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Abstract. We establish the inviscid limit of the incompressible Navier–Stokes equations on the
whole plane R2 for initial data having vorticity as a superposition of point vortices and a regular
component. In particular, this rigorously justifies the vortex-wave system from the physical Navier–
Stokes flows in the vanishing viscosity limit, a model that was introduced by Marchioro and Pulvirenti
in the early 90s to describe the dynamics of point vortices in a regular ambient vorticity background.
The proof rests on the previous analysis of Gallay in his derivation of the vortex-point system.
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1. Introduction. In this paper, we are interested in the vanishing viscosity limit
of the incompressible Navier–Stokes equations on the plane R

2 for irregular initial
data; namely, we consider

(1.1)
\partial tu

\nu + u\nu \cdot \nabla u\nu +\nabla p\nu = \nu ∆u\nu ,

\nabla \cdot u\nu = 0

for fluid velocity u\nu (x, t) \in R
2 and pressure p\nu (x, t) \in R at x \in R

2 and t \geq 0. The
interest is to understand the asymptotic behavior of solutions in the inviscid limit
\nu \rightarrow 0.

It is straightforward to show that in the absence of spatial boundaries, regular
solutions of the Navier–Stokes equations converge in strong Sobolev norms to the
regular solutions of Euler equations as \nu \rightarrow 0 (see, e.g., [15, 31, 26]). The convergence
(in L2 for velocity fields) also holds for nonsmooth solutions that include vortex
patches [5, 6, 3, 26, 30]. The problem is largely open for less regular data [2, 4],
or even for regular data in domains with a boundary (see, e.g., [28, 18, 27, 14] and
the references therein).

For initial data whose vorticity consists of a finite sum of point vortices (Dirac
masses), Gallay [10] proved that the corresponding Navier–Stokes vorticity indeed
converges weakly in the inviscid limit to the sum of point vortices whose centers
evolve according to the Helmholtz–Kirchhoff point-vortex system. In this paper, we
study the case when initial vorticity consists of one point vortex and a regular part.
The case of finitely many point vortices can be treated similarly in combination with
[10], where the vortex-point interaction is understood.
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2576 TOAN T. NGUYEN AND TRINH T. NGUYEN

Let us now detail the problem. For velocity field u\nu = (u\nu 1 , u
\nu 
2), let \omega \nu =

\partial x2
u\nu 1 - \partial x1

u\nu 2 be the corresponding vorticity. Taking advantage of the divergence-free
condition, we can recover the velocity from vorticity through the so-called Biot–Savart
law

(1.2) u\nu = \nabla \bot ∆ - 1\omega \nu = K  \star \omega \nu , K(x) =
1

2\pi 

x\bot 

| x| 2 ,

where K(x) denotes the Green kernel of \nabla \bot ∆ - 1, the  \star notation stands for the usual
convolution in variable x \in R

2, and a\bot = (a2, - a1) for vectors a \in R
2. It follows

from (1.1) that the vorticity solves

(1.3) \partial t\omega 
\nu + u\nu \cdot \nabla \omega \nu = \nu ∆\omega \nu .

We solve the vorticity equation (1.3), together with (1.2), for initial data of the form

(1.4) \omega \nu | t=0
= \delta z0(x) + \omega E0 (x),

where \delta z0 denotes the Dirac delta function centered at x = z0 and \omega E0 is the regular
component of vorticity that has compact support and vanishes in a neighborhood of
z0. The existence and uniqueness for 2D Navier–Stokes equations with such initial
data, or in fact, more generally, with initial data of finite measures, are known; see,
e.g., [7, 12, 15, 9].

1.1. Vortex-wave system. In the inviscid limit, we do not expect the limiting
solutions from (1.3)–(1.4) to satisfy Euler equations, even in a weak sense,1 but rather
the following so-called vortex-wave system coined by Marchioro and Pulvirenti [23, 25]
in the early 90s:

(1.5)

\partial t\omega 
E + (vE +H) \cdot \nabla \omega E = 0,

ż(t) = vE(t, z(t)),

\omega E| t=0
= \omega E0 , z(0) = z0,

in which vE = K  \star \omega E and H = K(\cdot  - z(t)). That is, in the limit, the regular
component of vorticity is transported by the full velocity, while the location of the
point vortex is propagated by the velocity vE generated by the regular vorticity \omega E .

The global weak solutions of (1.5) in L1\cap L\infty were already obtained in [23, 25] (see
also [17, 8] for an extension to Lp spaces), while their uniqueness is proved for Lipschitz
or even bounded data [29, 16], provided that the ambient velocity is constant in a
neighborhood of the point vortex. In particular, let us recall the following theorem.

Theorem 1.1 (see [16]). Consider initial data z0 \in R and \omega E0 \in L1 \cap L\infty (R2).
Assume that \omega E0 has compact support and is constant in a neighborhood of z0. Then,

there are a unique global solution (z(t), \omega E(t)) to (1.5) and a positive function R(t)
so that \omega E(t) remains constant in the ball centered at the point vortex z(t) with radius

R(t) for all times t \geq 0. If we assume in addition that \omega E0 \in W k,p for kp > 2 and

p > 1, then for any T \geq 0, there holds that

(1.6) sup
0\leq t\leq T

\| \omega E(t)\| Wk,p \leq CT

for some constant CT .

1In fact, it is not known whether weak solutions to Euler equations exist with point-vortex data
[23, 25].
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THE INVISCID LIMIT FOR THE VORTEX-WAVE SYSTEM 2577

Theorem 1.1 ensures that H = K(\cdot  - z(t)) remains regular in the support of
\nabla \omega E(t). The stated regularity (1.6) thus follows from that of Euler equations on R

2

[19].
The vortex-wave system (1.5) can be rigorously derived from Euler equations

by replacing the initial Dirac mass \delta z0 by \epsilon  - 2\chi \epsilon , with \chi \epsilon being the characteristic
function of the ball \{ | x  - z0| \leq \epsilon \} and taking \epsilon \rightarrow 0. This was done in [24] (see also
[1, 13]). It can also be derived from Navier–Stokes equations in the small viscosity
limit, provided that \nu \leq \epsilon \alpha for \alpha > 0, as done similarly for the vortex-point system
[20, 21, 22]. In this paper, we give a direct derivation of (1.5) as the inviscid limit of
the Navier–Stokes flows (1.3) with data (1.4).

1.2. Main result. Consider the viscous problem (1.3) with initial data (1.4).
Following [9, 10], we first decompose the vorticity into the so-called regular part \omega E,\nu 

and irregular part \omega B,\nu , both of which are advected by the full velocity vector field
u\nu = K  \star \omega \nu . Precisely, we write

(1.7) \omega \nu = \omega E,\nu + \omega B,\nu ,

where \omega E,\nu and \omega B,\nu solve

(1.8)
\partial t\omega 

E,\nu + u\nu \cdot \nabla \omega E,\nu = \nu ∆\omega E,\nu ,

\omega E,\nu | t=0 = \omega E0

and

(1.9)
\partial t\omega 

B,\nu + u\nu \cdot \nabla \omega B,\nu = \nu ∆\omega B,\nu ,

\omega B,\nu (t) \rightharpoonup \delta z0 as t\rightarrow 0+.

Here and in what follows, the weak convergence for finite measures is understood in
the following sense: \mu n \rightharpoonup \mu if and only if

\int 

R2

\phi d\mu n \rightarrow 
\int 

R2

\phi d\mu 

for all the continuous functions \phi that vanish at infinity. A direct computation shows
that the decomposition preserves the mass:

(1.10)

\int 

R2

\omega E,\nu (x, t)dx =

\int 

R2

\omega E0 (x)dx,

\int 

R2

\omega B,\nu (x, t)dx = 1

for all positive times. We shall prove that in the inviscid limit \omega E,\nu \rightarrow \omega E and \omega B,\nu 

is concentrated near the point vortex z(t), transported by vE , yielding weak solutions
to the vortex-wave system with the same initial data (\omega E0 , z0). Precisely, our main
theorem reads as follows.

Theorem 1.2. Let z0 \in R, and let \omega E0 \in W 4,4(R2), which has compact support

and vanishes in a neighborhood of z0, and let (z(t), \omega E(t)) and \omega \nu (t) be the unique

solution to the vortex-wave system (1.5) and to the Navier–Stokes equation (1.3),
respectively, with initial data \omega 0 = \omega E0 + \delta z0 . Then, there exists a time T > 0,
independent of \nu , such that the vorticity \omega \nu (t) can be written as

\omega \nu (x, t) = \omega E,\nu (x, t) + \omega B,\nu (x, t),
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2578 TOAN T. NGUYEN AND TRINH T. NGUYEN

where \omega E,\nu (t), \omega B,\nu (t) satisfy

sup
0\leq t\leq T

\| \omega E,\nu (t) - \omega E(t)\| L4\cap L4/3(R2) \leq CT \nu ,

sup
0\leq t\leq T

t - 1

\bigm\| \bigm\| \bigm\| \bigm\| \omega 
B,\nu (t, x) - 1

4\pi \nu t
e - 

| x - z(t)| 2
4νt

\bigm\| \bigm\| \bigm\| \bigm\| 
L1(R2)

\leq CT \nu 

for some constant CT independent of \nu . In particular, \omega E,\nu (t) \rightarrow \omega E(t) strongly in

L4\cap L4/3 and \omega B,\nu (t, \cdot )\rightharpoonup \delta z(t)(\cdot ) weakly in the sense of finite measures in the inviscid

limit.

Theorem 1.2 derives the vortex-wave system (1.5) as an inviscid limit of Navier–
Stokes flows on the whole plane, complementing the earlier derivation [24, 1, 13] from
Euler equations. In addition, we obtain

T \geq min

\biggl\{ 
T - 
\ast ,

1

5\| \nabla vE\| L\infty 

\biggr\} 
,

with T\ast being the smallest time when the point vortex z(t) meets the support of \omega E(s)
for some s \in [0, t], recalling from Theorem 1.1 that z(t) never meets the support of
\omega E(t) for all times. See Proposition 2.1 and Remark 3.15.

