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Abstract. The classical Orr—Sommerfeld equations are the resolvent equations of the linearized
Navier—Stokes equations around a stationary shear layer profile in the half plane. In this paper, we
derive pointwise bounds on the Green function of the Orr—Sommerfeld problem away from its critical
layers.
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1. Introduction. In this paper, we are interested in the study of linearized
Navier—Stokes equations around a given fixed profile U; = (U(z),0) as the viscosity
goes to 0. Namely, we consider the following set of equations:

(1.1) ow+Us - Vo+v-VUs+Vp—vAv =F,
V-v=0

on the half plane x € T, z > 0, with Dirichlet boundary condition
(1.3) v=0 on z=0.

We focus on the periodic case x € T, the whole line case z € R being similar.
Throughout this paper, the background profile U(z) is assumed to be sufficiently
smooth, to satisfy U(0) = 0 and

(1.4) O¥(U(2) —UL)| < Cre™™* Y 2>0, k>0,

for some finite constant Uy and some positive constants Cj, and 7g.

The inviscid limit problem (1.1)—(1.4) is a very classical problem that has led to
a huge physical and mathematical literature, focusing in particular on the linear sta-
bility, the dispersion relation, the study of eigenvalues and eigenmodes, and the onset
of nonlinear instabilities and turbulence (see [1] for an introduction on these topics
and the classical achievements of Rayleigh, Orr, Sommerfeld, Heisenberg, Tollmien,
C. C. Lin, and Schlichting).

Two cases arise. Either the profile U is linearly stable for the corresponding
linearized Euler equations (the case when v = 0) or it is linearly unstable for these
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limiting equations. In this paper, we consider the unstable case, leaving the stable
case to be treated in [10], which turns out to be much more delicate. In the unstable
case, it is well known [6] that the profile U is linearly unstable for the linearized
Navier—Stokes equations provided v is sufficiently small or, equivalently, the Reynolds
number R = v~ ! is sufficiently large. However, in order to go from linear to nonlinear
instability, more precise information on solutions to the linearized problem is required.
Let us mention several efforts in treating the stability and instability of nonlinear
boundary layers in the small viscosity limit [2, 3, 4, 5, 6, 11, 13, 14].

A natural and traditional approach to studying linearized Navier—Stokes equations
is to take the Fourier Laplace transform of these equations. For this, in order to take
advantage of the incompressibility relation (1.2), we introduce the stream function 1)
of v, defined by

v =V,

and take its Fourier transform in the x variable, with wave number «, and its Laplace
transform in time, with Laplace variable

A = —iac,

following historical notation. Equivalently, we focus on solutions v of linearized
Navier—Stokes equations of the form

v=vt (eia(mfct)q&(z)),

with the source term of the same form. This leads to the classical Orr—Sommerfeld
equation

(1.5) (U = ¢)(82 — a?)p — U"¢ = €(9% — a2)%¢ — ia" f, €=

on the half line z > 0, together with the boundary conditions

(1.6) Bl = QSL:O =0, Zhﬁngo #(z) =0.
Here, & € N* = N\ {0} denotes the tangential wave number and ¢ € C is the complex
phase velocity.

For the mathematical analysis, it is more convenient to multiply (1.5) by ia,
which leads to

(1.7) A +ial)(0? — a*)¢p —iaU" ¢ — v(9? — a®)?¢p = f.

Such a spectral formulation of the linearized Navier—Stokes equations near a boundary
layer shear profile has been intensively studied in the physical literature. We in
particular refer the reader to [1, 12, 15] for the major works of Heisenberg, Tollmien,
C. C. Lin, and Schlichting on the subject. We also refer the reader to [7, 8, 9] for the
rigorous spectral analysis of the Orr—Sommerfeld equations.

In this paper, we shall derive pointwise bounds on the Green function of the
Orr—Sommerfeld problem (1.6)—(1.7). For convenience, let us denote

A, :=0%—a?

(1.8) 0Sar(9) := (N +ial)And —ialU" ¢ — vAZ .
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For each fixed a € N* and X\ € C, we denote by G x(z,z) the corresponding Green
kernel of the Orr-Sommerfeld problem. By definition, for each 2 € Ry, Gq i (z,2)
solves

OSa,)\(Ga,)\(-ra )) = (Sw()

on z > 0, together with the boundary conditions

(1.9) Ga(2,0) = 0,Gy 2 (x,0) =0, lim Gy a(z,2) =0.

Z—r00

The Green kernel allows us to solve the inhomogeneous Orr—Sommerfeld problem

(1.10) 0Sax(9) = f,

or, equivalently, the resolvent equations of the linearized Navier—Stokes operator,
through the following explicit expression for the solution ¢:

P(2) = /0 h Gaxl(z,2)f(z) dz.

