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combined with a hypocoercivity argument to handle the
viscous case.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are interested in the long time behavior of solutions to the two-
dimensional incompressible Euler and Navier Stokes equations in the vanishing viscosity
limit linearized near a stationary shear flow. More precisely, we shall study the following
linearized incompressible Euler and Navier-Stokes systems respectively,

o+ (Us-Vo+ (v-VUs +Vp=0, V-v=0, (1.1)
and
v+ (Us-Vo+ (v-VUs +Vp—vAv =0, V-v=0, (1.2)

for (x,y) € T x R and v > 0 small, where U; is a smooth stationary shear flow under

the form
U, = (Uéy)> . (1.3)

We shall study at this linearized level the inviscid damping and the enhanced viscous
dissipation. In the particular case of the Couette flow, U(y) = y, these are well known
phenomena that go back to observations by Kelvin and Orr in fluid mechanics and can be

justified from an explicit computation in the Fourier space. By denoting by (v}, v2),ecz

the Fourier coefficients (taking Fourier series in the z variable) of the velocity v = (v!, v?),

the inviscid damping is the property that for o # 0, and for smooth enough initial data,
we have in the large time for the solution of (1.1)

la®ll < 75

loa (DI < (1.4)

1
ot
where throughout the paper || - || will stand for the L? norm in the y € R variable. The
main reason for this decay is the mixing phenomenon produced by the free transport
operator yd,. This property is also true for the solution of (1.2) uniformly with respect
to v. The enhanced dissipation is the property that for the solution of (1.2), we have

lwa (B S e (1.5)

for w, denoting the Fourier coefficients of the vorticity w = 9,v% — 9,v'. This shows
that the solution of (1.2) is damped by the combination of mixing and viscosity at the
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time scale v~ 3 which is much shorter than the viscous time scale v~!. For more details,
we refer to the introduction of [4]. Note that outstanding results that prove that these
properties are still true for solutions of the nonlinear equations close to the Couette flow
in strong enough norms have been obtained recently [3-5].

The generalization of these properties to nontrivial shear flows has also received a lot
of attention. Small in some sense perturbations of the Couette flow have been studied
in [27]. Then (possibly degenerate) monotonic shear flows in bounded channels (that is
to say in T x [0, 1]) were studied in [24,26]. The Kolmogorov flow, that is to say the
shear flow U(y) = siny in a doubly periodic channel has been studied in [19,25,15]. The
related case of radial vortices has been also much studied recently [2,8,17].

In this paper, we shall focus on mixing layers type shear flows in T x R. Precisely, we
assume that U is smooth and satisfies

1" 1"

VyeR, U(y) >0, ygrjrzloo U(y) =Uy, % eL>* VyeR, %(y) <0 (H1)
for some constants Uy. Let us comment on the above assumptions on U”/U. A smooth
shear flow that satisfies the two first properties necessarily has an inflexion point. In
view of Rayleigh’s inflexion point theorem, we therefore have to be careful in order to
ensure its linear stability. The classical shear flows for which this can be ensured are the
shear flows in the class K (we use the notation of [18], such flows were already studied
by Tollmien [23]) for which we assume that there exists a unique inflexion point y,; and
that —U"(y)/(U(y) — U(ys)) is bounded and positive. By changing z into z — ct, with
¢ = U(ys), we can always change U into U — U(ys) in (1.1) and (1.2) so that the last
two assumptions in (H1) are verified. We will also make the following mild assumption.
Let us set m = (—U” /U)? which is well defined (as a real positive function) and smooth
thanks to (H1). Assume that

U
VE,3C, >0, |m®|<Cym, lim m=0, melL? ——ecL®nL? (H2)
ly|—+o0 U — Uj:

with m(®) being the kth-order derivatives of m.
Finally, we will make an assumption that ensures the spectral stability of U for (1.1).
This means that it excludes the existence of nontrivial solutions of (1.1) such that

w(t,z,y) = eMe ™ Q(y), a€Z*, Rer>0, Qe L*R). (1.6)

Note that of course in the presence of such instabilities estimates like (1.4) cannot be
true. Let us consider the Schrédinger operator

L=-0—m D(L) = H*(R) (1.7)

and define \y as the infimum of the spectrum of this self-adjoint operator (note that
because of (H2), its essential spectrum is [0, +oo[). We assume



4 E. Grenier et al. / Journal of Functional Analysis 278 (2020) 108339

Ao > —1. (H?))

Note that this assumption is almost sharp. Indeed, if Ay < —1, we get from Theorem 1.5
of [18] that there exist growing modes of the form (1.6) for every a € (0,v/—X¢) and in
particular for & = 1 so that U is unstable on T x R.

The main examples of shear profiles U (y) for which assumptions (H1)-(H3) are verified
are shear flows under the form

0 -v(3)

where we can take V under the form
V(z) = tanh V(z) /Zil d
z) =tanhz, or z) = s
’ (1+s2)k
0

for k sufficiently large. Assumptions (H1) and (H2) are easily verified, while Assumption
(H3) is verified if L is sufficiently large. In the case of the hyperbolic tangent the lowest
eigenvalue of £ is explicitly known; precisely, we have \o(L) = —% (the associated
eigenfunction being 1/ cosh(y/L)). Hence, (H3) is verified as soon as L > 1. Again, this
is sharp, since if L < 1, we get from [18] that the mixing layer is unstable.

The aim of this paper is to show that for shear flows satisfying (H1)-(H3) appropriate
local versions of (1.4) and (1.5) hold. One of the main purposes of this paper is also
to introduce an Hamiltonian approach to prove the inviscid damping, with sharp decay
in time following the conjugate operator method, which has been well developed in the
study of Hamiltonian operators; for instance, see [1,6,9,14]. This approach is different
from the one in [24,26,15] where shear flows in bounded channels are considered. The
approach was based on a direct proof of the limiting absorption principle from resolvent
constructions. This is also different from the approach of [19] that relies more on an
abstract argument like the RAGE theorem and gives qualitative results. Here, we are able
to get sharp quantitative estimates. Our approach will rely on a suitable symmetrized
version of the linearized Euler equation in vorticity form that we introduce in the next
section. We shall then use on this symmetrized formulation the tools developed in the
study of abstract Schrodinger equations i0y1) = H1). The two main steps in Mourre’s
method are establishing the Mourre Estimate, and then using abstract theorems to derive
various properties of H. The first step is to find a self-adjoint operator A such that the
Mourre estimate

iE;[H,A|E; > 0E7 + K

with 6 positive, and K a compact operator holds. Here I denotes a finite interval in the
support of the spectrum of H, and Ej is the spectral projection of H on that interval.
There are also some technical assumptions on the common domain of H and A, and
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on the multiple commutators of H with A, which we do not list here. They will not
be an issue in this paper. Such A is called conjugate operator by Mourre. From this
estimate, it follows that in the interval I, H can have at most finitely many eigenvalues
with L? eigenvectors. Finally, and most importantly, it follows that in any subinterval,
where we can have the above estimate with K = 0, the spectrum of H is purely absolutely
continuous, that local decay estimate holds and that the corresponding resolvent estimate
holds:

|[<A>"(E-H) '<A>""|<C

as an operator from L? to L2, for all E in the subinterval, provided a > 1/2. In this
paper, we will be able to get the Mourre estimate with K = 0 on any sufficiently small
interval in (U_, U4 ) due to the absence of eigenvalues (see Lemma 2.2).

