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a Hamiltonian approach, following the conjugate operator 
method developed in the study of Schrödinger operators, 
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combined with a hypocoercivity argument to handle the 
viscous case.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are interested in the long time behavior of solutions to the two-

dimensional incompressible Euler and Navier Stokes equations in the vanishing viscosity 

limit linearized near a stationary shear flow. More precisely, we shall study the following 

linearized incompressible Euler and Navier-Stokes systems respectively,

∂tv + (Us · ∇)v + (v · ∇)Us + ∇p = 0, ∇ · v = 0, (1.1)

and

∂tv + (Us · ∇)v + (v · ∇)Us + ∇p − νΔv = 0, ∇ · v = 0, (1.2)

for (x, y) ∈ T × R and ν > 0 small, where Us is a smooth stationary shear flow under 

the form

Us =

(

U(y)

0

)

. (1.3)

We shall study at this linearized level the inviscid damping and the enhanced viscous 

dissipation. In the particular case of the Couette flow, U(y) = y, these are well known 

phenomena that go back to observations by Kelvin and Orr in fluid mechanics and can be 

justified from an explicit computation in the Fourier space. By denoting by (v1
α, v2

α)α∈Z

the Fourier coefficients (taking Fourier series in the x variable) of the velocity v = (v1, v2), 

the inviscid damping is the property that for α �= 0, and for smooth enough initial data, 

we have in the large time for the solution of (1.1)

‖v1
α(t)‖ �

1

αt
, ‖v2

α(t)‖ �
|α|

(αt)2
(1.4)

where throughout the paper ‖ · ‖ will stand for the L2 norm in the y ∈ R variable. The 

main reason for this decay is the mixing phenomenon produced by the free transport 

operator y∂x. This property is also true for the solution of (1.2) uniformly with respect 

to ν. The enhanced dissipation is the property that for the solution of (1.2), we have

‖ωα(t)‖ � e−νt3

(1.5)

for ωα denoting the Fourier coefficients of the vorticity ω = ∂xv2 − ∂yv1. This shows 

that the solution of (1.2) is damped by the combination of mixing and viscosity at the 
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time scale ν− 1
3 which is much shorter than the viscous time scale ν−1. For more details, 

we refer to the introduction of [4]. Note that outstanding results that prove that these 

properties are still true for solutions of the nonlinear equations close to the Couette flow 

in strong enough norms have been obtained recently [3–5].

The generalization of these properties to nontrivial shear flows has also received a lot 

of attention. Small in some sense perturbations of the Couette flow have been studied 

in [27]. Then (possibly degenerate) monotonic shear flows in bounded channels (that is 

to say in T × [0, 1]) were studied in [24,26]. The Kolmogorov flow, that is to say the 

shear flow U(y) = sin y in a doubly periodic channel has been studied in [19,25,15]. The 

related case of radial vortices has been also much studied recently [2,8,17].

In this paper, we shall focus on mixing layers type shear flows in T × R. Precisely, we 

assume that U is smooth and satisfies

∀ y ∈ R, U ′(y) > 0, lim
y→±∞

U(y) = U±,
U ′′

U
∈ L∞, ∀ y ∈ R,

U ′′

U
(y) < 0 (H1)

for some constants U±. Let us comment on the above assumptions on U ′′/U . A smooth 

shear flow that satisfies the two first properties necessarily has an inflexion point. In 

view of Rayleigh’s inflexion point theorem, we therefore have to be careful in order to 

ensure its linear stability. The classical shear flows for which this can be ensured are the 

shear flows in the class K+ (we use the notation of [18], such flows were already studied 

by Tollmien [23]) for which we assume that there exists a unique inflexion point ys and 

that −U ′′(y)/(U(y) − U(ys)) is bounded and positive. By changing x into x − ct, with 

c = U(ys), we can always change U into U − U(ys) in (1.1) and (1.2) so that the last 

two assumptions in (H1) are verified. We will also make the following mild assumption. 

Let us set m = (−U ′′/U)
1
2 which is well defined (as a real positive function) and smooth 

thanks to (H1). Assume that

∀k, ∃Ck > 0, |m(k)| ≤ Ckm, lim
|y|→+∞

m = 0, m ∈ L2,
U ′′

U − U±
∈ L∞∩L2, (H2)

with m(k) being the kth-order derivatives of m.

Finally, we will make an assumption that ensures the spectral stability of U for (1.1). 

This means that it excludes the existence of nontrivial solutions of (1.1) such that

ω(t, x, y) = eλteiαxΩ(y), α ∈ Z
∗, Re λ > 0, Ω ∈ L2(R). (1.6)

Note that of course in the presence of such instabilities estimates like (1.4) cannot be 

true. Let us consider the Schrödinger operator

L = −∂2
y − m2, D(L) = H2(R) (1.7)

and define λ0 as the infimum of the spectrum of this self-adjoint operator (note that 

because of (H2), its essential spectrum is [0, +∞[). We assume
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λ0 > −1. (H3)

Note that this assumption is almost sharp. Indeed, if λ0 < −1, we get from Theorem 1.5 

of [18] that there exist growing modes of the form (1.6) for every α ∈ (0, 
√

−λ0) and in 

particular for α = 1 so that U is unstable on T × R.

The main examples of shear profiles U(y) for which assumptions (H1)-(H3) are verified 

are shear flows under the form

U(y) = V
( y

L

)

where we can take V under the form

V (z) = tanh z, or V (z) =

z
∫

0

1

(1 + s2)k
ds

for k sufficiently large. Assumptions (H1) and (H2) are easily verified, while Assumption

(H3) is verified if L is sufficiently large. In the case of the hyperbolic tangent the lowest 

eigenvalue of L is explicitly known; precisely, we have λ0(L) = − 1
L2 (the associated 

eigenfunction being 1/ cosh(y/L)). Hence, (H3) is verified as soon as L > 1. Again, this 

is sharp, since if L < 1, we get from [18] that the mixing layer is unstable.

The aim of this paper is to show that for shear flows satisfying (H1)-(H3) appropriate 

local versions of (1.4) and (1.5) hold. One of the main purposes of this paper is also 

to introduce an Hamiltonian approach to prove the inviscid damping, with sharp decay 

in time following the conjugate operator method, which has been well developed in the 

study of Hamiltonian operators; for instance, see [1,6,9,14]. This approach is different 

from the one in [24,26,15] where shear flows in bounded channels are considered. The 

approach was based on a direct proof of the limiting absorption principle from resolvent 

constructions. This is also different from the approach of [19] that relies more on an 

abstract argument like the RAGE theorem and gives qualitative results. Here, we are able 

to get sharp quantitative estimates. Our approach will rely on a suitable symmetrized 

version of the linearized Euler equation in vorticity form that we introduce in the next 

section. We shall then use on this symmetrized formulation the tools developed in the 

study of abstract Schrödinger equations i∂tψ = Hψ. The two main steps in Mourre’s 

method are establishing the Mourre Estimate, and then using abstract theorems to derive 

various properties of H. The first step is to find a self-adjoint operator A such that the 

Mourre estimate

iEI [H, A]EI ≥ θE2
I + K

with θ positive, and K a compact operator holds. Here I denotes a finite interval in the 

support of the spectrum of H, and EI is the spectral projection of H on that interval. 