To construct the Green function, let us first note that as z — 400 the homogeneous
Orr-Sommerfeld equation “converges” to the following constant-coefficient equation:

(1.11) 0S4 (¢) = (A +iaUy)Anp — vAZ¢ =0,

where Uy = lim,_, o, U(z). This constant-coefficient equation has four independent

. + .
solutions eX#+* and e*7 %, with

(1L12)  pe=lal, ppe)=r AN e Fial(z), pf = Jim pg(2),

in which we take the positive real part of the square root.
As will be proved later, there exist four solutions to the homogeneous Orr—
Sommerfeld equation OS, x(¢) = 0 which have either a “slow behavior” e*#s* or

4
a “fast behavior” e™"7 % as z — +o0. The two slow modes appear to be perturbations

of solutions of the Rayleigh equation
Raya(¢) = (A +iaU)An¢ —iaU"¢ = 0,
whereas the two fast modes are linked to the Airy-type equation
A+ iaU — vAL)AL¢ =0
or, recalling p s introduced in (1.12),
(1.13) V(07 = 13)Aad = 0.

Let us first consider the Rayleigh equation Ray, x(¢) = 0. As z goes to +oo, this
equation “converges” to A,¢ = 0, and hence Rayq, (¢) = 0 has two solutions ¢q +,
with respective behaviors e*?* at infinity. We define the Evans function E(a, \) by

(1.14) E(a,\) = ¢a._(0).

Note that the Rayleigh equation degenerates at points where A+ ialU(z) vanishes. In
this paper, we restrict ourselves to the case when A is away from the range of —iaU.
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Precisely, throughout the paper, letting ¢y be an arbitrarily small, but fixed, positive
constant, we shall consider the range of (o, A) in R\ {0} x C so that

(1.15) d(a,A) = inf A+ iaU(2)| > €.
zERy

Note that d(a, A) = R if SA € —aRange(U). In any case,
(1.16) d(a, ) > |RA[

It turns out that two independent “slow” solutions of Orr—Sommerfeld equations can
be constructed as perturbations of these two solutions of the Rayleigh equation.

The two “fast” solutions come from the Airy equation (1.13). This equation
degenerates when \ + o?v + ialU gets small. Points z. such that alU(z.) = —3\ are
called “critical layers.” The behavior of the Airy equation changes as we approach
these points, and in this paper we only study this equation away from these critical
layers. Let us quantify this notion. The Airy equation has a typical length scale:

1 v
oz) = pp(z) \/)\ +va? +ial(z)

If §(z) varies within a length 6(z), namely if ¢’(2)d(z) ~ d(z) or, equivalently, if
o ~ v~12 then the nature of the construction changes (see (2.1) for more details).
In this paper, we restrict ourselves to the case |a| < v~1/2 or, more precisely, on
la] < v~¢ for some ¢ < 1/2.

We are mainly interested in getting bounds on the Green function when A has a
small positive real part. In this case, the condition (1.15) implies

(1.17) Rup(z) = v 2RV A Fva? +iaU(2) > v % /e0/2 > ps

for sufficiently small v and for |a| < v=¢ for some ¢ < 1/2. We may also use these
Green function bounds in order to obtain bounds on the solutions of linearized Navier—
Stokes equations, through contour integrations. It turns out that these contours may
be chosen such that p, < Rpy. Therefore, we focus on this case in this paper, leaving
aside the case when /1y > 1.

Our main result is the following.

THEOREM 1.1. Let U(z) be a boundary layer profile which satisfies (1.4). For
each a, A, let by Gy x(z, z) be the Green kernel of the Orr—Sommerfeld equation, with
the source term in x, and let

1.18 s = |al, pwr(z) = v Y2/ N+ va2 +ial(z),
f

where we take the square root with a positive real part. Let 0 < 6y < 1 and { < 1/2.
Let og > 0 be arbitrarily small. Then there exists Cy > 0 so that

Co -0 - Co 00| [* Rus d
1.19 Ganlz,2)| < — % e Oomslo—zl o =0 0ol [ Ry dy]
(19 [Gas(e, 2} psd(cr, A) g (x)|d(a, \)

uniformly for all z,z > 0 and 0 < v < 1, and uniformly in (a,\) € R\ {0} x C so
that || <v=¢, (1.15) holds, and

|E(ar, \)| > 0.
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In particular, we have

Co  _bops|a— Co —00| [7 Ry d
(1.20) Gz, 2)] < —a—e fomslo=zl f 0 ___ =00l [7 Rpy dy],
s | RA| |y () [[RA]

