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Abstract. The classical Orr–Sommerfeld equations are the resolvent equations of the linearized
Navier–Stokes equations around a stationary shear layer profile in the half plane. In this paper, we
derive pointwise bounds on the Green function of the Orr–Sommerfeld problem away from its critical
layers.
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1. Introduction. In this paper, we are interested in the study of linearized
Navier–Stokes equations around a given fixed profile Us = (U(z), 0) as the viscosity
goes to 0. Namely, we consider the following set of equations:

\partial tv + Us \cdot \nabla v + v \cdot \nabla Us +\nabla p - \nu ∆v = F,(1.1)

\nabla \cdot v = 0(1.2)

on the half plane x \in T, z \geq 0, with Dirichlet boundary condition

(1.3) v = 0 on z = 0.

We focus on the periodic case x \in T, the whole line case x \in R being similar.
Throughout this paper, the background profile U(z) is assumed to be sufficiently
smooth, to satisfy U(0) = 0 and

(1.4) | \partial kz (U(z) - U+)| \leq Cke
 - \eta 0z \forall z \geq 0, k \geq 0,

for some finite constant U+ and some positive constants Ck and \eta 0.
The inviscid limit problem (1.1)–(1.4) is a very classical problem that has led to

a huge physical and mathematical literature, focusing in particular on the linear sta-
bility, the dispersion relation, the study of eigenvalues and eigenmodes, and the onset
of nonlinear instabilities and turbulence (see [1] for an introduction on these topics
and the classical achievements of Rayleigh, Orr, Sommerfeld, Heisenberg, Tollmien,
C. C. Lin, and Schlichting).

Two cases arise. Either the profile U is linearly stable for the corresponding
linearized Euler equations (the case when \nu = 0) or it is linearly unstable for these
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1280 EMMANUEL GRENIER AND TOAN T. NGUYEN

limiting equations. In this paper, we consider the unstable case, leaving the stable
case to be treated in [10], which turns out to be much more delicate. In the unstable
case, it is well known [6] that the profile U is linearly unstable for the linearized
Navier–Stokes equations provided \nu is sufficiently small or, equivalently, the Reynolds
number R = \nu  - 1 is sufficiently large. However, in order to go from linear to nonlinear
instability, more precise information on solutions to the linearized problem is required.
Let us mention several efforts in treating the stability and instability of nonlinear
boundary layers in the small viscosity limit [2, 3, 4, 5, 6, 11, 13, 14].

A natural and traditional approach to studying linearized Navier–Stokes equations
is to take the Fourier Laplace transform of these equations. For this, in order to take
advantage of the incompressibility relation (1.2), we introduce the stream function \psi 
of v, defined by

v = \nabla \bot \psi ,

and take its Fourier transform in the x variable, with wave number \alpha , and its Laplace
transform in time, with Laplace variable

\lambda =  - i\alpha c,

following historical notation. Equivalently, we focus on solutions v of linearized
Navier–Stokes equations of the form

v = \nabla \bot 
\Bigl( 
ei\alpha (x - ct)\phi (z)

\Bigr) 
,

with the source term of the same form. This leads to the classical Orr–Sommerfeld
equation

(1.5) (U  - c)(\partial 2z  - \alpha 2)\phi  - U \prime \prime \phi = \epsilon (\partial 2z  - \alpha 2)2\phi  - i\alpha  - 1f, \epsilon =
\nu 

i\alpha 
,

on the half line z \geq 0, together with the boundary conditions

(1.6) \phi | z=0
= \phi \prime | z=0

= 0, lim
z\rightarrow \infty 

\phi (z) = 0.

Here, \alpha \in N
\ast = N\setminus \{ 0\} denotes the tangential wave number and c \in C is the complex

phase velocity.
For the mathematical analysis, it is more convenient to multiply (1.5) by i\alpha ,

which leads to

(1.7) (\lambda + i\alpha U)(\partial 2z  - \alpha 2)\phi  - i\alpha U \prime \prime \phi  - \nu (\partial 2z  - \alpha 2)2\phi = f.

Such a spectral formulation of the linearized Navier–Stokes equations near a boundary
layer shear profile has been intensively studied in the physical literature. We in
particular refer the reader to [1, 12, 15] for the major works of Heisenberg, Tollmien,
C. C. Lin, and Schlichting on the subject. We also refer the reader to [7, 8, 9] for the
rigorous spectral analysis of the Orr–Sommerfeld equations.

In this paper, we shall derive pointwise bounds on the Green function of the
Orr–Sommerfeld problem (1.6)–(1.7). For convenience, let us denote

∆\alpha := \partial 2z  - \alpha 2

and

(1.8) OS\alpha ,\lambda (\phi ) := (\lambda + i\alpha U)∆\alpha \phi  - i\alpha U \prime \prime \phi  - \nu ∆2
\alpha \phi .
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GREEN FUNCTION FOR ORR–SOMMERFELD 1281

For each fixed \alpha \in N
\ast and \lambda \in C, we denote by G\alpha ,\lambda (x, z) the corresponding Green

kernel of the Orr–Sommerfeld problem. By definition, for each x \in R+, G\alpha ,\lambda (x, z)
solves

OS\alpha ,\lambda (G\alpha ,\lambda (x, \cdot )) = \delta x(\cdot )
on z \geq 0, together with the boundary conditions

(1.9) G\alpha ,\lambda (x, 0) = \partial zG\alpha ,\lambda (x, 0) = 0, lim
z\rightarrow \infty 

G\alpha ,\lambda (x, z) = 0.

The Green kernel allows us to solve the inhomogeneous Orr–Sommerfeld problem

(1.10) OS\alpha ,\lambda (\phi ) = f,

or, equivalently, the resolvent equations of the linearized Navier–Stokes operator,
through the following explicit expression for the solution \phi :

\phi (z) =

\int \infty 

0

G\alpha ,\lambda (x, z)f(x) dx.

To construct the Green function, let us first note that as z \rightarrow +\infty the homogeneous
Orr–Sommerfeld equation “converges” to the following constant-coefficient equation:

(1.11) OS+(\phi ) = (\lambda + i\alpha U+)∆\alpha \phi  - \nu ∆2
\alpha \phi = 0,

where U+ = limz\rightarrow \infty U(z). This constant-coefficient equation has four independent

solutions e\pm \mu sz and e\pm \mu +

f
z, with

(1.12) \mu s = | \alpha | , \mu f (z) = \nu  - 1/2
\sqrt{} 
\lambda + \nu \alpha 2 + i\alpha U(z), \mu +

f = lim
z\rightarrow \infty 

\mu f (z),

in which we take the positive real part of the square root.
As will be proved later, there exist four solutions to the homogeneous Orr–

Sommerfeld equation OS\alpha ,\lambda (\phi ) = 0 which have either a “slow behavior” e\pm \mu sz or

a “fast behavior” e\pm \mu +

f
z as z \rightarrow +\infty . The two slow modes appear to be perturbations

of solutions of the Rayleigh equation

Ray\alpha ,\lambda (\phi ) = (\lambda + i\alpha U)∆\alpha \phi  - i\alpha U \prime \prime \phi = 0,

whereas the two fast modes are linked to the Airy-type equation

(\lambda + i\alpha U  - \nu ∆\alpha )∆\alpha \phi = 0

or, recalling \mu f introduced in (1.12),

(1.13) \nu (\partial 2z  - \mu 2
f )∆\alpha \phi = 0.