There are also some technical assumptions on the common domain of H and A, and 
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on the multiple commutators of H with A, which we do not list here. They will not 

be an issue in this paper. Such A is called conjugate operator by Mourre. From this 

estimate, it follows that in the interval I, H can have at most finitely many eigenvalues 

with L2 eigenvectors. Finally, and most importantly, it follows that in any subinterval, 

where we can have the above estimate with K = 0, the spectrum of H is purely absolutely 

continuous, that local decay estimate holds and that the corresponding resolvent estimate 

holds:

‖ < A >−a (E − H)−1 < A >−a ‖ < C

as an operator from L2 to L2, for all E in the subinterval, provided a > 1/2. In this 

paper, we will be able to get the Mourre estimate with K = 0 on any sufficiently small 

interval in (U−, U+) due to the absence of eigenvalues (see Lemma 2.2).

This result had many applications over the last 40 years, and many refinements. The 

original proof of the local decay estimate by Mourre [20] was done by deriving Differential 

inequalities for the weighted resolvents. A new, time dependent approach, which also gave 

time dependent propagation estimates, including minimal and maximal velocity bounds 

was later developed in [14], [22]. It is this later method that we use in this work. The 

starting point is the identity

d

dt
〈ψ(t), Aψ(t)〉 = 〈ψ(t), i[H, A]ψ(t)〉

if i∂tψ = Hψ. This identity is then truncated in a suitable way in order to use the 

Mourre estimate.

A classical example of conjugate operator when H is a differential operator with real 

symbol ω(k) is

A =
1

2
(x · ∇ω(p) + ∇ω(p) · x), p =: −i∇x.

The Mourre estimate then holds at every point where the group velocity ∇ω does not 

vanish. In some cases, for example if ω is radial monotone, it suffices to use A = 1
2 (x ·p +

p · x). Here H will be a compact perturbation of H0 which is just the multiplication by 

the real monotone function U(y), therefore, the conjugate operator will be just A = i∂y.

The paper is organized as follows. In the two next sections, we describe our mains 

results. Sections 4 and 5 are devoted to the proof of the main results. Finally, section 6

is devoted to the proof of some technical lemmas.

Throughout the paper we use the notation ‖ · ‖ for the L2(R) norm and 〈·, ·〉 for the 

real L2 scalar product:

〈f, g〉 = Re

∫

R

f(y)g(y) dy.
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We also use the notation 〈A〉 = (1 + A2)
1
2 for the symmetric operator A = i∂y on L2. In 

addition, for α ∈ Z, we write ∇α = (∂y, iα)T and Δα = ∂2
y − α2.

2. Inviscid damping

2.1. Symmetric form of the equation

We shall work with the vorticity form of the equation (1.1). Set ω = ∂xv2 −∂yv1, then 

ω solves

∂tω + U(y)∂xω − v2U ′′(y) = 0

and v2 can be recovered from ω by Δv2 = ∂xω.

Let α ∈ Z be the corresponding Fourier variable of x. Taking the Fourier transform 

in x, we rewrite the above equation in the Fourier space as:

i∂tωα = αL0(y)ωα, L0 := U(y) − U ′′(y)Δ−1
α , (2.1)

in which Δα = ∂2
y − α2. When α = 0, the problem is reduced to ∂tωα = 0 and therefore 

no mixing occurs. We shall thus only consider the case when α �= 0. We shall moreover 

focus on the case α > 0. The case α < 0 can be handled from the same arguments as 

below by reversing the direction of propagation. It is then convenient to use a change of 

time scale in (2.1), we set

ωα(t, y) = ω̃α(αt, y) (2.2)

so that dropping the tilde and the subscript α, we obtain

i∂tω = L0(y)ω, L0 = U(y) − U ′′(y)Δ−1
α . (2.3)

For convenience, we write

L0 = U(y)
(

1 + m(y)2Δ−1
α

)

, m(y) := (−U ′′(y)/U(y))
1
2 .

Let us introduce the operator

Σ = 1 + mΔ−1
α m.

Note that Σ depends on α, through Δ−1
α , but we omit to write this dependence explicitly. 

We observe that Σ is a bounded symmetric operator on L2 and that mΔ−1
α m is a compact 

operator, upon noting that m tends to zero at infinity thanks to (H2). Moreover, mainly 

thanks to (H3), we also have the following lemma whose proof is given in Section 4.



E. Grenier et al. / Journal of Functional Analysis 278 (2020) 108339 7

Lemma 2.1. Assuming (H1)-(H3), there exists a constant c0 > 0 such that for every 

α ∈ Z
∗, in the sense of symmetric operators, we have

Σ ≥ c0 > 0.

We can thus write Σ = S2 for some bounded symmetric coercive operator S on L2. 

Moreover, we also have that S − 1 is compact since

S − 1 = mΔ−1
α m(1 + S)−1.

By setting ω = mS−1ψ, we finally find

i∂tψ = Hψ, H = SU(y)S, S =
(

1 + mΔ−1
α m

)
1
2 (2.4)

with the initial condition ψ/t=0 = ψ0 = Sm−1ω0. Note that we will always assume 

that ψ0 ∈ L2, which in terms of ω0 means that ω0 is decaying sufficiently fast so that 
1
mω0 ∈ L2

We also point out that H actually depends on α in a smooth way (since we focus on 

|α| ≥ 1). We omit this dependence for notational convenience. All the estimates that we 

shall give in the following are uniform with respect to α.

2.2. Spectral properties of H and conjugate operator

Let σ(H) be the spectrum of H on L2. A first useful property is that:

Lemma 2.2. Assuming (H1)-(H3), we have σ(H) = [U−, U+] and there is no embedded 

eigenvalue in [U−, U+].

Again the proof of Lemma 2.2 will be given in Section 4. To exclude eigenvalues and 

embedded eigenvalues we will adapt the arguments of [18], [19], [21] for the Rayleigh 

equation in bounded domains.

As an immediate Corollary, we get from the abstract RAGE Theorem that

Corollary 2.3. For any compact operator C on L2(R), there holds

lim
T →+∞

1

T

T
∫

0

‖Ce−itHψ0‖2 dt = 0

for any ψ0 ∈ L2.

In terms of the original vorticity function ω, since ω = mS−1ψ(t) with S being a 

bounded operator, we observe that for every ε > 0, the operator C = 〈i∂y〉−εmS−1 is 

compact on L2, and hence the above result gives
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lim
T →+∞

1

T

T
∫

0

‖〈i∂y〉−εω(t)‖2 dt = 0

for every ω0 such that 1
m ω0 ∈ L2, where ω solves (2.3). In particular, this yields some 

sort of time decay for the velocity.

We shall now use the conjugate operator method to get quantitative and more precise 

versions of this result. We will use A = i∂y as a conjugate operator in order to exploit 

that U ′ > 0. Note that A is a symmetric operator on L2.

Observe that U : R → (U−, U+) is a diffeomorphism. We can thus define a smooth 

function F on (U−, U+ by F (u) = U ′(U−1(u)). This yields F (U(y)) = U ′(y), for all 

y ∈ R. Note that for every compact interval I ⊂ (U−, U+), there exists θI > 0 such that 

F ≥ θI on I.