This result had many applications over the last 40 years, and many refinements. The
original proof of the local decay estimate by Mourre [20] was done by deriving Differential
inequalities for the weighted resolvents. A new, time dependent approach, which also gave
time dependent propagation estimates, including minimal and maximal velocity bounds
was later developed in [14], [22]. It is this later method that we use in this work. The
starting point is the identity

S (e), A(0)) = {(0), il H, AR (1)

if i0y¢p = Ht. This identity is then truncated in a suitable way in order to use the
Mourre estimate.

A classical example of conjugate operator when H is a differential operator with real
symbol w(k) is

A= %(m V() + Vo) - 2), p=—: —iVs.

The Mourre estimate then holds at every point where the group velocity Vw does not
vanish. In some cases, for example if w is radial monotone, it suffices to use A = %(ac -p+
p-x). Here H will be a compact perturbation of Hy which is just the multiplication by
the real monotone function U(y), therefore, the conjugate operator will be just A = 0.

The paper is organized as follows. In the two next sections, we describe our mains
results. Sections 4 and 5 are devoted to the proof of the main results. Finally, section 6
is devoted to the proof of some technical lemmas.

Throughout the paper we use the notation || - || for the L?(R) norm and (-, -) for the
real L? scalar product:

<ﬂm:Re/3@mwMy
R
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We also use the notation (A) = (14 A2)2 for the symmetric operator A = i0, on L?. In
addition, for a € Z, we write V,, = (9y,ia)” and A, = 85 —a?.

2. Inviscid damping
2.1. Symmetric form of the equation

We shall work with the vorticity form of the equation (1.1). Set w = d,v* —d,v', then
w solves

Oww + U(y)0pw — v2U" () = 0

and v? can be recovered from w by Av? = d,w.
Let a € Z be the corresponding Fourier variable of z. Taking the Fourier transform
in z, we rewrite the above equation in the Fourier space as:

10wo = aLo(y)wa, Lo :=Ul(y) —U"(y)A;" (2.1)

o )

in which A, = 85 — a2. When o« = 0, the problem is reduced to 0w, = 0 and therefore
no mixing occurs. We shall thus only consider the case when a # 0. We shall moreover
focus on the case a > 0. The case a < 0 can be handled from the same arguments as
below by reversing the direction of propagation. It is then convenient to use a change of
time scale in (2.1), we set

wa(t,y) = walat,y) (2.2)
so that dropping the tilde and the subscript «, we obtain
iOw=Lo(y)w,  Lo=U(y)—U"(y)A." (2.3)
For convenience, we write
Lo=U() (1+mw)?a;"),  mly) = (~U"(4)/U@)*.
Let us introduce the operator
Y =1+mA, 'm.
Note that ¥ depends on a, through A1, but we omit to write this dependence explicitly.
We observe that ¥ is a bounded symmetric operator on L? and that mAZ 'm is a compact

operator, upon noting that m tends to zero at infinity thanks to (H2). Moreover, mainly
thanks to (H3), we also have the following lemma whose proof is given in Section 4.
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Lemma 2.1. Assuming (H1)-(H3), there exists a constant co > 0 such that for every
a € 7%, in the sense of symmetric operators, we have

> >c¢o>0.

We can thus write ¥ = S? for some bounded symmetric coercive operator S on L2.
Moreover, we also have that S — 1 is compact since

S—1=mA; m(1+S)~.

By setting w = mS~1, we finally find

N

i =Hy, H=2SU(@)S, S=(1+mA;'m) (2.4)
with the initial condition ¢,;—o = 9o = Sm~lwy. Note that we will always assume
that 1 € L2, which in terms of wy means that wy is decaying sufficiently fast so that
%WO erL?

We also point out that H actually depends on « in a smooth way (since we focus on
|a] > 1). We omit this dependence for notational convenience. All the estimates that we
shall give in the following are uniform with respect to a.

2.2. Spectral properties of H and conjugate operator

Let o(H) be the spectrum of H on L2. A first useful property is that:

Lemma 2.2. Assuming (H1)-(H3), we have o(H) = [U-,Uy| and there is no embedded
eigenvalue in [U_,U4].

Again the proof of Lemma 2.2 will be given in Section 4. To exclude eigenvalues and
embedded eigenvalues we will adapt the arguments of [18], [19], [21] for the Rayleigh
equation in bounded domains.

As an immediate Corollary, we get from the abstract RAGE Theorem that

Corollary 2.3. For any compact operator C on L*(R), there holds

T

: 1 —itH 2 _

(i [ 1ce gl de =0
0

for any o € L?.

In terms of the original vorticity function w, since w = mS~1y(t) with S being a
bounded operator, we observe that for every € > 0, the operator C' = <i6y)_€m5_1 is

compact on L2, and hence the above result gives
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T

(i [ 10,) 5wt dt =0
0

for every wg such that %wo € L?, where w solves (2.3). In particular, this yields some

sort of time decay for the velocity.

We shall now use the conjugate operator method to get quantitative and more precise
versions of this result. We will use A = id, as a conjugate operator in order to exploit
that U’ > 0. Note that A is a symmetric operator on L2.

Observe that U : R — (U_,U;) is a diffecomorphism. We can thus define a smooth
function F on (U_,Uy by F(u) = U'(U~Y(u)). This yields F(U(y)) = U'(y), for all
y € R. Note that for every compact interval I C (U_, Uy ), there exists §; > 0 such that
F Z 91 on I.

