
ar
X

iv
:2

0
0
4
.0

5
5
4
6
v
1
  
[m

at
h
.A

P
] 

 1
2
 A

p
r 

2
0
2
0

Derivative estimates for screened Vlasov-Poisson system around

Penrose-stable equilibria

Trinh T. Nguyen∗

April 14, 2020

Abstract

In this paper, we establish derivative estimates for the Vlasov-Poisson system with screening
interactions around Penrose-stable equilibria on the phase space Rd

x
×R

d
v
, with dimension d ≥ 3.

In particular, we establish the optimal decay estimates for higher derivatives of the density of
the perturbed system, precisely like the free transport, up to a log correction in time. This
extends the recent work [13] by Han-Kwan, Nguyen and Rousset to higher derivatives of the
density. The proof makes use of several key observations from [13] on the structure of the forcing
term in the linear problem, with induction arguments to classify all the terms appearing in the
derivative estimates.

1 Introduction

1.1 The system

In this paper, we consider the screened Vlasov-Poisson system on the phase space (x, v) ∈ R
d×R

d,
with the dimension d ≥ 3:

∂tf + v · ∇xf + E · ∇vf = 0 (1.1)

Here f = f(t, x, v) ≥ 0 is the probability distribution of charged particles in plasma,

ρ(t, x) =

∫

Rd

f(t, x, v)dv

is the electric charge density, and

E(t, x) = −∇x(1−∆x)
−1(ρ− 1)

is electric field. This model has been investigated in physical literatures [6, 7, 2] and also recent
mathematical works [5, 13]. We refer the readers to [19, 20, 15, 9, 17] for global existence and
regularity results. The system (1.1) has

(f, ρ,E) = (µ(v), 1, 0)
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as a steady solution for any smooth and decaying function µ(v) ≥ 0 with the normalized condition
∫

Rd

µ(v)dv = 1.

We assume that µ(v) satisfies the Penrose stability condition (∇̂vµ denotes the Fourier transform):

inf
ℑτ≤0

inf
ξ∈Rd

∣∣∣∣1−
∫ ∞

0
e−iτs 1

1 + |ξ|2
iξ · ∇̂vµ(sξ)ds

∣∣∣∣ ≥ κ for κ > 0, (1.2)

which is classical in the study of Landau damping [18, 4], where the authors justify the asymptotic
stability for homogeneous equilibria that satisfies (1.2) on the phase space T

d ×R
d, under analytic

and Gevrey perturbations for the Vlasov-Poisson system. The stability condition (1.2) is also
natural in studying the quasineutral limit of the Vlasov-Poisson equations [14, 11, 10] and the long
time estimates for the Vlasov-Maxwell equations [12].

1.2 Previous works

In [5], Bedrossian, Masmoudi and Mouhot justify the asymptotic stability of the equilibria when
µ(v) satisfies the condition (1.2). The proof is inspired by [4] for Landau damping on the confined
phase space T

d × R
d. Using the dispersive mechanism in Fourier space to control the plasma echo

resonance, the authors in [5] prove that the Fourier mode of the density ρ̂(t, ξ) decays like 1
(t|ξ|)N−δ

if the initial perturbation is in Sobolev space of high regularity order N and some δ ∈ (0, N). The
decay is far from being optimal, as the dispersion in the physical space was not taken into account.

In the recent work [13], Han-Kwan, Nguyen, and Rousset revisit the asymptotic stability of equi-
libria that satisfy the condition (1.2). They obtain the decay estimates for the perturbed electric
charge density ρ(t) as follows:

‖ρ(t)‖L1 + 〈t〉‖∇xρ(t)‖L1 + 〈t〉d‖ρ(t)‖L∞ + 〈t〉d+1‖∇xρ(t)‖L∞ . ε0 log(1 + t), 〈t〉 =
√

t2 + 1.

Unlike [5], which relies on the nonlinear energy estimates, the authors in [13] use direct dispersive
mechanism in the physical space, which is like the free transport up to log(t). This is achieved by
a pointwise dispersive estimate, directly on the resolvent kernel for the linearized system around
non-zero stable equilibria µ(v). This is followed by solving the equations by characteristic methods,
inspired from the classical work of Bardos and Degond [3]. At the same time, the authors in [13]
are able to propagate C1 norm for the initial data and thus allow more general perturbations. We
note that the dispersive mechanism of the free transport operator ∂t+ v ·∇x on R

d×R
d is also one

of the key ingredients in the classical results of Bardos and Degond [3] in 1985, where they study
the asymptotic stability of Vlasov-Poisson around vacuum (µ(v) = 0).

Regarding the stability of vacuum (when µ(v) = 0) for the unscreened Vlasov-Poisson systems,
we refer the readers to the work [16] for the extension of Bardos-Degond results for optimal decays
of higher derivatives. In [21], Smulevici obtains the spatial decay by the vector field methods. In
[22], Wang justifies the stability of vacuum for Vlasov-Poisson by Fourier methods. In [8], Choi,
Ha and Lee justify the same result for 2D screened Vlasov-Poisson.
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2 Main results

2.1 Main theorem

In this paper, we will give decay estimates for higher derivatives of ρ(t), under the assumption
that the initial perturbation f0 is small in suitable Sobolev space and for µ(v) satisfying decaying
assumption: Given any m ∈ N and M > 0, there exists Cm,M > 0 such that

|∇m
v µ(v)| ≤ Cm,M 〈v〉−M for all v ∈ R

d. (2.1)

The equation for the perturbed quantities around the equilibria of (1.1) reads





∂tf + v · ∇xf + E · ∇vµ = −E · ∇vf,

E = −∇x(1−∆x)
−1ρ,

ρ =
∫
Rd fdv.

