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Abstract. We establish the inviscid limit of the incompressible Navier—Stokes equations on the
whole plane R? for initial data having vorticity as a superposition of point vortices and a regular
component. In particular, this rigorously justifies the vortex-wave system from the physical Navier—
Stokes flows in the vanishing viscosity limit, a model that was introduced by Marchioro and Pulvirenti
in the early 90s to describe the dynamics of point vortices in a regular ambient vorticity background.
The proof rests on the previous analysis of Gallay in his derivation of the vortex-point system.
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1. Introduction. In this paper, we are interested in the vanishing viscosity limit
of the incompressible Navier-Stokes equations on the plane R? for irregular initial
data; namely, we consider

o’ +u” - Vu¥ + Vp¥ = vAu”
V-u=0

)

(1.1)

for fluid velocity u”(x,t) € R? and pressure p”(z,t) € R at x € R? and ¢t > 0. The
interest is to understand the asymptotic behavior of solutions in the inviscid limit
v — 0.

It is straightforward to show that in the absence of spatial boundaries, regular
solutions of the Navier—Stokes equations converge in strong Sobolev norms to the
regular solutions of Euler equations as v — 0 (see, e.g., [15, 31, 26]). The convergence
(in L? for velocity fields) also holds for nonsmooth solutions that include vortex
patches [5, 6, 3, 26, 30]. The problem is largely open for less regular data [2, 4],
or even for regular data in domains with a boundary (see, e.g., [28, 18, 27, 14] and
the references therein).

For initial data whose vorticity consists of a finite sum of point vortices (Dirac
masses), Gallay [10] proved that the corresponding Navier—Stokes vorticity indeed
converges weakly in the inviscid limit to the sum of point vortices whose centers
evolve according to the Helmholtz—Kirchhoff point-vortex system. In this paper, we
study the case when initial vorticity consists of one point vortex and a regular part.
The case of finitely many point vortices can be treated similarly in combination with
[10], where the vortex-point interaction is understood.
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Let us now detail the problem. For velocity field v = (uf,u), let w” =
Oz, uf — Oy, uY be the corresponding vorticity. Taking advantage of the divergence-free
condition, we can recover the velocity from vorticity through the so-called Biot—Savart
law
(1.2) u’ = VAT = K xw” K(z) = ii

’ 27 |x]?’
where K (z) denotes the Green kernel of V-A~! the x notation stands for the usual
convolution in variable € R?, and at = (ag, —a;) for vectors a € R%. Tt follows
from (1.1) that the vorticity solves

(1.3) Ow” +u” - Vw” = vAw”.
We solve the vorticity equation (1.3), together with (1.2), for initial data of the form
(1.4) Wii_y = 8z () + wg (@),

where §,, denotes the Dirac delta function centered at z = zy and w{’ is the regular
component of vorticity that has compact support and vanishes in a neighborhood of
zp. The existence and uniqueness for 2D Navier—Stokes equations with such initial
data, or in fact, more generally, with initial data of finite measures, are known; see,
e.g., [7,12, 15, 9].

1.1. Vortex-wave system. In the inviscid limit, we do not expect the limiting
solutions from (1.3)—(1.4) to satisfy Euler equations, even in a weak sense,! but rather
the following so-called vortex-wave system coined by Marchioro and Pulvirenti [23, 25]
in the early 90s:

(L5) 5(t) = vP (8, (1)),

in which v¥ = K xw? and H = K(- — 2(t)). That is, in the limit, the regular
component of vorticity is transported by the full velocity, while the location of the
point vortex is propagated by the velocity v generated by the regular vorticity w?.
The global weak solutions of (1.5) in L' N L were already obtained in [23, 25] (see
also [17, 8] for an extension to L? spaces), while their uniqueness is proved for Lipschitz
or even bounded data [29, 16], provided that the ambient velocity is constant in a
neighborhood of the point vortex. In particular, let us recall the following theorem.

THEOREM 1.1 (see [16]). Consider initial data 29 € R and wf € L' N L>°(R?).
Assume that w§ has compact support and is constant in a neighborhood of zy. Then,
there are a unique global solution (2(t),w®(t)) to (1.5) and a positive function R(t)
so that w (t) remains constant in the ball centered at the point vortex z(t) with radius
R(t) for all times t > 0. If we assume in addition that wf € WP for kp > 2 and
p > 1, then for any T > 0, there holds that

(1.6) sup [lw®(t)lw < Cr
0<t<T

for some constant Cr.

n fact, it is not known whether weak solutions to Euler equations exist with point-vortex data
(23, 25].
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Theorem 1.1 ensures that H = K(- — z(t)) remains regular in the support of
VwE(t). The stated regularity (1.6) thus follows from that of Euler equations on R?
[19].

The vortex-wave system (1.5) can be rigorously derived from Euler equations
by replacing the initial Dirac mass d,, by € ?x., with y. being the characteristic
function of the ball {|z — 29| < €} and taking e — 0. This was done in [24] (see also
[1, 13]). It can also be derived from Navier-Stokes equations in the small viscosity
limit, provided that v < €* for @ > 0, as done similarly for the vortex-point system
[20, 21, 22]. In this paper, we give a direct derivation of (1.5) as the inviscid limit of
the Navier—Stokes flows (1.3) with data (1.4).

1.2. Main result. Consider the viscous problem (1.3) with initial data (1.4).
Following [9, 10], we first decompose the vorticity into the so-called regular part w®¥
and irregular part w?", both of which are advected by the full velocity vector field
u” = K xw". Precisely, we write

(1.7) W’ =wBY 4 wB,

E,v

where wf¥ and w8V solve

SwP? +u¥ - VP = vAWPY
t 9

1.8
( ) WE7V|t=O _ on'

and
ath,u +ur- va,V — I/A(A)B’V,

(1.9)

WwBr(t)y — 5, as t— 0T

Here and in what follows, the weak convergence for finite measures is understood in
the following sense: p,, — p if and only if

/R2¢dun—>/Rz¢du

for all the continuous functions ¢ that vanish at infinity. A direct computation shows
that the decomposition preserves the mass:

(1.10) /wE”’(x,t)dxz/ wl (z)dz, /wB’”(x,t)dle
R2 R2

R2

for all positive times. We shall prove that in the inviscid limit w®? — w® and w?®"
is concentrated near the point vortex z(t), transported by v¥, yielding weak solutions
to the vortex-wave system with the same initial data (w{’, z9). Precisely, our main
theorem reads as follows.