Let us now discuss some difficulties in proving the theorem. First, the initial data
containing a Dirac mass are too singular to perform a direct proof from the standard
L2 energy estimates. One then needs to construct a good approximation of solutions
to treat the singular part and control the remainder. The difficulty arises due to the
presence of a vortex-wave interaction term of the form

(1.11) vE,\nu (t, x) \cdot \nabla x

\biggl( 
1

4\pi \nu t
e - 

| x - z(t)| 2
4νt

\biggr) 
.

Formally, this term blows up when x is near the point vortex z(t) and \nu t \rightarrow 0. To
treat this singularity, we follow [10] to work in the vortex scaling variable, construct
approximate solutions, and perform weighted energy estimates to control the remain-

der. However, the weighted energy estimates with the scaling variable \xi = x - z(t)\surd 
\nu t

used in [10] are not enough to treat the interaction term (1.11), as it leaves a re-
mainder of order one but not smaller. To overcome this difficulty, we introduce an
approximate viscous vortex-wave system (section 2), along with the new point vortex

\widetilde z(t) = z(t) +O(\nu t) and the scaled variable \xi = x - \widetilde z(t)\surd 
\nu t

in order to close the estimate.

Last, we remark that we assume the initial vorticity to be \delta z0 + \omega E0 , where \omega 
E
0

is smooth and compactly supported away from the point vortex z0. The regularity
is needed in the construction of the high-order approximation of solutions. It would
be interesting to further combine our analysis with the viscous approximation near
vortex-patch solutions constructed in [30] to treat the case when \omega E0 \in L1 \cap L\infty .

1.3. Notation. We will denote A \lesssim B to mean that | A| \leq C0| B| for some
universal constant C0 > 0 independent of the viscosity \nu . We write f = O(g) to mean
that f \lesssim g, or simply O(g) to mean that the term can be bounded by C0| g| for some
constant C0 > 0 independent of \nu . We define the norms \| \cdot \| L4\cap L4/3 and \| \cdot \| L1\cap L\infty 

of a function \omega (x) in R
2 to be

\| \omega \| L4\cap L4/3 = \| \omega \| L4 + \| \omega \| L4/3 , \| \omega \| L1\cap L\infty = \| \omega \| L1 + \| \omega \| L\infty .

We also denote by m(\cdot ) the Lebesgue measure on R
2.
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2. Approximate vortex-wave system. Let (z(t), \omega E) be the global solution
to the vortex-wave system (1.5) with initial data \omega E0 \in W 4,4 that has compact support
and vanishes in a neighborhood of z0. We introduce an approximate viscous vortex-
wave system (\widetilde z(t), \widetilde \omega E), given by

(2.1)
\widetilde \omega E(x, t) = \omega E(x, t) + \nu w1,a(x, t),

\partial t\widetilde z = \widetilde vE(\widetilde z(t), t) = K  \star \widetilde \omega E(\widetilde z(t), t), \widetilde z(0) = z0,

where the added vorticity component w1,a solves

(2.2) \partial tw1,a +

\biggl( 
vE +

1\surd 
\nu t
vG
\biggl( 
x - z(t)\surd 

\nu t

\biggr) \biggr) 
\cdot \nabla w1,a + v1,a \cdot \nabla \omega E = ∆\omega E

with zero initial data. Here and in what follows, velocity and vorticity are defined
through the Biot–Savart law (1.2). For instance, v1,a = K  \star w1,a and vG(\xi ) =
1
2\pi 

\xi \bot 

| \xi | 2 (1 - e - | \xi | 2/4).

We obtain the following simple proposition.

Proposition 2.1. Let T\ast be defined by

(2.3) T\ast = inf
t\geq 0

\Bigl\{ 
t : z(t) \in \cup 0\leq s\leq tsupp(\omega 

E(s))
\Bigr\} 
,

with T\ast = \infty if z(t) never meets the support of \omega E(s) for s \in [0, t]. Then, for any

T < T\ast , the unique smooth solution w1,a(t) of (2.2) exists on [0, T ], has compact

support, vanishes in a neighborhood of z(t), and satisfies

(2.4)
m (supp(w1,a(t))) + \| w1,a(t)\| W 2,4(R2) + \| \partial tw1,a(t)\| L\infty (R2) + \| v1,a(t)\| W 2,\infty (R2) \leq CT

for t \in [0, T ] and for some constant CT independent of \nu . In addition, there holds

that

(2.5) | \widetilde z(t) - z(t)| \leq CT \nu t for any t \in [0, T ].

Here, m denotes the Lebesgue measure on R
2.

Corollary 2.2. Let T\ast be defined as in (2.3). For any T < T\ast , \widetilde \omega E(t) has

compact support, vanishes in a neighborhood of \widetilde z(t), and satisfies

(2.6) m

\bigl( 
supp(\widetilde \omega E(t))

\bigr) 
+\| \widetilde \omega E(t)\| W 2,4(R2)+\| \partial t\widetilde \omega E(t)\| L\infty (R2)+\| \widetilde vE(t)\| W 2,\infty (R2) \leq CT

for t \in [0, T ] and for some constant CT independent of \nu .

Proof. The corollary is a direct consequence of Proposition 2.1 and Theorem
1.1.

Proof of Proposition 2.1. Recall from Theorem 1.1 that \omega E(t) has compact sup-
port and vanishes in a neighborhood of z(t). This remains valid for w1,a(t) for small
times, due to the transport structure of (2.2). Precisely, w1,a(t) is supported in
\cup 0\leq s\leq tsupp(\omega E(s)). Since z(t) \not \in supp(\omega E(t)) for all positive times, we have T\ast > 0
by continuity. Thus, for any T < T\ast , there is a positive distance dT so that

(2.7) | x - z(t)| \geq dT > 0
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2580 TOAN T. NGUYEN AND TRINH T. NGUYEN

for all x \in supp (w1,a(t)) and 0 \leq t \leq T , which yields
\bigm| \bigm| \bigm| \bigm| 

1\surd 
\nu t
vG
\biggl( 
x - z(t)\surd 

\nu t

\biggr) \bigm| \bigm| \bigm| \bigm| =
1

2\pi | x - z(t)| 

\biggl( 
1 - e - 

| x - z(t)| 2
4νt

\biggr) 
\leq 1

2\pi | x - z(t)| \leq 
1

2\pi dT
.

Similar estimates hold for derivatives of vG(\cdot ) for x away from z(t). It follows from
(2.2) that

\| w1,a(t)\| L4 \leq 
\int t

0

\bigl( 
\| ∆\omega E(s)\| L4 + \| v1,a(s)\| L\infty \| \nabla \omega E(s)\| L4

\bigr) 
ds

\lesssim 

\int t

0

(1 + \| v1,a(s)\| L\infty )ds,

which yields the estimate on w1,a, upon using the elliptic estimate \| v1,a\| L\infty \lesssim 

\| w1,a\| L4\cap L4/3 and the fact that w1,a is compactly supported. The derivative esti-
mates follow similarly.

Finally, let us prove the estimate on \widetilde z(t). By definition, we write

(2.8)

\Biggl\{ 
\widetilde z(t) = z0 +

\int t
0

\bigl( 
vE(\widetilde z(s), s) + \nu v1,a(\widetilde z(s), s)

\bigr) 
ds,

z(t) = z0 +
\int t
0
vE(z(s), s)ds,

which gives

(2.9)

| \widetilde z(t) - z(t)| \leq 
\int t

0

\bigm| \bigm| (vE(\widetilde z(s), s) - vE(z(s), s))
\bigm| \bigm| ds+ \nu 

\int t

0

| v1,a(\widetilde z(s), s)| ds

\leq 
\int t

0

\| \nabla vE(s)\| L\infty | \widetilde z(s) - z(s)| ds+ \nu t sup
0\leq s\leq t

\| v1,a(s)\| L\infty .

Applying Gronwall’s lemma gives (2.5).

3. Inviscid limit for the irregular part. In this section, we give estimates on
the irregular part of vorticity \omega B,\nu , solving (1.9). Let us recall the equation

(3.1)
\partial t\omega 

B,\nu + u\nu \cdot \nabla \omega B,\nu = \nu ∆\omega B,\nu ,

\omega B,\nu | t=0 = \delta z0 .

Here, u\nu = vE,\nu + vB,\nu is the velocity field for the full Navier–Stokes equations.
Following [10], we introduce the change of variables

\xi =
x - \widetilde z(t)\surd 

\nu t

and write

(3.2) vB,\nu (x, t) =
1\surd 
\nu t
v2(\xi , t), \omega B,\nu (x, t) =

1

\nu t
w2(\xi , t).

Here, we recall that \widetilde z(t) is the solution to the approximate vortex-wave system, given
in (2.1). Note that the change of variables is consistent with the Biot–Savart law:
v2 = K  \star \xi w2. Putting the ansatz into (1.9) for \omega B,\nu , we get the following equation:

(3.3)
Φ(w2, v

E,\nu ) := (t\partial t  - \scrL )w2 +

\sqrt{} 
t

\nu 
(vE,\nu (\widetilde z(t) + \xi 

\surd 
\nu t, t) - \partial t\widetilde z(t))

\cdot \nabla \xi w2 +
1

\nu 
v2 \cdot \nabla \xi w2 = 0,
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where \scrL is defined by

\scrL w2 := ∆\xi w2 +
1

2
\xi \cdot \nabla \xi w2 + w2.

In the vanishing viscosity limit, we expect that the viscous regular velocity will
remain close to the inviscid one: vE,\nu \rightarrow vE , and hence the irregular part should tend
to the so-called Lamb–Oseen vortex, which is defined by

G(\xi ) =
1

4\pi 
e - | \xi | 2/4, vG(\xi ) =

1

2\pi 

\xi \bot 

| \xi | 2
\Bigl( 
1 - e - | \xi | 2/4

\Bigr) 
.

It follows that \scrL G = 0 and vG \cdot \nabla \xi G = 0. Therefore, the pair (G(\xi ), vE,\nu ) solves
(3.3), up to the following error term tR1(\xi , t), with

(3.4) R(\xi , t) :=
1\surd 
\nu t

\Bigl( 
vE,\nu (\widetilde z(t) + \xi 

\surd 
\nu t, t) - \widetilde vE(\widetilde z(t), t)

\Bigr) 
\cdot \nabla G,

which does not vanish in the inviscid limit, upon recalling that \partial t\widetilde z(t) = \widetilde vE(\widetilde z(t), t).
Roughly speaking, R = \scrO (1) in the small viscosity limit.