(2.2)

Our main theorem is as follows:

Theorem 2.1. Let N > 1 be an integer. Let µ(v) ≥ 0 be sufficiently smooth and satisfy the Penrose
stability condition (1.2), the decaying bound (2.1) and the normalized condition

∫
Rd µ(v)dv = 1.

There exists ε0 > 0 such that for all f0(x, v) satisfying the smallness assumption

max
0≤k≤N

(
‖∇k

x,vf0‖L1
x,v

+ ‖∇k
x,vf0‖L1

xL
∞
v

)
≤ ε0,

the solution f(t, x, v) to the equations (2.2) with initial data f |t=0 = f0(x, v) satisfies

max
0≤k≤N

(
〈t〉k‖∇k

xρ(t)‖L1 + 〈t〉k+d‖∇k
xρ(t)‖L∞

)
. ε0 log(1 + t).

where ρ(t, x) =
∫
Rd f(t, x, v)dv. Here the norm ‖ · ‖Lp

xL
q
v
is defined by

‖g‖Lp
xL

q
v
=

(∫

Rd

‖g(x, v)‖p
Lq
v
dx

)1/p

.

2.2 Motivation

The improved decays for higher derivatives of ρ(t) can be seen from the free transport equation

∂tffree + v · ∇xffree = 0, f |t=0 = f0.

The solution is given by

ffree = f0(x− tv, v), ρfree(t, x) =

∫

Rd

f0(x− tv, v)dv.

Making the change of variables w = x− tv, we obtain

ρfree(t, x) =

∫

Rd

f0

(
w,

x− w

t

)
t−ddw. (2.3)
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Hence
‖ρfree(t)‖L∞ ≤ t−d‖f0‖L1

xL
∞
v

and ‖ρfree(t)‖L1 ≤ ‖f0‖L1
xL

1
v
.

Thus for the free transport equations, ρfree(t) decays like t−d in L∞. This dispersive mechanism
for the free transport (which can be seen as linearized Vlasov-Poisson around zero) is one of the
key ingredients in the classical work [3] by Bardos and Degond.
Now we discuss the decay for one derivative of ρfree(t). Taking ∇x on both sides of (2.3), we get

∇xρfree(t) = t−dt−1

∫

Rd

∇vf0

(
w,

x− w

t

)
dw,

and hence

‖∇xρfree(t)‖L∞ ≤ t−(d+1)‖∇vf0‖L1
xL

∞
v

and ‖∇xρfree(t)‖L1 ≤ t−1‖∇vf0‖L1
xL

1
v
.

This implies that ∇xρfree(t) decays like t−d−1 in L∞ and t−1 in L1. This decaying mechanism is
in fact extended to the Vlasov-Poisson system around vacuum by Hwang, Rendall and Velazquez
[16]. In particular, the authors in [16] establish the improved decay estimates

‖∇k
xρ(t)‖L∞ . (1 + t)−d−k for any k ≥ 0 (2.4)

for small initial data near vacuum.
The natural question is whether the estimate (2.4) still holds for solution to the screened Vlasov-

Poisson under small perturbation around nonzero homogeneous equilibria µ(v) that satisfies Penrose
condition (1.2). In this paper, we prove that this is essentially the case, namely ∇k

xρ(t) decays like
∇k

xρfree(t), up to a log in time correction.

2.3 Outline of the proof

The set up: Using the characteristics

{
d
dsXs,t(x, v) = Vs,t(x, v), Xt,t(x, v) = x,
d
dsVs,t(x, v) = E(s,Xs,t(x, v)), Vt,t(x, v) = v,

(2.5)

the solution f(t, x, v) to the perturbation equation (2.2) can be written as

f(t, x, v) = f0(X0,t(x, v), V0,t(x, v)) −

∫ t

0
E(s,Xs,t(x, v)) · ∇vµ(Vs,t(x, v))ds.

Integrating both sides in v ∈ R
d and using the fact that E = −∇x(1−∆x)

−1ρ, we get

ρ(t, x) =

∫ t

0

∫

Rd

∇x(1−∆x)
−1ρ(s, x− (t− s)v) · ∇vµ(v)dvds + S(t, x) (2.6)

4



where S(t, x) is given by

S(t, x) =

∫

Rd

f0(X0,t(x, v), V0,t(x, v))dv

+

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇vµ(v)dvds −

∫ t

0

∫

Rd

E(s,Xs,t(x, v)) · ∇vµ(Vs,t(x, v))dvds.