The crucial property that we will prove in Section 4 is the following:

Lemma 2.4. Assume (H1)-(H3). For every compact interval I ⊂ (U−, U+), there exists a 

compact operator K such that for every g ∈ C∞
c ((U−, U+), R+) with the support contained 

in I, there holds

g(H)i[H, A]g(H) ≥ θIg(H)2 + g(H)Kg(H) (2.5)

where A = i∂y, [H, A] = HA − AH, θI = minI F (u) > 0, and g(H) is defined through 

the usual functional calculus.

The above lemma is also true with g(H) = 1I(H) the spectral projection onto I. We 

have stated the estimate in this way since it will be the one that is the most useful for 

us. Note that in our simple setting, the commutator [H, A] and the higher iterates are 

bounded operators.

This localized commutator estimate was introduced in [20] and is well known to have 

many interesting consequences on the structure of the spectrum of H. Since we know 

from Lemma 2.2 that there are no eigenvalues, we can get for example from [20], [10], 

[1] that the limiting absorption principle holds for every interval I ⊂]U−, U+[ and that 

there is no singular continuous spectrum. Note that when m ∈ L2, the operator mΔ−1
α m

is in the trace class. This follows directly from the expression of the kernel which is given 

by

K(y1, y2) =
1

|α|e
−|α| |y1−y2|m(y1)m(y2).

Thus, H is a trace class perturbation of the multiplication operator by U . In addition, 

it follows from Kato’s Theorem [16] that the continuous spectrum of H is σac(H) =

[U−, U+]. By combining these facts, we get, again from the Kato’s theorem, that the wave 

operators exist and are complete, which in particular implies the following scattering 

result:
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Corollary 2.5. Assuming (H1)-(H3), for every ψ0 ∈ L2, there exists ψ+ ∈ L2 such that

lim
t→+∞

‖e−itHψ0 − e−itU(y)ψ+‖ = 0.

Again, this can be translated into a scattering result in the original unknowns in a 

weighted L2 space. In the following we shall focus on the consequences of Lemma 2.4

on time dependent quantitative propagation estimates that are more flexible and in 

particular that can be also performed for (1.2) for small positive ν.

2.3. Main inviscid result

Our main result for (2.4) is the following:

Theorem 2.1. Assume (H1)-(H3). For every k ∈ N
∗ and for every compact interval I0

in ]U−, U+[, there exists a constant C > 0 such that for any initial data ψ0 ∈ Hk, the 

solution ψ(t) to (2.4) satisfies the estimate

‖〈A〉−kgI0
(H)ψ(t)‖ ≤ C

1 + tk
‖〈A〉kψ0‖,

uniformly in t ≥ 0 and α ∈ Z
∗, where A = i∂y and gI0

is any smooth and compactly 

supported function in I0.

The above result can be easily translated in the original velocity coordinates. Indeed, 

for α ∈ Z
∗, we have

‖v1
α(t)‖ ≤ ‖〈A〉−1ωα(αt)‖ = ‖〈A〉−1mS−1ψ(αt)‖ � ‖〈A〉−1ψ(αt)‖

since 〈A〉−1mS−1〈A〉 is a bounded operator. In a similar way, we have

‖v2
α(t)‖ � |α|‖〈A〉−2ψ(αt)‖.

Therefore, we obtain the following

Corollary 2.6. Assume that the initial vorticity is of the form ω0 = mS−1gI0
(H)ψ0, for 

any ψ0 ∈ H2 and for any compact interval I0 in (U−, U+). Then, the solution v to (1.1)

satisfies the following estimates

‖v1
α(t)‖ ≤ C

1 + (|α|t)‖ψ0‖H1 , ‖v2
α(t)‖ ≤ C|α|

1 + (|α|t)2
‖ψ0‖H2 ,

uniformly in t ≥ 0 and α ∈ Z
∗, with vα being the Fourier transform of v with respect to 

variable x.
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The fact that the finite edges of the spectrum of H at U± are not covered is a well-

known limitation of the Mourre’s theory [20]. In our case, this is a real difficulty that 

comes from the fact that U ′(y) tends to zero at infinity and hence there is no positive 

lower bound in the Mourre’s estimate (2.5).

3. Uniform mixing and enhanced dissipation

We shall now describe our results for the viscous equations (1.2). Again we write the 

equation in the vorticity form and take the Fourier transform in x, leading to

∂tω + iαL0(y)ω − νΔαω = 0 (3.1)

where L0 is defined in (2.1). As in the inviscid case, we shall focus on the case α �= 0. 

Let us again set ω = mS−1ψ to obtain for ψ

∂tψ + iαHψ − νS
1

m
ΔαmS−1ψ = 0.

Note that we shall not perform the time scaling (2.2), as it is not well adapted to the 

viscous term. In addition, the dissipation term is no longer symmetric. Nevertheless, it 

is symmetric up to a very small error. Precisely, we can write the above equation under 

the form

∂tψ + iαHψ − νΔαψ = νRψ (3.2)

in which

R = S
1

m
ΔαmS−1 − Δα = S

1

m
∂2

ymS−1 − ∂2
y

= S
m′′

m
S−1 + 2S

m′

m
∂yS−1 + (S − 1)∂2

yS−1 + ∂2
yS−1(1 − S).

(3.3)

As we will see, the right hand-side does not have much influence on the dynamics for 

times νt � 1.

We shall use the form (3.2) to state our main results. At first we shall establish that 

the estimates of Theorem 2.1 can be generalized to (3.2) up to the viscous dissipation 

time scale ν−1. Precisely, we have

Theorem 3.1. Assume (H1)-(H3). For every k ∈ N
∗ and for every compact interval I0 ⊂

(U−, U+), there exist positive constants C, M0 such that for every initial data ψ0 ∈ Hk

and every ν ∈ (0, 1], the solution ψ(t) to (3.2) satisfies the estimate

‖〈A〉−kgI0
(H)ψ(t)‖ ≤ C

(

1

1 + (|α|t)k
‖〈A〉kψ0‖ + (νt)

1
2 eM0νt‖ψ0‖

)

,
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uniformly in t ≥ 0 and α ∈ Z
∗, where A = i∂y and gI0

is any smooth and compactly 

supported function in I0.

Note that the above result shows that the estimates of Theorem 2.1 remain valid 

up to a correction term that is very small as long as νt � 1. One can think that 

the study of the stability of stationary shear flows Us = [U(y), 0] in the Navier-Stokes 

equation is not really pertinent for times larger than ν−1. Indeed, Us(y) is not an exact 

stationary solution of the nonlinear Navier-Stokes equation, though it is classical in 

fluid mechanics to add a small stationary forcing term in the equation so that Us(y)

becomes an exact solution (see [7] for example). The exact shear solution of Navier-Stokes 

equations (without a forcing) is time dependent, Us = [U(t, y), 0], with U(t, y) solving 

the heat equation

∂tU − ν∂2
yU = 0, U|t=0

= U(y).

As long as νt � 1, it does not make much a difference to replace U(t, y) by U(y). Nev-

ertheless, for νt � 1, the stationary profile U(y) is no longer a good approximation, and 

in particular the derivatives ∂l
yU(t, y) are damped by the diffusion. This was taken into 

account for example in the papers [25,15,19]. Let us also point out that our assumptions

(H1)-(H3) ensure the spectral stability of the shear flows to the Euler equations, but 

no assumptions were made to ensure the stability to the Navier-Stokes equations for all 

times (noting that since the channel T × R has no boundary, the result of [12,13] does 

not apply).