We shall construct better approximate solutions to (3.3). Here, we stress that
(3.3) involves two unknown functions w2, v

E,\nu which are coupled through the full
velocity u\nu . To leading order, let us take vE,\nu app = \widetilde vE , with \widetilde vE solving the approximate
vortex-wave system (2.1) and

(3.5) w2,app(\xi , t) = G(\xi ) + (\nu t)w2,a(\xi , t),

where w2,a is to be defined later. The pair (w2,app, v
E,\nu 
app ) thus solves (3.3), leaving an

error of the form
(3.6)

Φ(w2,app, v
E,\nu 
app ) = t(Λ + \nu (1 - \scrL ))w2,a + \nu t2\partial tw2,a + \nu t2v2,a \cdot \nabla w2,a

+
\surd 
\nu t3/2(\widetilde vE(\widetilde z(t) + \xi 

\surd 
\nu t, t) - \widetilde vE(\widetilde z(t), t)) \cdot \nabla w2,a + tR1(\xi , t),

where R1(\xi , t) is defined as in (3.4) with vE,\nu app = \widetilde vE , and

Λw := vG \cdot \nabla \xi w + v \cdot \nabla \xi G, v = K  \star w.

To treat the order one remainder R1(\xi , t), we first solve (Λ + \nu (1  - \scrL ))w2,a =  - R1

to leading order in \nu . We recall the following proposition from [10, Lemma 5 and
Remark 1].

Proposition 3.1. Let z = z(\xi ) be a function of the form

z(\xi ) = a1(r) cos(2\theta ) + a2(r) sin(2\theta ) + a3(r) cos(3\theta ) + a4(r) sin(3\theta )

for \xi = rei\theta . Assume that the coefficients satisfy

4\sum 

i=1

(| ai(r)| + | a\prime i(r)| ) \leq C0P (r)e
 - r2/4 \forall r > 0

for some polynomial P (r). Then, for any \nu > 0, there exists a unique solution w\nu to

the elliptic equation

Λw\nu + \nu (1 - \scrL )w\nu = z

such that

| w\nu (\xi )| + | \nabla w\nu (\xi )| \leq C\gamma e
 - \gamma | \xi | 2/4

for any \gamma \in (0, 1) and for some constant C\gamma that is independent of \nu .
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3.1. Vortex-wave reaction term. In this section, we show that the leading
term in the reaction term in (3.4) satisfies the assumption of Proposition 3.1. Precisely,
we introduce

(3.7) R1(\xi , t) =
1\surd 
\nu t

(\widetilde vE(\widetilde z(t) + \xi 
\surd 
\nu t, t) - \widetilde vE(\widetilde z(t), t)) \cdot \nabla G.

We have the following lemma.

Lemma 3.2. For any T > 0, there is a constant CT so that

| R1(\xi , t) - A0(\xi , t)| \leq CT (\nu t)| \xi | 4e - | \xi | 2/4,

where

(3.8)

A0(\xi , t) =
1

16\pi 2
| \xi | 2e - | \xi | 2/4

\int 

R2

sin(2\psi )

| \widetilde z(t) - y| 2 \widetilde \omega 
E(y, t)dy

 - 1

16\pi 2

\surd 
\nu t| \xi | 3e - | \xi | 2/4

\int 

R2

sin(3\psi )

| \widetilde z(t) - y| 3 \widetilde \omega 
E(y, t)dy.

Here, \psi denotes the angle between \xi and \widetilde z(t) - y.

Proof. Recalling (3.7) and G = 1
4\pi e

 - | \xi | 2/4, and using the Biot–Savart law (1.2),
we have

R1(\xi , t) =
 - 1

8\pi 
\surd 
\nu t

(\widetilde vE(\widetilde z(t) + \xi 
\surd 
\nu t, t) - \widetilde vE(\widetilde z(t), t)) \cdot \xi e - | \xi | 2/4

=
 - e - | \xi | 2/4

16\pi 2
\surd 
\nu t

\int 

R2

\xi \cdot 
\biggl( 
(\widetilde z(t) + \xi 

\surd 
\nu t - y)\bot 

| \widetilde z(t) + \xi 
\surd 
\nu t - y| 2

 - (\widetilde z(t) - y)\bot 

| \widetilde z(t) - y| 2
\biggr) 
\widetilde \omega E(y, t)dy

=
 - e - | \xi | 2/4

16\pi 2
\surd 
\nu t

\int 

R2

\xi \cdot (\widetilde z(t) - y)\bot 
\biggl( 

1

| \widetilde z(t) + \xi 
\surd 
\nu t - y| 2

 - 1

| \widetilde z(t) - y| 2
\biggr) 
\widetilde \omega E(y, t)dy

=: A1(\xi , t) +A2(\xi , t),

where A1(\xi , t), A2(\xi , t) denote the integrals over \{ | \xi | 
\surd 
\nu t \leq 1

2 | \widetilde z(t) - y| \} and \{ | \xi | 
\surd 
\nu t \geq 

1
2 | \widetilde z(t) - y| \} , respectively. Let us first treat A1(\xi , t). Applying Lemma A.2 for | \xi | 

\surd 
\nu t \leq 

1
2 | \widetilde z(t) - y| , we have

1

| \widetilde z(t) + \xi 
\surd 
\nu t - y| 2

 - 1

| \widetilde z(t) - y| 2 =
1

| \widetilde z(t) - y| 2
\infty \sum 

n=1

( - 1)n
| \xi | n

\surd 
\nu t
n

| \widetilde z(t) - y| n
sin((n+ 1)\psi )

sin(\psi )
.

Here, \psi is the angle between \xi and \widetilde z(t) - y. Thus, we get

\xi \cdot (\widetilde z(t) - y)\bot 
\biggl( 

1

| \widetilde z(t) + \xi 
\surd 
\nu t - y| 2

 - 1

| \widetilde z(t) - y| 2
\biggr) 

=

\infty \sum 

n=2

( - 1)n+1(\nu t)
n - 1
2

| \xi | n
| \widetilde z(t) - y| n sin(n\psi )

=  - (\nu t)1/2
| \xi | 2

| \widetilde z(t) - y| 2 sin(2\psi ) + (\nu t)
| \xi | 3

| \widetilde z(t) - y| 3 sin(3\psi )

+
1\surd 
\nu t

\sum 

n\geq 4

( - 1)n+1 (| \xi | 
\surd 
\nu t)n

| \widetilde z(t) - y| n sin(n\psi ),
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in which we can estimate
\bigm| \bigm| \bigm| \bigm| \bigm| 

1\surd 
\nu t

\sum 

n\geq 4

( - 1)n+1 (| \xi | 
\surd 
\nu t)n

| \widetilde z(t) - y| n sin(n\psi )

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 2
(\nu t)3/2| \xi | 4
| \widetilde z(t) - y| 4 ,

since | \xi | 
\surd 
\nu t \leq 1

2 | \widetilde z(t) - y| . Hence, we have

A1(\xi , t) =
| \xi | 2e - | \xi | 2/4

16\pi 2

\int 

| \xi | 
\surd 
\nu t\leq 1

2 | \widetilde z(t) - y| 

1

| \widetilde z(t) - y| 2 sin(2\psi )\widetilde \omega E(y, t)dy

 - 
\surd 
\nu t| \xi | 3e - | \xi | 2/4

16\pi 2

\int 

| \xi | 
\surd 
\nu t\leq 1

2 | \widetilde z(t) - y| 

1

| \widetilde z(t) - y| 3 sin(3\psi )\widetilde \omega E(y, t)dy

+\scrO (\nu t| \xi | 4e - | \xi | 2/4)

\int 

| \xi | 
\surd 
\nu t\leq 1

2 | \widetilde z(t) - y| 

1

| \widetilde z(t) - y| 4 sin(4\psi )\widetilde \omega E(y, t)dy.

We note that all the integrals above are bounded by \| \widetilde \omega E(t)\| L1 , since \widetilde z(t) is bounded
away from the support of \widetilde \omega E(t) by Corollary 2.2. Therefore, defining A0(\xi , t) as in
(3.8), we can write

A1(\xi , t) = A0(\xi , t) - 
| \xi | 2e - | \xi | 2/4

16\pi 2

\int 

| \xi | 
\surd 
\nu t\geq 1

2 | \widetilde z(t) - y| 

1

| \widetilde z(t) - y| 2 sin(2\psi )\widetilde \omega E(y, t)dy

+

\surd 
\nu t| \xi | 3e - | \xi | 2/4

16\pi 2

\int 

| \xi | 
\surd 
\nu t\geq 1

2 | \widetilde z(t) - y| 

1

| \widetilde z(t) - y| 3 sin(3\psi )\widetilde \omega E(y, t)dy

+\scrO (\nu t| \xi | 4e - | \xi | 2/4).

It remains to treat the integral over the domain \{ | \xi | 
\surd 
\nu t > 1

2 | \widetilde z(t) - y| \} . Since \widetilde z(t)
is bounded away from the support of \widetilde \omega E(t), the above (explicitly written) integrals
vanish for | \xi | 

\surd 
\nu t \leq cT for all t \in [0, T ] for some constant cT . On the other hand, for

| \xi | 
\surd 
\nu t \geq cT , we have

\bigm| \bigm| \bigm| \bigm| 
| ξ| 2e−|ξ|2/4

16π2

\int 

|ξ|
√
νt≥ 1

2
|\widetilde z(t)−y|

1

| \widetilde z(t) - y| 2 sin(2ψ)\widetilde ωE(y, t)dy
\bigm| \bigm| \bigm| \bigm| \leq CT νt| ξ| 4e−|ξ|2/4\| \widetilde ωE(t)\| L1

for some constant CT . Similarly, we also have A2(\xi , t) = 0 for | \xi | 
\surd 
\nu t \leq cT for all

t \in [0, T ] for some constant cT , while for | \xi | 
\surd 
\nu t \geq cT , we have

| A2(\xi , t)| \leq | A1(\xi , t)| + | A(\xi , t)| 
\leq CT | \xi | 2(1 + \nu t| \xi | 2)e - | \xi | 2/4\| \widetilde \omega E(t)\| L1 + CT (\nu t)

 - 1/2| \xi | e - | \xi | 2/4\| \widetilde vE\| L\infty 

\leq CT (\nu t)| \xi | 4e - | \xi | 2/4,

upon using Corollary 2.2 to bound \widetilde vE and \widetilde \omega E . The lemma follows.