The crucial property that we will prove in Section 4 is the following:

Lemma 2.4. Assume (H1)-(H3). For every compact interval I C (U_,U), there exists a
compact operator K such that for every g € C3°((U-, U4 ), R4) with the support contained
in I, there holds

g(H)i[H, Alg(H) > 01g(H)* + g(H)Kg(H) (2.5)

where A = i0,, [H,A] = HA — AH, 0; = min; F(u) > 0, and g(H) is defined through
the usual functional calculus.

The above lemma is also true with g(H) = 1;(H) the spectral projection onto I. We
have stated the estimate in this way since it will be the one that is the most useful for
us. Note that in our simple setting, the commutator [H, A] and the higher iterates are
bounded operators.

This localized commutator estimate was introduced in [20] and is well known to have
many interesting consequences on the structure of the spectrum of H. Since we know
from Lemma 2.2 that there are no eigenvalues, we can get for example from [20], [10],
[1] that the limiting absorption principle holds for every interval I C]JU_,U,[ and that
there is no singular continuous spectrum. Note that when m € L?, the operator mA_m
is in the trace class. This follows directly from the expression of the kernel which is given
by

1
K(y1,y2) = mefla‘ 1=l (1 )m(ys).

Thus, H is a trace class perturbation of the multiplication operator by U. In addition,
it follows from Kato’s Theorem [16] that the continuous spectrum of H is o4.(H) =
[U_,U.]. By combining these facts, we get, again from the Kato’s theorem, that the wave
operators exist and are complete, which in particular implies the following scattering
result:
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Corollary 2.5. Assuming (H1)-(H3), for every v € L?, there exists 1, € L? such that

Jim_[le iy — e M0 | = .

Again, this can be translated into a scattering result in the original unknowns in a
weighted L? space. In the following we shall focus on the consequences of Lemma 2.4
on time dependent quantitative propagation estimates that are more flexible and in
particular that can be also performed for (1.2) for small positive v.

2.3. Main inviscid result
Our main result for (2.4) is the following:

Theorem 2.1. Assume (H1)-(H3). For every k € N* and for every compact interval I
in |U_, Uy, there exists a constant C > 0 such that for any initial data 1o € H*, the
solution (t) to (2.4) satisfies the estimate

C

Ayl

IKA) ™ g1, (v (1) <

uniformly in t > 0 and o € Z*, where A = i0y and gy, is any smooth and compactly
supported function in Ij.

The above result can be easily translated in the original velocity coordinates. Indeed,
for a € Z*, we have

lva ] < [KA) ™ wa(at)l| = [[(A) " mS™ p(at)]| < [I(A)~ v (at)]

since (A)~'mS~1(A) is a bounded operator. In a similar way, we have

lva (O < lol[[(A) 2w (at)].
Therefore, we obtain the following

Corollary 2.6. Assume that the initial vorticity is of the form wo = mS™1gr,(H )y, for
any o € H? and for any compact interval Iy in (U_,U,). Then, the solution v to (1.1)
satisfies the following estimates

C Cla|
log ()] < 15 (ot )WOHHI o2 ()] < 5 (ot

uniformly in t > 0 and o € Z*, with v, being the Fourier transform of v with respect to
variable x.

10l 2,
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The fact that the finite edges of the spectrum of H at Uy are not covered is a well-
known limitation of the Mourre’s theory [20]. In our case, this is a real difficulty that
comes from the fact that U’(y) tends to zero at infinity and hence there is no positive
lower bound in the Mourre’s estimate (2.5).

3. Uniform mixing and enhanced dissipation

We shall now describe our results for the viscous equations (1.2). Again we write the
equation in the vorticity form and take the Fourier transform in z, leading to

Oww + iaLo(y)w — vALw =0 (3.1)

where Lg is defined in (2.1). As in the inviscid case, we shall focus on the case a # 0.
Let us again set w = m.S~ ' to obtain for ¢

1
Op 4+ iaHyp — vS—A,mS™ p = 0.
m

Note that we shall not perform the time scaling (2.2), as it is not well adapted to the
viscous term. In addition, the dissipation term is no longer symmetric. Nevertheless, it
is symmetric up to a very small error. Precisely, we can write the above equation under
the form

Opp +iaHY — vAp = vRY (3.2)
in which

R=S8LAumS™ — Ay = S~ 2ms! - o2
m m
(3.3)

ml/

_ m _ _
=S58 '+ 28--0,5 Y4 (S =105+ 9287 (1 - 9).

As we will see, the right hand-side does not have much influence on the dynamics for
times vt < 1.

We shall use the form (3.2) to state our main results. At first we shall establish that
the estimates of Theorem 2.1 can be generalized to (3.2) up to the viscous dissipation
time scale v~!. Precisely, we have

Theorem 3.1. Assume (H1)-(H3). For every k € N* and for every compact interval Iy C
(U_,U,), there exist positive constants C, My such that for every initial data 19 € H*
and every v € (0,1], the solution ¥ (t) to (3.2) satisfies the estimate

|<A>_kglo(H)¢(t)||<C< ! k||<A>k¢0||+(V75)%€M°Vt|1l)o||>»

1+ (Jalt)
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uniformly in t > 0 and o € Z*, where A = i0y and gy, s any smooth and compactly
supported function in Ij.

Note that the above result shows that the estimates of Theorem 2.1 remain valid
up to a correction term that is very small as long as vt < 1. One can think that
the study of the stability of stationary shear flows U, = [U(y), 0] in the Navier-Stokes
equation is not really pertinent for times larger than v~1. Indeed, U,(y) is not an exact
stationary solution of the nonlinear Navier-Stokes equation, though it is classical in
fluid mechanics to add a small stationary forcing term in the equation so that Us(y)
becomes an exact solution (see [7] for example). The exact shear solution of Navier-Stokes
equations (without a forcing) is time dependent, Us = [U(t,y),0], with U(¢,y) solving
the heat equation

U —vo,U =0, U,_,=U(y).

As long as vt < 1, it does not make much a difference to replace U(t,y) by U(y). Nev-
ertheless, for vt 2 1, the stationary profile U(y) is no longer a good approximation, and
in particular the derivatives BéU (t,y) are damped by the diffusion. This was taken into
account for example in the papers [25,15,19]. Let us also point out that our assumptions
(H1)-(H3) ensure the spectral stability of the shear flows to the Euler equations, but
no assumptions were made to ensure the stability to the Navier-Stokes equations for all
times (noting that since the channel T x R has no boundary, the result of [12,13] does

not apply).
Our last main result is the following local enhanced dissipation for (3.2).