Our last main result is the following local enhanced dissipation for (3.2).

Theorem 3.2. Assume (H1)-(H3). For every compact interval I0 ⊂ (U−, U+), there are 

positive constants C0, M0, c0 such that for every initial data ψ0 ∈ H1 and every ν ∈ (0, 1], 

the solution ψ(t) to (3.2) satisfies the estimate

N(t) ≤ C0

(

e−c0ν
1
3 tN(0) + (ν

1
3 + (νt)

1
2 eM0νt)(‖ψ0‖ + ‖αψ0‖)

)

uniformly in t ≥ 0 and α ∈ Z
∗, where

N(t) = ‖gI0
(H)ψ(t)‖ + ‖αgI0

(H)ψ(t)‖ + ν
1
3 ‖∂ygI0

(H)ψ(t)‖

and gI0
is any smooth and compactly supported function in I0.

From the above estimate we see that after localization in a strict spectral subspace of 

H the solution of (3.2) is damped at the time scale ν− 1
3 which is much smaller than the 

usual viscous dissipation scale ν−1.

4. Proof of the inviscid results

In this section, we shall prove the results stated in Section 2.
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4.1. Proof of Lemma 2.1

First, we observe that the essential spectrum of Σ = 1 + mΔ−1
α m on L2 is reduced to 

1 because of the decay assumptions on m in (H2). Thus, it suffices to show that Σ has 

only positive eigenvalues. Let us assume by contradiction that λ ≤ 0 is an eigenvalue of 

Σ. That is, there exists a nonzero ψ ∈ L2 such that

Σψ = λψ.

Set u = Δ−1
α mψ. Then, u ∈ H2 and

−λ(−Δαu) + (L + α2)u = 0

where L = −∂2
y −m2 as defined in (1.7). Taking the scalar product with u and integrating 

by parts, we get from (H3) that

−λ‖∇αu‖2 + (λ0 + α2)‖u‖2 ≤ 0

with ∇α = (∂y, iα)T . Since −λ ≥ 0, α ∈ Z
∗, and λ0 + α2 > 0, we get that u = 0, which 

is a contradiction. Lemma 2.1 follows.

4.2. Proof of Lemma 2.2

Since H is a compact perturbation of the multiplication operator by U(y), we first 

get that σess(H) = [U−, U+]. To exclude eigenvalues and embedded eigenvalues we will 

adapt the arguments of [19,18,21] for the Rayleigh equation in bounded domains. To 

proceed, let c ∈ R be an eigenvalue of H. That is, there exists a nonzero ψ ∈ L2(R) such 

that

Hψ = cψ.

Case 1: c ∈ R\[U−, U+]. In view of (2.4), we get that the vorticity ω = mS−1ψ ∈ L2

and solves

(U − c)ω = U ′′Δ−1
α ω.

Setting φ = Δ−1
α ω, we note that φ ∈ H2 and solves the Rayleigh equation

−∂2
yφ +

U ′′

U − c
φ = −α2φ. (4.1)

Note that since c /∈ [U−, U+], U ′′/(U − c) is not singular. This means that −α2 < 0 is an 

eigenvalue of the one-dimensional Schrödinger operator −∂2
y + U ′′

U−c . Since the essential 
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spectrum of this operator is [0, +∞[, we obtain that the bottom of the spectrum is an 

eigenvalue λ ≤ −α2 < 0 and that the corresponding eigenvector can be taken positive. 

Therefore, there exists v ∈ H2, v > 0 such that

−∂2
yv − λv = − U ′′

U − c
v. (4.2)

Observe that U ′′/(U−c) belongs to L1, since 1/(U−c) is bounded and U ′′ = −Um2 ∈ L1, 

upon recalling from Assumption (H2) that U is bounded and m ∈ L2. By using the 

Green’s function of −∂2
y − λ, we get from (4.2) that

v = −G√
−λ ∗ U ′′

U − c
v, G√

−λ(y) = − 1√
−λ

e−
√

−λ |y|.

In particular, v ∈ L1, since

‖v‖L1 �

∥

∥

∥

∥

U ′′

U − c
v

∥

∥

∥

∥

L1

� ‖v‖L∞ � ‖v‖H1 < +∞.

Finally, we rewrite (4.2) as

−∂y ((U − c)∂yv) + ∂y(U ′v) = λ(U − c)v.

Therefore, we obtain after integration that λ 
∫

R
(U − c)v = 0, which is a contradiction 

since v > 0 and U − c has a constant sign.

Case 2: c ∈ {U−, U+}. In this case, we have U ′′/(U − c) ∈ L∞ ∩ L2 from Assumption

(H2). Hence, again we have v ∈ L1, since

‖v‖L1 �

∥

∥

∥

∥

U ′′

U − c
v

∥

∥

∥

∥

L1

� ‖v‖L2 < +∞.

We thus arrive at the same contradiction as in the previous case.

Case 3: c ∈ (U−, U+). Let yc be the point (which is unique since U ′ > 0) such that 

U(yc) = c and set I− = (−∞, y0) and I+ = (y0, +∞). As in the previous cases, we get 

that there exists a nontrivial φ ∈ H2(R) that solves the Rayleigh equation (4.1) on I±.

We first prove that we must have φ(yc) �= 0. Indeed, assuming otherwise that φ(yc) = 0

and proceeding as above, we get that at least one of the self-adjoint operators L± =

−∂2
y + U ′′

U−c with domain H2(I±) ∩ H1
0 (I±) (which are well defined thanks to the Hardy 

inequality and the fact that U ′ > 0) has a negative eigenvalue −α2. Therefore, we again 

find that for one of the intervals I±, there exist a negative eigenvalue λ± and a positive 

eigenfunction v± such that

−∂y ((U − c)∂yv±) + ∂y(U ′v±) = λ±(U − c)v±, y ∈ I±.
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We can then also integrate on I± to obtain

λ±

∫

I±

(U − c)v± = 0

upon recalling that U(yc) = c and v±(yc) = 0. This yields a contradiction, since U − c

and v± have a constant sign on I±. This proves that φ(yc) �= 0.

Next, since φ ∈ H2(R) and solves (4.1), we have U ′′

U−c φ ∈ L2. Together with φ(yc) �= 0, 

we must have U ′′(yc) = 0. Consequently, we have proven that if c ∈ (U−, U+) is an 

embedded eigenvalue, we must have c = U(yc) with U ′′(yc) = 0. Since we assume that 

U ′′/U is strictly negative, we must also have U(yc) = 0 and therefore the only remaining 

possibility for an embedded eigenvalue is c = 0. Going back to the expression of H in 

(2.4), we immediately see that 0 is not an eigenvalue of H since S is invertible thanks to 

Lemma 2.1.

4.3. Proof of Lemma 2.4

We shall now turn to the proof of Lemma 2.4. Recall that H = SUS with S =

(1 + mΔ−1
α m)

1
2 . Let us write

H = U + (S − 1)U(S − 1) + (S − 1)U + U(S − 1)

in which we note that S − 1 is a compact operator on L2, upon noting that (1 + S)−1 is 

bounded, mΔ−1
α m is compact on L2, and S − 1 = mΔ−1

α m(1 + S)−1. Take A = i∂y as 

the conjugate operator. We obtain

i[H, A] = U ′ + K1 = F (U) + K1

with F (U(y)) = U ′(y) and K1 a compact operator on L2.