In addition, the following derivative bounds hold:

Coluk-‘ré _ 3 CO|Nf(y)|k+£ B .
1.21 85&5(?,1 r,2)| < ———c¢ Oopsle—z| y ZOWTIITL =60l J7 Rpug dyl
(121) 1020 Gan@:2)l < 700 e @) )

for allz,z >0 and k,¢ >0, in which My = sup, Rus(z). Moreover,

Co -0 - CO‘Nf(y)P —0o| [* Rus d
1.22 ApGor(z,2)] < e~ fomsle—zl ZOWSAIIL o ~fol [ Rpsy dyl
2 | AR TN or ()ld(e, )

where we “gain” a factor us in the first term on the right-hand side.

We believe that the 6, factor is purely technical and that this theorem holds true
for p = 1. In addition, we note that A, G4, enjoys better bounds since A etlelz = .

To prove this theorem, we first construct approximate solutions to the Orr—
Sommerfeld equation and then construct an approximate Green function. An it-
eration argument yields the exact Green function together with the stated bounds.
Our construction of the Green function for the Orr—Sommerfeld problem was inspired
by the pointwise Green function approach introduced by Zumbrun and Howard [18]
and Zumbrun [16, 17].

We are also interested in the construction of a pseudoinverse of the Orr—Sommerfeld
operator near a simple eigenvalue, a construction which is detailed in section 5.

2. Approximate solutions of Orr—Sommerfeld. In this section, we con-
struct four independent approximate solutions to the Orr—Sommerfeld equations
OSax(¢) = 0, two with a “fast” behavior and two with a “slow” one. The fast
modes are constructed using geometrical optics methods, namely following the BKW
method. For the slow modes we will distinguish between three regimes:

e Bounded |«|. In this case, the slow modes are perturbations of the eigenmodes
of Rayleigh equations.

e 1 < |a| < v~4 (or any small negative power of ). We use the fact that the
Rayleigh equation is a perturbation of A,. The slow modes are perturbations
of the eigenmodes of 92 — o, namely e*lelz,

o v /4 <Ja| <v ¢ for ¢ < 1/2. In this case, e*l*l* is a sufficient approxima-
tion.

Solutions will be constructed in function spaces Ly°, for n > 0, that consist of smooth
functions f so that the norm

1 £1l = sup eI f(2)]
220

is finite.

2.1. Fast modes. In this section, we shall construct two independent approxi-
mate solutions, which asymptotically behave like eLhT 2 , of the Orr—-Sommerfeld equa-
tion OS4 2 (¢) = 0. We will use the BKW method. Let us first discuss its validity.

Note that locally the characteristic length scale of the oscillations is

1 v
oz) = wr(z) B \/)\ +va? +ial(z)
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The BKW method is valid provided § has a small change during a period, namely
provided 8’0 < 6, or, equivalently,

(2.1) §'(2) = —ivval'(z)

1.
2(\ + va? +ial(z))3/? <

Note that it may happen that for some particular z., S\ + aU(z.) = 0. Such z.
are called critical layers, or turning points. If & ~ »~1/2 then the denominator and
numerator of (2.1) are of order O(1) at such points, and hence the condition (2.1) is

not satisfied and 6’(z.) ~ 1.

On the contrary, if @ < v=¢ with ¢ < 1/2, then near critical points, the de-
nominator is of order O(1) but the numerator is of order O(v'/2=¢). Therefore, the
condition (2.1) is satisfied provided v is small enough. Similarly, ,ufl_J O ug(z) is of

order O(v'/27¢) or smaller for j > 1.

ProposSITION 2.1. Let N > 0 be arbitrarily large. Then, for sufficiently small v
and for |a| < v=¢ with { < 1/2, there exist two approzimate solutions ¢! (2) which
solve Orr—Sommerfeld equations up to a small error term

0Sa(@77) = O |g3L)),

with ¢3"7(0) =1 and

(2.2) (=) = eE W W (14 g (2)),

)

where ¢4 and their derivatives are uniformly bounded in o, v, and z, and converge
exponentially fast to 0 at z = +o0.

app

Proof. Following a semiclassical approach, we look for qb under the form

PP = exp @ .
fiE NG

Let 6 = 69" simplify the notation. We compute

82¢ap:0 (0,2 + io//i) (bapp

and ., )
9/ 9/ 6//
4 app _
Vo ¢y L = ( > +6 7

We now expand 6 in powers of \/v; namely,
N
0="> 0,72
i=0

where the functions 6; will themselves depend on o and A. Putting the ansatz into
the Orr—-Sommerfeld equations, at leading order, we obtain