3.2. Construction of an approximation solution. We now construct w2,a

that solves the following elliptic equation:

(3.9) Λw2,a + \nu (1 - \scrL )w2,a =  - A0(\xi , t),

with A0(\xi , t) defined as in (3.8). We have the following.
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Lemma 3.3. There exists a solution w2,a to (3.9) so that, for any \gamma \in (0, 1), there
holds that

| w2,a(t, \xi )| + | \nabla w2,a(\xi , t)| \leq C\gamma e
 - \gamma | \xi | 2/4

uniformly in \nu > 0. In particular, we have

(3.10) \| v2,a(t)\| L\infty +

\int 

R2

| w2,a(\xi , t)| 2e| \xi | 
2/4d\xi +

\int 

R2

| \nabla w2,a(\xi , t)| 2e| \xi | 
2/4d\xi \lesssim 1.

Proof. For each y \in R
2, we introduce

B0(\xi , y, t)=
 - 1

16\pi 2
| \xi | 2e - | \xi | 2/4 sin(2\psi )

| \widetilde z(t) - y| 2 \widetilde \omega 
E(y, t)

+
1

16\pi 2

\surd 
\nu t| \xi | 3e - | \xi | 2/4 sin(3\psi )

| \widetilde z(t) - y| 3 \widetilde \omega 
E(y, t),(3.11)

recalling \psi the angle between \xi and \widetilde z(t)  - y. If follows from (3.8) that A0(\xi , t) =\int 
R2 B0(\xi , y, t) dy. It is clear that for each y, B0(\xi , y, t) satisfies the assumption of
Proposition 3.1, and hence we can define

W2,a(\xi , y, t) :=
\Bigl( 
Λ + \nu (1 - \scrL )

\Bigr)  - 1

B0(\xi , y, t),

stressing that y \in R
2 and t \geq 0 play a role as independent parameters. The solution

w2,a is thus defined by the average of W2,a(\xi , y, t) with respect to y. The pointwise
estimates follow directly from Proposition 3.1 and the estimates on \widetilde \omega E . Taking \gamma >
1/2 and using the elliptic estimate \| v2,a\| L\infty \lesssim \| w2,a\| L1\cap L\infty , we obtain the estimates
(3.10).

3.3. Estimating the error term. Construct w2,a as in Lemma 3.3. Then,
w2,app = G(\xi ) + \nu tw2,a and vE,\nu app = \widetilde vE approximately solves (3.3) in the following
sense.

Proposition 3.4. For any \gamma \in (0, 1), there holds that

(3.12)
\bigm| \bigm| Φ(w2,app, v

E,\nu 
app )(\xi , t)

\bigm| \bigm| \leq C\gamma \nu t
3/2e - \gamma | \xi | 

2/4

for some constant C\gamma .

Proof. Fix a \gamma \in (0, 1). Using (3.9) into (3.6), we write

Φ(w2,app, v
E,ν
app )(ξ, t)= νt

2
v2,a \cdot \nabla w2,a +

\surd 
νt

3/2(\widetilde vE(\widetilde z(t) + ξ
\surd 
νt, t) - \widetilde vE(\widetilde z(t), t)) \cdot \nabla w2,a

+ νt
2
∂tw2,a + t(R1(ξ, t) - A0(ξ, t))

=:

4\sum 

i=1

Φi(ξ, t).

Let us estimate each term on the right-hand side. Using Proposition 2.1 and Lemma
3.3, we get

| Φ1(\xi , t)| \leq \nu t2\| v2,a(t)\| L\infty | \nabla w2,a(\xi , t)| \lesssim \nu t2e - \gamma | \xi | 
2/4.

Similarly, using Corollary 2.2, we bound

| \widetilde vE(\xi 
\surd 
\nu t+ \widetilde z(t), t) - \widetilde vE(\widetilde z(t), t)| \lesssim | \xi | 

\surd 
\nu t\| \nabla \widetilde vE\| L\infty 
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and hence

| Φ2(\xi , t)| \leq 
\surd 
\nu t3/2| \widetilde vE(\xi 

\surd 
\nu t+ \widetilde z(t), t) - \widetilde vE(\widetilde z(t), t)| | \nabla w2,a(\xi , t)| 

\lesssim \nu t2| \xi | e - \gamma \prime | \xi | 2/4

\lesssim \nu t2e - \gamma | \xi | 
2/4,

upon taking \gamma \prime from Lemma 3.3 so that \gamma \prime > \gamma .
Next, we treat Φ3(\xi , t) = \nu t2\partial tw2,a. Since

\surd 
t\partial t commutes with Λ and \scrL , (3.9)

gives
(\nu (1 - \scrL ) + Λ) (

\surd 
t\partial tw2,a) =  - 

\surd 
t\partial tA0(\xi , t).

To apply Proposition 3.1, it suffices to prove that

(3.13)
\surd 
t| \partial tA0(\xi , t)| \lesssim | \xi | 2(1 + | \xi | )e - | \xi | 2/4.

Indeed, we recall from (3.11) that
(3.14)\left\{ 
 
 
A0(ξ, t) =

\int 
R2 B0(ξ, y, t)dy,

B0(ξ, y, t) =
−1

16π2 | ξ| 2e−|ξ|2/4 sin(2ψ)

|\widetilde z(t)−y|2 \widetilde ω
E(y, t) + 1

16π2

\surd 
νt| ξ| 3e−|ξ|2/4 sin(3ψ)

| \widetilde z(t) - y| 3 \widetilde ω
E(y, t),

where \psi is the angle between \xi and \widetilde z(t)  - y. By Corollary 2.2, \widetilde \omega E(t) and \partial t\widetilde \omega E(t)
are both bounded, compactly supported, and vanishing in a neighborhood of \widetilde z(t). In
particular, | \widetilde z(t) - y| is bounded below away from zero for y in the support of \widetilde \omega E(t).
The estimate (3.13) thus follows, upon recalling that \partial t\widetilde z(t) = \widetilde vE(\widetilde z(t), t) and \widetilde vE is
bounded (Corollary 2.2). Arguing similarly as in Lemma 3.3, we obtain

| 
\surd 
t\partial tw2,a(\xi , t)| \leq C\gamma e

 - \gamma | \xi | 2/4.

Finally, the last term Φ4(\xi , t) = t(R1(\xi , t) - A0(\xi , t)) is already treated in Lemma 3.2.
This concludes the proof.

3.4. Equations for the remainder. Having introduced the approximate so-
lutions w2,app and vE,\nu app , let us now study the remainder. Precisely, we search for
solutions of (3.3) in the following form:

(3.15)

\Biggl\{ 
w2 = G(\xi ) + (\nu t)w2,a + (\nu t)w̄2,

vE,\nu = \widetilde vE + \nu 3/2v̄1,

in which \widetilde vE and w2,a are constructed in the previous sections. Putting this ansatz
into (3.3), we have

(t\partial t  - \scrL + 1)w̄2 +
1

\nu 
Λw̄2 +

\sqrt{} 
t

\nu 
(\widetilde vE  - \̇widetilde z) \cdot \nabla w̄2 + t(v̄2 \cdot \nabla w2,a + v2,a \cdot \nabla w̄2)

+
1\surd 
t
(v̄1 \cdot \nabla G) + \nu 

\surd 
t(v̄1 \cdot \nabla w2,a) + t(v̄2 \cdot \nabla w̄2) + \nu 

\surd 
t(v̄1 \cdot \nabla w̄2)

+
1

\nu t
Φ(w2,app, v

E,\nu 
app ) = 0,(3.16)

in which we stress that \widetilde vE and v̄1 are functions of (x, t), while G,w2,a, and w̄2 are
functions of \xi , t. Again, velocity and vorticity are defined through the Biot–Savart
law in their respective variables.
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Our goal is to derive estimates for the remainder solution (w̄2, v̄1) in suitable
function spaces. Precisely, we shall work with the following weighted L2 norm:

\| \omega \| 2L2
p
:=

\int 

R2

| \omega (\xi )| 2p(\xi )d\xi , p(\xi ) = e| \xi | 
2/4.

The weight function is natural in view of the following lemma.

Lemma 3.5. The operator \scrL is self-adjoint in L2
p, while Λ is skew-symmetric in

L2
p. In particular, we have \scrL \leq 0 and

\langle Λ\omega , \omega \rangle L2
p
= 0

for any \omega (\xi ) in the domain of Λ.

Proof. The lemma follows from a direct calculation; see [11, Lemma 4.8].

Lemma 3.6 (elliptic estimates). Let v̄2 = K  \star \xi w̄2 be the velocity obtained from

w̄2 by the Biot–Savart law. There holds that

\| v̄2\| L\infty \lesssim \| w̄2\| L2
p
+ \| w̄2\| 1/2L2

p
\| \nabla w̄2\| 1/2L2

p
.

Proof. By Hölder’s inequality and Sobolev embeddings, we have

\| v̄2\| L\infty \lesssim \| w̄2\| 1/2L4/3\| w̄2\| 1/2L4 \lesssim \| w̄2\| 1/2L2
p

\Bigl( 
\| w̄2\| L2

p
+ \| \nabla w̄2\| L2

p

\Bigr) 1/2

\lesssim \| w̄2\| 1/2L2
p

\Bigl( 
\| w̄2\| 1/2L2

p
+ \| \nabla w̄2\| 1/2L2

p

\Bigr) 

= \| w̄2\| L2
p
+ \| w̄2\| 1/2L2

p
\| \nabla w̄2\| 1/2L2

p
.

The proof is complete.

3.5. Estimates for the remainder. This section is devoted to proving the
following proposition.

Proposition 3.7. There are a positive constant \kappa and a positive time T so that

(3.17)
t
d

dt
\| w̄2(t)\| 2L2

p
+ \kappa (\| (1 + | \xi | )w̄2(t)\| 2L2

p
+ \| \nabla w̄2(t)\| 2L2

p
)

\lesssim t\| w̄2(t)\| 5L2
p
+ \nu t\| v̄1(t)\| 4L\infty + t - 1\| v̄1(t)\| 2L\infty 

uniformly in \nu and in t \in [0, T ].