THEOREM 1.2. Let 29 € R, and let wt € WH4(R?), which has compact support
and vanishes in a neighborhood of zy, and let (z(t),w(t)) and w"(t) be the unique
solution to the vortez-wave system (1.5) and to the Navier—Stokes equation (1.3),
respectively, with initial data wy = w& + 0,,. Then, there exists a time T > 0,
independent of v, such that the vorticity w” (t) can be written as

wu(xvt) = wE’V(x’t) + WB’V(xat)v
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where WV (t),wP ¥ (t) satisfy

sup [|uw (t) = (1)l parrasscez) < Crv,
0<t<T

1 lz—z(t)|2

wB(t, x) — -

e
drvt

sup 1 < Crv

0<t<T

L1(R?)

for some constant Cr independent of v. In particular, w®V(t) — wF(t) strongly in
LANLY? and wB v (t,-) = 6,(4)(-) weakly in the sense of finite measures in the inviscid
limit.

Theorem 1.2 derives the vortex-wave system (1.5) as an inviscid limit of Navier—
Stokes flows on the whole plane, complementing the earlier derivation [24, 1, 13] from
Euler equations. In addition, we obtain

1
T>mnldT ,——— ¢,
- { 5IIWE||LOO}

with 7}, being the smallest time when the point vortex z(t) meets the support of w” (s)
for some s € [0,¢], recalling from Theorem 1.1 that z(¢) never meets the support of
wE(t) for all times. See Proposition 2.1 and Remark 3.15.

Let us now discuss some difficulties in proving the theorem. First, the initial data
containing a Dirac mass are too singular to perform a direct proof from the standard
L? energy estimates. One then needs to construct a good approximation of solutions
to treat the singular part and control the remainder. The difficulty arises due to the
presence of a vortex-wave interaction term of the form

1 eat)?
(1.11) va”(t,a:)-Vw( e~ )

4rvt

Formally, this term blows up when x is near the point vortex z(¢) and vt — 0. To
treat this singularity, we follow [10] to work in the vortex scaling variable, construct

approximate solutions, and perform weighted energy estimates to control the remain-

x—2z(t)
vVt

used in [10] are not enough to treat the interaction term (1.11), as it leaves a re-

mainder of order one but not smaller. To overcome this difficulty, we introduce an
approximate viscous vortex-wave system (section 2), along with the new point vortex

Z(t) = z(t) + O(vt) and the scaled variable £ = x\_/é(tt) in order to close the estimate.
E

Last, we remark that we assume the initial vorticity to be 4., + w, where w{
is smooth and compactly supported away from the point vortex zg. The regularity
is needed in the construction of the high-order approximation of solutions. It would
be interesting to further combine our analysis with the viscous approximation near
vortex-patch solutions constructed in [30] to treat the case when wl € L' N L.

1.3. Notation. We will denote A < B to mean that |A| < Cy|B| for some
universal constant Cy > 0 independent of the viscosity v. We write f = O(g) to mean
that f < g, or simply O(g) to mean that the term can be bounded by Cy|g| for some
constant Cy > 0 independent of v. We define the norms || - ||panpass and || - || Linpe=
of a function w(x) in R? to be

der. However, the weighted energy estimates with the scaling variable £ =

lwllpanpae = llwllps + [wlpars,  lwlloinze = [wlor + Jw]ze-

We also denote by m(-) the Lebesgue measure on R2.
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2. Approximate vortex-wave system. Let (z(t),w®) be the global solution
to the vortex-wave system (1.5) with initial data wl € W*4 that has compact support
and vanishes in a neighborhood of zy. We introduce an approzimate viscous vortex-
wave system (Z(t),w”), given by

GE(x, )= wE(xﬂf) + vwy o(z, 1),

t
(21) 0 =P ((1),0) = K «&P(2(0),0),  2(0) = =0,

where the added vorticity component w; , solves

1 _
(22) atwl}a + (’UE + ﬁ’UG <:L‘\/>jlft))> . Vw1,a + Vl,a * VWE = AwE

with zero initial data. Here and in what follows, velocity and vorticity are defined
through the Biot-Savart law (1.2). For instance, v1, = K * w1, and v%(§) =
1 &t —|¢%/4
ﬁW(l — e 187/,

We obtain the following simple proposition.

PROPOSITION 2.1. Let T, be defined by

(2.3) T, = %rzlg {t :2(t) € Uogsgtsupp(wE(s))},

with T, = oo if z(t) never meets the support of w¥(s) for s € [0,t]. Then, for any
T < T, the unique smooth solution wi .(t) of (2.2) exists on [0,T], has compact
support, vanishes in a neighborhood of z(t), and satisfies

(2.4)

m (Supp(wn o (8))) + 11,0 (Ol ) + [9001,0 (O] 2w o) + [02.0(8) w2 a2y < Cr

fort € [0,T] and for some constant Cr independent of v. In addition, there holds
that

(2.5) |Z(t) — 2(t)| < Crvt  for any t€[0,T].

Here, m denotes the Lebesque measure on R2.

COROLLARY 2.2. Let T, be defined as in (2.3). For any T < T., @¥(t) has
compact support, vanishes in a neighborhood of Z(t), and satisfies

(2.6) m (supp(@" (£))) + 1 (O)llw2.1 ) + 19 O] e 2y +1TE (Ol r2) < Cr

fort € [0,T] and for some constant Cr independent of v.

Proof. The corollary is a direct consequence of Proposition 2.1 and Theorem
1.1. a0

Proof of Proposition 2.1. Recall from Theorem 1.1 that w®(t) has compact sup-
port and vanishes in a neighborhood of z(¢). This remains valid for wy 4(t) for small
times, due to the transport structure of (2.2). Precisely, wi 4(t) is supported in
Uo<s<tsupp(w?(s)). Since z(t) € supp(w®(t)) for all positive times, we have T\ > 0
by continuity. Thus, for any T < T, there is a positive distance dp so that

(2.7) z— 2(t)] > dp >0
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for all z € supp (w1,4(t)) and 0 < ¢ < T, which yields

’ 1 & (x — z(t))’ 1 ( _zz<t>2> 1 1
— — 1—e Avt S S .
Vit Vut 2|z — 2(t)] 2|z — 2(t)| — 2mdr

Similar estimates hold for derivatives of v¥(:) for x away from z(t). It follows from
(2.2) that