+40 9/// +30//2 + f@////) ¢app

A +ialU)(0F — va?) — (064 — 20020 + z/2a4) =0.
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Factorizing by 02 — va?, we get
05 = A +va® +ial = vpj(z),
which gives
0, = £Vvps(2).
Note that ) converges exponentially fast to :I:ﬁu? and 6] converges exponentially

fast to 0. To obtain 6, we equate the powers in ﬁﬂ and get
—4020} + 4va”0)07 + 2(\ +ial)0y0] = S,

where the source term S = 6626 only depends on ), and its derivatives. This leads
to

;o S _ S

V7 (402 + 4va2 2\ +ial))0, 2\ +ial)6)’

As 6], is bounded away from 0, 6] is correctly defined. Moreover, §; converges expo-
nentially at infinity, as well as all its derivatives, and as 0 = O(«), 61 = O(«). This

leads to

(2.3) 0P = 0y + O(av™1/?).

0

We then obtain equations and similar estimates on the remaining 6; by equaling
successive powers of v. The proposition follows. ]

2.2. Slow modes.

PROPOSITION 2.2. There ezist two solutions qﬁ?f)f; which approzimately solve the
Orr—Sommerfeld equations: precisely, for any N,

|OSO‘7>\(¢Z?:IZ:))‘ S ONVNei‘aV*nZ

Elelz 45 2 goes to +00: for any n,

02937 (2)] < Cre*lol,

and behave like e

For the proof of Proposition 2.2, we shall distinguish three cases, bounded «,
moderate «, and large «, that will be detailed in the next sections. We restrict
ourselves to a > 0, the opposite case being similar.

2.2.1. Approximate slow modes for bounded a and A. As z goes to +0o0,
the Rayleigh equation “converges” to Ay¢. Therefore, the Rayleigh equation admits
two particular equations, called ¢+, which behave like etlelz as 2 — 4+00. Moreover,
|07 o+ (2)| < Cre®lel® for every positive n. Note that

OSa,/\(QSa,i) = _VAi(ba,i-

Using the Rayleigh equation, we compute

iO‘UHQba +
Aa @ = 7.,7
Dot A+ U
which gives
iaU”an +
« o - — Aa —_—
OSax(Sa2) v < A +iaU )

iaU" \? ial" ial"
= | — —92 ) - 22 ),
”<,\ +iaU) Dot ”az¢“’iaz<A+iaU) Vo0 ()\Jrz'aU)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/27/21 to 132.174.254.159. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

1286 EMMANUEL GRENIER AND TOAN T. NGUYEN

Note that A +iaU is bounded away from 0, and therefore
0Sax(¢a,1)| < Cretlolz=nz,

and similarly for all its derivatives.
We now look for approximate solutions of Orr-Sommerfeld solutions ¢3"f of the
form

N
L= ¢l
j=0
for arbitrarily large IV, starting with ¢g7i = ¢q,+. We have

Raya(¢471) = —0Sa (¢ 1)-
Note that
(2.4) 0Sax(957F) = —vAZel ..

We will focus on the construction of $;**, the construction of ¢¢*! being similar. To
end the proof of Proposition 2.2, we need to bound the various ¢’

o,—» which is done
through the iterative use of the following proposition.

PROPOSITION 2.3. There exist constants Cy, such that the following assertion is
true. For any B > 0 and any smooth function 1, there exists a smooth solution ¢ of
Raya(¢) = ¢ such that

n

C
su 85 o +sup |07 A0d]|ats < su Bf R
S 56l -+ 510 137 Bl < o5 P 050 s

where [|¢]|; = sup.q ¢"!|¢(2).

Proof. We first construct the Green function of the Rayleigh operator. Let
5(17_,_(2) = ¢a,~(0)a,+(2) = Ga,+(0)da,—(2).
Then <ZQ7+(0) = 0 and the Wronskian of <Za,+ and ¢,,— equals

W (¢a,+Pa,—) = Ga,— ()W (dats ba,—) = 200a,—(0),

evaluating this latest Wronskian at infinity. The Green function of the Rayleigh
operator is therefore

Glx,2) = M%,_m%@,m it 2 <o,
G(z,2) = waa,+(x)¢a7_(z) if z> .