The proposition follows from weighted energy estimates. To proceed, using (3.16)
for t\partial tw̄2, we compute

(3.18) t
d

dt
\| w̄2(t)\| 2L2

p
=

\int 

R2

(t\partial tw̄2(\xi , t))w̄2(\xi , t)p(\xi )d\xi =

9\sum 

i=1

\scrE i(t),
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where \left\{ 
                 
                 

\scrE 1(t) =
\int 
R2 p(\xi )(\scrL w̄2  - w̄2)(\xi , t)d\xi ,

\scrE 2(t) =  - 1
\nu 

\int 
R2 Λw̄2(\xi , t)w̄2(\xi , t)p(\xi )d\xi ,

\scrE 3(t) =  - 
\sqrt{} 

t
\nu 

\int 
R2((\widetilde vE  - \̇widetilde z) \cdot \nabla w̄2)w̄2(\xi , t)p(\xi )d\xi ,

\scrE 4(t) =  - t
\int 
R2(v̄2 \cdot \nabla w2,a + v2,a \cdot \nabla w̄2)w̄2(\xi , t)p(\xi )d\xi ,

\scrE 5(t) =  - t
\int 
R2 (v̄2 \cdot \nabla w̄2) w̄2(\xi , t)p(\xi )d\xi ,

\scrE 6(t) =  - \nu 
\surd 
t
\int 
R2 (v̄1 \cdot \nabla w̄2) w̄2(\xi , t)p(\xi )d\xi ,

\scrE 7(t) =  - 1
\nu t

\int 
R2 Φapp(\xi , t)w̄2(\xi , t)p(\xi )d\xi ,

\scrE 8(t) =  - 1\surd 
t

\int 
R2(v̄1 \cdot \nabla G)w̄2(\xi , t)p(\xi )d\xi ,

\scrE 9(t) =  - \nu 
\surd 
t
\int 
R2 (v̄1 \cdot \nabla w2,a) w̄2(\xi , t)p(\xi )d\xi .

Let us estimate each term \scrE i. Thanks to Lemma 3.5, we have \scrE 2(t) = 0, while
\scrE 1(t) \leq  - \| w̄2(t)\| 2L2

p
. In fact, the following lemma gives a better coercive estimate for

\scrE 1(t).
Lemma 3.8 (diffusive term). There holds that

\scrE 1(t) \leq  - 1

24

\Bigl( 
\| \nabla w̄2(t)\| 2L2

p
+ \| (1 + | \xi | )w̄2(t)\| 2L2

p

\Bigr) 
.

Proof. Recalling \scrL = 1 + 1
2\xi \cdot \nabla +∆ and integrating by parts, we compute

\int 

R2

(\scrL w̄2  - w̄2)(ξ, t)p(ξ)w̄2(ξ, t)dξ

=

\int 

R2

\biggl( 
∆w̄2 +

1

2
ξ \cdot \nabla w̄2

\biggr) 
w̄2(ξ, t)p(ξ)dξ

=  - 
\int 

R2

| \nabla w̄2| 2p(ξ)dξ  - 
\int 

R2

w̄2(\nabla p \cdot \nabla w̄2)dξ +
1

4

\int 

R2

\bigl( 
ξ \cdot \nabla (| w̄2| 2)

\bigr) 
p(ξ, t)dξ

=  - 
\int 

R2

| \nabla w̄2| 2p(ξ, t)dξ  - 
\int 

R2

w̄2(\nabla p \cdot \nabla w̄2)dξ  - 
1

2

\int 

R2

| w̄2| 2p(ξ, t)dξ  - 
1

4

\int 

R2

| w̄2| 2(ξ \cdot \nabla p)dξ.

The second integral is treated by

 - 
\int 

R2

w̄2(\nabla p \cdot \nabla w̄2)d\xi \leq 
3

4

\int 

R2

| \nabla w̄2| 2p(\xi , t) +
1

3

\int 

R2

| \nabla p| 2
p2

| w̄2| 2p(\xi )d\xi .

Recalling now the weight function p(\xi ) = e| \xi | 
2/4, we obtain the lemma at once.

Lemma 3.9. There holds that

\scrE 3(t) \lesssim t\| \xi w̄2(t)\| 2L2
p
.

Proof. Integrating by parts and using the fact that \widetilde vE  - \̇widetilde z is divergence-free, we
have

\scrE 3(t) =  - 
\sqrt{} 
t

\nu 

\int 

R2

\Bigl( 
(\widetilde vE  - \̇widetilde z) \cdot \nabla w̄2

\Bigr) 
w̄2(\xi , t)p(\xi )d\xi 

=
1

2

\sqrt{} 
t

\nu 

\int 

R2

(\widetilde vE  - \̇widetilde z) \cdot \nabla p(\xi )| w̄2(\xi , t)| 2d\xi .

Recalling \̇widetilde z = \widetilde vE(\widetilde z(t), t) and using Corollary 2.2, we estimate

| \widetilde vE(\xi 
\surd 
\nu t+ \widetilde z(t), t) - \̇widetilde z(t)| = | \widetilde vE(\xi 

\surd 
\nu t+ \widetilde z(t), t) - \widetilde vE(\widetilde z(t), t)| \lesssim 

\surd 
\nu t| \xi | .

The lemma follows, upon using \nabla p = 1
2\xi p(\xi ).
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Lemma 3.10. There holds that

\scrE 4(t) \lesssim t
\Bigl( 
\| w̄2(t)\| 2L2

p
+ \| \nabla w̄2(t)\| 2L2

p

\Bigr) 
.

Proof. We write \scrE 4(t) =  - t (\scrE 41(t) + \scrE 42(t)), where
\Biggl\{ 
\scrE 41(t) =

\int 
R2 (v̄2 \cdot \nabla w2,a) w̄2(\xi , t)p(\xi )d\xi ,

\scrE 42(t) =
\int 
R2 (v2,a \cdot \nabla w̄2) w̄2(\xi , t)p(\xi )d\xi .

Using Hölder’s inequality, we estimate

| \scrE 41(t)| \leq \| v̄2(t)\| L\infty \| w̄2(t)\| L2
p

\biggl( \int 

R2

| \nabla w2,a(\xi , t)| 2p(\xi )d\xi 
\biggr) 1/2

,

in which the integral is bounded by Lemma 3.3. As for \| v̄2(t)\| L\infty , we use the elliptic
estimate and Sobolev embedding, giving

\| v̄2\| 2L\infty \lesssim \| w̄2\| L4/3\| w̄2\| L4 \lesssim \| w̄2\| L4/3\| w̄2\| 1/2L2 (\| w̄2\| L2 + \| \nabla w̄2\| L2)1/2.

Recalling the weight function p = e| \xi | 
2/4, we have \| w̄2\| L4/3 \lesssim \| w̄2\| L2

p
. Thus, we get

(3.19) \| v̄2\| 2L\infty \lesssim \| w̄2\| 3/2L2
p
(\| w̄2\| L2

p
+ \| \nabla w̄2\| L2

p
)1/2 \lesssim \| w̄2\| 2L2

p
+ \| \nabla w̄2\| 2L2

p
,

and so

| \scrE 41(t)| \lesssim \| w̄2(t)\| L2
p
(\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p
) \lesssim \| w̄2(t)\| 2L2

p
+ \| \nabla w̄2(t)\| 2L2

p
.

On the other hand, the estimate on \scrE 42(t) is direct, since v2,a is bounded. The lemma
follows.

Lemma 3.11. There holds that

\scrE 5(t) \lesssim t
\Bigl( 
\| w̄2(t)\| 2L2

p
+ \| w̄2(t)\| 5L2

p
+ \| \nabla w̄2(t)\| 2L2

p

\Bigr) 
.

Proof. By Hölder’s inequality and (3.19), we get

| \scrE 5(t)| = t

\bigm| \bigm| \bigm| \bigm| 
\int 

R2

(v̄2 \cdot \nabla w̄2) w̄2(\xi , t)p(\xi )d\xi 

\bigm| \bigm| \bigm| \bigm| 

\leq t\| v̄2(t)\| L\infty \| w̄2(t)\| L2
p
\| \nabla w̄2(t)\| L2

p

\lesssim t
\Bigl( 
\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p

\Bigr) 1/4
\| w̄2(t)\| 7/4L2

p
\| \nabla w̄2(t)\| L2

p
.

The lemma follows upon using Young’s inequality.

Lemma 3.12. There holds that

\scrE 6(t) \lesssim \nu t\| v̄1(t)\| 4L\infty + \nu t\| w̄2(t)\| 4L2
p
+ \nu \| \nabla w̄2(t)\| 2L2

p
.

Proof. Again by Hölder’s inequality, we get

| \scrE 6(t)| = \nu 
\surd 
t

\bigm| \bigm| \bigm| \bigm| 
\int 

R2

(v̄1 \cdot \nabla w̄2) w̄2(\xi , t)p(\xi )d\xi 

\bigm| \bigm| \bigm| \bigm| 

\lesssim \nu t1/2\| v̄1(t)\| L\infty \| w̄2(t)\| L2
p
\| \nabla w̄2(t)\| L2

p
,

which yields the lemma upon using Young’s inequality.
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Lemma 3.13. There holds that

\scrE 7(t) \lesssim t1/2\| w̄2(t)\| L2
p
.

Proof. Using the estimates from (3.12) for a fixed \gamma \in 
\bigl( 
1
2 , 1
\bigr) 
and Hölder’s in-

equality, we get

| \scrE 7(t)| \leq (\nu t) - 1

\int 

R2

| Φapp(\xi , t)| | w̄2(\xi , t)| p(\xi )d\xi 

\leq (\nu t) - 1

\int 

R2

(\nu t3/2)C\gamma e
 - \gamma | \xi | 2/4| w̄2(\xi , t)| p(\xi )d\xi 

\leq C\gamma t
1/2

\biggl( \int 

R2

e - 2\gamma | \xi | 2/4p(\xi )d\xi 

\biggr) 1/2\biggl( \int 

R2

| w̄2(\xi , t)| 2p(\xi )d\xi 
\biggr) 1/2

\lesssim t1/2\| w̄2(t)\| L2
p
,

where we used \gamma > 1/2. This concludes the proof.