Let us first consider the Rayleigh equation Ray\alpha ,\lambda (\phi ) = 0. As z goes to +\infty , this
equation “converges” to ∆\alpha \phi = 0, and hence Ray\alpha ,\lambda (\phi ) = 0 has two solutions \phi \alpha ,\pm ,
with respective behaviors e\pm | \alpha | z at infinity. We define the Evans function E(\alpha , \lambda ) by

(1.14) E(\alpha , \lambda ) = \phi \alpha , - (0).

Note that the Rayleigh equation degenerates at points where \lambda + i\alpha U(z) vanishes. In
this paper, we restrict ourselves to the case when \lambda is away from the range of  - i\alpha U .
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1282 EMMANUEL GRENIER AND TOAN T. NGUYEN

Precisely, throughout the paper, letting \epsilon 0 be an arbitrarily small, but fixed, positive
constant, we shall consider the range of (\alpha , \lambda ) in R \setminus \{ 0\} \times C so that

(1.15) d(\alpha , \lambda ) = inf
z\in R+

| \lambda + i\alpha U(z)| \geq \epsilon 0.

Note that d(\alpha , \lambda ) = \Re \lambda if \Im \lambda \in  - \alpha Range(U). In any case,

(1.16) d(\alpha , \lambda ) \geq | \Re \lambda | .

It turns out that two independent “slow” solutions of Orr–Sommerfeld equations can
be constructed as perturbations of these two solutions of the Rayleigh equation.

The two “fast” solutions come from the Airy equation (1.13). This equation
degenerates when \lambda + \alpha 2\nu + i\alpha U gets small. Points zc such that \alpha U(zc) =  - \Im \lambda are
called “critical layers.” The behavior of the Airy equation changes as we approach
these points, and in this paper we only study this equation away from these critical
layers. Let us quantify this notion. The Airy equation has a typical length scale:

\delta (z) =
1

\mu f (z)
=

\sqrt{} 
\nu 

\lambda + \nu \alpha 2 + i\alpha U(z)
.

If \delta (z) varies within a length \delta (z), namely if \delta \prime (z)\delta (z) \sim \delta (z) or, equivalently, if
\alpha \sim \nu  - 1/2, then the nature of the construction changes (see (2.1) for more details).
In this paper, we restrict ourselves to the case | \alpha | \ll \nu  - 1/2 or, more precisely, on
| \alpha | \leq \nu  - \zeta for some \zeta < 1/2.

We are mainly interested in getting bounds on the Green function when \lambda has a
small positive real part. In this case, the condition (1.15) implies

(1.17) \Re \mu f (z) = \nu  - 1/2\Re 
\sqrt{} 
\lambda + \nu \alpha 2 + i\alpha U(z) \geq \nu  - 1/2

\sqrt{} 
\epsilon 0/2 \gg \mu s

for sufficiently small \nu and for | \alpha | \leq \nu  - \zeta for some \zeta < 1/2. We may also use these
Green function bounds in order to obtain bounds on the solutions of linearized Navier–
Stokes equations, through contour integrations. It turns out that these contours may
be chosen such that \mu s \leq \Re \mu f . Therefore, we focus on this case in this paper, leaving
aside the case when \mu s/\mu f \geq 1.

Our main result is the following.

Theorem 1.1. Let U(z) be a boundary layer profile which satisfies (1.4). For

each \alpha , \lambda , let by G\alpha ,\lambda (x, z) be the Green kernel of the Orr–Sommerfeld equation, with

the source term in x, and let

(1.18) \mu s = | \alpha | , \mu f (z) = \nu  - 1/2
\sqrt{} 
\lambda + \nu \alpha 2 + i\alpha U(z),

where we take the square root with a positive real part. Let 0 < \theta 0 < 1 and \zeta < 1/2.
Let \sigma 0 > 0 be arbitrarily small. Then there exists C0 > 0 so that

(1.19) | G\alpha ,\lambda (x, z)| \leq 
C0

\mu sd(\alpha , \lambda )
e - \theta 0\mu s| x - z| +

C0

| \mu f (x)| d(\alpha , \lambda )
e - \theta 0| 

\int 
z

x
\Re \mu f dy| 

uniformly for all x, z \geq 0 and 0 < \nu \leq 1, and uniformly in (\alpha , \lambda ) \in R \setminus \{ 0\} \times C so

that | \alpha | \leq \nu  - \zeta , (1.15) holds, and

| E(\alpha , \lambda )| > \sigma 0.
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GREEN FUNCTION FOR ORR–SOMMERFELD 1283

In particular, we have

(1.20) | G\alpha ,\lambda (x, z)| \leq 
C0

\mu s| \Re \lambda | 
e - \theta 0\mu s| x - z| +

C0

| \mu f (x)| | \Re \lambda | 
e - \theta 0| 

\int 
z

x
\Re \mu f dy| .

In addition, the following derivative bounds hold:

(1.21) | \partial kx\partial \ell zG\alpha ,\lambda (x, z)| \leq 
C0\mu 

k+\ell 
s

\mu sd(\alpha , \lambda )
e - \theta 0\mu s| x - z| +

C0| \mu f (y)| k+\ell 

| \mu f (x)| d(\alpha , \lambda )
e - \theta 0| 

\int 
z

x
\Re \mu f dy| 

for all x, z \geq 0 and k, \ell \geq 0, in which Mf = supz \Re \mu f (z). Moreover,

(1.22) | ∆\alpha G\alpha ,\lambda (x, z)| \leq 
C0

d(\alpha , \lambda )
e - \theta 0\mu s| x - z| +

C0| \mu f (y)| 2
| \mu f (x)| d(\alpha , \lambda )

e - \theta 0| 
\int 

z

x
\Re \mu f dy| ,

where we “gain” a factor \mu s in the first term on the right-hand side.

We believe that the \theta 0 factor is purely technical and that this theorem holds true
for \theta 0 = 1. In addition, we note that ∆\alpha G\alpha ,\lambda enjoys better bounds since ∆\alpha e

\pm | \alpha | z = 0.
To prove this theorem, we first construct approximate solutions to the Orr–

Sommerfeld equation and then construct an approximate Green function. An it-
eration argument yields the exact Green function together with the stated bounds.
Our construction of the Green function for the Orr–Sommerfeld problem was inspired
by the pointwise Green function approach introduced by Zumbrun and Howard [18]
and Zumbrun [16, 17].