We then have
+oo
o) = [ G2l
0

Using the asymptotic behavior of ¢, 1, we get the claimed bounds on ||07¢||, with

n = 0 and n = 1, by a direct computation. Higher derivatives are obtained by
differentiating

926 = a2¢ + ﬂ¢+¢

vt A +iaU ’
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keeping in mind that « is bounded and A is away from the range of —iaU. Next, we
write U
o
A= ————
a® A+ iaU o+,

which gives the desired bounds on A, . ]

2.2.2. Approximate slow modes for 1 < |a| < v—1/4
large «, or for large \/a, the Rayleigh operator is a small perturbation of 92 — «
and we can construct approximate eigenmodes ¢ZP£ using a perturbative construction.
Namely, the Rayleigh equation may be rewritten as

wU" ¢
A +iaU’

or large A\/a. For
2

Autp =

Note that o~ te~®l*=2l is a Green function for A,. We therefore define the operator

T by @
7 1eala—z 10U (@)
T[¢](2) .—/O ale N+ ial dzx.

We shall prove that for sufficiently large «, the map 7T is well defined and contractive

from L7, to itself. Indeed, for ¢ € L2, , as A +iaU is bounded away from 0, we
have

TN < Co [ et e ol do < Coa™ [fasne ™
0

This proves that T[¢] € Lg2,. If a is large enough, then T is a contraction in this

space. On the other hand, if A/« is large enough, we rewrite

ialU " ¢(x)  U'¢(x)
A+iaU U —ia~ I\

which is bounded by C/(a~1)). Hence T is a contraction if A/« is large enough.
We now construct two independent solutions of the Rayleigh equation, which

behaves like e*®* for large 2. Let us detail the “_" case. We look for ¢, _ under the
form
b= ",
n>0

with ¢° = e~*% and ¢" " = T[¢"]. As T is contractive, the previous sum converges
in LgY, . Note that, in particular,

G = (1 + O(ofl)LZcM),

and similarly for its derivatives. The construction of ¢, 4 is similar.
The construction of approximate solutions of Orr—Sommerfeld is similar to that
of the previous section. We start with ¢s _ and note that

V||Ai¢s,—”a+n < Cvja* S V2,

We then introduce ¢! _, defined by

5,—)

Raya( : ): 7VA§¢3,—3

S,—

which can be bounded using the 7 operator. To end the proof of Proposition 2.2, we
iterate the construction as in the previous section.
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2.2.3. Approximate slow modes for v~/ < |a| < v~/2. We look for
eigenmodes of the form
PP = exp(abiP?),

where 03" may be expanded in powers of a~!. As in section 2.1, we get

—va 0t 4 2000 — vat + (A +ial)(a?0F — o*) = 0.
This time we choose 6y = +1 and iterate as in section 2.1 to prove Proposition 2.2.
Note again that the leading order of A,¢¢”} vanishes.

3. Approximate Green function. We now construct an approximate Green
function H*PP using the approximate solutions ¢’ and ¢%"7. We will decompose
this Green function into two components:

Hp — Qopr 4 C;app,

where GPP does not take into account the boundary conditions and focus on the
discontinuity at y = x, and where G®PP restores the proper boundary conditions.
Hence, first forgetting the boundary condition, we look for G*P(z,y) of the form

GPP(z,y) = a+(a:)¢s’;(y) +by(x )QSWPEZ; for y < x,
(3'1) app app
GPP(z,y) = a_ (x)¢ cl(y) +b_(x )¢app§z; for y > x,

where the normalization constants ¢; and ¢y will be fixed later. Let

(3.2) o(@) = (—a_ (), as (), —b_ (), bs (2)).
By definition, G**?, 9,GPP, ﬁ@gG“pp are continuous at x = y and I/GSG“W has a
jump at x = y of magnitude 1. Let

¢s,— /1 Gs,+/C2 b5~ bf+
Oyps—/crpy  Oyds/capy Oypy—/pg Oydga/pg
85(;53,,/01/@ a§¢s,+/02/ﬁf 55%‘,7/#? 5§¢f,+/ﬂfc ’
8S¢s,—/61M?f 82(?574./62/,6? 83(15]”,—//,&? 83¢f,+//j}

(3.3) M=

where the functions ¢, 1 = ¢;1 and ¢7 1 = ¢§" and their derivatives are evaluated
at y = z. Then

(3.4) Muv = (0,0,0,1/vu}).

In the following sections, we will bound the solution v of (3.4). Let us define the four
two-by-two matrices A, B, C, and D by

we(22)

D= ( _11 } >+O(aﬂgl).

Note that, using (2.3),
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Hence the matrix D is bounded and invertible, upon recalling that o < py in the
range of o that we consider (see (1.17)). Moreover, its inverse is bounded and equals

_ 1/1 -1 _
D 1:2(1 1 )—l—O(aufl).

We shall consider two cases: bounded a and unbounded «.