Theorem 3.2. Assume (H1)-(H3). For every compact interval Iy C (U-,Uy.), there are
positive constants Cy, My, co such that for every initial data 1o € H* and every v € (0, 1],
the solution ¥(t) to (3.2) salisfies the estimate

1
N(t) < Co (e !N (0) + (v} + i) EeM ) ([ | + [lavio])))
uniformly int > 0 and o € Z*, where
1
N(t) = llgr, (H)P @) + llagr, (H)y @) + v |9y g1, (H) ()|
and gr, is any smooth and compactly supported function in Iy.

From the above estimate we see that after localization in a strict spectral subspace of

H the solution of (3.2) is damped at the time scale v~ % which is much smaller than the

usual viscous dissipation scale v~ 1.

4. Proof of the inviscid results

In this section, we shall prove the results stated in Section 2.
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4.1. Proof of Lemma 2.1

First, we observe that the essential spectrum of ¥ = 1 +mA_ m on L? is reduced to
1 because of the decay assumptions on m in (H2). Thus, it suffices to show that ¥ has
only positive eigenvalues. Let us assume by contradiction that A < 0 is an eigenvalue of
Y. That is, there exists a nonzero ¢ € L? such that

S = A,
Set u = A7 map. Then, u € H? and
“AM=Aqu) + (L+Hu=0

where £ = —85 —m? as defined in (1.7). Taking the scalar product with v and integrating
by parts, we get from (H3) that

“AIVaull® + (Ao + o) ||uf* < 0

with Vi, = (8y,ia)T. Since =\ > 0, a € Z*, and \g + o > 0, we get that v = 0, which
is a contradiction. Lemma 2.1 follows.

4.2. Proof of Lemma 2.2

Since H is a compact perturbation of the multiplication operator by U(y), we first
get that o.ss(H) = [U—-,Uy4]. To exclude eigenvalues and embedded eigenvalues we will
adapt the arguments of [19,18,21] for the Rayleigh equation in bounded domains. To
proceed, let ¢ € R be an eigenvalue of H. That is, there exists a nonzero ¢ € L?(R) such
that

Hip = e

Case 1: ¢ € R\[U_,Uy]. In view of (2.4), we get that the vorticity w = mS~1y € L?
and solves

(U —c)w=U"A w.

Setting ¢ = A 'w, we note that ¢ € H? and solves the Rayleigh equation

"

92
c’)ygz5+U_c

¢ =—a’¢. (4.1)

Note that since ¢ ¢ [U_, U], U"” /(U — ¢) is not singular. This means that —a? < 0 is an

eigenvalue of the one-dimensional Schrédinger operator —85 + JJ—ZC Since the essential
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spectrum of this operator is [0, 400, we obtain that the bottom of the spectrum is an
eigenvalue A < —a? < 0 and that the corresponding eigenvector can be taken positive.
Therefore, there exists v € H?, v > 0 such that

U//
U-c

2
—0,v — v = — v. (4.2)
Observe that U"” /(U —c) belongs to L, since 1/(U —c) is bounded and U” = —Um? € L!,
upon recalling from Assumption (H2) that U is bounded and m € L2. By using the
Green’s function of —97 — X, we get from (4.2) that

U 1 e
v=—Gurg—o Gyl =——=e V.

In particular, v € L', since

[ollzy S

~

Sl S ll[ar < +oo.
Ll

U//
H !

U —

Finally, we rewrite (4.2) as
=0y (U = ¢)0yv) + 0, (U'v) = AU — c)v.

Therefore, we obtain after integration that A fR(U — ¢)v = 0, which is a contradiction
since v > 0 and U — ¢ has a constant sign.

Case 2: c € {U_, Uy }. In this case, we have U” /(U — ¢) € L N L? from Assumption
(H2). Hence, again we have v € L', since

1"

U —

< vllpz < +oc.
Ll

ol < H .

We thus arrive at the same contradiction as in the previous case.

Case 3: ¢ € (U-,Uy). Let y. be the point (which is unique since U’ > 0) such that
U(y.) = cand set I_ = (—00,yp) and I+ = (yo,+00). As in the previous cases, we get
that there exists a nontrivial ¢ € H?(R) that solves the Rayleigh equation (4.1) on I..

We first prove that we must have ¢(y.) # 0. Indeed, assuming otherwise that ¢(y.) = 0
and proceeding as above, we get that at least one of the self-adjoint operators L4 =
-07 + gja with domain H?(I+) N HE(I+) (which are well defined thanks to the Hardy
inequality and the fact that U’ > 0) has a negative eigenvalue —a?. Therefore, we again

find that for one of the intervals Iy, there exist a negative eigenvalue A\ and a positive
eigenfunction vy such that

=0y (U = ¢)0yvy) + 0y(U'vy) = AL (U — c)vg, y€E Ly.
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We can then also integrate on I to obtain

)\i/(U—c)vi:O

Iy

upon recalling that U(y.) = ¢ and v4(y.) = 0. This yields a contradiction, since U — ¢
and v4 have a constant sign on I.. This proves that ¢(y.) # 0.

Next, since ¢ € H?(R) and solves (4.1), we have UU—_HC¢> € L2. Together with ¢(y.) # 0,
we must have U”(y.) = 0. Consequently, we have proven that if ¢ € (U_,U,) is an
embedded eigenvalue, we must have ¢ = U(y.) with U"”(y.) = 0. Since we assume that
U" /U is strictly negative, we must also have U(y.) = 0 and therefore the only remaining
possibility for an embedded eigenvalue is ¢ = 0. Going back to the expression of H in
(2.4), we immediately see that 0 is not an eigenvalue of H since S is invertible thanks to
Lemma 2.1.

4.8. Proof of Lemma 2./

We shall now turn to the proof of Lemma 2.4. Recall that H = SUS with S =
(1+mA;'m)z. Let us write

H=U+S-1)US-1)+(S-1)U+U(S—-1)

in which we note that S — 1 is a compact operator on L2, upon noting that (14 5)7! is
bounded, mA_'m is compact on L?, and S — 1 = mA ' 'm(1+ S)~!. Take A = id, as
the conjugate operator. We obtain

i[H Al =U + K, = F(U) + K,

with F(U(y)) = U'(y) and K; a compact operator on L?.