Let I be a compact interval in (U−, U+) and let g be in C∞
c ((U−, U+), R+) with the 

support contained in I. We then take Ĩ ⊂ (U−, U+) to be a slightly bigger interval such 

that there exists a smooth g̃ with the support contained in Ĩ and g̃ = 1 on I. Since F is 

bounded below away from zero on the support of g̃, we get that there exists a positive 

constant θI such that

g̃(U)i[H, A]g̃(U) ≥ θI g̃(U)2 + g̃(U)K1g̃(U). (4.3)

We can then write

g(H)i[H, A]g(H) = g(H)g̃(H)i[H, A]g̃(H)g(H)

= g(H)g̃(U)i[H, A]g̃(U)g(H)

+ g(H)
(

(g̃(H) − g̃(U))i[H, A]g̃(H) + g̃(U)i[H, A](g̃(H) − g(U))
)

g(H).
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Thus, using (4.3), we get

g(H)g̃(U)i[H, A]g̃(U)g(H) ≥ θIg(H)g̃(U)2g(H) ≥ θIg(H)2 +g(H)(g̃(U)2 − g̃(H)2)g(H).

To conclude, it suffices to use that if f ∈ C∞
c (R), then f(H) −f(U) is a compact operator. 

We refer to Lemma 6.2, ii).

4.4. Local decay estimates

We shall now prove a propagation estimate that will be crucial for the proof of The-

orem 2.1.

Lemma 4.1. Let I be a compact interval in (U−, U+) such that Lemma 2.4 holds. Let 

J ⊂ I and gJ be in C∞
c ((U−, U+), R+), having its support contained in J and satisfying

gJ(H)i[H, A]gJ (H) ≥ θI

2
gJ(H)2, (4.4)

with θI as in Lemma 2.4. Then, for every k ∈ N, there exists a constant Ck so that

‖〈A〉−kgJ(H)ψ(t)‖ ≤ Ck

θ
k+ 1

2

I

1

1 + tk
‖〈A〉kgJ(H)ψ0‖, (4.5)

for every t ≥ 0 and for every ψ0 ∈ Hk, where ψ solves (2.4).

Proof. Take χ(ξ) = 1
2 (1 − tanh ξ) and observe that χ has the property that

χ′ = −φ2, |φ(m)(ξ)| ≤ Cmφ(ξ), ∀ξ ∈ R, ∀m ∈ N
∗ (4.6)

where φ = 1/(
√

2 cosh ξ). Following the method of [14], we shall use a localized energy 

estimate. Set At,s = 1
s (A −a −θt) for A = i∂y, a ∈ R, s ≥ 1 and θ = θI

4 . In what follows, 

χ and φ stand for χ(At,s), φ(At,s), respectively, and gJ for gJ(H). These are self-adjoint 

operators on L2, and gJ commutes with H. In addition, all the estimates are uniform in 

a and s ≥ 1, and they do not depend on the subinterval J .

Using the equation (2.4) and symmetry properties, we observe that

d

dt
‖χ

1
2 gJψ‖2 =

d

dt
〈χgJψ, gJψ〉 =

θ

s
‖φgJψ‖2 + 〈i[χ, H]gJψ, gJψ〉. (4.7)

To evaluate the right hand side, we use the commutation formula from [14,11,10], which 

we recall in Lemma 6.1. For every p ≥ 1, we get

〈i[χ, H]f, f〉 = −1

s
〈φ2i[A, H]f, f〉 +

p−1
∑

j=2

1

j!

1

sj
〈χ(j)i adj

AHf, f〉 +
1

sp
〈Rpf, f〉 (4.8)
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with adAH = [H, A], adj
AH = [adj−1

A H, A], and

‖Rp‖ ≤ Cp‖adp
AH‖ ≤ Cp

where ‖ · ‖ stands here for the operator norm from L2 to L2. In the next computation, 

we continue to denote by Rp any bounded operator which is bounded by a harmless 

constant. For the first term on the right of (4.8), we use again the commutation formula 

to get

1

s
〈φ2i[A, H]f, f〉 =

1

s
〈φi[A, H]f, φf〉

=
1

s
〈i[A, H]φf, φf〉 +

p−2
∑

j=1

1

j!

1

sj+1
〈φ(j)i adj+1

A Hf, φf〉 +
1

sp
〈Rpf, f〉.

For the terms in the above sum, we can use repeatedly the commutation formula to get 

in the end that

1

s
〈φ2i[A, H]f, f〉 =

1

s
〈i[A, H]φf, φf〉 +

p−2
∑

j=1

1

sj+1

∑

k,l

〈Rkφlf, φf〉 +
1

sp
〈Rpf, f〉

where in the above sum k, l runs in finite sets and φl stands for some derivatives of φ, 

which in particular satisfies the estimate |φl| � |φ| by using (4.6).

In a similar way, to estimate the other terms in (4.8), we observe that χ(j) =

−(φ2)(j−1) can be expanded as a sum of terms under the form φkφ̃m where φk, φ̃m

and their derivatives are controlled by φ. By using again the commutation formula as 

many times as necessary, this allows to write an expansion under the form

p−1
∑

j=2

1

j!

1

sj
〈(φ2)(j−1)adj

AHf, f〉 =

p−1
∑

j=2

1

sj

∑

k,l,m

〈Rkφlf, φ̃mf〉 +
1

sp
〈Rpf, f〉.

In particular, we get from (4.8) and the above expansion formula that for every f (as-

suming s ≥ 1)

〈i[χ, H]f, f〉 ≤ −1

s
〈i[A, H]φf, φf〉 +

Cp

s2
‖φf‖2 +

Cp

sp
‖f‖2. (4.9)

From (4.7), we thus find that

d

dt
‖χ

1
2 gJψ‖2 ≤ 1

s

(

θ‖φgJψ‖2 − 〈i[A, H]φgJψ, φgJψ〉
)

+
Cp

s2
‖φgJψ‖2 +

Cp

sp
‖gJψ‖2

≤ 1

s

(

θ − θI

2

)

‖φgJψ‖2 +
Cp

s2
‖φgJψ‖2 +

Cp

sp
‖gJψ‖2
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where we have used (4.4) in the last inequality. Consequently, we can choose θ = θI/4

and s sufficiently large (s ≥ 16Cp

θI
) to obtain

d

dt
‖χ

1
2 gJψ(t)‖2 ≤ Cp

sp
‖gJψ(t)‖2 ≤ Cp

sp
‖gJψ0‖2 (4.10)

upon using

d

dt
‖gJ(H)ψ‖2 = 0.