[wr,a(B)]] s S/O (1AwE(s)llzs + l[v1,a(8)l| e [V ()| 4) ds

t
< / (1 -+ [[o1.0(s)]| 2~ )ds,
0

which yields the estimate on wi,, upon using the elliptic estimate |v1,4]/pe S

~

lwi,allpanpass and the fact that wq , is compactly supported. The derivative esti-
mates follow similarly.
Finally, let us prove the estimate on z(¢). By definition, we write

{Z(t) =20+ f(f (vF(Z(s), s) + vv1,4(2(s), 5)) ds,

(2.8) 2(t) = 20 + f; 07 (2(5), 5)ds,

which gives

50 01 < [ [0FE6),5) o e(6), )] ds +v [ Tona(Ete), )l

(2.9) /Ot /0

< [ IVE )= 56) = ()] ds vt sup [ona(s)]
0 0<s<t

Applying Gronwall’s lemma gives (2.5). 0

3. Inviscid limit for the irregular part. In this section, we give estimates on
the irregular part of vorticity w??¥, solving (1.9). Let us recall the equation

OB’ +u” - VPV = vAWPY,
(3.1) B
w? |t:0 = 620'

Here, u¥ = v®" + vB¥ is the velocity field for the full Navier-Stokes equations.
Following [10], we introduce the change of variables

- x —2Z(t)
WVt
and write
(3.2) vB’”(:c,t) = \/%'Ug(f,t), wB’”(x,t) = uith(f’t)'

Here, we recall that z(¢) is the solution to the approximate vortex-wave system, given
in (2.1). Note that the change of variables is consistent with the Biot—Savart law:
vy = K %¢ wo. Putting the ansatz into (1.9) for wB? we get the following equation:

®(wg, vE) := (t0; — L) wy + \/?(’UE’V(Z(t) + &Vt t) — 0:Z(t))
(3.3) v

1
. ngg + ;Ug . ngQ =0,
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where L is defined by
1
Lwsy = Agwa + 55 - Vews + wo.

In the vanishing viscosity limit, we expect that the viscous regular velocity will
remain close to the inviscid one: v* — v, and hence the irregular part should tend
to the so-called Lamb—Oseen vortex, which is defined by

1 2 1 fl 2
G(E) = —elE1?/4 Gy = — 5 (1 _ - lelPray.
@ =37 @ =5 (1)
It follows that LG = 0 and v® - V¢G = 0. Therefore, the pair (G(€),vF") solves
(3.3), up to the following error term tR;(&,t), with

1
TVt

which does not vanish in the inviscid limit, upon recalling that 9,z(t) = 9% (Z(t),t).
Roughly speaking, R = O(1) in the small viscosity limit.

We shall construct better approximate solutions to (3.3). Here, we stress that
(3.3) involves two unknown functions wq,v®* which are coupled through the full
velocity u”. To leading order, let us take vflgp” = 7P, with v¥ solving the approximate
vortex-wave system (2.1) and

(3.5) w2,app (€, 1) = G(E) + (V)wa,a(€; 1),

where w4 is to be defined later. The pair (wsapp, vy ) thus solves (3.3), leaving an
error of the form
(3.6)

D (w2 apps vE‘;) =t(A+v(1 — L)) wg,q + vt204ws 4 + Vt*v 4 - Vs 4

+ VB EE(E() + €Vt t) — P (E(1), 1)) - Vg, + R (€, 1),

where Ry(,t) is defined as in (3.4) with 022 = 2%, and

(3.4) R(¢.t) (057 (G(0) + eV, 1) - TP (3(1),1) ) - VG,

Aw =209 - Vew +v - VG, v=Kxw.

To treat the order one remainder Ry (¢,t), we first solve (A 4+ v(1 — £))ws,, = — Ry
to leading order in v. We recall the following proposition from [10, Lemma 5 and
Remark 1].

PROPOSITION 3.1. Let z = z(§) be a function of the form
2(€) = a1(r) cos(20) + az(r) sin(20) + as(r) cos(360) + a4(r) sin(36)

for € =re®. Assume that the coefficients satisfy

4
> (lai(r)| + la}(r)]) < CoP(r)e"/* ¥r>0

i=1

for some polynomial P(r). Then, for any v > 0, there exists a unique solution w” to
the elliptic equation
Aw” +v(l1 — L)yw” =z

such that ,
w” (&) + [V’ ()] < Ce /4

for any v € (0,1) and for some constant C that is independent of v.
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3.1. Vortex-wave reaction term. In this section, we show that the leading
term in the reaction term in (3.4) satisfies the assumption of Proposition 3.1. Precisely,
we introduce

(3.7) Ri(&,t) = @ (Z(t) + €Vt t) — 7B (Z(t),1)) - VG.

1
Vit
We have the following lemma.

LEMMA 3.2. For any T > 0, there is a constant Cr so that

[RL(,1) — Ag(&,1)] < Or(vt)le]e1€1/1,

where
Ag(&,t) = 5 [€%e ! /4/ ) Gy, iy
. 162 o 20— 9P
' - 3¢)
Sl /4/ $nBY) sm g

162 t|¢] e e B0 — g By, t)dy.

Here, 1 denotes the angle betweenf and Z(t) — y.
Proof. Recalling (3.7) and G = -=e~ 16/ and using the Biot-Savart law (1.2),

we have
Ri(&,1) = (37 (E(0) + eVt 1) =57 (3(8), 1)) - e 1S4

8 W
el ((Z(t) +HEVE -yt (E(1) —y)L> ~B

W R2§ |Z(t) + &V/vt — y? N 1Z(t) — y|? W™ (y,t)dy
—elE?/4

_ (3 oL 1 B 1 &E
= Toraat Ju € EO =0 (e =) S
= A;(&,t) + Aa(&, 1),

where A; (&, t), A2(&,t) denote the integrals over {|¢[v/vt < $|Z(t) —y|} and {|¢|Vvt >
%| Z(t)—y|}, respectively. Let us first treat A;(&,t). Applying Lemma A.2 for £/t <
5|2(t) — y|, we have

1 1 Z - \F sin(n + 1)1
Z(t) + &Vt —yl2 2 —yl? |21 -yl sin(y)
Here, v is the angle between £ and Z(t) — y. Thus, we get
50— L 1 !
SEY (|~< e )
3 "*1 51 € sin(n
=21 ECET
= —(v 1/27|€| sin 7|£‘3 sin
O )y ) Wy s eY)
n+1 |£‘\/7 sin(n
\F; [Z(8) —yl" (),
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in which we can estimate

n+1 |€|\F)

—y|"

(vt)*2lg|*

<2,
12(t) —y|*

sin(na)

since |£|v/vt < 1|Z(t) — y|. Hence, we have

|€|2e— 61 /4 1
167 /5m<;|2(t)y| 2(t) —yl?
Vt|g[Belel /4 1

16w /|§|\/ﬁ§;z(t)—y |z(t) —yl?