We are also interested in the construction of a pseudoinverse of the Orr–Sommerfeld
operator near a simple eigenvalue, a construction which is detailed in section 5.

2. Approximate solutions of Orr–Sommerfeld. In this section, we con-
struct four independent approximate solutions to the Orr–Sommerfeld equations
OS\alpha ,\lambda (\phi ) = 0, two with a “fast” behavior and two with a “slow” one. The fast
modes are constructed using geometrical optics methods, namely following the BKW
method. For the slow modes we will distinguish between three regimes:

\bullet Bounded | \alpha | . In this case, the slow modes are perturbations of the eigenmodes
of Rayleigh equations.

\bullet 1 \ll | \alpha | \leq \nu  - 1/4 (or any small negative power of \nu ). We use the fact that the
Rayleigh equation is a perturbation of ∆\alpha . The slow modes are perturbations
of the eigenmodes of \partial 2z  - \alpha 2, namely e\pm | \alpha | z.

\bullet \nu  - 1/4 \leq | \alpha | \leq \nu  - \zeta for \zeta < 1/2. In this case, e\pm | \alpha | z is a sufficient approxima-
tion.

Solutions will be constructed in function spaces L\infty 
\eta , for \eta > 0, that consist of smooth

functions f so that the norm

\| f\| \eta := sup
z\geq 0

e\eta | z| | f(z)| 

is finite.

2.1. Fast modes. In this section, we shall construct two independent approxi-

mate solutions, which asymptotically behave like e\pm \mu +

f
z, of the Orr–Sommerfeld equa-

tion OS\alpha ,\lambda (\phi ) = 0. We will use the BKW method. Let us first discuss its validity.
Note that locally the characteristic length scale of the oscillations is

\delta (z) =
1

\mu f (z)
=

\sqrt{} 
\nu 

\lambda + \nu \alpha 2 + i\alpha U(z)
.
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1284 EMMANUEL GRENIER AND TOAN T. NGUYEN

The BKW method is valid provided \delta has a small change during a period, namely
provided \delta \prime \delta \ll \delta , or, equivalently,

(2.1) \delta \prime (z) =
 - i\surd \nu \alpha U \prime (z)

2(\lambda + \nu \alpha 2 + i\alpha U(z))3/2
\ll 1.

Note that it may happen that for some particular zc, \Im \lambda + \alpha U(zc) = 0. Such zc
are called critical layers, or turning points. If \alpha \sim \nu  - 1/2, then the denominator and
numerator of (2.1) are of order O(1) at such points, and hence the condition (2.1) is
not satisfied and \delta \prime (zc) \sim 1.

On the contrary, if \alpha \lesssim \nu  - \zeta with \zeta < 1/2, then near critical points, the de-
nominator is of order O(1) but the numerator is of order O(\nu 1/2 - \zeta ). Therefore, the
condition (2.1) is satisfied provided \nu is small enough. Similarly, \mu  - 1 - j

f \partial jz\mu f (z) is of

order O(\nu 1/2 - \zeta ) or smaller for j \geq 1.

Proposition 2.1. Let N > 0 be arbitrarily large. Then, for sufficiently small \nu 
and for | \alpha | \leq \nu  - \zeta with \zeta < 1/2, there exist two approximate solutions \phi appf,\pm (z) which

solve Orr–Sommerfeld equations up to a small error term

OS\alpha ,\lambda (\phi 
app
f,\pm ) = O(\nu N | \phi appf,\pm | ),

with \phi appf,\pm (0) = 1 and

(2.2) \phi appf,\pm (z) = e\pm 
\int 

z

0
\mu f (y) dy

\Bigl( 
1 + \phi \pm (z)

\Bigr) 
,

where \phi \pm and their derivatives are uniformly bounded in \alpha , \nu , and z, and converge

exponentially fast to 0 at z = +\infty .

Proof. Following a semiclassical approach, we look for \phi appf,\pm under the form

\phi appf,\pm = exp

\biggl( 
\theta app\pm \surd 
\nu 

\biggr) 
.

Let \theta = \theta app\pm simplify the notation. We compute

\partial 2z\phi 
app
f,\pm =

\biggl( 
\theta \prime 2

\nu 
+

\theta \prime \prime \surd 
\nu 

\biggr) 
\phi appf,\pm 

and

\nu \partial 4z\phi 
app
f,\pm =

\biggl( 
\theta \prime 4

\nu 
+ 6

\theta \prime 2\theta \prime \prime \surd 
\nu 

+ 4\theta \prime \theta \prime \prime \prime + 3\theta \prime \prime 2 +
\surd 
\nu \theta \prime \prime \prime \prime 

\biggr) 
\phi appf,\pm .

We now expand \theta in powers of
\surd 
\nu ; namely,

\theta =

N\sum 

i=0

\theta j\nu 
j/2,

where the functions \theta j will themselves depend on \alpha and \lambda . Putting the ansatz into
the Orr–Sommerfeld equations, at leading order, we obtain

(\lambda + i\alpha U)(\theta \prime 20  - \nu \alpha 2) - 
\Bigl( 
\theta \prime 40  - 2\nu \alpha 2\theta \prime 20 + \nu 2\alpha 4

\Bigr) 
= 0.
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GREEN FUNCTION FOR ORR–SOMMERFELD 1285

Factorizing by \theta \prime 20  - \nu \alpha 2, we get

\theta \prime 20 = \lambda + \nu \alpha 2 + i\alpha U = \nu \mu 2
f (z),

which gives
\theta \prime 0 = \pm 

\surd 
\nu \mu f (z).

Note that \theta \prime 0 converges exponentially fast to \pm \surd 
\nu \mu +

f and \theta \prime \prime 0 converges exponentially

fast to 0. To obtain \theta 1, we equate the powers in
\surd 
\nu 
 - 1

and get

 - 4\theta \prime 30 \theta 
\prime 
1 + 4\nu \alpha 2\theta \prime 0\theta 

\prime 
1 + 2(\lambda + i\alpha U)\theta \prime 0\theta 

\prime 
1 = S,

where the source term S = 6\theta \prime 20 \theta 
\prime \prime 
0 only depends on \theta \prime 0 and its derivatives. This leads

to

\theta \prime 1 =
S

( - 4\theta \prime 20 + 4\nu \alpha 2 + 2(\lambda + i\alpha U))\theta \prime 0
=  - S

2(\lambda + i\alpha U)\theta \prime 0
.