Lemma 3.14. There hold that

\scrE 8(t) \lesssim t - 1/2\| v̄1(t)\| L\infty \| w̄2(t)\| L2
p
, \scrE 9(t) \lesssim \nu t1/2\| v̄1(t)\| L\infty \| w̄2(t)\| L2

p
.

Proof. We recall that

\scrE 8(t) =  - 1\surd 
t

\int 

R2

(v̄1(\xi , t) \cdot \nabla G(\xi ))w̄2(\xi , t)p(\xi )d\xi ,

where G(\xi ) = 1
4\pi e

 - | \xi | 2/4 and p(\xi ) = e| \xi | 
2/4. We have

| \scrE 8(t)| \lesssim t - 1/2\| v̄1(t)\| L\infty 

\int 

R2

| \xi | | w̄2(\xi , t)| d\xi \lesssim t - 1/2\| v̄1(t)\| L\infty \| w̄2(t)\| L2
p
.

The proof for \scrE 9(t) is identical, upon recalling the pointwise bound on \nabla w2,a from
Lemma 3.3.

Proof of Proposition 3.7. We are now ready to prove Proposition 3.7. Collecting
and combining all the estimates from the previous lemmas, we get

(3.20)

t
d

dt
\| w̄2(t)\| 2L2

p
+ \kappa (\| (1 + | \xi | )w̄2(t)\| 2L2

p
+ \| \nabla w̄2(t)\| 2L2

p
)

\lesssim t
\Bigl( 
\| (1 + | \xi | )w̄2(t)\| 2L2

p
+ \| w̄2(t)\| 5L2

p
+ \| \nabla w̄2(t)\| 2L2

p

\Bigr) 
+ t1/2\| w̄2(t)\| L2

p

+ \nu t\| v̄1(t)\| 4L\infty + \nu t\| w̄2(t)\| 4L2
p
+ \nu \| \nabla w̄2(t)\| 2L2

p
+ t - 1/2\| v̄1(t)\| L\infty \| w̄2(t)\| L2

p

for \kappa = 1/24. Taking t and \nu sufficiently small and using Young’s inequality, we
obtain

(3.21)
t
d

dt
\| w̄2(t)\| 2L2

p
+
\kappa 

2
(\| (1 + | \xi | )w̄2(t)\| 2L2

p
+ \| \nabla w̄2(t)\| 2L2

p
)

\lesssim t\| w̄2(t)\| 5L2
p
+ \nu t\| v̄1(t)\| 4L\infty + t - 1\| v̄1(t)\| 2L\infty .

This completes the proof of the proposition.
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Remark 3.15. The constraint on the smallness of times T is precisely due to the
term \scrE 3(t) treated in Lemma 3.9. The remaining terms are treated using the standard
Young’s inequality. Hence, we in fact obtain
(3.22)

t
d

dt
\| w̄2(t)\| 2L2

p
+ \kappa 
\Bigl( 
\| w̄2(t)\| 2L2

p
+ \| \nabla w̄2(t)\| 2L2

p
+ (1 - 5t\| \nabla vE(t)\| L\infty )\| \xi w̄2(t)\| 2L2

p

\Bigr) 

\lesssim t(\| w̄2(t)\| 2L2
p
+ \| w̄2(t)\| 5L2

p
) + \nu t\| v̄1(t)\| 4L\infty + t - 1\| v̄1(t)\| 2L\infty 

for all positive times, as long as the estimates from Proposition 2.1 and Corollary 2.2
on the approximate vortex-wave solutions are valid. This yields a lower bound on the
smallness of T so that sup0\leq t\leq T 5t\| \nabla vE(t)\| L\infty \leq 1.

Remark 3.16. One may try to improve the time interval by introducing a new
weight function, as done similarly in [10], pnew(\xi ) = p(\xi )(1 + \nu tq(\xi , t)), where q(\xi , t)
solves

vG(\xi ) \cdot \nabla \xi q =
1\surd 
\nu t

\Bigl( 
vE(z(t) + \xi 

\surd 
\nu t, t) - vE(z(t), t)

\Bigr) 
\cdot \xi ,

whose solution is, however, unclear for large \xi 
\surd 
\nu t.

4. Inviscid limit for the regular part. In the previous section, we have proved
the a priori estimate for \omega B,\nu and vE,\nu in the weighted energy space with the rescaled

variable \xi = x - \widetilde z(t)\surd 
\nu t

. In this section, we derive estimates on the regular vorticity

component \omega E,\nu , which solves

(4.1) \partial t\omega 
E,\nu + u\nu \cdot \nabla \omega E,\nu = \nu ∆\omega E,\nu 

with the initial data \omega E0 . We write

(4.2)

\left\{ 
     
     

\omega E,\nu (t, x) = \widetilde \omega E(t, x) + \nu 3/2w̄1(t, x),

vE,\nu (t, x) = \widetilde vE(t, x) + \nu 3/2v̄1(t, x),

vB,\nu (t, x) = 1\surd 
\nu t
vG
\Bigl( 
x - \widetilde z(t)\surd 

\nu t

\Bigr) 
+
\surd 
\nu t(v2,a + v̄2)

\Bigl( 
x - \widetilde z(t)\surd 

\nu t
, t
\Bigr) 
,

u\nu (t, x) = vE,\nu (t, x) + vB,\nu (t, x),

where (\widetilde z(t), \widetilde \omega E) is the solution to the viscous vortex-wave system introduced in section
2, while vG and v2,a are constructed in section 3. Here, we note that the form of the
common velocity u\nu (t, x) is compatible with the form in (3.15) and (3.2) in the scaled
variable \xi . The velocity v̄2 is kept the same as in the previous section, with \xi replaced

by x - \widetilde z(t)\surd 
\nu t

and v̄2 = K \star \xi w̄2. It is natural to work in the original variables (x, t) instead

of (\xi , t), since \omega E,\nu (t) solves (4.1) with regular initial data \omega E0 . Hence, one does not
expect \omega E,\nu to have the localized behavior near the point vortex. Roughly speaking,
we want to get an a priori bound on \| v̄1(t)\| L\infty (in terms of w̄2(t)) on a time interval
independent of \nu . Precisely, we shall prove the following proposition.

Proposition 4.1. Let w̄1 solve (4.1) and (4.2). There exists a positive time T ,
independent of \nu > 0, such that

\| w̄1(t)\| L4\cap L4/3 \lesssim 

\int t

0

s3/2(\| w̄2(t)\| L2
p
+ \| \nabla w̄2(t)\| L2

p
)ds+ \nu 1/2t

for t \in [0, T ].
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4.1. Equations for the remainder. In this subsection, we derive the equations
for the remainder w̄1 as well as v̄2 appearing in (4.1) and (4.2). Putting the ansatz
(4.2) into (4.1) and using (2.2), we obtain the following transport-diffusion equation
for w̄1:

\partial tw̄1 + u\nu \cdot \nabla w̄1  - \nu ∆w̄1 = f(x, t),

where f(x, t) are given by

f(x, t)=  - 1

\nu 
\surd 
t

\biggl( 
vG
\biggl( 
x - \widetilde z(t)\surd 

\nu t

\biggr) 
 - vG

\biggl( 
x - z(t)\surd 

\nu t

\biggr) \biggr) 
\cdot \nabla w1,a  - v̄1 \cdot \nabla \widetilde \omega E

 - 
\surd 
t

\nu 
v̄2 \cdot \nabla \widetilde \omega E

 - 
\surd 
\nu (v1,a \cdot \nabla w1,a) +

1

2\pi \nu 3/2
(x - z(t))\bot 

| x - z(t)| 2 e
 - | x - z(t)| 2

4νt \cdot \nabla \omega E +
\surd 
\nu ∆w1,a.

(4.3)

4.2. Estimating the forcing term f(x, t). In this subsection, we prove the
following proposition.

Proposition 4.2. Let f(x, t) be defined as in (4.3). There holds that

\| f(t)\| L4\cap L4/3 \lesssim \| w̄1(t)\| L4\cap L4/3 + t3/2
\Bigl( 
\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p

\Bigr) 
+
\surd 
\nu .

We will give a proof at the end of this subsection, after proving some useful
lemmas. First, let us write f as

f(x, t) = f1(x, t) + f2(x, t) + f3(x, t),

where

\left\{ 
     
     

f1(x, t) =  - 1
\nu 
\surd 
t

\Bigl( 
vG
\Bigl( 
x - \widetilde z(t)\surd 

\nu t

\Bigr) 
 - vG

\Bigl( 
x - z(t)\surd 

\nu t

\Bigr) \Bigr) 
\cdot \nabla w1,a  - 

\surd 
\nu (v1,a \cdot \nabla w1,a)

+ 1
2\pi \nu 3/2

(x - z(t))\bot 
| x - z(t)| 2 e

 - | x - z(t)| 2
4νt \cdot \nabla \omega E +

\surd 
\nu ∆w1,a,

f2(x, t) =  - v̄1 \cdot \nabla \widetilde \omega E ,
f3(x, t) =  - 

\surd 
t
\nu v̄2 \cdot \nabla \widetilde \omega E .

In what follows, we bound \| fi(t)\| L4\cap L4/3 for each i \in \{ 1, 2, 3\} .
Lemma 4.3. There holds that

\| f1(t)\| L4\cap L4/3 \lesssim 
\surd 
\nu 

uniformly in \nu > 0.

Proof. First, we see that
\bigm\| \bigm\| \bigm\| \bigm\|  - 

\surd 
ν(v1,a \cdot \nabla w1,a) - 

1

2πν3/2
(x - z(t))⊥

| x - z(t)| 2 e
− | x - z(t)| 2

4νt \cdot \nabla ωE +
\surd 
ν∆ω1,a

\bigm\| \bigm\| \bigm\| \bigm\| 
L4∩L4/3

\lesssim 
\surd 
ν

thanks to the fact that \omega E is supported away from z(t) and \widetilde z(t), and w1,a is bounded
in W 2,4, by Proposition 2.1. Now, for the first term in f1, it suffices to prove that

(4.4)
1\surd 
\nu t

\bigm| \bigm| \bigm| \bigm| v
G

\biggl( 
x - \widetilde z(t)\surd 

\nu t

\biggr) 
 - vG

\biggl( 
x - z(t)\surd 

\nu t

\biggr) \bigm| \bigm| \bigm| \bigm| \lesssim \nu t \forall x \in supp(w1,a).
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As long as the above claim is proved, we would get

\bigm\| \bigm\| \bigm\| \bigm\| 
1

\nu 
\surd 
t

\biggl( 
vG
\biggl( 
x - \widetilde z(t)\surd 

\nu t

\biggr) 
 - vG

\biggl( 
x - z(t)\surd 

\nu t

\biggr) \biggr) 
\cdot \nabla w1,a

\bigm\| \bigm\| \bigm\| \bigm\| 
L4\cap L4/3

\lesssim 
\surd 
\nu \| \nabla w1,a(t)\| L4\cap L4/3(supp(w1,a)) \lesssim 

\surd 
\nu 

by Proposition 2.1.
Now we shall prove the inequality (4.4). To this end, let us denote

(4.5) \eta 1 = x - \widetilde z(t) and \eta 2 = x - z(t).