O(Vt|§|4e_‘§|2/4)/ S
eIV E—y) [2() =yl

Ay(&,t) = sin(2¢) " (y, t)dy

sin(3¢)" (y, t)dy
sin(4¢)@¥ (y, t)dy.

We note that all the integrals above are bounded by ||0®(¢)||.1, since Z(t) is bounded
away from the support of @¥(t) by Corollary 2.2. Therefore, defining Ao(,t) as in
(3.8), we can write

|¢[2e=1617/4

1
L sn@y)f(y, 1)y
1672 /|§Wt>;z<t>y 2(t) —yl?

Al(ﬁvt) = A0(€7t) -

\F|g|3e—m /4/ .
167 lelvrt>11Z(t) —yl |Z(t) —y|3
+O(ut|e|te e/,

sin(3v)w"” (y, t)dy

It remains to treat the integral over the domain {[¢|v/vt > |Z(t) —y|}. Since Z(t)
is bounded away from the support of ¥ (t), the above (explicitly written) integrals
vanish for [¢|v/vt < e for all t € [0, 7] for some constant cz. On the other hand, for
|€|V/vt > cr, we have

2, 1€17/4 1 ) _ 24
‘K'Q/ng o lwsm(?WwE(y,t)dy < Crvtlee™ BT (1)]|
z(t)—y

for some constant Cz. Similarly, we also have Ay(¢,t) = 0 for [¢|v/vt < er for all
t € [0, T for some constant ¢z, while for |£|\/vt > cr, we have

[As(€,1)] < |Ar (&, )] + A&, 1)]
< OrllP (1 + vtle2)e S 4GE (1) | o1 + Cr(wt) =2 |€e ™1/ 4[7 | oo
< Crp(vt)|e|*e 1€/,

upon using Corollary 2.2 to bound v and @¥. The lemma, follows. ]

3.2. Construction of an approximation solution. We now construct ws g,
that solves the following elliptic equation:

(3.9) Awg o + (1 = L)ws o = —Ao(&, 1),

with Ag(§, 1) defined as in (3.8). We have the following.
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LEMMA 3.3. There exists a solution wa 4 to (3.9) so that, for any v € (0, 1), there

holds that
2
‘w2,a(ta§)| + |Vw2,a(§7t)‘ < C’Ye_ﬂgl /4

uniformly in v > 0. In particular, we have
(310)  [oza(®)lz + / 3,0 (&, P!/ 4dg + / [Vws o (& )P/ 1dg < 1.
R? R2

Proof. For each y € R?, we introduce

—jg2/a_Sn(2¢Y)

Bo(§,y,t) = Tom 2|€|2 EOREE Py, t)
(3.11) + 1 Qxflf\‘3 —ler® /4‘ S(H;(?’?Pw (y,1),

recalling ¢ the angle between £ and z(t) — y. If follows from (3.8) that Ag(£,t) =
fR2 Bo(&,y,t) dy. Tt is clear that for each y, Bo(&,y,t) satisfies the assumption of
Proposition 3.1, and hence we can define

Woa(6nt) == (A+v(L—£)) Bo(€w.0).

stressing that y € R? and ¢ > 0 play a role as independent parameters. The solution
Wa,q 1s thus defined by the average of Ws ,(§,y,t) with respect to y. The pointwise
estimates follow directly from Proposition 3.1 and the estimates on . Taking v >
1/2 and using the elliptic estimate ||v2 q|Le S ||we,allL1nL~, We obtain the estimates

(3.10). O

3.3. Estimating the error term. Construct ws, as in Lemma 3.3. Then,
W,app = G(€) + viwa,a and vf;5 = 0¥ approximately solves (3.3) in the following
sense.

PROPOSITION 3.4. For any v € (0,1), there holds that
(3.12) |© (w3, app, 02 (€,1)| < Cut/2e1E/A

for some constant C,,.
Proof. Fix a v € (0,1). Using (3.9) into (3.6), we write

(I)(wZ app» Uapp)(£ t) = Vt V2,a V'UJQ ,a + ft3/2(~E( ( ) + 5\/> t) - (N(t)’t)) ’ va’a
4+ vt 8tw2,a +t(R1(&,t) — Ao(&, 1))

Let us estimate each term on the right-hand side. Using Proposition 2.1 and Lemma
3.3, we get

@1, )] < vt [va,0 ()| Lo [Ves,a (€, 1)] S vtPe /L,

Similarly, using Corollary 2.2, we bound

07 (eVvt + Z(t), 1) = TP (Z(t), )] S 1€Vt VTP | L

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/27/21 to 132.174.254.159. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

THE INVISCID LIMIT FOR THE VORTEX-WAVE SYSTEM 2585

and hence
|@2(&,0)| < VP[P Vvt + Z(t), 1) — 07 (Z(t), 1)||Vewa,a (€, 1))
< vi2|g|e 1617/
5 Vt2e—’ﬂf‘2/47
upon taking +' from Lemma 3.3 so that 7' > ~.
Next, we treat ®3(&,t) = 1/t28tw2,a. Since v/td; commutes with A and £, (3.9)

gives

V(1 = L) + A) (Vtdws,,) = =Vt Ao (&, ).
To apply Proposition 3.1, it suffices to prove that

(3.13) VO Ao(€,1)] S €21 + |g])e €7/,
Indeed, we recall from (3.11) that
(3.14)

AO (65 t) = fR2 BU(£7 Y, t)dya
_ _ sin ~ g2 i 3 ~

Bo(£,9,1) = gz |€[2e™ 617/ 2000 5By 1) 4 Vit ‘f'z/‘*%w’f(y,m
where 1 is the angle between ¢ and Z(t) — y. By Corollary 2.2, @¥(t) and 9,0 (t)
are both bounded, compactly supported, and vanishing in a neighborhood of Z(t). In
particular, |Z(t) — y| is bounded below away from zero for y in the support of W% (t).
The estimate (3.13) thus follows, upon recalling that 9,z(t) = v (Z(¢),t) and vF is
bounded (Corollary 2.2). Arguing similarly as in Lemma 3.3, we obtain

Vt0wa,q (€, 1) < Ce 8/,
Finally, the last term ®4(&,t) = t(R1(€,t) — Ag(&, t)) is already treated in Lemma 3.2.
This concludes the proof. ]