As \theta \prime 0 is bounded away from 0, \theta \prime 1 is correctly defined. Moreover, \theta 1 converges expo-
nentially at infinity, as well as all its derivatives, and as \theta \prime \prime 0 = O(\alpha ), \theta 1 = O(\alpha ). This
leads to

(2.3) \theta app\pm = \theta 0 +O(\alpha \nu  - 1/2).

We then obtain equations and similar estimates on the remaining \theta j by equaling
successive powers of \nu . The proposition follows.

2.2. Slow modes.

Proposition 2.2. There exist two solutions \phi apps,\pm which approximately solve the

Orr–Sommerfeld equations: precisely, for any N ,

| OS\alpha ,\lambda (\phi 
app
s,\pm )| \leq CN\nu 

Ne\pm | \alpha | z - \eta z

and behave like e\pm | \alpha | z as z goes to +\infty : for any n,

| \partial nz \phi apps,\pm (z)| \leq Cne
\pm | \alpha | z.

For the proof of Proposition 2.2, we shall distinguish three cases, bounded \alpha ,
moderate \alpha , and large \alpha , that will be detailed in the next sections. We restrict
ourselves to \alpha > 0, the opposite case being similar.

2.2.1. Approximate slow modes for bounded α and λ. As z goes to +\infty ,
the Rayleigh equation “converges” to ∆\alpha \phi . Therefore, the Rayleigh equation admits
two particular equations, called \phi \alpha ,\pm , which behave like e\pm | \alpha | z as z \rightarrow +\infty . Moreover,
| \partial nz \phi \alpha ,\pm (z)| \leq Cne

\pm | \alpha | z for every positive n. Note that

OS\alpha ,\lambda (\phi \alpha ,\pm ) =  - \nu ∆2
\alpha \phi \alpha ,\pm .

Using the Rayleigh equation, we compute

∆\alpha \phi \alpha ,\pm =
i\alpha U \prime \prime \phi \alpha ,\pm 
\lambda + i\alpha U

,

which gives

OS\alpha ,\lambda (\phi \alpha ,\pm ) =  - \nu ∆\alpha 

\biggl( 
i\alpha U \prime \prime \phi \alpha ,\pm 
\lambda + i\alpha U

\biggr) 

=  - \nu 
\biggl( 

i\alpha U \prime \prime 

\lambda + i\alpha U

\biggr) 2

\phi \alpha ,\pm  - 2\nu \partial z\phi \alpha ,\pm \partial z

\biggl( 
i\alpha U \prime \prime 

\lambda + i\alpha U

\biggr) 
 - \nu \phi \alpha ,\pm \partial 

2
z

\biggl( 
i\alpha U \prime \prime 

\lambda + i\alpha U

\biggr) 
.
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1286 EMMANUEL GRENIER AND TOAN T. NGUYEN

Note that \lambda + i\alpha U is bounded away from 0, and therefore

| OS\alpha ,\lambda (\phi \alpha ,\pm )| \leq C\nu e\pm | \alpha | z - \eta z,

and similarly for all its derivatives.
We now look for approximate solutions of Orr–Sommerfeld solutions \phi apps,\pm of the

form

\phi apps,\pm =

N\sum 

j=0

\phi j\alpha ,\pm 

for arbitrarily large N , starting with \phi 0\alpha ,\pm = \phi \alpha ,\pm . We have

Ray\alpha (\phi 
j+1
\alpha ,\pm ) =  - OS\alpha ,\lambda (\phi 

j
\alpha ,\pm ).

Note that

(2.4) OS\alpha ,\lambda (\phi 
app
s,\pm ) =  - \nu ∆2

\alpha \phi 
N
\alpha ,\pm .

We will focus on the construction of \phi apps, - , the construction of \phi apps,+ being similar. To

end the proof of Proposition 2.2, we need to bound the various \phi i\alpha , - , which is done
through the iterative use of the following proposition.

Proposition 2.3. There exist constants Cn such that the following assertion is

true. For any \beta > 0 and any smooth function \psi , there exists a smooth solution \phi of

Ray\alpha (\phi ) = \psi such that

sup
k\leq n

\| \partial kz\phi \| \alpha + sup
k\leq n

\| \partial nz ∆\alpha \phi \| \alpha +\beta \leq Cn

E(\alpha , \lambda )
sup
k\leq n

\| \partial kz\psi \| \alpha +\beta ,

where \| \phi \| \eta = supz\geq 0 e
\eta | z| | \phi (z)| .

Proof. We first construct the Green function of the Rayleigh operator. Let

\widetilde \phi \alpha ,+(z) = \phi \alpha , - (0)\phi \alpha ,+(z) - \phi \alpha ,+(0)\phi \alpha , - (z).

Then \widetilde \phi \alpha ,+(0) = 0 and the Wronskian of \widetilde \phi \alpha ,+ and \phi \alpha , - equals

W (\widetilde \phi \alpha ,+, \phi \alpha , - ) = \phi \alpha , - (0)W (\phi \alpha ,+, \phi \alpha , - ) = 2\alpha \phi \alpha , - (0),

evaluating this latest Wronskian at infinity. The Green function of the Rayleigh
operator is therefore

G(x, z) =
1

2\alpha \phi \alpha , - (0)
\phi \alpha , - (x)\widetilde \phi \alpha ,+(z) if z < x,

G(x, z) =
1

2\alpha \phi \alpha , - (0)
\widetilde \phi \alpha ,+(x)\phi \alpha , - (z) if z > x.

We then have

\phi (z) =

\int +\infty 

0

G(x, z)\psi (x)dx.

Using the asymptotic behavior of \phi \alpha ,\pm , we get the claimed bounds on \| \partial nz \phi \| \alpha , with
n = 0 and n = 1, by a direct computation. Higher derivatives are obtained by
differentiating

\partial 2y\phi = \alpha 2\phi +
i\alpha U \prime \prime 

\lambda + i\alpha U
\phi + \psi ,
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GREEN FUNCTION FOR ORR–SOMMERFELD 1287

keeping in mind that \alpha is bounded and \lambda is away from the range of  - i\alpha U . Next, we
write

∆\alpha \phi =
i\alpha U \prime \prime 

\lambda + i\alpha U
\phi + \psi ,

which gives the desired bounds on ∆\alpha \phi .

2.2.2. Approximate slow modes for 1 \ll | α| \leq ν−1/4 or large λ/α. For
large \alpha , or for large \lambda /\alpha , the Rayleigh operator is a small perturbation of \partial 2z  - \alpha 2

and we can construct approximate eigenmodes \phi apps,\pm using a perturbative construction.
Namely, the Rayleigh equation may be rewritten as

∆\alpha \phi =
i\alpha U \prime \prime \phi 

\lambda + i\alpha U
.

Note that \alpha  - 1e - \alpha | x - z| is a Green function for ∆\alpha . We therefore define the operator
\scrT by

\scrT [\phi ](z) :=

\int \infty 

0

\alpha  - 1e - \alpha | x - z| i\alpha U
\prime \prime \phi (x)

\lambda + i\alpha U
dx.