Let I be a compact interval in (U_,U,) and let g be in C°((U—, U4 ),Ry) with the
support contained in I. We then take I C (U-,Uy) to be a slightly bigger interval such
that there exists a smooth § with the support contained in I and § =1 on I. Since F is
bounded below away from zero on the support of g, we get that there exists a positive
constant 67 such that

g(UYiH, A]§(U) = 0:3(U)?* + g(U)K13(U). (4.3)

We can then write
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Thus, using (4.3), we get

g(H)g(U)ilH, Alg(U)g(H) > 01g(H)3(U)*g(H) > 019(H)* +g(H)(3(U)* — §(H)?)g(H).

To conclude, it suffices to use that if f € C2°(R), then f(H)— f(U) is a compact operator.
We refer to Lemma 6.2, ii).

4.4. Local decay estimates

We shall now prove a propagation estimate that will be crucial for the proof of The-
orem 2.1.

Lemma 4.1. Let I be a compact interval in (U_,Uy) such that Lemma 2.4 holds. Let
J C I and gy be in C((U-,U),Ry), having its support contained in J and satisfying

9o (H)ITH, Algs (H) > % g, (H). (44)

with 01 as in Lemma 2.4. Then, for every k € N, there exists a constant Cy, so that

KA s () ()] < -+ (4)* g5 (H)oll, (4.5)

k+ 1+tk”

for every t > 0 and for every 1y € H*, where ¢ solves (2.4).

Proof. Take x(£) = 5(1 — tanh &) and observe that x has the property that

1
2
X =-¢% |6 ()| <Cnol§), VEER, ¥meN* (4.6)

where ¢ = 1/(v/2cosh ¢). Following the method of [14], we shall use a localized energy
estimate. Set A s = %(A —a—0t)for A=1i0y,a € R,s>1and § = %’. In what follows,
x and ¢ stand for x(A;s), ¢(Ass), respectively, and g for g;(H). These are self-adjoint
operators on L2, and ¢g; commutes with H. In addition, all the estimates are uniform in
a and s > 1, and they do not depend on the subinterval J.

Using the equation (2.4) and symmetry properties, we observe that

d 0
—(xgs, g) = g|\¢>gJ¢II2 + (i[x, H]gs, g0). (4.7)

d. 1 )
EHX 50| —dt<

To evaluate the right hand side, we use the commutation formula from [14,11,10], which
we recall in Lemma 6.1. For every p > 1, we get

p—1
G HISf) = = (AT + 3 5 SOy HE D)+ Ut D) )
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with adaH = [H, A], ad’, H = [ad’y ' H, A], and
IRl < Cplladi H| < Cy

where || - || stands here for the operator norm from L? to L2. In the next computation,
we continue to denote by R, any bounded operator which is bounded by a harmless
constant. For the first term on the right of (4.8), we use again the commutation formula
to get

(LA HIS, ) = {oilA, HIF, 01)

p—2
= (A, HI6f,0) + 3 ; S ODiad T 0f) + (R )
Jj=1

For the terms in the above sum, we can use repeatedly the commutation formula to get
in the end that

p—2

(LA HIS, ) = (1A, HIoF, o) +Zsf+1 SO (Reon T, 08) + (R f)

k,l

)

where in the above sum k, [ runs in finite sets and ¢; stands for some derivatives of ¢,
which in particular satisfies the estimate |¢;| < |¢| by using (4.6).

In a similar way, to estimate the other terms in (4.8), we observe that xU) =
—(¢*)U=Y can be expanded as a sum of terms under the form ¢d,, where ¢p, Gm
and their derivatives are controlled by ¢. By using again the commutation formula as
many times as necessary, this allows to write an expansion under the form

1

P p—1
SV adLH, ) = 30 = S (R, G} + o Ry )

1
'] j=2 k,l,m

<.
Il
)

In particular, we get from (4.8) and the above expansion formula that for every f (as-
suming s > 1)

(i, HF, ) < —GlA, HIof ) + Llof? + 22 (19

From (4.7), we thus find that

d, 1 1 C, C
Sl < < (0logrwl? = Gl Hlogsv, b95%)) + 2 logrwl> + 2lgsb]?

\ /\

< (0- %) 1oarel? + Stoasol + Ligsul?
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where we have used (4.4) in the last inequality. Consequently, we can choose § = 0;/4

and s sufficiently large (s > > ) to obtain
d, 1 5 Gy 5 Gy 9
—|Ix?2 | < — H|IF < — 4.10
e @I < ZFllarv N < —Hllgsdol (4.10)
upon using

d 2 __
%HQJ(H)"/)H =

Integrating (4.10) between 0 and ¢ and recalling x = x (At s), we find that for every ¢,

L (A—a—6t 2 1 (A—a e’
sz <7> g < HX2 <—) gsto|| + —Z;||9J¢O||2
s s s
uniformly for all ¢ € R and s > 1, with 6 = II In particular for ;¢ > %, we can take
s=Cy(0rt)2 and a = — 8¢ to obtain
[ A=y ’ [ A4y ’
i 8 t 2| 8 TR E— 20 (411
X (C’,,(QItﬁ) g < ||x <C’ (Gltﬁ) 97%0 6, (0:1)5 1 lgstoll”. (4.11)

To conclude, for k£ > 0, we write that

(A *gs0(t)| <

(4.12)

Let us first estimate the second term on the right. By using ||g.;(H)v¥(t)| = |lgs(H )|,
it suffices to bound in the operator norm

_ 0
<A>k<1_xé<é%aig>>

Indeed, the estimate is clear, when A > 0;t/16, due to the factor (A)~*. In the case

when A < 0;t/16, we observe that 1 — X% term can be bounded by e=¢(¥1Y)? which is
again bounded by the algebraic decay.

L
~(Ort)k

Let us now bound the first term on the right of (4.12). Using (4.11) and choosing p
sufficiently large, we thus get

0r
: <M> (A)*(AY*g 1o

I el S | 5ot

1 1
+ T .
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In the above, the first term on the right is bounded by C,(01t)~*|/(A)* g 1] by consid-
ering A < —0;t/16 and A > —0;t/16 and using the fact that x (&) decays exponentially
to zero as & — 4o00.

Thus, we have obtained

1
14tk

653 A) g (1)) < 1(AY g0

for 63t > 1. The estimate for 63t < 1 is clear. The lemma follows. 0O
4.5. Proof of Theorem 2.1

Our aim is now to deduce Theorem 2.1 from Proposition 4.1. In order to conclude,
we only need to prove that thanks to the spectral properties that we have already es-
tablished, we can use Lemma 2.4 to localize the problem in a suitable way so that the
assumption (4.4) will be matched. Let us take Iy any closed interval included in (U_,Uy.)
and take I such that Iy C I and that Lemma 2.4 holds. In particular, for every point
E € Iy and every positive number §, we can take gg s a smooth function supported in
(E — 26, E + 2§) and equal to one on [E — 6, E + §]. For gg s(H) and for § small enough
so that (E — 2§, E 4 20) C I, Lemma 2.4 yields

9e,s(H)i[H, Algp s(H) > 0195.s(H)? + gp.s(H)Kgp,s(H).