(2.7)
Taking spacetime Fourier transform, one can express ρ̃(τ, ξ) as

ρ̃(τ, ξ) =
1

1− K̃(τ, ξ)
S̃(τ, ξ), where K̃(τ, ξ) =

∫ ∞

0
e−iτt iξ

1 + |ξ|2
· ∇̂vµ(tξ)dt. (2.8)

The Penrose stability condition (1.2) is equivalent to

inf
ℑ(τ)≤0

inf
ξ∈Rd

|1− K̃(τ, ξ)| ≥ κ for some κ > 0,

which is to avoid the singularity in (2.8). Following [13], we can write in the original (t, x) variables
as follows:

ρ(t) = S(t) +

∫ t

0
G(t− s) ⋆x S(s)ds (2.9)

where

G(t, x) = F−1
(τ,ξ)→(t,x)

(
K̃(τ, ξ)

1− K̃(τ, ξ)

)
. (2.10)

One of the main results in [13] was to derive pointwise estimates for the resolvent kernel G.
Sketch of the proof of the main theorem:
Our first step is to derive higher derivative estimates for the Green kernel G(t), by using Paley-
Littlewood decomposition and localized frequency bounds of G. Making use of the decay bounds
for ∇k

xG(t), we are able to propagate the decay of ∇k
xρ(t) by the forcing term S(t):

‖∇k
xρ(t)‖L1 . 〈t〉−k log(1 + t)‖S‖Y N

t
and ‖∇k

xρ(t)‖L∞ . 〈t〉−d−k log(1 + t)‖S‖Y N
t
. (2.11)

where

‖S‖Y N
t

= max
0≤k≤N

sup
0≤s≤t

(
〈s〉k‖∇k

xS(s)‖L1 + 〈s〉d+k‖∇k
xS(s)‖L∞

)
.

Thus, it suffices to bound the derivatives of the forcing term S(t, x), defined in (2.7). Inspired by
[13, 3], we show that the trajectories (Xs,t(x, v), Vs,t(x, v)) are closed to the characteristics of the
free transport (x − (t − s)v, v). To bound ∇k

xS(t, x), we also need to use induction argument to
decompose ∇k

xS(t, x) into quantities involving ∇k
xE,∇k

xρ and lower order derivative terms involving
characteristic trajectories.
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2.4 Organization of the paper

The paper is organized as follows: In Section 3, we justify the estimate (2.11) for the density ρ(t).
In Section 4, we prove the decay estimates for the characteristics. In Section 5, we bound the
forcing term S(t, x), by determining the forms of its derivatives (Lemma 5.2 and 5.7), and then
justify the decay estimates for each of the terms (Proposition 5.3 and Proposition 5.9).

2.5 Acknowledgement

The author would like to thank Toan T. Nguyen for his many insightful discussions on the subject.
The research was supported by the NSF under grant DMS-1764119.

2.6 Notations

For any complex numbers A,B, we write A . B or A = O(B), to mean that there exists a universal
constant C0 > 0 such that |A| ≤ C0|B|.
For a vector field F (x) = (F1(x), · · · , Fq(x)) ∈ R

q with x ∈ R
m, we denote ∇k

xF to be the set of
derivatives

{∂αFj : 1 ≤ j ≤ q, |α| = k}.

Moreover, for two vector functions F,G defined on x ∈ R
m, y ∈ R

n, we denote (∇u
xF )(∇v

yG) to be
the set of all products XY , where X ∈ ∇u

xF and Y ∈ ∇v
yG.

For any two vectors a = (ai)1≤i≤p, b = (bi)1≤i≤p, we denote a ≤ b if ai ≤ bi for all 1 ≤ i ≤ d.
We also denote 〈t〉 = (1 + t2)1/2. It is obvious that 〈t〉 . 1 + t . 〈t〉 for all t ≥ 0.
For a function f(x) with x ∈ R

d, we denote f̂(ξ) to be the standard Fourier transform of f , given
by the formula

f̂(ξ) =

∫

Rd

f(x)e−ix·ξdx.

For a function h(t, x) with x ∈ R
d and t ≥ 0, the space-time Fourier transform of h is denoted by

h̃(τ, ξ), and is given by

h̃(τ, ξ) =

∫ ∞

0

∫

Rd

h(t, x)e−iτte−ix·ξdxdt.

We also use the Paley-Littlewood decomposition on R
d. Let χ ∈ [0, 1] be a smooth compactly

supported function on the annulus 1
4 ≤ |ξ| ≤ 4 and equal to one on the annulus 1

2 ≤ |ξ| ≤ 2. Define

χq(ξ) = χ

(
ξ

2q

)
for q ∈ Z

For u ∈ S ′(Rd), we have the Paley-Littlewood decomposition

u =
∑

q∈Z

uq, where ûq(ξ) = û(ξ)χq(ξ).
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3 Linear estimates

3.1 Dispersive estimates for the Green kernel

Now let G be the kernel defined as in (2.10). Using Paley-Littlewood decomposition, we can
decompose G as

G =
∑

q∈Z

Gq.

Now, we recall the following decaying bounds on the localized-in-frequency Green kernel Gq in [13].

Lemma 3.1. Let µ(v) be smooth, satisfy the bound (2.1) and the Penrose stability condition (1.2).
For any K > 0, there exists A ≥ 1 such that for every δ ∈ (0, 1], and for every q ∈ Z with 2q ≥ A:

‖Gq(t)‖L1 .
2q(1+δ)

1 + 22q
·

1

(1 + 2qt)K
and ‖Gq(t)‖L∞ .

2q(d+1+δ)

1 + 22q
·

1

(1 + 2qt)K
.

Moreover, for 2q ≤ A, one has

‖Gq(t)‖L1 .
2q

(1 + 2qt)K
and ‖Gq(t)‖L∞ .

2q(d+1)

(1 + 2qt)K
.