3.1. First case: Bounded a. We take ¢y = ¢o = 1. Note that A = A, A,

where
1 0 ¢s — (bs + )
A = _ A, = ; , _
1 ( 0 Hfl ) ) 2 ( 0,0 Oybos

The determinant EPP(«, \) of Ay is a perturbation of the Evans function E(a, A) in
the sense that

E“P(a, \) = E(a, \) + O(v?)
for some positive o. Hence if E(a, ) # 0, then Ay and A are invertible provided v

is small enough, and A5 ! is bounded. Moreover, the matrix M has an approximate
inverse

— (A1 —AT'BDT
v ()

in the sense that MM = Id + N, where

0 0
N= ( CA-' —CA-'BD™ >

Note that C is of order O(,u;Q) since a is bounded, B is bounded, and A=! = A; ' A7?

is of order O(ps). Hence we have N = O(u;l). Therefore, (Id + N)~! is well defined
and uniformly bounded for v small enough provided E(«, \) # 0. As a consequence,

M~ =MId+N)"'=M> N

Note that the two first lines of N™ vanish. Therefore,
(1d+ N)71(0,0,0,1/vp}) = (0,0,0(1/vpih), 1/vp} + O(1/vif)).
As D71 is bounded and A=*BD~! is of order O(uy), we obtain that ay and by are
of orders O(l/yufc) and O(l/z/u?p), respectively. Note that a is bounded in this case,
which give the desired bounds since
V/,L?c =\ +va? +ial

and hence
vp] > d(e, A),

which ends this first case.
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3.2. Case 2: Large a. We take ¢; = ¢;"!'(x) and ¢z = ¢ (). In this case, A

is of the form
1 1
A= _ —1 —1 (1—|—0(1))
apy oy

Its inverse A~ equals

1/1 —at
-1 _ K
A = 5 ( 1 04—1Mf > (1+0(1)).

Note that D~ and B are bounded and A~! is order O(uys/c). As C is of order

O(az/u?c), N (defined in the previous section) is of order O(a/if). Hence, as |o| < py
in view of (1.17), we have

(Id+N)"'=> (=1)"N"™

n

This leads to

(3.5) (Id+ N)71(0,0,0,1/vx}) = (0,0,0(a/vii}), 001 /vi})).

It remains to evaluate the image of this vector by M. As D71 is bounded, we obtain
that by are of order O(1/vp’}) = O(1/pysd(, N)).
Moreover, we compute

D7H0,0(1/vi})) = [(=1,1) + OlapzH)| O(1 vish).

s=( 1 1 )asou),

we obtain

BD™(0,0(1/vi)) = [(0.1) + Olaurh)| 01 /wii}).
As a consequence, we obtain
AilBDfl(0,0(l/yuf})) = O(l/avu?).

It remains to bound the images of the O(a/uu‘}c) term in (3.5). We have

DO/}, 0) = |(1,1) + Olan; )] O(a/vi}).

Hence
BD™(0(a/vii}),0) = [(1,0) + Olap; )| Oa/vi})

and A"'BD~'(O(a/vp}),0) = O(a/vp}). Using again o < juiy, we obtain that a
are of order O(l/uu?a) = O(1/ad(a, N)).
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3.3. Boundary condition. We now add to G®P another approximate Green
function G°PP to handle the boundary conditions. We look for G*PP under the form

Aa 0 -(y) o5, (y)
GP(y) = d, A +dy ¢f,—(0),

where the normalization constant d; will be fixed later, and look for d, and d; such
that

(3.6) GPP(z,0) 4+ GP(0) = 9,GPP(z,0) + 9,GPP(0) = 0.
Let

M:( bs—/di  b5—/Pr—(0) )
8y¢s,—/d1 8y¢f,—/¢f,—(0) ’

the functions being evaluated at y = 0. Then (3.6) can be rewritten as
Md = — (G (z,0),d,GP(x,0)),
where d = (ds,dy). Note that
(G*(,0),8,G*(2,0)) = Qla+, by),
where

_ $s,4(0)/c2 1
Q_<%%ﬁ@k2%W¢@Mm@))

By construction,
(3.7) d=—M"'Qay,by).

Let us first consider bounded «. We take d; = 1. This leads to

o d)s,—(o) 1
M‘(%m,w ﬂu+mn)'

Note that M = My M,, with

M = ( (1) l?f ) y My= ( 8y¢d:f;7(go))/ﬂf ~1 +Ol(1/ﬂf) > '

The determinant of Ms equals —E(a, A) = —¢5 _(0), up to a small term of order

u;t ~ /v, recalling that o is bounded. Hence M, is invertible, and My 1 is bounded

if E(a, A) # 0, provided v is small enough. Then
M~'Q = My ' M{1Q.