We shall prove that for sufficiently large \alpha , the map \scrT is well defined and contractive
from L\infty 

\alpha +\eta to itself. Indeed, for \phi \in L\infty 
\alpha +\eta , as \lambda + i\alpha U is bounded away from 0, we

have

| \scrT [\phi ](z)| \leq C0

\int \infty 

0

e - \alpha | x - z| e - \eta x - \alpha x\| \phi \| \alpha +\eta dx \leq C0\alpha 
 - 1\| \phi \| \alpha +\eta e

 - \eta z - \alpha z.

This proves that \scrT [\phi ] \in L\infty 
\alpha +\eta . If \alpha is large enough, then \scrT is a contraction in this

space. On the other hand, if \lambda /\alpha is large enough, we rewrite

i\alpha U \prime \prime \phi (x)

\lambda + i\alpha U
=

U \prime \prime \phi (x)

U  - i\alpha  - 1\lambda 
,

which is bounded by C/(\alpha  - 1\lambda ). Hence \scrT is a contraction if \lambda /\alpha is large enough.
We now construct two independent solutions of the Rayleigh equation, which

behaves like e\pm \alpha z for large z. Let us detail the “ - ” case. We look for \phi s, - under the
form

\phi s, - =
\sum 

n\geq 0

\phi n - ,

with \phi 0 - = e - \alpha z and \phi n+1
 - = \scrT [\phi n - ]. As \scrT is contractive, the previous sum converges

in L\infty 
\alpha +\eta . Note that, in particular,

\phi \alpha , - = e - \alpha z(1 +O(\alpha  - 1)L\infty 

α+η
),

and similarly for its derivatives. The construction of \phi \alpha ,+ is similar.
The construction of approximate solutions of Orr–Sommerfeld is similar to that

of the previous section. We start with \phi s, - and note that

\nu \| ∆2
\alpha \phi s, - \| \alpha +\eta \leq C\nu | \alpha | 2 \lesssim \nu 1/2.

We then introduce \phi 1s, - , defined by

Ray\alpha (\phi 
1
s, - ) =  - \nu ∆2

\alpha \phi s, - ,

which can be bounded using the \scrT operator. To end the proof of Proposition 2.2, we
iterate the construction as in the previous section.
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1288 EMMANUEL GRENIER AND TOAN T. NGUYEN

2.2.3. Approximate slow modes for ν−1/4 \leq | α| \ll ν−1/2. We look for
eigenmodes of the form

\phi apps,\pm = exp(\alpha \theta app\pm ),

where \theta app\pm may be expanded in powers of \alpha  - 1. As in section 2.1, we get

 - \nu \alpha 4\theta \prime 40 + 2\nu \alpha 4\theta \prime 20  - \nu \alpha 4 + (\lambda + i\alpha U)(\alpha 2\theta \prime 20  - \alpha 2) = 0.

This time we choose \theta 0 = \pm 1 and iterate as in section 2.1 to prove Proposition 2.2.
Note again that the leading order of ∆\alpha \phi 

app
s,\pm vanishes.

3. Approximate Green function. We now construct an approximate Green
function Happ using the approximate solutions \phi apps,\pm and \phi appf,\pm . We will decompose
this Green function into two components:

Happ = Gapp + Ĝapp,

where Gapp does not take into account the boundary conditions and focus on the
discontinuity at y = x, and where Ĝapp restores the proper boundary conditions.

Hence, first forgetting the boundary condition, we look for Gapp(x, y) of the form

(3.1)

Gapp(x, y) = a+(x)
\phi apps,+(y)

c2
+ b+(x)

\phi appf,+(y)

\phi appf,+(x)
for y < x,

Gapp(x, y) = a - (x)
\phi apps, - (y)

c1
+ b - (x)

\phi appf, - (y)

\phi appf, - (x)
for y > x,

where the normalization constants c1 and c2 will be fixed later. Let

(3.2) v(x) = ( - a - (x), a+(x), - b - (x), b+(x)).

By definition, Gapp, \partial yG
app,

\surd 
\nu \partial 2yG

app are continuous at x = y and \nu \partial 3yG
app has a

jump at x = y of magnitude 1. Let

(3.3) M =

\left( 
     

\phi s, - /c1 \phi s,+/c2 \phi f, - \phi f,+

\partial y\phi s, - /c1\mu f \partial y\phi s,+/c2\mu f \partial y\phi f, - /\mu f \partial y\phi f,+/\mu f

\partial 2y\phi s, - /c1\mu 
2
f \partial 2y\phi s,+/c2\mu 

2
f \partial 2y\phi f, - /\mu 

2
f \partial 2y\phi f,+/\mu 

2
f

\partial 3y\phi s, - /c1\mu 
3
f \partial 3y\phi s,+/c2\mu 

3
f \partial 3y\phi f, - /\mu 

3
f \partial 3y\phi f,+/\mu 

3
f

\right) 
     
,

where the functions \phi s,\pm = \phi apps,\pm and \phi f,\pm = \phi appf,\pm and their derivatives are evaluated
at y = x. Then

(3.4) Mv = (0, 0, 0, 1/\nu \mu 3
f ).

In the following sections, we will bound the solution v of (3.4). Let us define the four
two-by-two matrices A, B, C, and D by

M =

\biggl( 
A B
C D

\biggr) 
.

Note that, using (2.3),

D =

\biggl( 
1 1
 - 1 1

\biggr) 
+O(\alpha \mu  - 1

f ).
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GREEN FUNCTION FOR ORR–SOMMERFELD 1289

Hence the matrix D is bounded and invertible, upon recalling that \alpha \ll \mu f in the
range of \alpha that we consider (see (1.17)). Moreover, its inverse is bounded and equals

D - 1 =
1

2

\biggl( 
1  - 1
1 1

\biggr) 
+O(\alpha \mu  - 1

f ).

We shall consider two cases: bounded \alpha and unbounded \alpha .

3.1. First case: Bounded α. We take c1 = c2 = 1. Note that A = A1A2,
where

A1 =

\biggl( 
1 0
0 \mu  - 1

f

\biggr) 
, A2 =

\biggl( 
\phi s, - \phi s,+
\partial y\phi s, - \partial y\phi s,+

\biggr) 
.

The determinant Eapp(\alpha , \lambda ) of A2 is a perturbation of the Evans function E(\alpha , \lambda ) in
the sense that

Eapp(\alpha , \lambda ) = E(\alpha , \lambda ) +O(\nu \sigma )

for some positive \sigma . Hence if E(\alpha , \lambda ) \not = 0, then A2 and A are invertible provided \nu 
is small enough, and A - 1

2 is bounded. Moreover, the matrix M has an approximate
inverse

\widetilde M =

\biggl( 
A - 1  - A - 1BD - 1

0 D - 1

\biggr) 

in the sense that M\widetilde M = Id +N , where

N =

\biggl( 
0 0

CA - 1  - CA - 1BD - 1

\biggr) 
.