Integrating (4.10) between 0 and t and recalling χ = χ(At,s), we find that for every t,

∥

∥

∥

∥

χ
1
2

(

A − a − θt

s

)

gJψ(t)

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

χ
1
2

(

A − a

s

)

gJψ0

∥

∥

∥

∥

2

+
Cpt

sp
‖gJψ0‖2

uniformly for all a ∈ R and s ≥ 1, with θ = θI

4 . In particular for θIt ≥ 1
θ2

I

, we can take 

s = Cp(θIt)
1
2 and a = − θI

8 t to obtain

∥

∥

∥

∥

∥

χ
1
2

(

A − θI

8 t

Cp(θIt)
1
2

)

gJψ(t)

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

χ
1
2

(

A + θI

8 t

Cp(θIt)
1
2

)

gJψ0

∥

∥

∥

∥

∥

2

+
Cp

θI(θIt)
p

2
−1

‖gJψ0‖2. (4.11)

To conclude, for k ≥ 0, we write that

‖〈A〉−kgJψ(t)‖ ≤
∥

∥

∥

∥

∥

〈A〉−kχ
1
2

(

A − θI

8 t

Cp(θIt)
1
2

)

gJψ(t)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

〈A〉−k

(

1 − χ
1
2

(

A − θI

8 t

Cp(θIt)
1
2

))

gJψ(t)

∥

∥

∥

∥

∥

. (4.12)

Let us first estimate the second term on the right. By using ‖gJ(H)ψ(t)‖ = ‖gJ(H)ψ0‖, 

it suffices to bound in the operator norm

∥

∥

∥

∥

∥

〈A〉−k

(

1 − χ
1
2

(

A − θI

8 t

Cp(θIt)
1
2

))∥

∥

∥

∥

∥

�
1

(θIt)k
.

Indeed, the estimate is clear, when A ≥ θIt/16, due to the factor 〈A〉−k. In the case 

when A ≤ θIt/16, we observe that 1 − χ
1
2 term can be bounded by e−C(θIt)

1
2 , which is 

again bounded by the algebraic decay.

Let us now bound the first term on the right of (4.12). Using (4.11) and choosing p

sufficiently large, we thus get

‖〈A〉−kgJψ(t)‖ �

∥

∥

∥

∥

∥

χ
1
2

(

A + θI

8 t

Cp(θIt)
1
2

)

〈A〉−k〈A〉kgJψ0

∥

∥

∥

∥

∥

+
1

θ
1
2

I

1

(θIt)k
‖gJψ0‖.
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In the above, the first term on the right is bounded by Cp(θIt)−k‖〈A〉kgJψ0‖ by consid-

ering A ≤ −θIt/16 and A ≥ −θIt/16 and using the fact that χ(ξ) decays exponentially 

to zero as ξ → +∞.

Thus, we have obtained

θ
k+ 1

2

I ‖〈A〉−kgJψ(t)‖ �
1

1 + tk
‖〈A〉kgJψ0‖

for θ3
I t ≥ 1. The estimate for θ3

I t ≤ 1 is clear. The lemma follows. �

4.5. Proof of Theorem 2.1

Our aim is now to deduce Theorem 2.1 from Proposition 4.1. In order to conclude, 

we only need to prove that thanks to the spectral properties that we have already es-

tablished, we can use Lemma 2.4 to localize the problem in a suitable way so that the 

assumption (4.4) will be matched. Let us take I0 any closed interval included in (U−, U+)

and take I such that I0 ⊂ I̊ and that Lemma 2.4 holds. In particular, for every point 

E ∈ I0 and every positive number δ, we can take gE,δ a smooth function supported in 

(E − 2δ, E + 2δ) and equal to one on [E − δ, E + δ]. For gE,δ(H) and for δ small enough 

so that (E − 2δ, E + 2δ) ⊂ I, Lemma 2.4 yields

gE,δ(H)i[H, A]gE,δ(H) ≥ θIgE,δ(H)2 + gE,δ(H)KgE,δ(H).

Let us show that we can take δ sufficiently small such that (4.4) holds for gE,δ(H). Indeed, 

since K is compact, we can approximate it by a finite rank operator in the operator norm. 

Thus, it suffices to prove that for every ε > 0, we get gE,δKgE,δ ≥ −εg2
E,δ, for sufficiently 

small δ and for K = a ⊗ b a rank one operator. In this case, we then have

〈gE,δKgE,δf, f〉 = 〈gE,δf, a〉〈gE,δf, b〉,

and therefore by Cauchy-Schwarz

〈gE,δKgE,δf, f〉 ≥ −‖gE,2δa‖‖gE,2δb‖ ‖gE,δf‖2

where gE,2δ is a smooth function supported in (E −4δ, E +4δ) that is one on the support 

of gE,δ. The result follows by using that for c = a, b ∈ L2, thanks to the spectral measure, 

we can write

‖gE,2δc‖2 =

∫

[U−,U+]

|gE,2δ(λ)|2〈dEλc, c〉

and by using the Lebesgue theorem, upon noting that the measure 〈dEλc, c〉 is con-

tinuous, thanks to Lemma 2.2. This proves that (4.4), and hence, (4.5) hold for 

J = (E − 2δ, E + 2δ).
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Finally, we can cover I0 by a finite number of such intervals J with J ⊂ I sufficiently 

small such that (4.4) holds. Take a partition of unity associated to this covering of 

I0. For each J , the estimate (4.5) holds (noting that the constants in the estimate are 

independent of J). Taking an initial data under the form gI0
(H)ψ0 supported in I0, we 

can then sum the estimate to obtain the final result, Theorem 2.1. Note however that 

the constants in the final estimate do depend on I0 and might blow up at the edges of 

the spectrum of H.

5. Viscous case

We shall now prove Theorem 3.1 and Theorem 3.2. We use the form (3.2) of the 

equation. To estimate the remainder R defined as in (3.3), we can use again that both 

S, S−1 are bounded operators and

S − 1 = mΔ−1
α m(1 + S)−1 = mΔ−1

α m(1 + (1 + mΔ−1
α m)

1
2 )−1.

Thus, in view of (3.3), we can write

R = R0 + ∂yR1, ‖R0‖ + ‖R1‖ ≤ CR (5.1)

for some constant CR that is independent of ν.

5.1. Basic energy estimate

As a preliminary, we first establish that

Proposition 5.1. There are positive constants M0, C such that for every ν ∈ (0, 1], the 

solution of (3.2) satisfies the estimates

‖ψ(t)‖ ≤ eM0νt‖ψ0‖, ν

t
∫

0

‖∇αψ‖2 ≤ ‖ψ0‖2(1 + Cνte2M0νt) (5.2)

uniformly for all t ≥ 0 and α ∈ Z. Here, ∇α = (∂y, iα)T .

Note that the above estimates are uniform in α. In addition, when α is large enough, 

the estimates can be improved in the sense that we could take M0 = 0. However, we 

shall not use the improvement.

Proof. The proposition is an easy consequence of the fact that H is symmetric. Indeed, 

taking integration by parts and using (3.2) and (5.1), we obtain that

1

2

d

dt
‖ψ‖2 + ν‖∇αψ‖2 ≤ Cν(‖ψ‖2 + ‖ψ‖ ‖∂yψ‖).
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Using the Young inequality, we thus get

d

dt
‖ψ‖2 + ν‖∇αψ‖2 ≤ Cν‖ψ‖2. (5.3)

The first estimate in (5.2) follows from the Gronwall inequality, while the second is 

obtained by integrating in time the above inequality. �

5.2. Proof of Theorem 3.1

We proceed as in the proof of Theorem 2.1. We first choose I0 and I as in Section 4.5

and cover I0 with a finite number of small intervals such that on each small interval the 

estimate (4.5) holds. Let us take J to be any of these small intervals. We now proceed 

as in the proof of Lemma 4.1 by computing

d

dt
‖χ

1
2 gJψ‖2

with gJ = gJ(H) and

χ = χ(Aαt,αs), Aαt,αs =
A − a − θαt

αs
.