Note that (a4,b;) = (O(l/uu?),O(l/uy?)). Hence Q(a4,by) = O(l/l/,ufc). There-
fore, M;'Q(ay,by) = (O(l/yu?), O(l/l/ﬂ?)). Hence, as the second term of the first
column of My is of order O(1/uy), we get, as desired, that

(3.8) 4= (0(1/0v1i3), 0(1 /i),

keeping in mind that « is bounded.
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For large , we choose di = ¢5,—(0). Then

@= ( a+10(1) i +10(1) )

1= (o o )

1 _ 1 pr+O(1) 1
i o (Y00 )

In this case, (a4,bt) = (O(l/az/u?c), O(l/uu:})). A direct computation of M~'Q(ay,by)
again gives (3.8). Combining all the previous estimates ends the proof.

and

4. Exact Green function. Let
HwP — Gorp | Goavp

be the complete approximate Green function. By construction, H*PP satisfies the zero
boundary conditions (1.9). We now construct the exact Green function G(z, z) as an
infinite sum:

(4.1) G(z,2) =Y Gnlx,2),

n>0

where Gy = HP,
G1 = —H"P x (OSa A (HP) — 0y—z),

and G,, is defined by iteration through
Gry1 = —HP x 0S4 2 (Gh).

Hence it suffices to prove that the series (4.1) converges in a suitable function space,
which follows immediately from the following lemma. The stated bounds for G(z, 2)
in Theorem 1.1 then follow from those on HP(x, z).

LEMMA 4.1. For each x, assume that
7 (y)] < e levl
or some ' such that o' < |a| and o/ < Ruyr. Then
f
1080 n (G % £7)(y)] < Oy —2ele=,
Proof. Note that

0S0(G 5 [7)(y) = / S0 r (GPP) (2, 9) [ ().

However, we recall that ¢¢7f satisfy

|0Sa(¢eD)] < Cvi¥etlol,
080 x (6770 < CvY |63
Using the bounds on the coefficients on G*PP(z, y), this leads to
|0Sa A (GPP(2,y))| < CvN~2emolv=2l,

The lemma follows by convolution. 0
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5. Construction of a pseudoinverse. We now focus on the case when A is
close to a simple eigenvalue \g.

THEOREM 5.1. Let o be fized. Let Ay be a simple eigenvalue of Orry,y with
corresponding eigenmode ¢q x,. Then there exist a bounded family of linear forms I¥
and a family of pseudoinverse operators Orr;l/\ such that for any stream function ¢,

Orraa(0rr23(6)) = 6 = 1 (9)6an,

for X\ near A\g. Moreover, the pseudoinverse Orr;’l/\ may be defined through a Green

function éa,A(x,z) which satisfies the same bounds in (1.19).

5.1. Principle of the construction. Let us sketch the principle of the proof
on a simplified case. Let Ay be an N x N matrice of rank N — 1 (which is a toy model
for the Rayleigh operator when A is a simple eigenvalue), and let A(g) be a bounded
family of N x N matrices (a toy model for the Orr—Sommerfeld equation). We want
to construct an inverse for

A% = Ag + £A(e).

Let us first invert Ag. Let v be a unit vector, orthogonal to the image of Ay. Let P
be the orthogonal projector on the image of A, namely

Py =f—(fo).

Let B be a pseudoinverse of Ay, namely a matrix such that, on the image of Ao,
AopB =1d. Then u = BP f solves

Aou = f — (fv)v.
We now fulfill a similar construction for A® for small €. Let ug = BPf. Then
Afug = f— (fo)v+eA(e)uo.
We now define uy = —BPA(g)ug. Then ug + uy solves
Af(ug +euy) = f — (fauo)v + e(A(e)ug.v)v — 2 A(e) BPA(g)ug

and the construction follows by iteration.

5.2. Rayleigh equation. In this section, we fix o and investigate the Rayleigh
operator Ray,,» when ) is near a simple eigenvalue Ay of Ray,, . We will also assume
that Ker(RayiAo) = Cha,rg,+- At A = Ao, Pa,x,,+ are colinear (that is, the Jacobian
of ¢a,x,,+ vanishes). Up to a renormalization, we may assume that ¢ g + = Pa,rg,—-
For X # Ao, the solution of Rayq,x(¢) = 9 is explicitly given by

+oo z
(ba,)\,*(w)w(x)dx + ¢o¢,)\,7(z) (ba,)\,+($)

Jac(z) o Jac(z) Ylz)dz,

1) 02) = dursl) [

z

where
Jac(z) = ¢a,>\,f(x)ax¢a,>\7+(x) - ¢a,>\7+($)8a:¢a)\ﬁ(x)

is the Jacobian of ¢, x+. Note that, as Mg is a simple eigenvalue, Jac(Ag) = 0 and
that, for A near g, _
Jac(X) = (A = Xog)Jac(N),
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where Jac()) is a smooth function with Jac(X) # 0 since A is a simple eigenvalue.