3.4. Equations for the remainder. Having introduced the approximate so-
lutions ws app and vfﬁg , let us now study the remainder. Precisely, we search for
solutions of (3.3) in the following form:

Wwa = G(E) + (Vt)U}Z at (Vt)w%
3.15 ’
( ) {,UE,V =F + 1/3/2,1317

in which 7¥ and wa,q are constructed in the previous sections. Putting this ansatz
into (3.3), we have

1 t .. :
(t@t - L+ 1)’&)2 + ;A’U_)Q + \/:(UE _ ") - Vwg + t('l_)g . Vﬂ)gya + V24 Vﬁiz)

+ %(’Dl : VG) + V\/i(ﬁl : va,a) + t(’DZ . VQDQ) + V\/g(ﬁl ' V’lDQ)

1
(316) + Eq)(wZappyvaEp’;) =0,

in which we stress that v and ©; are functions of (z,t), while G, Wa,q, and Wy are
functions of £,t. Again, velocity and vorticity are defined through the Biot—Savart
law in their respective variables.
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Our goal is to derive estimates for the remainder solution (wsq, 1) in suitable
function spaces. Precisely, we shall work with the following weighted L? norm:

ol = [ WOPpOdE 9O =

The weight function is natural in view of the following lemma.

2

LEMMA 3.5. The operator L is self-adjoint in L2, while A is skew-symmetric in

p}
Lg. In particular, we have £ < 0 and
<AW7 w>L12J =0
for any w(&) in the domain of A.
Proof. The lemma follows from a direct calculation; see [11, Lemma 4.8]. O

LEMMA 3.6 (elliptic estimates). Let v = K *¢ Wy be the velocity obtained from
Wy by the Biot-Savart law. There holds that

loallze S llslzz + sl Vsl
Proof. By Hélder’s inequality and Sobolev embeddings, we have

1/2
_ _ 1/2 _ 11/2 _ 1/2 _ _
Ioallze S el laall 2 S el (N lcg + 1V alles

_ 11/2 _ 1/2 _ 1/2
S Il (e + 19 1314)

_ _ 1/2 _ n1/2
= l[sllzz + w2l | Vo 5

The proof is complete. 0

3.5. Estimates for the remainder. This section is devoted to proving the
following proposition.

PROPOSITION 3.7. There are a positive constant k and a positive time T so that

d
t=lloa@I1Zs + w11+ D@2 ()72 + [Vio2(8)][73)

(3.17) . . ) . ) )
S tlw2 (D72 + vil|or (@)L + 7 01 ()]

uniformly in v and in t € [0,T].

The proposition follows from weighted energy estimates. To proceed, using (3.16)
for t0ywe, we compute

9
18 gm0l = [ e o = 0
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E1(t) = [pe p(E)(Livg — w2) (€, 1)dE,

Ea(t) = = fpo Na(&, )2 (€, t)p(€)dE,

Es(t) = —\/L Jra (T = 2) - Vi) (€, Dp(£)
Ea(t) = —t [5o (D2 - Vg, + V2,4 - Vig)wa(E, t)p(€)dE,
Es(t) = —t [go (U2 - Vo) wa (&, t)p(€)dE,

E6(t) = —vV/t [ga (01 - Vivg) wa (€, £)p(€)dE,

Er(t) = =35 Jaz Papp (&, 1)@2(E, )p(€)dE,

Es(t) = —ﬁ Jr2 (01 - VG)wa (€, t)p(€)dE,

Eo(t) = —vV/t [ga (01 - Vwz o) Wa(E, t)p(€)dE.

2587

Let us estimate each term &;. Thanks to Lemma 3.5, we have &(t) = 0, while
E1(t) < —[lwa(t)]|2,. In fact, the following lemma gives a better coercive estimate for
I

&i(b).

LEMMA 3.8 (diffusive term). There holds that

Proof. Recalling £ =1+ %f -V 4+ A and integrating by parts, we compute

T~

2

2

61(0) < — 57 IV, + 11+ EDma0)13;).

(Lw2 — w2) (&, t)p(§)wa (€, t)dE

(A@ e m) (€, )p(€)de

=- /}R2 Vs |*p(€)dé — /R2 w2 (Vp - Ve )dE + i /R2 (& - V(|Jw2]?)) p(&, ) de

_ 2 _ _ 1 2 1 2
== [ vaaPa.ode— [ wa(vp- Ve~ [ lwlena 1 [ 1o Vo

The second integral is treated by

Recalling now the weight function p(§) = elsl®/ 4. we obtain the lemma at once.

1 [ |VpP

_ _ 3 _ _
— [ oa(Vp- Vi < T [ wanPaen+ g [ EE-lofres

LEMMA 3.9. There holds that

&(t) S tllgwa(t)]7z-

d

Proof. Integrating by parts and using the fact that o7 — 7 is divergence-free, we

have

Es(t) = —\/E /R (07 =5V, ) ma(e, 0p(e)de
= 3\/5 /R (@7 = 2) - Vp(&)|wa(€, 1) Pd.

Recalling z = 9% (3(t),t) and using Corollary 2.2, we estimate

07 (vt + Z(1),1) — 2(0)] = [07 6Vt + 2(t),£) = TP (2(2), £)] S Vvtlé).

The lemma follows, upon using Vp = %fp(f).
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LEMMA 3.10. There holds that
E4(t) S t (o233 + IVa®lE; ) -
Proof. We write E4(t) = —t (Ea1(t) + £a2(t)), where

{541@) = Jps (B2 - Vwg,a) wa (€, 1)p(&)dE,
Eaa(t) = [po (V2,0 - Vi) w2 (&, t)p(§)dE.

Using Holder’s inequality, we estimate

1/2
€0 ()] < 152(8) | = B2 2 ( / 2 |Vw2,a(§,t)2p(£)d£) ,

in which the integral is bounded by Lemma 3.3. As for ||02(¢)| L, we use the elliptic
estimate and Sobolev embedding, giving
121 S 1ol s D2 o S N2 assl|all 22 (12| 2 + V]| ) 2.