Note that the only difference here is that we have replaced t and s by αt and αs, since 

we did not perform the change of the time scale as in (2.2). We again focus on α > 0. 

As similarly done in (4.7), we obtain for the solution ψ(t) to (3.2)

d

dt
‖χ

1
2 gJψ‖2 =

d

dt
〈χgJψ, gJψ〉

=
θ

s
‖φgJψ‖2 + 〈iα[χ, H]gJψ, gJψ〉 + 2ν〈χgJΔαψ, gJψ〉 + 2ν〈χgJRψ, gJψ〉.

(5.4)

We now estimate each term on the right. The first two terms are estimated exactly as 

done in the proof of Lemma 4.1 or precisely in (4.9), yielding

θ

s
‖φgJψ‖2 + 〈iα[χ, H]gJψ, gJψ〉 ≤ 1

s

(

θ − θI

2
+

Cp

αs

)

‖φgJψ‖2 +
αCp

(αs)p
‖gJψ‖2 (5.5)

where Cp is independent of α and s (and ν, of course). Next for the third term on the 

right of (5.4), we can integrate by parts (observe that χ commutes with ∂y) to obtain

〈χgJΔαψ, gJψ〉

= −‖∇αχ
1
2 gJψ‖2 + 〈χ 1

2 [gJ , ∂y]∂yψ, χ
1
2 gJψ〉 − 〈χ 1

2 [gJ , ∂y]ψ, χ
1
2 ∂ygJψ〉

= −‖∇αχ
1
2 gJψ‖2 + 〈χ 1

2 [[gJ , ∂y], ∂y] ψ, χ
1
2 gJψ〉 − 2〈χ 1

2 [gJ , ∂y]ψ, χ
1
2 ∂ygJψ〉.
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Using the Lemma 6.2 i) to estimate the commutators, we find

〈χgJΔαψ, gJψ〉 ≤ −‖∇αχ
1
2 gJψ‖2 + C‖ψ‖(‖χ

1
2 gJψ‖ + ‖∂yχ

1
2 gJψ‖).

In a similar way, using the decomposition (5.1) and integrating by parts, we get

〈χgJRψ, gJψ〉 ≤ C‖ψ‖(‖∂yχ
1
2 gJψ‖ + ‖χ

1
2 gJψ‖).

Using ‖χ
1
2 gJ‖ � 1 and the Young inequality, we thus obtain

〈χgJΔαψ, gJψ〉 + 〈χgJRψ, gJψ〉 ≤ −1

2
‖∇αχ

1
2 gJψ‖2 + C‖ψ‖2 (5.6)

for some constant C that is independent of ν.

Consequently, putting (5.5) and (5.6) into (5.4), and choosing again θ = θI/4 and s

large so that αs ≥ 4Cp/θI , we obtain

d

dt
‖χ

1
2 gJψ‖2 ≤ αCp

(αs)p
‖gJψ‖2 + Cν‖ψ‖2 ≤ αCp

(αs)p
‖gJψ‖2 + Cνe2M0νt‖ψ0‖2 (5.7)

where the last estimate comes from Proposition 5.1. On the other hand, using the same 

commutator estimates as above (now with χ = 1), we also get that

d

dt
‖gJψ‖2 + ν‖∇αgJψ‖2 ≤ Cν‖ψ‖2 ≤ Cνe2M0νt‖ψ0‖2 (5.8)

which, after an integration in time, yields ‖gJψ(t)‖ ≤ ‖gJψ0‖ +C(νt)
1
2 eM0νt‖ψ0‖. Hence, 

the inequality (5.7) now becomes

d

dt
‖χ

1
2 gJψ‖2 ≤ αCp

(αs)p
‖gJψ0‖2 + Cνe2M0νt‖ψ0‖2. (5.9)

Finally, for times t such that θ3
I αt ≥ 1, we integrate (5.9) over (0, t) and take αs =

Cp(αθIt)
1
2 and a = − θI αt

8 . Recalling χ = χ(Aαt,αs), we obtain

∥

∥

∥

∥

∥

χ
1
2

(

A − θI

8 αt

Cp(θIαt)
1
2

)

gJψ(t)

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

χ
1
2

(

A + θI

8 αt

Cp(θIαt)
1
2

)

gJψ0

∥

∥

∥

∥

∥

2

+
Cpαt

(θIαt)
p

2

‖gJψ0‖2 + Cνte2M0νt‖ψ0‖2.

Note that in this estimate Cp is independent of J and θI , while C might depend on the 

compact intervals I0 and I. From this estimate, we easily deduce in the same way as 

done in the proof of Lemma 4.1 that

θ
k+ 1

2

I ‖〈A〉−kgJψ(t)‖ �
1

(αt)k
‖〈A〉kgJψ0‖ + CN (νt)

1
2 eM0νt‖ψ0‖2,
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for times t so that θ3
I αt ≥ 1. When θ3

I αt ≤ 1, the estimate is clear. Thus, summing up 

over a finite number of such small intervals J , we complete the proof.

5.3. Proof of the enhanced dissipation, Theorem 3.2

We again consider a finite number of small intervals J covering I0 as above so that

gJ (H)i[H, A]gJ(H) ≥ θI

2
gJ (H)2, (5.10)

for gJ ∈ C∞
c ((U−, U+), R+) with support contained in J . We shall estimate gJ(H)ψ, 

with ψ solving (3.2). We compute

∂tgJψ + iαHgJψ − νΔαgJψ = νCνψ (5.11)

where Cν = C0
ν + ∂yC1

ν , with

C0
ν = [[gJ , ∂y], ∂y] + gJR0 + [gJ , ∂y]R1, C1

ν = 2[gJ , ∂y] + gJR1,

Here, R0, R1 are as in (5.1). In particular, from the commutator estimates, we obtain

‖C0
ν‖ + ‖C1

ν‖ ≤ C. (5.12)

Take again A = i∂y. The starting point is to compute

−1

2

d

dt
〈AgJψ, αgJψ〉 = −α〈∂tgJψ, AgJψ〉

= α2〈iHgJψ, AgJψ〉 − να〈ΔαgJψ, AgJψ〉 − να〈Cνψ, AgJψ〉.

The crucial term in the above identity is the first one on the right hand-side. Indeed, 

thanks to (5.10), we have

α2〈iHgJψ, AgJψ〉 = −1

2
α2〈i[H, A]gJψ, gJψ〉 ≤ −θI

4
α2‖gJψ‖2.

For the viscous terms on the right hand-side, we estimate

ν|α||〈ΔαgJψ, AgJψ〉| � ν‖ΔαgJψ‖‖α∂ygJψ‖

and after an integration by parts

ν|α| |〈Cνψ, AgJψ〉| � ν‖αψ‖ (‖∂ygJψ‖ + ‖∂2
ygJψ‖).

This yields



E. Grenier et al. / Journal of Functional Analysis 278 (2020) 108339 23

− d

dt
〈AgJψ, αgJψ〉 +

θI

2
‖αgJψ‖2

� ν‖ΔαgJψ‖‖α∂ygJψ‖ + ν‖αψ‖ (‖∂ygJψ‖ + ‖∂2
ygJψ‖).