Let us show that we can take J sufficiently small such that (4.4) holds for gg s(H). Indeed,
since K is compact, we can approximate it by a finite rank operator in the operator norm.
Thus, it suffices to prove that for every e > 0, we get gp sKgp,s > ,592&5’ for sufficiently
small § and for K = a ® b a rank one operator. In this case, we then have

<gE,5KgE,§fa f> = <gE,§fa a> <gE,5f7 b>a

and therefore by Cauchy-Schwarz

(9psKgpsf, f) > —|gp.26alllgp 260l |95 fII?

where gg 25 is a smooth function supported in (E —46, E+46) that is one on the support
of gg 5. The result follows by using that for ¢ = a, b € L?, thanks to the spectral measure,
we can write

lgBasell® = / 19525 VP (dBxe, )
[U—7U+]

and by using the Lebesgue theorem, upon noting that the measure (dFE\c,c) is con-
tinuous, thanks to Lemma 2.2. This proves that (4.4), and hence, (4.5) hold for
J=(E—26F+20).
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Finally, we can cover Iy by a finite number of such intervals J with J C I sufficiently
small such that (4.4) holds. Take a partition of unity associated to this covering of
Iy. For each J, the estimate (4.5) holds (noting that the constants in the estimate are
independent of J). Taking an initial data under the form g¢;, (H ) supported in Iy, we
can then sum the estimate to obtain the final result, Theorem 2.1. Note however that
the constants in the final estimate do depend on Iy and might blow up at the edges of
the spectrum of H.

5. Viscous case

We shall now prove Theorem 3.1 and Theorem 3.2. We use the form (3.2) of the
equation. To estimate the remainder R defined as in (3.3), we can use again that both
S, S~1 are bounded operators and

S—1=mA'm(14+85) " =mA m(1+ (1 + mA;lm)%)*l.
Thus, in view of (3.3), we can write
R=R’+9,R', |R°|+|R'|<Cr (5.1)
for some constant C'r that is independent of v.
5.1. Basic energy estimate

As a preliminary, we first establish that

Proposition 5.1. There are positive constants My, C such that for every v € (0,1], the
solution of (3.2) satisfies the estimates

t
(@)1 < e ol V/ IVatl|* < llvo]*(1 + Crte* o) (5:2)
0

uniformly for all t > 0 and o € Z. Here, Vo = (9,,ia)T.

Note that the above estimates are uniform in «. In addition, when « is large enough,
the estimates can be improved in the sense that we could take My = 0. However, we
shall not use the improvement.

Proof. The proposition is an easy consequence of the fact that H is symmetric. Indeed,
taking integration by parts and using (3.2) and (5.1), we obtain that

1d

51017 +vIVar® < Co([61* + [0 ] 19,211



20 E. Grenier et al. / Journal of Functional Analysis 278 (2020) 108339

Using the Young inequality, we thus get

d
Z0IP +vlVar|® < Crllv]®. (5:3)

The first estimate in (5.2) follows from the Gronwall inequality, while the second is
obtained by integrating in time the above inequality. O

5.2. Proof of Theorem 3.1

We proceed as in the proof of Theorem 2.1. We first choose Iy and I as in Section 4.5
and cover Iy with a finite number of small intervals such that on each small interval the
estimate (4.5) holds. Let us take J to be any of these small intervals. We now proceed
as in the proof of Lemma 4.1 by computing

d, 1 5
T ixtgu
with g5 = g;(H) and

A—a—0Oat

X = X(Aat,as)7 Aat,as =
s

Note that the only difference here is that we have replaced t and s by at and as, since
we did not perform the change of the time scale as in (2.2). We again focus on «a > 0.
As similarly done in (4.7), we obtain for the solution #(¢) to (3.2)

d
||X gﬂﬁ”2 <X9J1P7 gs0)
(5.4)

= ;||¢9J¢||2 + (ia[x, Hlgs¥, g1v) + 2v{xgs;0at, g10) + 2v(xgs R, g50).

We now estimate each term on the right. The first two terms are estimated exactly as
done in the proof of Lemma 4.1 or precisely in (4.9), yielding

0 0 aC
Dhoarl? + tial Hlarvar) < 5 (0= 5 + ) loarvlP + S ol (55)

where C), is independent of o and s (and v, of course). Next for the third term on the
right of (5.4), we can integrate by parts (observe that x commutes with 9,) to obtain

(X970, g17)
:_HVQX%QJ'(/J||2+<X%[9J7 0yloyah, x2 9J¢> (x %[ngay]"/)vxé b 970)
= —IVax2 900l + (X2 [[97,8y), 8y) 0, X2 g50) — 2(x % (9., By )00, X % Dygst)).
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Using the Lemma 6.2 i) to estimate the commutators, we find

(X9 Aa, 050) < ~[IVax2gs0|? + Clel(Ix2 g9l + 19, x % gs9]).

In a similar way, using the decomposition (5.1) and integrating by parts, we get

(xg R, 950) < Cl10l|(10yx 2 g5l + X2 gs)-

Using || X2g 7]l £ 1 and the Young inequality, we thus obtain

1 .
(X958t 959) + (xgs RY, 99) < =2 [ Vax? 9,9 [ + Cll0|* (5.6)

for some constant C' that is independent of v.
Consequently, putting (5.5) and (5.6) into (5.4), and choosing again 6 = 6;/4 and s
large so that as > 4C), /61, we obtain

d, 1 aC, aC, y
gl < slosdll® + Ovivl® < o llosvl + Ove?™ gl (5.7)

where the last estimate comes from Proposition 5.1. On the other hand, using the same
commutator estimates as above (now with xy = 1), we also get that

d
2195017 + vlIVags|* < Crllgl]* < Cre* e gy (5-8)

which, after an integration in time, yields || ¢ (£)|| < |lg %ol +C (vt) 2 eMo¥t||4hg]|. Hence,
the inequality (5.7) now becomes

d 1 aC v
G arl? < ool + Ove ol (59)

Finally, for times ¢ such that §3at > 1, we integrate (5.9) over (0,¢) and take as =
Cp(aﬁlt)% and a = —%. Recalling x = x(Aat,as), we obtain

[ A-Lat [ A+ Lat
2 [ —8 t 2 [ —8
X (Cp(ﬁlat)2> 9(t) X (Cp(ﬁlat)2> gJo

Cpat
(Gfat) %

2 2

+ lgstbol|* + Crte* o g2,

Note that in this estimate C), is independent of J and 6;, while C' might depend on the
compact intervals Iy and I. From this estimate, we easily deduce in the same way as
done in the proof of Lemma 4.1 that

1
(at)*

67 2 A Fgs0()] S e ll{A) g vl + Co (wt) BeMo 2,
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for times ¢ so that #3at > 1. When #3at < 1, the estimate is clear. Thus, summing up
over a finite number of such small intervals J, we complete the proof.