Recalling the weight function p = el¢I"/4, we have [w2|pass S [[wellrz. Thus, we get
_ _13/2, _ _ _
(3.19) 17217~ < ||w2|\Lé (D22 + IV@2]22)"2 S @272 + VD27,
and so
€1 (O] S w2 (|2 (1o2 ()] 22 + [V@2()l|22) S 102072 + V@2 (t)]|72-

On the other hand, the estimate on E42(¢) is direct, since vy 4 is bounded. The lemma
follows. o

LEMMA 3.11. There holds that

&(t) S t (loa(B)I13 + la(t)

b+ V@@l ) -
Proof. By Holder’s inequality and (3.19), we get
0= [ (@ m)wg(m)p(g)dg]
]RZ
< t)52(t) | o | 02(8) | 22 | V2 (8) | 22
1/4
St (lee®llg + 19@2(8)lz3) * Iwa(®)I74 1V @2(0)] 22

The lemma follows upon using Young’s inequality. ]
LEMMA 3.12. There holds that

Eo(t) S vilor(t)l|ze + vl w2 (b)llzs + v Vi (t)l|7s.

Proof. Again by Holder’s inequality, we get

(1) = vVt

/11@2 (01 - Vg) wa (&, t)p(&)dE
S vt 2oy ()] oo @2 ()| 22 | VD2 () | 2.,

which yields the lemma upon using Young’s inequality. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/27/21 to 132.174.254.159. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

THE INVISCID LIMIT FOR THE VORTEX-WAVE SYSTEM 2589

LEMMA 3.13. There holds that
Ex(t) S 2 Jwa(t)| 2

Proof. Using the estimates from (3.12) for a fixed v € (3,1) and Hélder’s in-
equality, we get

0] < ()" | | Bagn(E.0) (6, Olp(E)E

<) /Rz<vt3/2>cwe—7‘5‘2/4|w2<§,t)\p(f)dg

, 1/2 1/2
< Cvt1/2 </]RZ parally Mp(f)df) (/]Rz |w2(§,t)2p(§)d§>

S 2w (1) e,

where we used v > 1/2. This concludes the proof. |
LEMMA 3.14. There hold that

Es(t) St 2o () pelwa ()2, Eo(t) S vt 2(|o1(8)]| oo [ a(1) ] 2
Proof. We recall that

&) = == | (@0 VEE)ma(e. Op(e)de,

where G(§) = ﬁe“g‘z/‘l and p(&) = el€I*/4. We have

()] < 712 ]|B(t)]| /W [€ll@2 (€, t)]d€ < =201 ()] oe |02 (8) | 2.

The proof for & (t) is identical, upon recalling the pointwise bound on Vws , from
Lemma 3.3. 0

Proof of Proposition 3.7. We are now ready to prove Proposition 3.7. Collecting
and combining all the estimates from the previous lemmas, we get

d ., _ _ _
t a0 + w1+ €)@ ()35 + [ Vws(B)125)
(3:20) <t (1 + EDmalZ, + la(®)3; + V@01 ) + £ a(t) 2
a5 (1) 3 + vtlla(0)5 + v V()3 + 22 (0) | o2 (1) 22

for k = 1/24. Taking t and v sufficiently small and using Young’s inequality, we
obtain

d
t ()3 + SO0+ 1ED@l12; + IVa()3;)

(3.21) . . ) A i ,
S tllwa (D22 + vi[[or(@)l = + 1 {|o1(E)[ e

This completes the proof of the proposition. 0
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Remark 3.15. The constraint on the smallness of times 7' is precisely due to the
term E3(t) treated in Lemma 3.9. The remaining terms are treated using the standard
Young’s inequality. Hence, we in fact obtain

(3.22)

d, _ _ _ _
t ()13 + r (I35 + IVE2()13; + (1= 5V (0| ) €02 ()]125)

S ()12 + w2()l172) + vt () Lo + o1 (t) |2

for all positive times, as long as the estimates from Proposition 2.1 and Corollary 2.2
on the approximate vortex-wave solutions are valid. This yields a lower bound on the
smallness of T so that supg<,<p 5t[| Vo (t)]| L~ < 1.

Remark 3.16. One may try to improve the time interval by introducing a new
weight function, as done similarly in [10], prew(§) = p(€)(1 + vig(€,t)), where q(&,t)
solves

VO€) - Vea = = (vP(:(0) + V01.1) = F(:(0).0) -

whose solution is, however, unclear for large £v/vt.

4. Inviscid limit for the regular part. In the previous section, we have proved
the a priori estimate for w?" and v¥" in the weighted energy space with the rescaled

variable £ = I?/z;(tt).

component w¥, which solves

In this section, we derive estimates on the regular vorticity

(4.1) QWP ¥ VP = vAwH”
with the initial data wf’. We write

WP (t, ) = BF(t, ) + v3 %, (t, x),

(4.2) v (t,3) = 0 (t,2) + v/ 2 (1, ),
' 0B (1) = v (SAD) Vil + 7) (SA2 1),

uy(tax) = UE’V(tv'r) + UB’V(tvx)a

where (Z(t), %) is the solution to the viscous vortex-wave system introduced in section
2, while v“ and vy, are constructed in section 3. Here, we note that the form of the
common velocity u” (¢, z) is compatible with the form in (3.15) and (3.2) in the scaled
variable £. The velocity v is kept the same as in the previous section, with £ replaced

by L\/Eg) and Uy = K %¢Ws. It is natural to work in the original variables (z,t) instead

of (&,t), since wE”(t) solves (4.1) with regular initial data wf’. Hence, one does not
expect w® ¥ to have the localized behavior near the point vortex. Roughly speaking,
we want to get an a priori bound on ||71(¢)||L~ (in terms of @ws(t)) on a time interval
independent of v. Precisely, we shall prove the following proposition.

PROPOSITION 4.1. Let w; solve (4.1) and (4.2). There exists a positive time T,
independent of v > 0, such that

t
lor(®llssnnen S [ 52 (oa(O)llz + [Vial)z3)ds + 1%
0

fort e [0,T].
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4.1. Equations for the remainder. In this subsection, we derive the equations
for the remainder w; as well as Uy appearing in (4.1) and (4.2). Putting the ansatz
(4.2) into (4.1) and using (2.2), we obtain the following transport-diffusion equation
for wq:

Opwy +u” - Vo, — vAwy, = f(z,t),

where f(z,t) are given by

Vit

— — U2 - V@E
1%

1 (z—z()t w2 B
~ Ve Vi)t g e Ve VA

(4.3)

4.2. Estimating the forcing term f(x,t). In this subsection, we prove the
following proposition.

PROPOSITION 4.2. Let f(x,t) be defined as in (4.3). There holds that

1 @Olzsnzors S Il zsngors + 172 (Joa(0) 122 + IVw2(0)lls2 ) + V2.