Note that C is of order O(\mu  - 2
f ) since \alpha is bounded, B is bounded, and A - 1 = A - 1

2 A - 1
1

is of order O(\mu f ). Hence we have N = O(\mu  - 1
f ). Therefore, (Id+N) - 1 is well defined

and uniformly bounded for \nu small enough provided E(\alpha , \lambda ) \not = 0. As a consequence,

M - 1 = \widetilde M(Id +N) - 1 = \widetilde M
\sum 

n

Nn.

Note that the two first lines of Nn vanish. Therefore,

(Id +N) - 1(0, 0, 0, 1/\nu \mu 3
f ) =

\Bigl( 
0, 0, O(1/\nu \mu 4

f ), 1/\nu \mu 
3
f +O(1/\nu \mu 4

f )
\Bigr) 
.

As D - 1 is bounded and A - 1BD - 1 is of order O(\mu f ), we obtain that a\pm and b\pm are
of orders O(1/\nu \mu 2

f ) and O(1/\nu \mu 3
f ), respectively. Note that \alpha is bounded in this case,

which give the desired bounds since

\nu \mu 2
f = \lambda + \nu \alpha 2 + i\alpha U

and hence

| \nu \mu 2
f | \geq d(\alpha , \lambda ),

which ends this first case.
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1290 EMMANUEL GRENIER AND TOAN T. NGUYEN

3.2. Case 2: Large α. We take c1 = \phi apps,+(x) and c2 = \phi apps, - (x). In this case, A
is of the form

A =

\biggl( 
1 1

 - \alpha \mu  - 1
f \alpha \mu  - 1

f

\biggr) 
(1 + o(1)).

Its inverse A - 1 equals

A - 1 =
1

2

\biggl( 
1  - \alpha  - 1\mu f

1 \alpha  - 1\mu f

\biggr) 
(1 + o(1)).

Note that D - 1 and B are bounded and A - 1 is order O(\mu f/\alpha ). As C is of order
O(\alpha 2/\mu 2

f ), N (defined in the previous section) is of order O(\alpha /\mu f ). Hence, as | \alpha | \ll \mu f

in view of (1.17), we have

(Id +N) - 1 =
\sum 

n

( - 1)nNn.

This leads to

(3.5) (Id+N) - 1(0, 0, 0, 1/\nu \mu 4
f ) =

\Bigl( 
0, 0, O(\alpha /\nu \mu 4

f ), O(1/\nu \mu 3
f )
\Bigr) 
.

It remains to evaluate the image of this vector by \widetilde M . As D - 1 is bounded, we obtain
that b\pm are of order O(1/\nu \mu 3

f ) = O(1/\mu fd(\alpha , \lambda )).
Moreover, we compute

D - 1(0, O(1/\nu \mu 3
f )) =

\Bigl[ 
( - 1, 1) +O(\alpha \mu  - 1

f )
\Bigr] 
O(1/\nu \mu 3

f ).

As

B =

\biggl( 
1 1
 - 1 1

\biggr) 
(1 +O(\mu  - 1

f )),

we obtain

BD - 1(0, O(1/\nu \mu 3
f )) =

\Bigl[ 
(0, 1) +O(\alpha \mu  - 1

f )
\Bigr] 
O(1/\nu \mu 3

f ).

As a consequence, we obtain

A - 1BD - 1(0, O(1/\nu \mu 3
f )) = O(1/\alpha \nu \mu 2

f ).

It remains to bound the images of the O(\alpha /\nu \mu 4
f ) term in (3.5). We have

D - 1(O(\alpha /\nu \mu 4
f ), 0) =

\Bigl[ 
(1, 1) +O(\alpha \mu  - 1

f )
\Bigr] 
O(\alpha /\nu \mu 4

f ).

Hence

BD - 1(O(\alpha /\nu \mu 4
f ), 0) =

\Bigl[ 
(1, 0) +O(\alpha \mu  - 1

f )
\Bigr] 
O(\alpha /\nu \mu 4

f )

and A - 1BD - 1(O(\alpha /\nu \mu 4
f ), 0) = O(\alpha /\nu \mu 4

f ). Using again \alpha \ll \mu f , we obtain that a\pm 
are of order O(1/\nu \mu 2

f\alpha ) = O(1/\alpha d(\alpha , \lambda )).
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3.3. Boundary condition. We now add to Gapp another approximate Green
function Ĝapp to handle the boundary conditions. We look for Ĝapp under the form

Ĝapp(y) = ds
\phi s, - (y)

d1
+ df

\phi f, - (y)

\phi f, - (0)
,

where the normalization constant d1 will be fixed later, and look for ds and df such
that

(3.6) Gapp(x, 0) + Ĝapp(0) = \partial yG
app(x, 0) + \partial yĜ

app(0) = 0.

Let

M̂ =

\biggl( 
\phi s, - /d1 \phi f, - /\phi f, - (0)
\partial y\phi s, - /d1 \partial y\phi f, - /\phi f, - (0)

\biggr) 
,

the functions being evaluated at y = 0. Then (3.6) can be rewritten as

M̂d =  - (Gapp(x, 0), \partial yG
app(x, 0)),

where d = (ds, df ). Note that

(Gapp(x, 0), \partial yG
app(x, 0)) = Q(a+, b+),

where

Q =

\biggl( 
\phi s,+(0)/c2 1
\partial y\phi s,+(0)/c2 \partial y\phi f,+(0)/\phi f,+(0)

\biggr) 
.

By construction,

(3.7) d =  - M̂ - 1Q(a+, b+).

Let us first consider bounded \alpha . We take d1 = 1. This leads to

M̂ =

\biggl( 
\phi s, - (0) 1
\partial y\phi s, - (0)  - \mu f +O(1)

\biggr) 
.

Note that M̂ =M1M2, with

M1 =

\biggl( 
1 0
0 \mu f

\biggr) 
, M2 =

\biggl( 
\phi s, - (0) 1

\partial y\phi s, - (0)/\mu f  - 1 +O(1/\mu f )

\biggr) 
.