Making use of the decay bounds on the Green kernels {Gq}q∈Z, we establish the following bound
on the derivatives of G(t):

Theorem 3.2. For any integer k ≥ 0, there holds

‖∇k
xG(t)‖L1 . t−k−1 and ‖∇k

xG(t)‖L∞ . t−d−1−k

for t > 0, where G is the kernel defined in (2.10).

Proof. We take K so that K > k + d+ 1. We bound ‖∇k
xG(t)‖L1 as follows:

‖∇k
xG(t)‖L1 .

∑

2q≤A

2kq‖Gq(t)‖L1 +
∑

2q≥A

2kq‖Gq(t)‖L1

.
∑

2q≤A

2q(k+1)

(1 + 2qt)K
+
∑

2q≥A

2q(k+d+1+δ)

(1 + 22q)(1 + 2qt)K
.

For the first term, we see that

∑

2q≤A

2q(k+1)

(1 + 2qt)K
.


 ∑

2q≤t−1

+
∑

t−1≤2q≤1

+
∑

1≤2q≤A


 2q(k+1)

(1 + 2qt)K

.
∑

2q≤t−1

2q(k+1) + t−K
∑

2q≤1

2q(k+1−K) + t−K
∑

1≤2q≤A

2q(k+1−K)

. t−(k+1) + t−K . t−(k+1).
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The second term is treated as follows:

∑

2q≥A

2q(k+d+1+δ)

(1 + 22q)(1 + 2qt)K
. t−K

∑

2q≥A

2q(k+d+1+δ−2−K) . t−K . t−k−1 since K > k + 1 + d.

The decay bound for ‖∇k
xG(t)‖L1 is complete. Now we bound ‖∇k

xG(t)‖L∞ as follows:

‖∇k
xG(t)‖L∞ .

∑

2q≤A

2kq‖Gq(t)‖L∞ +
∑

2q≥A

2kq‖Gq(t)‖L∞

.
∑

2q≤A

2q(d+1+k)

(1 + 2qt)K
+
∑

2q≥A

2q(d+1+δ+k)

1 + 22q
·

1

(1 + 2qt)K
.

For the first term, we see that

∑

2q≤A

2q(d+1+k)

(1 + 2qt)K
.


 ∑

2q≤t−1

+
∑

t−1≤2q≤1

+
∑

1≤2q≤A


 2q(d+1+k)

(1 + 2qt)K

.
∑

2q≤t−1

2q(d+1+k) + t−K
∑

t−1≤2q≤1

2q(d+1+k−K) + t−K
∑

1≤2q≤A

2q(d+1+k−K)

. t−(d+1+k) + t−K . t−(d+1+k).

For the second term, we see that

∑

2q≥A

2q(d+1+δ+k)

1 + 22q
·

1

(1 + 2qt)K
. t−K

∑

2q≥A

2q(d+1+δ+k−K−2) . t−K . t−(d+1+k).

The proof is complete.

3.2 Decay estimates for the density and electric field of the linearized problem

In this section, we drive decay estimates for higher derivatives of the density ρ(t), defined in (2.9)
and and the electric field E = −∇x(1−∇x)

−1ρ. For N > 0, we define

‖S‖Y N
t

= max
0≤k≤N

sup
0≤s≤t

(
〈s〉k‖∇k

xS(s)‖L1 + 〈s〉d+k‖∇k
xS(s)‖L∞

)
. (3.1)

By definition, we see that

‖∇k
xS(s)‖L1 ≤ 〈s〉−k‖S‖Y N

t
and ‖∇k

xS(s)‖L∞ ≤ 〈s〉−(k+d)‖S‖Y N
t

for 0 ≤ k ≤ N and 0 ≤ s ≤ t.

Theorem 3.3. Let N ≥ 1 be an integer. The density ρ(t) defined in (2.9) satisfies the bound

max
0≤k≤N

{
〈t〉k‖∇k

xρ(t)‖L1 + 〈t〉d+k‖∇k
xρ(t)‖L∞

}
. log(1 + t)‖S‖Y N

t
for t > 0. (3.2)
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Proof. Fix k so that 0 ≤ k ≤ N . First we estimate ∇k
xρ in L1. Applying ∇k

x to both sides of (2.9),
we get

∇k
xρ(t) = ∇k

xS(t) +

∫ t/2

0
∇k

xG(t− s) ⋆x S(s)ds +

∫ t

t/2
G(t− s) ⋆x ∇

k
xS(s)ds.

This implies

‖∇k
xρ(t)‖L1 ≤ ‖∇k

xS(t)‖L1 +

∫ t/2

0
‖∇k

xG(t− s)‖L1‖S(s)‖L1ds+

∫ t

t/2
‖G(t− s)‖L1‖∇k

xS(s)‖L1ds

. 〈t〉−k‖S‖Y N
t

+ ‖S‖Y N
t

(∫ t/2

0

1

(t− s)k+1
ds +

∫ t

t/2

1

(1 + t− s)
〈s〉−kds

)

. ‖S‖Y N
t

(
〈t〉−k + t−k +

log(1 + t)

(1 + t)k

)

Hence
〈t〉k‖∇k

xρ(t)‖L1 . log(1 + t)‖S‖Y N
t
.

