
that the functions D1 (θ; p0, pl, d) and D2 (θ; p0, pl, d) have
their extremum at θ = π

4 , the selection of three distinct inter-
vals

[
0, π8

]
,
[
π
8 ,

3π
8

]
, and

[
3π
8 ,

π
2

]
with the expansion points

θ =
{

0, π4 ,
π
2

}
paves the way for a convenient approxima-

tion, with extra boundary points π
8 and 3π

8 making the chosen
intervals symmetric. Thus, the function D2 (θ; p0, pl, d) can
be approximated as,

θ ∈
[
0,
π

8

]
∪
[

3π

8
,
π

2

]
:

√
π

β

α

2β
e
α2

4β ≈ e+ sθ

k + gθ + hθ2
,

θ ∈
[
π

8
,

3π

8

]
:

√
π

β

α

2β
e
α2

4β ≈ z + uθ + vθ2

k′+ g′θ + h′θ2
.

(17)
A similar approximation with same orders can be proposed
for D1 (θ; p0, pl, d). As mentioned earlier, the two functions
D1 (θ; p0, pl, d) and D2 (θ; p0, pl, d) should be analytic at the
expansion points (which can be easily verified). The first part
of the integration in (9) can be analytically evaluated as

∫ π
2

0

1

β
dθ =

√
p20 − p2l

(
π + 2 tan−1

[
pl√

p20 − p2l

])
.

(18)
SubstitutingD2 (θ; p0, pl, d) with its approximation and eval-

uating the integration the associated parts of (9) results in:∫ π
8

0

√
π

β

α

2β
e
α2

4β dθ ≈ s

2h
ln


∣∣∣k + πg

8 + π2h
64

∣∣∣
|k|

+

2eh− sg
h
√

4hk − g2
tan−1

(
πh
√

4hk − g2
16hk + πgh

)
,

(19)

∫ 3π
8

π
8

√
π

β

α

2β
e
α2

4β dθ ≈ πv

4h′
+

uh′− vg′

2h′
2 ln

(∣∣64k′+ 9π2h′+ 24πg′
∣∣

|64k′+ π2h′+ 8πg′|

)
+

2vh′k′− 2zh′
2

+ ug′h′− vg′2

h′
2
√

4k′h′− g′2

tan−1

 −8πh′
√

4h′k′− g′2

64h′k′+ 3π2h′
2

+ 16πh′g′

 ,

(20)∫ π
2

3π
8

√
π

β

α

2β
e
α2

4β dθ ≈ s

2h
ln


∣∣∣k + πg

2 + π2h
4

∣∣∣∣∣k + 3πg
8 + 9π2h

64

∣∣
+

2eh− sg
h
√

4kh− g2
tan−1

(
πh
√

4hk − g2
16kh+ 3π2h2 + 7πhg

)
.

(21)
Similar approximations can be obtained for terms associated
with the function D1 (θ; p0, pl, d) which are not presented
here due to the lack of space.

3.2. Recovery Criterion

In this subsection, p0 and {pl} are estimated by formulating
a minimization problem. For this purpose, one may consider
the following criterion:

C̄(p0, pl) , log

∣∣∣∣∣∣Ry(l)− e
−d2
p0+pl

π
√

(p20 − p2l )

{∫ π
2

0

1

β

+

√
π

β

α

2β
e
α2

4β −
√
π

β

α

β
Q

(
α√
2β

)
e
a2

4β dθ

}
+ 1

∣∣∣∣2
)

(22)
where the autocorrelation of output signal (Ry) can be esti-
mated with the given sign vector (y) via the sample covari-
ance matrix

Ry ≈
1

N

N∑
k=1

y(k)y(k)H . (23)

Note that by now we have derived an approximated version
of (9). Let H(p0, pl) denote this approximation. Therefore,
we can alternatively consider the criterion:

C(p0, pl) , log
(
|Ry(l)−H(p0, pl)|2

)
. (24)



Fig. 1: Example plot of the estimation criterion C(p0, pl)
with respect to p0 and pl showing its multi-modality, i.e. hav-
ing multiple local optima.

A numerical investigation of (24) reveals that it is highly
multi-modal, with many local minima—see Fig. 1 for an ex-
ample of the optimization landscape of C(p0, pl). To filter
out the undesired local minima, we resort to constraints re-
enforcing the behaviour of an autocorrelation function. More
precisely, we will consider the minimization problem:

P` : min
p0,pl

C(p0, pl), s.t. p20 ≥ p2l , p0 ≥ 0, (25)

where the first inequality constraint in (25) is imposed to en-
sure that the magnitude of the diagonal elements of the co-
variance matrix of w is greater than the magnitude of the
off-diagonal elements. The non-convex problem in (25) may
be solved via the gradient descent numerical optimization ap-
proach by employing multiple random initial points. Once p0
and {pl} are obtained, one can estimate the autocorrelation
values of x via (10). The optimum recovery results will be
presented in the following.

4. NUMERICAL RESULTS

In this section, we will examine the proposed method by com-
paring its recovery results with the true input signal autocorre-
lation values. In all experiments, the input signals were gen-
erated as zero-mean Gaussian sequences with unit variance.
Accordingly, we made use of the time-varying thresholds with
d = 0.7 and diagonal Σ whose diagonal entries are equal to
0.3. Note that the values of d and Σ are best chosen based on
the application, considering the magnitude of the input signal.