5.8. Proof of the enhanced dissipation, Theorem 3.2

We again consider a finite number of small intervals J covering Iy as above so that

0r

gs(H)i[H, Alg;(H) > —g,(H)?, (5.10)

for g5 € C*((U-,U4),R;) with support contained in J. We shall estimate g;(H ),
with 1 solving (3.2). We compute

gy +iaHgyp — vAagsh = vCY (5.11)
where C, = CY + 9,C., with
Co = [l9s,0,],0y] + gsR° + (95, 0,]R",  C) =2[gs, 0] +gsR",
Here, R, R! are as in (5.1). In particular, from the commutator estimates, we obtain
Icoll + el < C. (5.12)
Take again A = i0,. The starting point is to compute

d
—%%<A9J¢7CX9J¢> = —a(091%, Ag)
= o?(iH g, Ags) — va(Dagsp, Agst) — valCuih, Agsib).

The crucial term in the above identity is the first one on the right hand-side. Indeed,
thanks to (5.10), we have

) 1 . 0r
o (iHgyy, Agsy) = =50 ([H, Algs, g.,9) < —a®[lgsv]*.
For the viscous terms on the right hand-side, we estimate

vial[{Aagr, Agrd)| S vilAagsdlllladyg |

and after an integration by parts

vial (€, Agsv)| S vllewll (10,901 + 10595 1).

This yields
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d 0r 5
_ZA 1
i 9%, a95%) + 5 lagsd|l (5.13)
S vl Aagrtllladygsll + vievll (10,9501l + 1859591D)-
Next, using (5.8), we have
d
g1 + vllaVagp @) < Cvllay|®. (5.14)

It remains to estimate || Ags1||?. Similarly as done above, we get

1d

5 71495017 + vIIVadygs|* S vl + 10,Co8 1) 10yygs0 || + all[A, Hlgse (19,99

in which
1A, Hlgsoll S lgsll,  10,Covll S N1l + 18y

Thus, using the Young inequality, we obtain

d
1495017 +vIIVadygsto|* S v(WIP + 10,81%) + llags v [10yg. - (5.15)

To conclude, we shall combine the estimates (5.8), (5.13), (5.14), and (5.15) in a
suitable way. We introduce

Q) =T*(lgs () + llagsw(t)|*) = Tws (Agsth, ags) + vs | Ags(0)]

where T' > 1 is a large parameter (independent of v and «) that we will choose later.
We first observe that if T is sufficiently large, Q(t) is equivalent to a weighted H' norm.
Namely,

Q) ~ [lgsp @) + lagsb@)]|? + v5]8,9,0 () |2

We now add up the estimates (5.8), (5.13), (5.14), and (5.15) with the corresponding
weight as in Q(t) and use the Young inequality to obtain

d 1 5
EQ(@ + cor3Q(t) < Cove®™¥ (|lp||> + [labo||?) + Covs |0y || (5.16)

for some positive constants Cy, ¢g. Indeed, the left hand side is clear, upon recalling that
|a] > 1. Let us check the right hand side. In view of (5.13), we estimate

4 —1. 35
Ly || Aagsvllladygsll < T35 059,007 + vla®g vl

+ Col*w(I + v3) [ ady g9
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w3 [lal| (10,900 + [029.,01) < T7'03 02,0112 + v 0,902
+ Colw(I +v5 ) ||a |

in which each term on the right, except the last term involving ||a)||?, is absorbed into
the left hand side, precisely the corresponding viscous term, of (5.15), (5.14), and (5.8),
upon taking I" large enough. Similarly, in view of (5.15), we estimate

2 1
v [lagrlllloygsvll S vEllagspl® + v|dygsvll?

which is again controlled by the left hand side of (5.13) and the viscous term in (5.8),
respectively. Thus, we have obtained

d 1 5
Q) + v Q) S V([ + llav|?) +v5 9,0

This yields (5.16), upon using (5.2).
Finally, we integrate the differential inequality (5.16) and use (5.2) again to obtain

1
Q(t) < e tQ(0) + Co(vs + Cute ) (||| + [laho|?).
Theorem 3.2 follows.
6. Technical lemmas

In this section, we shall recall some commutator estimates used throughout the paper.
These results can be found, for instance, in [10,11,14]. The main idea is to use the
Helffer-Sjostrand formula to express the functional calculus of a self-adjoint operator.

Let us start with almost analytic extensions. Let us introduce S” for p € R the set of
C*° functions on R such that

1™ (2)] < Col2)?™™,  VYzeR, ¥YmeN.
We also set

Iflp="sup (&) ?|f™ ().

eR, meN
An almost analytic extension of f is a function f on C such that
fr=1,
supp f C {w +1y, [yl < 2(z), z € supp f}, (6.1)

01 (2)] < O ()P N Hy¥
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for some N fixed and large enough. As an example, one can take

()

where x(s) is a smooth function which is equal to 1 for |s| <1 and 0 for |s| > 2.

flz+iy) = <Zfr)

Now, let T be a self-adjoint operator (not necessarily bounded, though we only need
the results for bounded operators). For any f € S?, we can define the operator f(T') by

@)= dim oo [ e -1y L) (6.2)

R—+oc0 27
CN|Re z|<R

where dL(z) = dxdy is the Lebesgue measure on C identified to R2. Observe that when
p < 0, the above integral converges in the operator norm.

Lemma 6.1. [10,11,1/] For k > 1, let f € S” with p < k, and let B be a bounded
self-adjoint operator on L? such that the iterated commutators adyB, j < k, are also
bounded. Then, there holds the expansion

k—1

[f(T),B] = Z L O\(T)adi. B + Ru(f,T, B)

j'
with
1Bk (f. T, B)|| < Cr(f)llad} B
where Ci(f) depends only on k and || f||,.
In addition, we also use the following:

Lemma 6.2. Let f € C°(R), A = id,, and H be the bounded and self-adjoint operator
defined as in (2.4). Then, we have

(i) [A, f(H)] is a bounded operator.
(i) f(H)— f(U) is a compact operator.