We will give a proof at the end of this subsection, after proving some useful
lemmas. First, let us write f as

f(x,t) = fi(z,t) + fa(x, t) + f3(z,t),

where

fl(z,t) = _%\/f (’UG (L\/i—(:)l— UG (L\/i—(tt))) . le,a — \/;(’UL(L . le,a)
L x—z(t
+ 27r1}3/2 (|§’iz((§f)))|2 6_% : VUJE + \/DAwl,aa
fg(x,t) = 71_)1 . V&E,

fa(z,t) = —%@2 - VP,
In what follows, we bound || f;(¢)||psnpass for each i € {1,2,3}.
LEMMA 4.3. There holds that
IA@Ollzanzars S Vv

uniformly in v > 0.

Proof. First, we see that

1 (z—20)t _le=z)? B
P P Ve YA

SVv

LANL4/3

H_\/D(Ul,a : vwl,a) -

thanks to the fact that w” is supported away from z(¢) and z(¢), and w; , is bounded
in W24, by Proposition 2.1. Now, for the first term in fi, it suffices to prove that

e (”}it)) — oG (”S?ﬁ;ﬁ(t))‘ <ut V€ supp(wi).

1

o
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As long as the above claim is proved, we would get

1 G x?(t)) G<xz(t)>)
— blad S I 2V ) Vg,
vt <v < vVt Y vVt w1
5 \/;val,a(t)||L4ﬂL4/3(supp(w1,a)) SJ \/17

LANL4/3
by Proposition 2.1.

Now we shall prove the inequality (4.4). To this end, let us denote
(4.5) m =z — 2(t) and 1y = x — 2(t).

The left-hand side of (4.4) can be rewritten as

a0 (08 ) <02 ) = o (il + Vat ).

where N I
Vi(m,ne) = (\%\2 - \7%\2) ’

1
‘/2(771’772) = ( 2

(12

€
e—lm?/4vt _ ‘%eﬂmr“/w) ,
m

‘ 2

When = € supp(w?(t)), by the properties established in section 2, we have a
positive constant cr, independent of v, such that

(4.7) |z — 2(t)| > cp and |z —Z(t)| > er vt € [0,T).

This implies that || > ¢ and |n2] > cr, upon recalling the notations (4.5). Thus,
we get

Vi ()| = oy oy Ny
|771|2 |772\2 \771|2 |771|2 \Th|2 |772|2
< I — nel 4| |’|772|2—|771|2|
- Iml? m1[2|m2]?
SC%QIm—nzH%Ilnzl—|771||(|771|+|772|)5Im—ngl
1112 [n2]

=z —2(t)) — (x — 2(t))| = |2(t) — z(¢)| S vt (by the estimate (2.5)).
Hence,
(4.8) Vi(m,n2)| S vt

Now, for V5(n1,m2), note that we shall only consider x € supp(@¥()), in which we
get (4.7). In this case, we get

(4.9) Vol mo)| < o] e /W g eI P/t < g le et S,

Combining (4.6), (4.8), and (4.9), we get the desired inequality (4.4). The bound for
the first term is complete. This concludes the proof. 0

LEMMA 4.4. There holds that

[f2@)llLanpass S 01| Lanpas-
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Proof. We have
1£2D) | Lanzass = [01(2) - VO )l papars < 01|z VS Ol panpars S 1010 panpars
by Corollary 2.2 and Lemma A.1. The proof is complete. 0
LEMMA 4.5. There holds that

1o @lzsnzers S 872 (Jaa(®)llng + I Voa(t)122 ) -
Proof. We recall that
x —Z(t)
=4,

We shall only consider = € supp(w”(t)). Since W (t) is supported away from Z(t),
there exists dp > 0 such that

(4.10) |z —Z(t)| > dr for 2 € supp(@F(t)).
Since [p, W (€, t)dé = 0, by Lemma A.1, we get

1+ €22 ()] Lo S N1+ €)@ ()| 2 + (11 + €] @2 (8) || ars
S lw2(t)] 22 + Vw2 (t) 22

fa(z,t) = gﬁg (&,1) - VP (t, x), €=

This implies that, for = in the support of @ (t), we get

1
220001 S e (Nw2®llzz + I9@2(0)lr3) S ) (lwa(0)123 + IV@2(0)]1n2 ) -

Thus, we get

Vit - _ _
s Ollanzers S L2 (€ 8) - Va2 (6, ) arsors S 2 (I2(6) 23 + IV2(8) 23 )
The proof is complete. ]

We conclude this subsection by proving Proposition 4.2.

Proof of Proposition 4.2. The proof follows as a direct consequence of the previ-
ous lemmas for f;, i € {1,2,3}, in this subsection. |

4.3. A priori estimates for the remainder. In this subsection, we give a
proof for our main proposition (Proposition 4.1), stated at the beginning of section
4. We recall from section 4.1 that w; solves the heat transport equation

Oy + u” - Vi, — VAW, = f(l‘,t).
A standard L* N L*/3 estimate for the heat transport equation yields
d . _
7 o1 llpanpys) S NFON anpas

S 1 ()l gangarn + 172 (120llzz + IV@2(®)ll2z) + V7,

using Proposition 4.2. Now, applying Gronwall’s lemma for the above inequality, we
have

1 Ollorers < [ (20B20 1z + 1TB2(0)12) + V7 ds
(4.11) / /0 ( ’ ’ )

t
S / 2 (l@2(t) ] 22 + [ V@2() | 22 )ds + /2.
0

The proof is complete.
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5. Proof of inviscid limit. In this section, we conclude the proof for the inviscid
limit, using the a priori estimates obtained from the previous sections. Let us first
prove the following proposition, before proving our main theorem, stated in the first
part of this paper.

PROPOSITION 5.1. There exists a time T > 0, independent of the viscosity v, such
that

sup (H’w2(t)||[2 + ||w1(t)|| 4ﬁL1/3) 5 1
0<t<1T P L
UmeT’mly mu.

Proof. First, we recall the following estimates for [[w2(?)||rz and [[w1(t)][Lanze/s
proven in Propositions 3.7 and 4.1:

d
Sl @2 + 20101+ €Daa(0) 135 + 19w2(0)13;)

S w2z + vlo1(®)llze + 201017,

t
@ Ollpsaren / s/ (@2l s + [V (t)|123 ) ds + 042,
0

t
G(t) = [2(t)]|72 +/O s~ (lwa(s)l[72 + [[V@2(s)]17)ds.
From the inequality (5.1), it is straightforward that
(5.2) [@1(t)| Langars S E72G(0)? + 012t

Thus, we have

S w272 +vllor(®)llze + 2017 (by (5.1))

S G0 + vl @y () Langars + 21010740005

<G +v (t"’/Qg(zt)l/2 + 1/1/215)4 +t72 (t5/29(t)1/2 + 1/1/275)2 (by (5.2))
S G2+ utl0G(t)? + 3 + 3G (1) + 1.