The left-hand side of (4.4) can be rewritten as

(4.6)
1\surd 
\nu t

\biggl( 
vG
\biggl( 
\eta 1\surd 
\nu t

\biggr) 
 - vG

\biggl( 
\eta 2\surd 
\nu t

\biggr) \biggr) 
=

1

2\pi 
(V1(\eta 1, \eta 2) + V2(\eta 1, \eta 2)) ,

where \left\{ 
  
  

V1(\eta 1, \eta 2) =
\Bigl( 
\eta \bot 1
| \eta 1| 2  - \eta \bot 2

| \eta 2| 2
\Bigr) 
,

V2(\eta 1, \eta 2) =
\Bigl( 
\eta \bot 2
| \eta 2| 2 e

 - | \eta 2| 2/4\nu t  - \eta \bot 1
| \eta 1| 2 e

 - | \eta 1| 2/4\nu t
\Bigr) 
.

When x \in supp(\widetilde \omega E(t)), by the properties established in section 2, we have a
positive constant cT , independent of \nu , such that

(4.7) | x - z(t)| \geq cT and | x - \widetilde z(t)| \geq cT \forall t \in [0, T ].

This implies that | \eta 1| \geq cT and | \eta 2| \geq cT , upon recalling the notations (4.5). Thus,
we get

| V1(\eta 1, \eta 2)| =
\bigm| \bigm| \bigm| \bigm| 
\eta \bot 1
| \eta 1| 2

 - \eta \bot 2
| \eta 2| 2

\bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| 
\eta \bot 1
| \eta 1| 2

 - \eta \bot 2
| \eta 1| 2

\bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| 
\eta \bot 2
| \eta 1| 2

 - \eta \bot 2
| \eta 2| 2

\bigm| \bigm| \bigm| \bigm| 

\leq | \eta 1  - \eta 2| 
| \eta 1| 2

+ | \eta 2| 
\bigm| \bigm| | \eta 2| 2  - | \eta 1| 2

\bigm| \bigm| 
| \eta 1| 2| \eta 2| 2

\leq c - 2
T | \eta 1  - \eta 2| +

1

| \eta 1| 2| \eta 2| 
| | \eta 2|  - | \eta 1| | (| \eta 1| + | \eta 2| ) \lesssim | \eta 1  - \eta 2| 

= | (x - \widetilde z(t)) - (x - z(t))| = | \widetilde z(t) - z(t)| \lesssim \nu t (by the estimate (2.5)).

Hence,

(4.8) | V1(\eta 1, \eta 2)| \lesssim \nu t.

Now, for V2(\eta 1, \eta 2), note that we shall only consider x \in supp(\widetilde \omega E(t)), in which we
get (4.7). In this case, we get

(4.9) | V2(\eta 1, \eta 2)| \leq | \eta 2|  - 1e - | \eta 2| 2/4\nu t + | \eta 1|  - 1e - | \eta 1| 2/4\nu t \leq 2c - 1
T e - c

2
T /4\nu t \lesssim \nu t.

Combining (4.6), (4.8), and (4.9), we get the desired inequality (4.4). The bound for
the first term is complete. This concludes the proof.

Lemma 4.4. There holds that

\| f2(t)\| L4\cap L4/3 \lesssim \| w̄1(t)\| L4\cap L4/3 .
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Proof. We have

\| f2(t)\| L4∩L4/3 = \| v̄1(t) \cdot \nabla \widetilde ωE(t)\| L4∩L4/3 \leq \| v̄1(t)\| L\infty \| \nabla \widetilde ωE(t)\| L4∩L4/3 \lesssim \| w̄1(t)\| L4∩L4/3

by Corollary 2.2 and Lemma A.1. The proof is complete.

Lemma 4.5. There holds that

\| f3(t)\| L4\cap L4/3 \lesssim t3/2
\Bigl( 
\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p

\Bigr) 
.

Proof. We recall that

f3(x, t) =

\surd 
t

\nu 
v̄2 (\xi , t) \cdot \nabla \widetilde \omega E(t, x), \xi =

x - \widetilde z(t)\surd 
\nu t

.

We shall only consider x \in supp(\widetilde \omega E(t)). Since \widetilde \omega E(t) is supported away from \widetilde z(t),
there exists dT > 0 such that

(4.10) | x - \widetilde z(t)| \geq dT for x \in supp(\widetilde \omega E(t)).
Since

\int 
R2 w̄2(\xi , t)d\xi = 0, by Lemma A.1, we get

\| (1 + | \xi | 2)v̄2(t)\| L\infty \lesssim \| (1 + | \xi | 2)w̄2(t)\| L4 + \| (1 + | \xi | 2)w̄2(t)\| L4/3

\lesssim \| w̄2(t)\| L2
p
+ \| \nabla w̄2(t)\| L2

p
.

This implies that, for x in the support of \widetilde \omega E(t), we get

| v̄2(t, \xi )| \lesssim 
1

1 + | \xi | 2
\Bigl( 
\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p

\Bigr) 
\lesssim (\nu t)

\Bigl( 
\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p

\Bigr) 
.

Thus, we get

\| f3(t)\| L4\cap L4/3 \lesssim 

\surd 
t

\nu 
\| v̄2 (\xi , t) \cdot \nabla \widetilde \omega E(t, x)\| L4\cap L4/3 \lesssim t3/2

\Bigl( 
\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p

\Bigr) 
.

The proof is complete.

We conclude this subsection by proving Proposition 4.2.

Proof of Proposition 4.2. The proof follows as a direct consequence of the previ-
ous lemmas for fi, i \in \{ 1, 2, 3\} , in this subsection.

4.3. A priori estimates for the remainder. In this subsection, we give a
proof for our main proposition (Proposition 4.1), stated at the beginning of section
4. We recall from section 4.1 that w̄1 solves the heat transport equation

\partial tw̄1 + u\nu \cdot \nabla w̄1  - \nu ∆w̄1 = f(x, t).

A standard L4 \cap L4/3 estimate for the heat transport equation yields

d

dt
(\| w̄1(t)\| L4\cap L4/3) \lesssim \| f(t)\| L4\cap L4/3

\lesssim \| w̄1(t)\| L4\cap L4/3 + t3/2
\Bigl( 
\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p

\Bigr) 
+
\surd 
\nu ,

using Proposition 4.2. Now, applying Gronwall’s lemma for the above inequality, we
have

(4.11)

\| w̄1(t)\| L4\cap L4/3 \lesssim 

\int t

0

\Bigl( 
s3/2(\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p
) +

\surd 
\nu 
\Bigr) 
ds

\lesssim 

\int t

0

s3/2(\| w̄2(t)\| L2
p
+ \| \nabla w̄2(t)\| L2

p
)ds+ \nu 1/2t.

The proof is complete.
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5. Proof of inviscid limit. In this section, we conclude the proof for the inviscid
limit, using the a priori estimates obtained from the previous sections. Let us first
prove the following proposition, before proving our main theorem, stated in the first
part of this paper.

Proposition 5.1. There exists a time T > 0, independent of the viscosity \nu , such
that

sup
0\leq t\leq T

\Bigl( 
\| w̄2(t)\| L2

p
+ \| w̄1(t)\| L4\cap L4/3

\Bigr) 
\lesssim 1

uniformly in \nu .

Proof. First, we recall the following estimates for \| w̄2(t)\| L2
p
and \| w̄1(t)\| L4\cap L4/3

proven in Propositions 3.7 and 4.1:

d

dt
\| w̄2(t)\| 2L2

p
+
\kappa 

t
(\| (1 + | \xi | )w̄2(t)\| 2L2

p
+ \| \nabla w̄2(t)\| 2L2

p
)

\lesssim \| w̄2(t)\| 5L2
p
+ \nu \| v̄1(t)\| 4L\infty + t - 2\| v̄1(t)\| 2L\infty ,

\| w̄1(t)\| L4\cap L4/3 \lesssim 

\int t

0

s3/2
\Bigl( 
\| w̄2(t)\| L2

p
+ \| \nabla w̄2(t)\| L2

p

\Bigr) 
ds+ \nu 1/2t.

(5.1)

Let

\scrG (t) = \| w̄2(t)\| 2L2
p
+

\int t

0

s - 1(\| w̄2(s)\| 2L2
p
+ \| \nabla w̄2(s)\| 2L2

p
)ds.

From the inequality (5.1), it is straightforward that

(5.2) \| w̄1(t)\| L4\cap L4/3 \lesssim t5/2\scrG (t)1/2 + \nu 1/2t.

Thus, we have

\scrG \prime (t) =
d

dt
\| w̄2(t)\| 2L2

p
+ t - 1

\Bigl( 
\| w̄2(t)\| 2L2

p
+ \| \nabla w̄2(t)\| 2L2

p

\Bigr) 

\lesssim \| w̄2(t)\| 5L2
p
+ \nu \| v̄1(t)\| 4L\infty + t - 2\| v̄1(t)\| 2L\infty (by (5.1))

\lesssim \scrG (t)5/2 + \nu \| w̄1(t)\| 4L4\cap L4/3 + t - 2\| w̄1(t)\| 2L4\cap L4/3

\lesssim \scrG (t)5/2 + \nu 
\Bigl( 
t5/2\scrG (t)1/2 + \nu 1/2t

\Bigr) 4
+ t - 2

\Bigl( 
t5/2\scrG (t)1/2 + \nu 1/2t

\Bigr) 2
(by (5.2))

\lesssim \scrG (t)5/2 + \nu t10\scrG (t)2 + \nu 3t4 + t3\scrG (t) + \nu .