Proof. We start with proving (i). Thanks to (6.2) for f(H), we have

(AU = 5 [ 07~ ) A H)G: - H) L),
C
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with f an almost analytic extension of f. Since [A, H] is bounded, the result follows
directly from the facts that f is compactly supported and that the integral converges in
the operator norm thanks to (6.1).

Let us next prove ii). In a similar way, we write

i
T or

FUH) — F(U) / 0F () (2 — H)™ — (s — U)Y) dL(2).

C

Since H = U + K with K compact, the above yields

i
T or

) - () / 0-F(2) (2 — H) 'K (2 — U)~* dL(2).

C

Again, the integral converges in the operator norm, since (z — H)"'K(z — U)~ ! is a
compact operator for every z ¢ R. The result follows. O

References

[1] W.O. Amrein, A. Boutet de Monvel, V. Georgescu, Co-Groups, Commutator Methods and Spectral
Theory of N-Body Hamiltonians, Modern Birkh&user Classics, Birkhiduser/Springer, Basel, 1996;
2013 reprint of the 1996 edition.

[2] J. Bedrossian, M. Coti Zelati, Enhanced dissipation, hypoellipticity, and anomalous small noise
inviscid limits in shear flows, Arch. Ration. Mech. Anal. 224 (3) (2017) 1161-1204.

[3] J. Bedrossian, N. Masmoudi, Inviscid damping and the asymptotic stability of planar shear flows
in the 2D Euler equations, Publ. Math. Inst. Hautes Etudes Sci. 122 (2015) 195-300.

[4] J. Bedrossian, N. Masmoudi, V. Vicol, Enhanced dissipation and inviscid damping in the inviscid
limit of the Navier-Stokes equations near the two dimensional Couette flow, Arch. Ration. Mech.
Anal. 219 (3) (2016) 1087-1159.

[5] J. Bedrossian, V. Vicol, F. Wang, The Sobolev stability threshold for 2d shear flows near Couette,
J. Nonlinear Sci. (2016).

[6] A. Boutet de Monvel-Berthier, V. Georgescu, A. Soffer, N-body Hamiltonians with hard-core inter-
actions, Rev. Math. Phys. 6 (4) (1994) 515-596.

[7] P.G. Drazin, W.H. Reid, Hydrodynamic Stability, second edition, Cambridge Mathematical Library,
Cambridge University Press, Cambridge, 2004.

[8] T. Gallay, Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices, arXiv,
2017.

[9] V. Georgescu, M. Larenas, A. Soffer, Abstract theory of pointwise decay with applications to wave
and Schrodinger equations, Ann. Henri Poincaré 17 (8) (2016) 2075-2101.

[10] C. Gérard, A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal.
254 (11) (2008) 2707-2724.

[11] S. Golénia, T. Jecko, A new look at Mourre’s commutator theory, Complex Anal. Oper. Theory
1 (3) (2007) 399-422.

[12] E. Grenier, Y. Guo, Toan T. Nguyen, Spectral instability of general symmetric shear flows in a
two-dimensional channel, Adv. Math. 292 (2016) 52-110.

[13] E. Grenier, Y. Guo, Toan T. Nguyen, Spectral instability of characteristic boundary layer flows,
Duke Math. J. 165 (16) (2016) 3085-3146.

[14] W. Hunziker, I.M. Sigal, A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations
24 (11-12) (1999) 2279-2295.

[15] S. Ibrahim, Y. Maekawa, N. Masmoudi, On pseudospectral bound for non-selfadjoint operators and
its application to stability of Kolmogorov flows, arXiv, 2017.

[16] T. Kato, Perturbation of continuous spectra by trace class operators, Proc. Japan Acad. 33 (1957)
260—264.



E. Grenier et al. / Journal of Functional Analysis 278 (2020) 108339 27

[17] T. Li, D. Wei, Z. Zhang, Pseudospectral and spectral bounds for the Oseen vortices operator,
arXiv:1701.06269.

[18] Z. Lin, Instability of some ideal plane flows, SIAM J. Math. Anal. 35 (2) (2003) 318-356.

[19] Z. Lin, M. Xu, Metastability of Kolmogorov flows and inviscid damping of shear flows, arXiv, 2017.

[20] E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math.
Phys. 78 (3) (1980/1981) 391-408.

[21] D.H. Sattinger, On the Rayleigh problem in hydrodynamic stability, STAM J. Appl. Math. 15 (1967)
419-425.

[22] I.M. Sigal, A. Soffer, Local decay estimates and velocity bounds Princeton, preprint, 1988.

[23] W. Tollmien, Ein Allgemeines Kriterium der Instabititat laminarer Geschwindigkeitsverteilungen,
Nachr. Ges. Wiss. Géttingen Math.-Phys. 50 (1935) 79-114.

[24] D. Wei, Z. Zhang, W. Zhao, Linear inviscid damping for a class of monotone shear flow in Sobolev
spaces, Comm. Pure Appl. Math. 71 (4) (2018) 617-687.

[25] D. Wei, Z. Zhang, W. Zhao, Linear inviscid damping and enhanced dissipation for the Kolmogorov
flow, arXiv, 2017.

[26] D. Wei, Z. Zhang, W. Zhao, Linear inviscid damping and vorticity depletion for shear flows, Ann.
PDE 5 (1) (2019), Art. 3.

[27] C. Zillinger, Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary
effects, blow-up and critical Sobolev regularity, Arch. Ration. Mech. Anal. 221 (3) (2016) 1449-1509.



	Linear inviscid damping and enhanced viscous dissipation of shear ﬂows by using the conjugate operator method
	1 Introduction
	2 Inviscid damping
	2.1 Symmetric form of the equation
	2.2 Spectral properties of H and conjugate operator
	2.3 Main inviscid result

	3 Uniform mixing and enhanced dissipation
	4 Proof of the inviscid results
	4.1 Proof of Lemma 2.1
	4.2 Proof of Lemma 2.2
	4.3 Proof of Lemma 2.4
	4.4 Local decay estimates
	4.5 Proof of Theorem 2.1

	5 Viscous case
	5.1 Basic energy estimate
	5.2 Proof of Theorem 3.1
	5.3 Proof of the enhanced dissipation, Theorem 3.2

	6 Technical lemmas
	References