Let us also define
3 _ Part — Parot
a, N\, N _ )\O

Then it follows from (5.1) that

_ ¢047)\07+(Z) oo (ba,AO,.t,_(I) Do ~ B
o) = 5, /0 Fac(a) P(x)de + ¢(2),
where
~ +oo
(5.2) é(z) = /0 G(z, 2)¥(z)da,
with
Gla,2) = bt (2)Par— (1) + Sart(Par—(#) + A = Mo)dant(2)Par— (@)

Jac(z)

if x > z and a similar expression if x < z. This computation may be rewritten as
follows. Let [ be the linear form defined by

= [T (@)
)= [ ot (0

Then, for any 1, if [(¢)) = 0, then (Z solves Raya,,\(g) = 1. In particular, as the image
of the Rayleigh operator Im(Rayq,»,) is of codimension 1, Ker(l) = Im(Rayq,x,)-
Note that, as ¢ is a simple eigenvalue, ¢q x,+ is not in Im(Rayq,r,). Therefore,
U(@a,re,+) # 0. As a consequence,

~ l
b=k € Im(Rays )
l(¢06,/\0,+)
since the image by [ of this function vanishes. We then have
~ 1(3
(53) Rayon(@) = - g .
l(¢0¢,>\0,+)

where
3(z) = / Gz, 2)i(a)d.

That is, 5 defines the pseudoinverse Ray;{\ of Rayq,» for A near \g. We shall now
fulfill a similar analysis for the Orr,,  operator.

5.3. Orr—Sommerfeld equation. Let us now prove Theorem 5.1. We follow
the analysis in the previous section to construct the Green function G, x(x, z) for the
pseudoinverse of Orr, x. Let \g"” be a simple eigenvalue of the approximate Evans
function E“PP of the Ray,,» operator. To simplify the notation, we drop the “app”
and set A\g = \g"’. At A = )¢, the matrix M, defined by (3.3), is singular since its
first two columns are colinear. Up to the multiplication by a constant of ¢ _, we may
assume that ¢, + coincide at A = Ag. To desingularize it, we introduce

A=X)! 1 0 0

A ~A=X)' 1 0 0
0 010

0 00 1
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Then, recalling (3.2) and defining M = MA, with the notation of (3.4), we have
(5.4) v=AM"(0,0,0,1/vu})

when A # )g. The arguments applied to the matrix M in section 3 may now be
applied to M since the corresponding matrix

1 _ (¢s,— - ¢s,+)/(/\ - /\0) ¢)s,+
Az = Ao = ( (Bybs— — Dybas)/(A—Ao) Oydns )

is nonsingular near A = A, keeping in mind that )¢ is a simple eigenvalue.
Let Iy = (l41,. - .,l4,4) be the fourth line of the inverse of M. It follows from (5.4)
that

v= Al4(;v)/1/,u§.
The singular part v® of v, namely the terms involving (A — X\g) 71, is
v® L la1(2z)(1,-1,0,0)
= —3l4,1 y — 14, U, U
u,u?c

Let us now compute 4 1 (). We have to evaluate A1 A; AT BD~1(0,1) (see section
3.1). But, up to higher order terms, AT'BD~! ~ (0, f1f). Note that

A—l _ 1 ay¢s,+ _¢8,+
2 B \) \ —Oybs - bs- )7

Hence, when A is close to Ag,

e p
AF7YATIBDTH0,1) ~ m¢s,+(—1, 1),

namely like C(—ps, pf)ds,+ /(A — Xo). At leading order, the computation is exactly
the same as in the previous section. Let

+o00
L(y) = _/0 la1(zx)Y(x)de.

Then, at leading order, L = [. Moreover, the regular part v" of v = v" 4+ v* is
1

V= (14,27 54,271473’&174)'
VMf

We now define é“”p(:r, z) to be the approximate Green kernel that corresponds to the
regular part v", recalling the Green function construction in (3.1)—(3.2). Setting

- L)
1/} - 1/} L(¢a7>\07+)¢a,)\0,+7

we have L(1) = 0, and so
Orra \(GOPP % ) = 0.

The exact Green function CNT‘,L A, ) then follows by iteration as in section 4.
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