By standard ODE theory, we have a time T > 0, which is independent of \nu > 0, such
that \scrG (t) is uniformly bounded for t \in [0, T ]. Since \scrG (t) \geq \| w̄2(t)\| L2

p
, the proof for

\| w̄2(t)\| L2
p
is complete. The bound \| w̄1(t)\| L4\cap L4/3 \lesssim 1 follows from the inequality

(5.2).

We conclude this section by proving our main theorem, stated in the first part of
this paper.

Proof of Theorem 1.2. We have proved that \| w̄2(t)\| L2
p
is uniformly bounded in

\nu . We recall from section 3 that

\omega B,\nu (t, x) =
1

\nu t
w2(\xi , t) =

1

\nu t
(G(\xi ) + (\nu t)w2,a + (\nu t)w̄2) =

1

\nu t
G(\xi ) + w2,a + w̄2,
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where G(\xi ) = 1
4\pi e

 - | \xi | 2/4 and \xi = (x - \widetilde z(t))/
\surd 
\nu t. We compute

\bigm\| \bigm\| \bigm\| \bigm\| \omega 
B,\nu (t, x) - 1

4\pi \nu t
e - 

| x - \widetilde z(t)| 2
4νt

\bigm\| \bigm\| \bigm\| \bigm\| 
L1

x

= \| w2,a(\xi , t) + w̄2(\xi , t)\| L1
x

= \nu t\| w2,a(t) + w̄2(t)\| L1
ξ

\lesssim (\nu t)
\Bigl( 
\| w2,a(t)\| L2

p
+ \| w̄2(t)\| L2

p

\Bigr) 

\lesssim (\nu t).(5.3)

For ease of notation, we denote by G\widetilde z(t)(x) and Gz(t)(x) the Gaussians 1
4\pi \nu te

 - | x - \widetilde z(t)| 2
4νt

and 1
4\pi \nu te

 - | x - z(t)| 2
4νt , respectively. Our goal now is to compare the two Gaussians in

the L1 norm. To this end, let us denote A = | x - \widetilde z(t)| 2
4\nu t and B = | x - z(t)| 2

4\nu t . We have

G\widetilde z(t)(x) - Gz(t)(x) = e - A  - e - B = e - B
\bigl( 
eB - A  - 1

\bigr) 
.

We have

B  - A = (4νt)−1 \bigl( | x - z(t)| 2  - | x - \widetilde z(t)| 2
\bigr) 
= (4νt)−1 \bigl( 2x \cdot (\widetilde z(t) - z(t)) + | z(t)| 2  - | \widetilde z(t)| 2

\bigr) 

\lesssim (4νt)−1 (| x| | \widetilde z(t) - z(t)| + | \widetilde z(t) - z(t)| )
\lesssim | x| + 1 (since | \widetilde z(t) - z(t)| \lesssim νt)

\leq | x - z(t)| + | z(t)| + 1 \lesssim 
| x - z(t)| \surd 

νt
+ 1.

Here, we used the standard fact of the vortex-wave system that | z(t)| \lesssim 1 for any

fixed interval of time. Indeed, one can see that | z(t)| \leq | z0| +
\int t
0
| vE(z(s), s)| ds \leq 

| z0| + t\| vE\| L\infty . Hence, we get

(5.4) | G\widetilde z(t)(x) - Gz(t)(x)| \lesssim e
 - | x - z(t)| 2

4νt +MT
| x - z(t)| \surd 

νt for some MT > 0.

Integrating both sides of the inequality (5.4) in x \in R
2, we have

\| Gz(t)  - G\widetilde z(t)\| L1
x
\lesssim 

\int 

R2

e
 - | x - z(t)| 2

4νt +MT
| x - z(t)| \surd 

νt dx.

Making the change of variables y = x - z(t)\surd 
\nu t

in the above integral, we thus obtain

(5.5) \| Gz(t)  - G\widetilde z(t)\| L1
x
\lesssim \nu t.

Combining the inequalities (5.3) and (5.5), we get
\bigm\| \bigm\| \bigm\| \bigm\| \omega 

B,\nu (t, x) - 1

4\pi \nu t
e - 

| x - z(t)| 2
4νt

\bigm\| \bigm\| \bigm\| \bigm\| 
L1

x

\lesssim \nu t.

The inequality \| \omega E,\nu (t) - \omega E(t)\| L4\cap L4/3 \lesssim \nu follows directly from the expansion (4.2),
the inequality (5.2), and the uniform bound of \scrG (t). The proof is complete.

Appendix A. In this section, we collect several useful lemmas used in this paper.

Lemma A.1 (elliptic estimates). Let v = K \star \omega be the velocity vector field obtained

from the vorticity \omega on R
2. Define the norm \| \cdot \| L4\cap L4/3 = \| \cdot \| L4 + \| \cdot \| L4/3 . The

following inequalities hold:

\| v\| L\infty \lesssim \| \omega \| L4\cap L4/3 , \| v\| L\infty \lesssim \| \omega \| L1\cap L\infty .

D
o
w

n
lo

ad
ed

 0
4
/2

7
/2

1
 t

o
 1

3
2
.1

7
4
.2

5
4
.1

5
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2596 TOAN T. NGUYEN AND TRINH T. NGUYEN

Moreover, if
\int 
R2 \omega (x)dx = 0, then

\| (1 + | x| 2)v\| L\infty \lesssim \| (1 + | x| 2)\omega \| L4\cap L4/3 .

Proof. From the Biot–Savart law (1.2), we estimate
(A.1)

| v(x)| \lesssim 
\int 

R2

| \omega (y)| 
| x - y| dy =

\Biggl( \int 

| x - y| \leq R
+

\int 

| x - y| \geq R

\Biggr) 
| \omega (y)| 
| x - y| dy

\lesssim 

\Biggl( \int 

| x - y| \leq R
| x - y|  - 4/3dy

\Biggr) 3/4

\| \omega \| L4 +

\Biggl( \int 

| x - y| \geq R
| x - y|  - 4dy

\Biggr) 1/4

\| \omega \| L4/3

\lesssim R1/2\| \omega \| L4 +R - 1/2\| \omega \| L4/3 .

Thus, choosing R =
\| \omega \| 

L4/3

\| \omega \| L4
, we have \| v\| L\infty \lesssim \| \omega \| 1/2

L4/3\| \omega \| 1/2L4 , which gives the first

inequality. As for the second, we use \| \omega \| Lp \leq \| \omega \| 1/pL1 \| \omega \| 1 - 1/p
L\infty .

It remains to check the last inequality. We shall check it for v2, the second
component of v. The estimate on v1 is similar. First, we check

(A.2) | x| | v2(x)| \lesssim 
\int 

R2

1

| x - y| | y| | \omega (y)| dy.

By the Biot–Savart law and
\int 
R2 \omega (y)dy = 0, we have

| v2(x)| =
1

2\pi 

\bigm| \bigm| \bigm| \bigm| 
\int 

R2

x1  - y1
| x - y| 2\omega (y)dy

\bigm| \bigm| \bigm| \bigm| \leq 
1

2\pi 

\int 

R2

\bigm| \bigm| \bigm| \bigm| 
x1  - y1
| x - y| 2  - x1

| x| 2
\bigm| \bigm| \bigm| \bigm| | \omega (y)| dy.

Now we have

x1  - y1
| x - y| 2  - x1

| x| 2 =
1

| x| 2| x - y| 2
\bigl( 
| x| 2(x1  - y1) - x1| x - y| 2

\bigr) 
.

It follows that | x| 2(x1  - y1) - x1| x - y| 2 \leq 4| x| | y| | x - y| . Hence,

| x| 
\Bigl[ x1  - y1
| x - y| 2  - x1

| x| 2
\Bigr] 
\leq 4| y| 

| x - y| ,

which gives (A.2). Now, multiplying both sides of (A.2) by | x| , we have

| x| 2| v2(x)| \lesssim 
\int 

R2

| x| | y| 
| x - y| | \omega (y)| dy \leq 

\int 

R2

| y| + | x - y| 
| x - y| | y| | \omega (y)| dy

=

\int 

R2

1

| x - y| | y| 
2| \omega (y)| dy +

\int 

R2

| y| | \omega (y)| dy.

Let us first treat the first term in the above. Repeating the argument of (A.1) for
\omega = | y| 2| \omega (y)| , we have

\int 

R2

1

| x - y| | y| 
2| \omega (y)| dy \lesssim \| (1 + | y| 2)\omega (y)\| L4\cap L4/3 .

For the second term, using Hölder’s inequality, we get
\int 

R2

| y| | \omega (y)| dy =

\int 

R2

| y| 
1 + | y| 2 (1 + | y| 2)| \omega (y)| dy \lesssim \| (1 + | y| 2)\omega (y)\| L4/3 .
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Thus,
| x| 2| v2(x)| \lesssim \| (1 + | x| 2)\omega \| L4\cap L4/3 .

The lemma follows.

Lemma A.2. Let z1, z2 \in C, and let \psi be the angle between z1 and z2. Assuming

that | z1| < | z2| and sin(\psi ) \not = 0, there holds that

1

| z1 + z2| 2
 - 1

| z2| 2
=

1

| z2| 2
\infty \sum 

n=1

( - 1)n
| z1| n
| z2| n

sin((n+ 1)\psi )

sin(\psi )
.

Proof. Let z1
z2

= z = rei\psi . We have

1

| z1 + z2| 2
 - 1

| z2| 2
=

1

| z2| 2
\biggl( 

1

| 1 + z| 2  - 1

\biggr) 
.

Now, for | z| < 1, we have

1

| 1 + z| 2 =
1

(1 + z)(1 + z̄)
= (1 - z + z2  - \cdot \cdot \cdot )(1 - z̄ + z̄2 + \cdot \cdot \cdot )

= 1 - (z + z̄) + (z2 + zz̄ + z̄2) - (z3 + z2z̄ + zz̄2 + z̄3) + \cdot \cdot \cdot .

Now, for each n, we have

zn + zn - 1z̄ + \cdot \cdot \cdot + zz̄n - 1 + z̄n =
zn+1  - z̄n+1

z  - z̄
= rn

sin((n+ 1)\psi )

sin\psi 
.

This concludes the proof.
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