By standard ODE theory, we have a time T > 0, which is independent of v > 0, such
that G(t) is uniformly bounded for ¢ € [0,T]. Since G(¢) = [[w2(?)[|rz, the proof for
[w2(t)[|L2 is complete. The bound [|wy(t)||L1npes < 1 follows from the inequality

~

(5.2). O

We conclude this section by proving our main theorem, stated in the first part of
this paper.

Proof of Theorem 1.2. We have proved that ||w(t)||rz is uniformly bounded in
v. We recall from section 3 that

WP(t,) = —walE,0) = - (GE) + ()wna + (1)) =~ G(E) + waa + T
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where G(€) = e l€°/% and € = (z — 2(t))/v/vt. We compute

1 lz—2()|?
B, _le=Ew)® _ _
w V(t,x) — 47Tyt6 vt i = Hw2,a(€7t) + w2(§’t)”L}
= vit|wa,a(t) + wa(t) 11
S 1) (Ieza®llz + lo2(8)]12)
(5.3) < (vi).
z—z(t)|?
For ease of notation, we denote by Gz (z) and G (+)(z) the Gaussians ﬁe* =
Tr—2z 2
and 47wte =P , respectively. Our goal now is to compare the two Gaussians in

the L' norm. To this end, let us denote A = % and B — %. We have
Gz (@) = Gopy(z) =e A —e P =eP (P4 -1).
We have

B-A=vt) (lz =2 o= Z@)°) = (4vt) " (22 (2(t) — 2() + [2(1)]* — [Z(1)]*)
< (ut) " (J2l|Z(8) — 2(0)] + [2(8) — 2(8)])
Szl +1 (since |z(t) — 2z(¢)| S vt)
2(t)]
T
Here, we used the standard fact of the vortex-wave system that |z(¢)] < 1 for any

1
fixed interval of time. Indeed, one can see that |z(¢)| < |zo| + fot [vE (2(s),8)|ds <
|zo| + t]|vF|| . Hence, we get

<le— =) + =) + 15 2200y

_lz—z)? lz—z(t)]
(5.4) |Gy (@) = Gagy ()| Se” w0 M for some My > 0.

Integrating both sides of the inequality (5.4) in 2 € R?, we have

le—=(t)|2 lz—z(t)|
— ——+Mr
HGz(t) _Gz(t)HL; 5/ e vt Vvt dx.
]R2

Making the change of variables y = L\/%t) in the above integral, we thus obtain

(5.5) 1G-t) — Gzllzr S vt

Combining the inequalities (5.3) and (5.5), we get

By 1 _le—e?
wY(t,x) — e At < vt
4rvt 1
The inequality ||w® () —w® ()| Lana/s < v follows directly from the expansion (4.2),
the inequality (5.2), and the uniform bound of G(t). The proof is complete. |

Appendix A. In this section, we collect several useful lemmas used in this paper.

LEMMA A.1 (elliptic estimates). Let v = K*w be the velocity vector field obtained
from the vorticity w on R%. Define the norm || - ||panpas = || - |za + || - || gass. The
following inequalities hold:

[ollzoe S llwllzsnpars,  lvllze S lwllzinze.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/27/21 to 132.174.254.159. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2596 TOAN T. NGUYEN AND TRINH T. NGUYEN
Moreover, if [p, w(z)dx =0, then

1+ 2ol SN+ 2wl panpas.

Proof. From the Biot-Savart law (1.2), we estimate

(A1)

s [ LWy, ([ L,
r2 |7 — Y |z—y|<R |lz—y|>R |z -yl
3/4 1/4
S B I P A 70 I ¥
lz—y|<R lz—y|>R

S RV wlps + R7V2wl|ass.

Thus, choosing R = Hﬂﬁ“f, we have ||v]|pe < Hw||z/42/3||w||1L42, which gives the first
L
inequality. As for the second, we use ||w||zr < ||w||};/1p|\wH1L;1/p.

It remains to check the last inequality. We shall check it for vs, the second
component of v. The estimate on vy is similar. First, we check

(A.2) |z[[v2(2)| S /R [yllw(y)|dy.

2 |z —y

By the Biot—Savart law and fRZ w(y)dy = 0, we have

1 T1— U 1 T - )
lva(z)| = — / w(y)dy| < — TLTYL Ty,
2 R2 |$—y|2 2 R2 |Q;_y|2 ‘xlg
Now we have
11— T1 1 ) i
oyP P = aple—gp (T v ke = o).

It follows that |2|?(z1 — y1) — x1]2 — y|? < 4)z||y||x — y|. Hence,

- 4
|x|[x1 2 _%} < ly 7
[z —yl2 |2 |z —y

which gives (A.2). Now, multiplying both sides of (A.2) by |z|, we have
2 </ |z[[y| i </ lyl + 1z —yl d
T |02(T)] S w\y)|ay = yliwly)lay

P hoa(o)| 5 [ ey < [ Py

_ L e )
_/R lyl°| (y)\dy+/RQ lyllw(y)|dy.

2 |z —yl

Let us first treat the first term in the above. Repeating the argument of (A.1) for
w = [y[*|w(y)], we have

1
/ — [y} lw()|dy S N1+ |y )w @)l snpars-
r2 | — Y|

For the second term, using Holder’s inequality, we get

[ ettty = [ P wldy < 10+ Pz
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Thus,
|22 |va (@) S N1+ |2*)wll pangars.
The lemma follows. 0

LEMMA A.2. Let z1,29 € C, and let ¢ be the angle between z; and zo. Assuming
that |z1| < |z2| and sin(y) # 0, there holds that

oo

1 11
|21+ 222 [22]? [22]? 2

nl2a]" sin((n 4+ 1)¢)
22" sin(y)

(=1)
1

Proof. Let % =z =re™. We have

1 11 ( 1 1)
v al af TP \HeE )
Now, for |z| < 1, we have

1 1 , o
T+rz2 (1+2)(1+2) =(l-—z+422—)1-z242+--)

=1-(z+2)+ (P +224+72) - (B +2224+22+2)+---.

Now, for each n, we have

n+1l _ zn+l :
P + Zn—12+ RS Z,En_l =+ N — z Z — rnSIH(("?’—’— 1)¢)
z2—Z sin ¢

This concludes the proof. 0
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