To show the effectiveness of the proposed approach, we
present an example of autocorrelation sequence recovery. The
true input signal autocorrelation and the estimated autocorre-
lation values by our approach are shown in Fig. 2 for a ran-
dom sequence of length 31. Fig. 2 appears to confirm the pos-
sibility of recovering the autocorrelation values from one-bit
sampled data with time-varying thresholds.

Next, we investigate the impact of a growing sample size
in autocorrelation recovery, and in particular, the variance.

Fig. 2: Recovery of the input signal autocorrelation for a se-
quence of length 31 from one-bit sampled data, with the true
values plotted along the estimates.

Fig. 3: Average NMSE for signal variance recovery for dif-
ferent one-bit sample sizes.

We define the normalized mean square error (NMSE) of an
estimate r̂0 of a variance r0 as

NMSE ,
|r0 − r̂0|2

|r0|2
. (26)

Each data point presented is averaged over 15 experiments.
As can be seen in Fig. 3, the proposed method can estimate the
variance elements of an input signal accurately. The results
are obtained for lengths 10, 100, 500, 1000, 3000, 6000, and
10000, with fixed d and Σ for each experiment. As expected,
the accuracy of variance recovery will significantly enhance
as the number of one-bit samples grows large.

5. CONCLUSION

We proposed a modified arcsine law through Padé approxi-
mations that can make use of non-zero time-varying thresh-
olds in one-bit sampling. The numerical results showcase the
effectiveness of the proposed approach in recovering the au-
tocorrelation values of one-bit sampled stationary signals.



6. REFERENCES

[1] Texas Instruments, “Analog embedded processing,”
Active Filter Design Techniques, Literature Number
SLOA088 Texas Instruments, excerpted from OP-Amps
for Everyone, Literature Number SLOD006A.

[2] Amine Mezghani and A Lee Swindlehurst, “Blind es-
timation of sparse broadband massive MIMO channels
with ideal and one-bit ADCs,” IEEE Transactions on
Signal Processing, vol. 66, no. 11, pp. 2972–2983, 2018.

[3] Aria Ameri, Jian Li, and Mojtaba Soltanalian, “One-
bit radar processing and estimation with time-varying
sampling thresholds,” in 2018 IEEE 10th Sensor Array
and Multichannel Signal Processing Workshop (SAM).
IEEE, 2018, pp. 208–212.

[4] Saeid Sedighi, Bhavani Shankar, Mojtaba Soltanalian,
and Björn Ottersten, “One-bit DoA estimation via
sparse linear arrays,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 9135–9139.

[5] Cheng Qian and Jian Li, “ADMM for harmonic retrieval
from one-bit sampling with time-varying thresholds,”
in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 3699–3703.

[6] Christopher Gianelli, Luzhou Xu, Jian Li, and Petre Sto-
ica, “One-bit compressive sampling with time-varying
thresholds for sparse parameter estimation,” in 2016
IEEE Sensor Array and Multichannel Signal Processing
Workshop (SAM). IEEE, 2016, pp. 1–5.

[7] Shahin Khobahi and Mojtaba Soltanalian, “Model-
based deep learning for one-bit compressive sensing,”
IEEE Transactions on Signal Processing, vol. 68, pp.
5292–5307, 2020.

[8] Shahin Khobahi and Mojtaba Soltanalian, “Signal re-
covery from 1-bit quantized noisy samples via adap-
tive thresholding,” in 2018 52nd Asilomar Conference
on Signals, Systems, and Computers. IEEE, 2018, pp.
1757–1761.

[9] Pu Wang, Jian Li, Milutin Pajovic, Petros T Boufounos,
and Philip V Orlik, “On angular-domain channel esti-
mation for one-bit massive MIMO systems with fixed
and time-varying thresholds,” in 51st Asilomar Confer-
ence on Signals, Systems, and Computers. IEEE, 2017,
pp. 1056–1060.

[10] Feng Xi, Yijian Xiang, Shengyao Chen, and Arye Neho-
rai, “Gridless parameter estimation for one-bit MIMO
radar with time-varying thresholds,” IEEE Transactions
on Signal Processing, vol. 68, pp. 1048–1063, 2020.

[11] J. H. Van Vleck and David Middleton, “The spectrum
of clipped noise,” Proceedings of the IEEE, vol. 54, no.
1, pp. 2–19, 1966.

[12] Giovanni Jacovitti and Alessandro Neri, “Estimation of
the autocorrelation function of complex Gaussian sta-
tionary processes by amplitude clipped signals,” IEEE
Transactions on Information Theory, vol. 40, no. 1, pp.
239–245, 1994.

[13] Giovanni Jacovitti, Alessandro Neri, and Roberto Cu-
sani, “Methods for estimating the autocorrelation func-
tion of complex Gaussian stationary processes,” IEEE
Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 35, no. 8, pp. 1126–1138, 1987.

[14] Ofer Bar-Shalom and Anthony J Weiss, “DoA esti-
mation using one-bit quantized measurements,” IEEE
Transactions on Aerospace and Electronic Systems, vol.
38, no. 3, pp. 868–884, 2002.

[15] Chun-Lin Liu and PP Vaidyanathan, “One-bit sparse
array DoA estimation,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 3126–3130.
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