The determinant of M2 equals  - E(\alpha , \lambda ) =  - \phi s, - (0), up to a small term of order
\mu  - 1
f \sim \surd 

\nu , recalling that \alpha is bounded. Hence M2 is invertible, and M - 1
2 is bounded

if E(\alpha , \lambda ) \not = 0, provided \nu is small enough. Then

M̂ - 1Q =M - 1
2 M - 1

1 Q.

Note that (a+, b+) = (O(1/\nu \mu 2
f ), O(1/\nu \mu 3

f )). Hence Q(a+, b+) = O(1/\nu \mu 2
f ). There-

fore, M - 1
1 Q(a+, b+) = (O(1/\nu \mu 2

f ), O(1/\nu \mu 3
f )). Hence, as the second term of the first

column of M2 is of order O(1/\mu f ), we get, as desired, that

(3.8) d = (O(1/\alpha \nu \mu 2
f ), O(1/\nu \mu 3

f )),

keeping in mind that \alpha is bounded.
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For large \alpha , we choose d1 = \phi s, - (0). Then

Q =

\biggl( 
1 1

\alpha +O(1) \mu f +O(1)

\biggr) 
,

M̂ =

\biggl( 
1 1

 - \alpha +O(1)  - \mu f +O(1)

\biggr) 
,

and

M̂ - 1 =
1

\mu f  - \alpha +O(1)

\biggl( 
\mu f +O(1) 1
 - \alpha +O(1)  - 1

\biggr) 
.

In this case, (a+, b+) = (O(1/\alpha \nu \mu 2
f ), O(1/\nu \mu 3

f )). A direct computation of M̂ - 1Q(a+, b+)
again gives (3.8). Combining all the previous estimates ends the proof.

4. Exact Green function. Let

Happ = Gapp + Ĝapp

be the complete approximate Green function. By construction, Happ satisfies the zero
boundary conditions (1.9). We now construct the exact Green function G(x, z) as an
infinite sum:

(4.1) G(x, z) =
\sum 

n\geq 0

Gn(x, z),

where G0 = Happ,
G1 =  - Happ  \star (OS\alpha ,\lambda (H

app) - \delta y=x),

and Gn is defined by iteration through

Gn+1 =  - Happ  \star OS\alpha ,\lambda (Gn).

Hence it suffices to prove that the series (4.1) converges in a suitable function space,
which follows immediately from the following lemma. The stated bounds for G(x, z)
in Theorem 1.1 then follow from those on Happ(x, z).

Lemma 4.1. For each x, assume that

| fx(y)| \leq e - \alpha \prime | x - y| 

for some \alpha \prime such that \alpha \prime < | \alpha | and \alpha \prime < \Re \mu f . Then

| OS\alpha ,\lambda (G
app  \star fx)(y)| \leq C\nu N - 2e - \alpha \prime | x - y| .

Proof. Note that

OS\alpha ,\lambda (G
app  \star fx)(y) =

\int 
OS\alpha ,\lambda (G

app)(z, y)fx(z)dz.

However, we recall that \phi apps,\pm satisfy

| OS\alpha ,\lambda (\phi 
app
s,\pm )| \leq C\nu Ne\pm | \alpha | z,

| OS\alpha ,\lambda (\phi 
app
f,\pm )| \leq C\nu N | \phi appf,\pm | .

Using the bounds on the coefficients on Gapp(z, y), this leads to

| OS\alpha ,\lambda (G
app(z, y))| \leq C\nu N - 2e - \alpha | y - z| .

The lemma follows by convolution.
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5. Construction of a pseudoinverse. We now focus on the case when \lambda is
close to a simple eigenvalue \lambda 0.

Theorem 5.1. Let \alpha be fixed. Let \lambda 0 be a simple eigenvalue of Orr\alpha ,\lambda with

corresponding eigenmode \phi \alpha ,\lambda 0
. Then there exist a bounded family of linear forms l\nu 

and a family of pseudoinverse operators Orr - 1
\alpha ,\lambda such that for any stream function \phi ,

Orr\alpha ,\lambda 

\Bigl( 
Orr - 1

\alpha ,\lambda (\phi )
\Bigr) 
= \phi  - l\nu (\phi )\phi \alpha ,\lambda 0

for \lambda near \lambda 0. Moreover, the pseudoinverse Orr - 1
\alpha ,\lambda may be defined through a Green

function \widetilde G\alpha ,\lambda (x, z) which satisfies the same bounds in (1.19).

5.1. Principle of the construction. Let us sketch the principle of the proof
on a simplified case. Let A0 be an N \times N matrice of rank N  - 1 (which is a toy model
for the Rayleigh operator when \lambda is a simple eigenvalue), and let A(\varepsilon ) be a bounded
family of N \times N matrices (a toy model for the Orr–Sommerfeld equation). We want
to construct an inverse for

A\varepsilon = A0 + \varepsilon A(\varepsilon ).

Let us first invert A0. Let v be a unit vector, orthogonal to the image of A0. Let P
be the orthogonal projector on the image of A, namely

Pv = f  - (f.v)v.

Let B be a pseudoinverse of A0, namely a matrix such that, on the image of A0,
A0B = Id. Then u = BPf solves

A0u = f  - (f.v)v.

We now fulfill a similar construction for A\varepsilon for small \varepsilon . Let u0 = BPf . Then

A\varepsilon u0 = f  - (f.v)v + \varepsilon A(\varepsilon )u0.

We now define u1 =  - BPA(\varepsilon )u0. Then u0 + u1 solves

A\varepsilon (u0 + \varepsilon u1) = f  - (f.u0)v + \varepsilon (A(\varepsilon )u0.v)v  - \varepsilon 2A(\varepsilon )BPA(\varepsilon )u0

and the construction follows by iteration.

5.2. Rayleigh equation. In this section, we fix \alpha and investigate the Rayleigh
operator Ray\alpha ,\lambda when \lambda is near a simple eigenvalue \lambda 0 of Ray\alpha ,\lambda . We will also assume
that Ker(Ray2\alpha ,\lambda 0

) = C\phi \alpha ,\lambda 0,\pm . At \lambda = \lambda 0, \phi \alpha ,\lambda 0,\pm are colinear (that is, the Jacobian
of \phi \alpha ,\lambda 0,\pm vanishes). Up to a renormalization, we may assume that \phi \alpha ,\lambda 0,+ = \phi \alpha ,\lambda 0, - .
For \lambda \not = \lambda 0, the solution of Ray\alpha ,\lambda (\phi ) = \psi is explicitly given by

(5.1) \phi (z) = \phi \alpha ,\lambda ,+(z)

\int +\infty 

z

\phi \alpha ,\lambda , - (x)

Jac(x)
\psi (x)dx+ \phi \alpha ,\lambda , - (z)

\int z

0

\phi \alpha ,\lambda ,+(x)

Jac(x)
\psi (x)dx,

where
Jac(x) := \phi \alpha ,\lambda , - (x)\partial x\phi \alpha ,\lambda ,+(x) - \phi \alpha ,\lambda ,+(x)\partial x\phi \alpha ,\lambda , - (x)

is the Jacobian of \phi \alpha ,\lambda ,\pm . Note that, as \lambda 0 is a simple eigenvalue, Jac(\lambda 0) = 0 and
that, for \lambda near \lambda 0,

Jac(\lambda ) = (\lambda  - \lambda 0) \widetilde Jac(\lambda ),
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where \widetilde Jac(\lambda ) is a smooth function with \widetilde Jac(\lambda 0) \not = 0 since \lambda 0 is a simple eigenvalue.
Let us also define

\widetilde \phi \alpha ,\lambda ,\pm =
\phi \alpha ,\lambda ,\pm  - \phi \alpha ,\lambda 0,\pm 

\lambda  - \lambda 0
.