Now we estimate the L∞ norm of ∇k
xρ. We have

‖∇k
xρ(t)‖L∞ ≤ ‖∇k

xS(t)‖L∞ +

∫ t/2

0
‖∇k

xG(t− s)‖L∞‖S(s)‖L1ds+

∫ t

t/2
‖G(t− s)‖L1‖∇k

xS(s)‖L∞ds

. ‖S‖Y N
t
〈t〉−k−d + ‖S‖Y N

t

(∫ t/2

0

1

(t− s)k+d+1
ds+

∫ t

t/2

1

(1 + t− s)
〈s〉−k−dds

)

.
log(1 + t)

(1 + t)d+k
‖S‖Y N

t
,

and hence
〈t〉d+k‖∇k

xρ(t)‖L∞ . log(1 + t)‖S‖Y N
t
.

The proof is complete.

Theorem 3.4. Assume that

max
0≤k≤N

{
〈t〉d+k‖∇k

xρ(t)‖L∞ + 〈t〉k‖∇k
xρ(t)‖L1

}
. ε log(1 + t),

there holds
max

0≤k≤N

{
〈t〉d+k‖∇k

xE(t)‖L∞ + 〈t〉k‖∇k
xE(t)‖L1

}
. ε log(1 + t).

Proof. Since E = −∇x(1−∆x)
−1ρ, we have

∇k
xE = −∇x(1−∆x)

−1(∇k
xρ)

By the standard elliptic estimate, we get
{
‖∇k

xE(t)‖L∞ . ‖∇k
xρ(t)‖L∞ . ε〈t〉−d−k log(1 + t),

‖∇k
xE(t)‖L1 . ‖∇k

xρ(t)‖L1 . ε〈t〉−k log(1 + t).

The proof is complete.
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4 Decay estimates for the characteristics

4.1 Main theorem

From the equations (2.5), the characteristics Xs,t(x, v) and Vs,t(x, v) can be written as follows:

{
Xs,t(x, v) = x− (t− s)v +

∫ t
s (τ − s)E(τ,Xτ,t(x, v))dτ,

Vs,t(x, v) = v −
∫ t
s E(τ,Xτ,t(x, v))dτ.

Following [13], we define (Ys,t(x, v),Ws,t(x, v)) so that

{
Xs,t(x, v) = x− (t− s)v + Ys,t(x− tv, v),

Vs,t(x, v) = v +Ws,t(x− tv, v).
(4.1)

Hence, we get {
Ys,t(x, v) =

∫ t
s (τ − s)E(τ, x+ τv + Yτ,t(x, v))dτ,

Ws,t(x, v) = −
∫ t
s E(τ, x+ τv + Yτ,t(x, v))dτ.

(4.2)

Our main theorem in this section is as follows:

Theorem 4.1. Assume that

max
0≤k≤N

(
〈t〉d+k‖∇k

xE(t)‖L∞

)
. ε log(1 + t) for all t > 0, (4.3)

there holds, for all s ∈ [0, t], the following inequalities:

max
0≤k≤N

‖∇k
vYs,t‖L∞ . ε

log(1 + s)

(1 + s)d−2
(4.4)

and

max
0≤k≤N

‖∇k
vWs,t‖L∞ . ε

log(1 + s)

(1 + s)d−1
. (4.5)

Before giving the proof, we recall the Faa di Bruno’s formula in [1], which allows us to compute
higher order derivatives of Ys,t and Ws,t by the generalized chain rule:

Lemma 4.2. Let u : Rd → R
m and F : Rm → R be smooth functions. For each multi-index

α ∈ N
d, we have

∂α(F ◦ u) =
∑

µ,ν

Cµ,ν∂
µF

∏

1≤|β|≤|α|,1≤j≤m

(∂βuj)
νβj

where Cµ,ν are non negative integers, and the sum is taken over µ, ν such that 1 ≤ |µ| ≤ |α|,
νβj

∈ N
⋆,

∑

1≤|β|≤|α|

νβj
= µj for 1 ≤ j ≤ m, and

∑

1≤|β|≤|α|,1≤j≤m

βνβj
= α.
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Proof of Theorem 4.1: Fix k ∈ {0, 1, · · · , N}. We shall prove that

〈s〉d−2‖∇k
vYs,t‖L∞ + 〈s〉d−1‖∇k

vWs,t‖L∞ . ε log(1 + s).

In [13], the authors prove the above statement when k ∈ {0, 1}, thus we shall only consider k ≥ 2.
Let us first justify the bound for the case k = 2. Applying ∂2

vivj to both sides of (4.2), we have

∂2
vivjYs,t(x, v) =

∫ t

s
(τ − s)∂2

xixj
E(τ, x+ τv + Yτ,t(x, v))

(
τ + ∂vjYτ,t(x, v)

)
(τ + ∂viYτ,t(x, v)) dτ

+

∫ t

s
(τ − s)∂xi

E(τ, x + τv + Yτ,t(x, v))∂
2
vivjYτ,t(x, v)dτ.

This implies

|∂2
vivjYs,t(x, v)| ≤

∫ t

s
(τ − s)‖∇2

xE(τ)‖L∞(τ + ‖∇vYτ,t‖L∞)2dτ +

∫ t

s
(τ − s)‖∇xE(τ)‖L∞ sup

0≤s≤t
‖∇2

vYs,t‖L∞dτ

.

∫ t

s
(τ − s) · ε log(1 + τ)〈τ〉−d−2(τ + ε)2dτ + sup

0≤s≤t
‖∇2

vYs,t‖L∞

∫ t

s
(τ − s) · ε log(1 + τ)〈τ〉−d−1dτ.