(5.13)

Next, using (5.8), we have

d

dt
‖αgJψ(t)‖2 + ν‖α∇αgJψ(t)‖2 ≤ Cν‖αψ‖2. (5.14)

It remains to estimate ‖AgJψ‖2. Similarly as done above, we get

1

2

d

dt
‖AgJψ‖2 + ν‖∇α∂ygJψ‖2 � ν(‖ψ‖ + ‖∂yC1

νψ‖)‖∂yygJψ‖ + α‖[A, H]gJψ‖‖∂ygJψ‖

in which

‖[A, H]gJψ‖ � ‖gJψ‖, ‖∂yC1
νψ‖ � ‖ψ‖ + ‖∂yψ‖.

Thus, using the Young inequality, we obtain

d

dt
‖AgJψ‖2 + ν‖∇α∂ygJψ‖2 � ν(‖ψ‖2 + ‖∂yψ‖2) + ‖αgJψ‖‖∂ygJψ‖. (5.15)

To conclude, we shall combine the estimates (5.8), (5.13), (5.14), and (5.15) in a 

suitable way. We introduce

Q(t) = Γ4(‖gJψ(t)‖2 + ‖αgJψ(t)‖2) − Γν
1
3 〈AgJψ, αgJψ〉 + ν

2
3 ‖AgJψ(t)‖2

where Γ ≥ 1 is a large parameter (independent of ν and α) that we will choose later. 

We first observe that if Γ is sufficiently large, Q(t) is equivalent to a weighted H1 norm. 

Namely,

Q(t) ≈ ‖gJψ(t)‖2 + ‖αgJψ(t)‖2 + ν
2
3 ‖∂ygJψ(t)‖2.

We now add up the estimates (5.8), (5.13), (5.14), and (5.15) with the corresponding 

weight as in Q(t) and use the Young inequality to obtain

d

dt
Q(t) + c0ν

1
3 Q(t) ≤ C0νe2M0νt(‖ψ0‖2 + ‖αψ0‖2) + C0ν

5
3 ‖∂yψ‖2 (5.16)

for some positive constants C0, c0. Indeed, the left hand side is clear, upon recalling that 

|α| ≥ 1. Let us check the right hand side. In view of (5.13), we estimate

Γν
4
3 ‖ΔαgJψ‖‖α∂ygJψ‖ ≤ Γ−1ν

5
3 ‖∂2

ygJψ‖2 + ν‖α2gJψ‖2

+ C0Γ2ν(Γ + ν
2
3 )‖α∂ygJψ‖2
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Γν
4
3 ‖αψ‖ (‖∂ygJψ‖ + ‖∂2

ygJψ‖) ≤ Γ−1ν
5
3 ‖∂2

ygJψ‖2 + ν‖∂ygJψ‖2

+ C0Γ2ν(Γ + ν
2
3 )‖αψ‖2

in which each term on the right, except the last term involving ‖αψ‖2, is absorbed into 

the left hand side, precisely the corresponding viscous term, of (5.15), (5.14), and (5.8), 

upon taking Γ large enough. Similarly, in view of (5.15), we estimate

ν
2
3 ‖αgJψ‖‖∂ygJψ‖ � ν

1
3 ‖αgJψ‖2 + ν‖∂ygJψ‖2

which is again controlled by the left hand side of (5.13) and the viscous term in (5.8), 

respectively. Thus, we have obtained

d

dt
Q(t) + c0ν

1
3 Q(t) � ν(‖ψ‖2 + ‖αψ‖2) + ν

5
3 ‖∂yψ‖2.

This yields (5.16), upon using (5.2).

Finally, we integrate the differential inequality (5.16) and use (5.2) again to obtain

Q(t) ≤ e−c0ν
1
3 tQ(0) + C0(ν

2
3 + Cνte2M0νt)(‖ψ0‖2 + ‖αψ0‖2).

Theorem 3.2 follows.

6. Technical lemmas

In this section, we shall recall some commutator estimates used throughout the paper. 

These results can be found, for instance, in [10,11,14]. The main idea is to use the 

Helffer-Sjöstrand formula to express the functional calculus of a self-adjoint operator.

Let us start with almost analytic extensions. Let us introduce Sρ for ρ ∈ R the set of 

C∞ functions on R such that

|f (m)(x)| ≤ Cm〈x〉ρ−m, ∀ x ∈ R, ∀ m ∈ N.

We also set

‖f‖ρ = sup
x∈R, m∈N

〈x〉m−ρ|f (m)(x)|.

An almost analytic extension of f is a function f̃ on C such that

f̃R = f,

supp f̃ ⊂
{

x + iy, |y| ≤ 2〈x〉, x ∈ supp f
}

,

|∂z f̃(z)| ≤ C〈x〉ρ−N−1|y|N
(6.1)
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for some N fixed and large enough. As an example, one can take

f̃(x + iy) =

(

N
∑

r=0

f (r)(x)
(iy)r

r!

)

χ

(

y

〈x〉

)

where χ(s) is a smooth function which is equal to 1 for |s| ≤ 1 and 0 for |s| ≥ 2.

Now, let T be a self-adjoint operator (not necessarily bounded, though we only need 

the results for bounded operators). For any f ∈ Sρ, we can define the operator f(T ) by

f(T ) = lim
R→+∞

i

2π

∫

C∩|Re z|≤R

∂z f̃(z)(z − T )−1 dL(z) (6.2)

where dL(z) = dxdy is the Lebesgue measure on C identified to R2. Observe that when 

ρ < 0, the above integral converges in the operator norm.

Lemma 6.1. [10,11,14] For k ≥ 1, let f ∈ Sρ with ρ < k, and let B be a bounded 

self-adjoint operator on L2 such that the iterated commutators adj
T B, j ≤ k, are also 

bounded. Then, there holds the expansion

[f(T ), B] =
k−1
∑

j=1

1

j!
f (j)(T )adj

T B + Rk(f, T, B)

with

‖Rk(f, T, B)‖ ≤ Ck(f)‖adk
T B‖

where Ck(f) depends only on k and ‖f‖ρ.

In addition, we also use the following:

Lemma 6.2. Let f ∈ C∞
c (R), A = i∂y, and H be the bounded and self-adjoint operator 

defined as in (2.4). Then, we have

(i) [A, f(H)] is a bounded operator.

(ii) f(H) − f(U) is a compact operator.

Proof. We start with proving (i). Thanks to (6.2) for f(H), we have

[A, f(H)] =
i

2π

∫

C

∂z f̃(z) (z − H)−1[A, H](z − H)−1dL(z),
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with f̃ an almost analytic extension of f . Since [A, H] is bounded, the result follows 

directly from the facts that f is compactly supported and that the integral converges in 

the operator norm thanks to (6.1).

Let us next prove ii). In a similar way, we write

f(H) − f(U) =
i

2π

∫

C

∂z f̃(z) ((z − H)−1 − (z − U)−1) dL(z).

Since H = U + K with K compact, the above yields

f(H) − f(U) =
i

2π

∫

C

∂z f̃(z) (z − H)−1K(z − U)−1 dL(z).

Again, the integral converges in the operator norm, since (z − H)−1K(z − U)−1 is a 

compact operator for every z /∈ R. The result follows. �
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