Then it follows from (5.1) that

\phi (z) =
\phi \alpha ,\lambda 0,+(z)

\lambda  - \lambda 0

\int +\infty 

0

\phi \alpha ,\lambda 0,+(x)

\widetilde Jac(x)
\psi (x)dx+ \widetilde \phi (z),

where

(5.2) \widetilde \phi (z) =
\int +\infty 

0

\widetilde G(x, z)\psi (x)dx,

with

\widetilde G(x, z) =
\widetilde \phi \alpha ,\lambda ,+(z)\phi \alpha ,\lambda , - (x) + \phi \alpha ,\lambda ,+(z)\widetilde \phi \alpha ,\lambda , - (x) + (\lambda  - \lambda 0)\widetilde \phi \alpha ,\lambda ,+(z)\widetilde \phi \alpha ,\lambda , - (x)

\widetilde Jac(x)
if x > z and a similar expression if x < z. This computation may be rewritten as
follows. Let l be the linear form defined by

l(\psi ) =

\int +\infty 

0

\phi \alpha ,\lambda 0,+(x)

\widetilde Jac(x)
\psi (x)dx.

Then, for any \psi , if l(\psi ) = 0, then \widetilde \phi solves Ray\alpha ,\lambda (\widetilde \phi ) = \psi . In particular, as the image
of the Rayleigh operator Im(Ray\alpha ,\lambda 0

) is of codimension 1, Ker(l) = Im(Ray\alpha ,\lambda 0
).

Note that, as \lambda 0 is a simple eigenvalue, \phi \alpha ,\lambda 0,+ is not in Im(Ray\alpha ,\lambda 0
). Therefore,

l(\phi \alpha ,\lambda 0,+) \not = 0. As a consequence,

\psi = \psi  - l(\psi )

l(\phi \alpha ,\lambda 0,+)
\phi \alpha ,\lambda 0,+ \in Im(Ray\alpha ,\lambda )

since the image by l of this function vanishes. We then have

(5.3) Ray\alpha ,\lambda (\widetilde \phi ) = \psi  - l(\psi )

l(\phi \alpha ,\lambda 0,+)
\phi \alpha ,\lambda 0,+,

where

\phi (z) =

\int +\infty 

0

G̃(x, z)\psi (x)dx.

That is, \widetilde \phi defines the pseudoinverse Ray - 1
\alpha ,\lambda of Ray\alpha ,\lambda for \lambda near \lambda 0. We shall now

fulfill a similar analysis for the Orr\alpha ,\lambda operator.

5.3. Orr–Sommerfeld equation. Let us now prove Theorem 5.1. We follow
the analysis in the previous section to construct the Green function \widetilde G\alpha ,\lambda (x, z) for the
pseudoinverse of Orr\alpha ,\lambda . Let \lambda app0 be a simple eigenvalue of the approximate Evans
function Eapp of the Ray\alpha ,\lambda operator. To simplify the notation, we drop the “app”
and set \lambda 0 = \lambda app0 . At \lambda = \lambda 0, the matrix M , defined by (3.3), is singular since its
first two columns are colinear. Up to the multiplication by a constant of \phi s, - , we may
assume that \phi s,\pm coincide at \lambda = \lambda 0. To desingularize it, we introduce

Λ =

\left( 
   

(\lambda  - \lambda 0)
 - 1 1 0 0

 - (\lambda  - \lambda 0)
 - 1 1 0 0

0 0 1 0
0 0 0 1

\right) 
   .
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Then, recalling (3.2) and defining \widetilde M =MΛ, with the notation of (3.4), we have

(5.4) v = Λ\widetilde M - 1(0, 0, 0, 1/\nu \mu 3
f )

when \lambda \not = \lambda 0. The arguments applied to the matrix M in section 3 may now be
applied to \widetilde M since the corresponding matrix

\widetilde A2 = A2Λ =

\biggl( 
(\phi s, -  - \phi s,+)/(\lambda  - \lambda 0) \phi s,+

(\partial y\phi s, -  - \partial y\phi s,+)/(\lambda  - \lambda 0) \partial y\phi s,+

\biggr) 

is nonsingular near \lambda = \lambda 0, keeping in mind that \lambda 0 is a simple eigenvalue.
Let l4 = (l4,1, . . . , l4,4) be the fourth line of the inverse of \widetilde M . It follows from (5.4)

that

v = Λl4(x)/\nu \mu 
3
f .

The singular part vs of v, namely the terms involving (\lambda  - \lambda 0)
 - 1, is

vs =
1

\nu \mu 3
f

l4,1(x)(1, - 1, 0, 0).

Let us now compute l4,1(x). We have to evaluate Λ - 1A - 1
2 A - 1

1 BD - 1(0, 1) (see section
3.1). But, up to higher order terms, A - 1

1 BD - 1 \sim (0, \mu f ). Note that

A - 1
2 =

1

Eapp(\alpha , \lambda )

\biggl( 
\partial y\phi s,+  - \phi s,+
 - \partial y\phi s, - \phi s, - 

\biggr) 
.

Hence, when \lambda is close to \lambda 0,

A - 1
2 A - 1

1 BD - 1(0, 1) \sim \mu f

Eapp(\alpha , \lambda )
\phi s,+( - 1, 1),

namely like C( - \mu f , \mu f )\phi s,+/(\lambda  - \lambda 0). At leading order, the computation is exactly
the same as in the previous section. Let

L(\psi ) =  - 
\int +\infty 

0

l4,1(x)\psi (x)dx.

Then, at leading order, L = l. Moreover, the regular part vr of v = vr + vs is

vr =
1

\nu \mu 3
f

\Bigl( 
l4,2, l4,2, l4,3, l4,4

\Bigr) 
.

We now define \widetilde Gapp(x, z) to be the approximate Green kernel that corresponds to the
regular part vr, recalling the Green function construction in (3.1)–(3.2). Setting

\widetilde \psi = \psi  - L(\psi )

L(\phi \alpha ,\lambda 0,+)
\phi \alpha ,\lambda 0,+,

we have L( \widetilde \psi ) = 0, and so

Orr\alpha ,\lambda ( \widetilde Gapp  \star \psi ) = \widetilde \psi .

The exact Green function \widetilde G\alpha ,\lambda (x, z) then follows by iteration as in section 4.
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