Hence we get

‖∇2
vYs,t‖L∞ . ε

log(1 + s)

(1 + s)d−2
+

(
ε
log(1 + s)

(1 + s)d−1

)
sup
0≤s≤t

‖∇2
vYs,t‖L∞ .

Thus, as long as ε log(1+s)
(1+s)d−1 is small, we have

‖∇2
vYs,t‖L∞ . ε

log(1 + s)

(1 + s)d−2
.

Now we estimate ∇2
vWs,t. Applying ∂2

vivj to both sides of(4.2), we get

∂2
vivjWs,t(x, v) = −

∫ t

s

(
∂2
xixj

E(τ, x + τv + Yτ,t(x, v))(τ + ∂vjYτ,t(x, v))
)
(τ + ∂viYτ,t(x, v)) dτ

−

∫ t

s
∂xi

E(τ, x+ τv + Yτ,t(x, v))
(
∂2
vivjYτ,t(x, v)

)
dτ.

This implies

|∂2
vivjWs,t(x, v)| ≤

∫ t

s
‖∇2

xE(τ)‖L∞(τ + ‖∇vYτ,t‖L∞)2 +

∫ t

s
‖∇xE(τ)‖L∞‖∇2

vYτ,t‖L∞dτ

Using the fact that 〈t〉d‖E(t)‖L∞ + 〈t〉d+1‖∇xE(t)‖L∞ . ε log(1 + t) and ‖∇2
vYτ,t‖L∞ . ε, we get

|∂2
vivjWs,t(x, v)| . ε

∫ t

s

log(1 + τ)

(1 + τ)d+2
(τ + ε)2dτ + ε2

∫ t

s

log(1 + τ)

(1 + τ)d+1
dτ

. ε

∫ t

s

log(1 + τ)

(1 + τ)d
dτ + ε2

log(1 + s)

(1 + s)d
. ε

log(1 + s)

(1 + s)d−1
.
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Now for a general multi-index α with k = |α| ≥ 3, we proceed by induction on k, by assuming that
the decay estimates (4.4) and (4.5) are true for all index with length less than k. Applying the
chain rule (4.2) for Ys,t, we get

∂α
v Ys,t =

∫ t

s
(τ − s)

∑

(µ,ν)∈I

Cµ,ν∂
µ
xE

∏

1≤|β|≤|α|,1≤j≤d

(
∂β
v (xj + τvj + Y

j
τ,t(x, v))

)νβj
dτ

=

∫ t

s
(τ − s)

∑

(µ,ν)∈I

Cµ,ν∂
µ
xE

∏

1≤|β|≤|α|,1≤j≤d

(
∂β
v (τvj + Y

j
τ,t(x, v))

)νβj
dτ

=

∫ t

s
(τ − s)

∑

(µ,ν)∈I

Cµ,ν∂
µ
xE

∏

1≤|β|≤|α|,1≤j≤d

τ
νβj
(
∂β
v vj

)νβj
dτ

+

∫ t

s
(τ − s)

∑

(µ,ν)∈I

Cµ,ν∂
µ
xE

∏

1≤|β|≤|α|,1≤j≤d

(
∂β
v Y

j
τ,t(x, v)

)νβj
dτ.

(4.6)

where

I =



(µ, ν) ∈ N

2d :
∑

1≤|β|≤|α|

νβj
= µj for 1 ≤ j ≤ d,

∑

1≤|β|≤|α|,1≤j≤d

βνβj
= α



 .

Now we fix µ, ν and estimate each term appearing in (4.6). The first term can be estimated as
follows:

∫ t

s
(τ − s)∂µ

xE
∏

1≤|β|≤|α|,1≤j≤d

τ
νβj (∂β

v vj)
νβj dτ .

∫ t

s
(τ − s)

ε log(1 + τ)

(1 + τ)d+|µ|
τ
∑d

j=1 νβj dτ

.

∫ t

s
τµj+1 ε log(1 + τ)

(1 + τ)d+|µ|
dτ

≤

∫ t

s
ε
log(1 + τ)

(1 + τ)d−1
dτ . ε

log(1 + s)

(1 + s)d−2
.

Now we estimate the second term in (4.6), which is

∫ t

s
(τ − s)∂µ

xE
∏

1≤|β|≤|α|,1≤j≤d

(
∂β
v Y

j
τ,t(x, v)

)νβj
dτ. (4.7)

We consider two cases:
Case 1: βj < |α| for all 1 ≤ j ≤ d.

In this case, we use the induction hypothesis on ∂
β
v Yτ,t, which is |∂β

v Y
j
τ,t(x, v)| . ε. Hence (4.7) can

be bounded by

∫ t

s
(τ − s)‖∂µ

xE(τ)‖L∞ε
∑d

j=1
νβj dτ .

∫ t

s
τ
ε log(1 + τ)

(1 + τ)d+|µ|
ε|µ|dτ . ε

log(1 + s)

(1 + s)d−2
.
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Case 2: There exists j0 ∈ {1, 2, · · · , d} such that βj0 = |α|.
In this case, since |β| ≤ |α|, we have βj = 0 for all j 6= j0. Hence the term is reduced to

∫ t

s
(τ − s)∂µ

xE · (∂|α|
vj0

Y
j
τ,t)

ν|α|O(ε)dτ,

where we use the fact that ‖Ys,t‖L∞ . ε. Moreover, since
∑d

j=1 βνβj
= α, we have ν|α| ≤ 1. Hence

∫ t

s
(τ − s)∂µ

xE · (∂|α|
vj0

Y
j
τ,t)

ν|α|O(ε) . ε

∫ t

s
τ
ε log(1 + τ)

(1 + τ)d+|µ|
sup
0≤s≤t

‖∂|α|
v Ys,t‖L∞dτ

= sup
0≤s≤t

‖∂|α|
v Ys,t‖L∞

∫ t

s
ε2

log(1 + τ)

(1 + τ)d+|µ|−1
dτ . ε2 sup

0≤s≤t
‖∇|α|

v Ys,t‖L∞ .

Thus, we get the inequality of the form

‖∇α
vYs,t‖L∞ . ε

log(1 + s)

(1 + s)d−2
+ ε2 sup

0≤s≤t
‖∇|α|

v Ys,t‖L∞ .

Hence for ε small, we get

‖∇α
vYs,t‖L∞ . ε

log(1 + s)

(1 + s)d−2
for all 0 ≤ s ≤ t.

The proof is complete.

4.2 Straightening the characteristics

Next, we recall the following lemma about straightening the characteristics from [13].

Lemma 4.3. Let Ys,t be defined as in (4.1) and (4.2). Assume that E satisfies the decay estimates
(4.3), there holds

‖∇xYs,t‖L∞ .
ε log(1 + s)

(1 + s)d−1
.

Proof. By the definition of Ys,t, we have

Ys,t(x, v) =

∫ t

s
(τ − s)E(τ, x+ τv + Yτ,t(x, v))dτ

Hence we get

|∇xYs,t(x, v)| ≤

∫ t

s
(τ − s)‖∇xE(τ)‖L∞(1 + ‖∇xYτ,t‖L∞)dτ

.

∫ t

s
(τ − s)

ε log(1 + τ)

(1 + τ)d+1
dτ + sup

0≤τ≤t
‖∇xYτ,t‖L∞

∫ t

s
(τ − s)

ε log(1 + τ)

(1 + τ)d+1
dτ

. ε
log(1 + s)

(1 + s)d−1
+

{
ε
log(1 + s)

(1 + s)d−1

}
sup
0≤s≤t

‖Ys,t‖L∞ .
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Hence as long as ε is small enough, we have

|∇xYs,t(x, v)| .
ε log(1 + s)

(1 + s)d−1

The proof is complete.

Lemma 4.4. For 0 ≤ s ≤ t, there exists a C1 map (x, v) → Ψs,t(x, v) such that

Xs,t(x,Ψs,t(x, v)) = x− (t− s)v

for all x, v ∈ R
d. Moreover, if E satisfies the estimates (4.3), there holds

〈s〉d|Ψs,t(x, v)− v|+ 〈s〉d−1|∇v(Ψs,t(x, v)− v)| . ε log(1 + s)

for all x, v ∈ R
d and 0 ≤ s ≤ t.

Proof. We write
Xs,t(x, v) = x− (t− s)(v +Φs,t(x, v))

and will show that (x, v) → (x, v +Φs,t(x, v)) is a C1 differomorphism. To this end, we prove that

〈s〉d‖Φs,t‖L∞ + 〈s〉d‖∇xΦs,t‖L∞ + 〈s〉d−1‖∇vΦs,t‖L∞ . ε log(1 + s)

We have

Φs,t(x, v) = −
1

t− s
(Xs,t(x, v)− (t− s)v)

= −
1

t− s

∫ t

s
(τ − s)E(τ, x − (t− τ)v + Yτ,t(x− vt, v))dτ

.
1

t− s

∫ t

s
(τ − s)‖E(τ)‖L∞dτ .

∫ t

s
‖E(τ)‖L∞dτ.

(4.8)

Since E = −∇x(1−∆x)
−1ρ, we have

‖E(τ)‖L∞ . ‖∇xρ(τ)‖L∞ .
ε log(1 + τ)

(1 + τ)d+1
.

Thus we have

|Φs,t(x, v)| .

∫ t

s

ε log(1 + τ)

(1 + τ)d+1
dτ . ε

log(1 + s)

(1 + s)d
.

Thus 〈s〉d‖Φs,t‖L∞ . ε log(1 + s). Next, applying ∇x to both sides of (4.8), we have

‖∇xΦs,t‖L∞ .
1

t− s

∫ t

s
(τ − s)‖∇xE(τ)‖L∞ (1 + ‖∇xYτ,t‖L∞) dτ.

Now using lemma 4.3, we get

‖∇xΦs,t‖L∞ .

∫ t

s

ε log(1 + τ)

(1 + τ)d+1
dτ . ε〈s〉−d log(1 + s).
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Now we bound ‖∇vΦs,t‖L∞ . Applying ∇v to both sides of (4.8), we get

‖∇vΦs,t‖L∞ .
1

t− s

∫ t

s
(τ − s)‖∇xE(τ)‖L∞ {(t− τ) + t‖∇xYτ,t‖L∞} dτ.

Again, using Lemma 4.3, we have

‖∇vΦs,t‖L∞ .
1

t− s

∫ t

s
(τ − s)

ε log(1 + τ)

(1 + τ)d+1

(
(t− τ) +

εt log(1 + τ)

(1 + τ)d−1

)
dτ

. ε
log(1 + s)

(1 + s)d−1
+ ε

∫ t

s

t(τ − s)

t− s

log(1 + τ)2

(1 + τ)d−1
dτ

. ε
log(1 + s)

(1 + s)d−1
+ ε

∫ t

s
(τ − s)

log(1 + τ)2

(1 + τ)d−1
dτ + ε

∫ t

s
(τ − s)2

log(1 + τ)2

(1 + τ)d−1
dτ

. ε
log(1 + s)

(1 + s)d−1
.

Hence, the map (x, v) → (x, v + Φs,t(x, v)) is a C1 differomorphism. Thus there exists a C1

differomorphism v → Ψs,t(x, v) such that

Xs,t(x,Ψs,t(x, v)) = x− (t− s)v.

Combining this with Xs,t(x, v) = x− (t− s)(v +Φs,t(x, v)), we have

{
|Ψs,t(x, v)− v| . ‖Φs,t‖L∞ . ε〈s〉−d log(1 + s),

|∇v(Ψs,t(x, v)− v)| . ‖∇vΦs,t‖L∞ . ε〈s〉−(d−1) log(1 + s).

The proof is complete.

5 Decay estimates for the forcing term

In this section, we derive decay estimates for the derivatives of the forcing term, appearing in the
equation (2.6). The forcing term S(t, x) is given by

S(t, x) =

∫

Rd

f0(X0,t(x, v), V0,t(x, v))dv +

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇vµ(v)dvds

−

∫ t

0

∫

Rd

E(s,Xs,t(x, v)) · ∇vµ(Vs,t(x, v))dvds

= I(t, x) +RL(t, x)−RNL(t, x),

(5.1)

where 



I(t, x) =
∫
Rd f0(X0,t(x, v), V0,t(x, v))dv,

RL(t, x) =
∫ t
0

∫
Rd E(s, x− (t− s)v) · ∇vµ(v)dvds,

RNL(t, x) =
∫ t
0

∫
Rd E(s,Xs,t(x, v)) · ∇vµ(Vs,t(x, v))dvds.
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Fix N ≥ 1, we will give decay estimates for ‖S‖Y N
t
, under the decaying assumptions on derivatives

of E, Ys,t and Ws,t. We also recall the smallness assumption for the initial perturbation f0(x, v) as
follows:

max
0≤k≤N

‖∇k
x,vf0‖L1

xL
∞
v

≤ ε0. (5.2)

Our main theorem is as follows:

Theorem 5.1. Let N > 1 be an integer. Assume that E,Ws,t, Ys,t satisfy the decay estimates (4.3),
(4.5) and (4.4) and f0 satisfies the smallness assumption (5.2), there holds

sup
0≤k≤N

(
〈t〉k‖∇k

xI(t)‖L1 + 〈t〉d+k‖∇k
xI(t)‖L∞

)
. ε0, (5.3)

and
sup

0≤k≤N

(
〈t〉k‖∇k

xR(t)‖L1 + 〈t〉d+k‖∇k
xR(t)‖L∞

)
. ε2.

5.1 Decay estimates for the initial data term

First, we estimate I(t, x), under suitable smallness assumption (5.2) on the initial data f0. In [13],
the authors prove that

‖I(t)‖L1 + 〈t〉d‖I(t)‖L∞ + 〈t〉‖∇xI(t)‖L1 + 〈t〉d+1‖∇xI(t)‖L∞ . ε0.

Hence, we shall establish the bound (5.3) for k ≥ 2. First, we establish the following lemma

Lemma 5.2. Let k ≥ 2 and

I(t, x) =

∫

Rd

f0(X0,t(x, v), V0,t(x, v))dv.

The term ∇k
xI(t, x) can be written as a sum of many terms, which are all in the form

∫

Rd

∇α
x,vf0 · (∇

β1

v Y0,t)
k1 · · · (∇βr

v Y0,t)
kr · (∇γ1

v W0,t)
s1 · · · (∇γt

v W0,t)
st dw

td+k
(5.4)

where α, (β1, k1), · · · , (βr, k2), and (γ1, s1), · · · , (γt, st) satisfy

1 ≤ |α| ≤ k and (β1k1 + · · ·+ βrkr) + (γ1s1 + · · ·+ γtst) ≤ k. (5.5)

Proof. From (4.1), we get

I(t, x) =

∫

Rd

f0(x− tv + Y0,t(x− tv, v), v +W0,t(x− tv, v))dv.

Let w = x− tv, we get

I(t, x) =

∫

Rd

f0

(
w + Y0,t(w,

x− w

t
),
x− w

t
+W0,t(w,

x− w

t
)

)
dw

td
.
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By a direct calculation, we have

∂2
xixj

I(t, x) =

∫

R3

(
∂xixj

f0∂vjY0,t + ∂xivjf0(1 + ∂vjW0,t)
)
(∂viY0,t)

dw

td+2
+

∫

R3

(∂xi
f0)
(
∂vivjY0,t

) dw

td+2

+

∫

R3

(
∂xjvif0∂vjY0,t + ∂vivjf0(1 + ∂vjW0,t)

)
(∂viW0,t)

dw

td+2
+

∫

R3

(∂vif0)
(
∂vivjW0,t

) dw

td+2
.

(5.6)
It is clear from the above that (5.6) that

∇2
xI(t, x) =

∫

Rd

{(∇2
xf0)(∇vY0,t) + (∇x,vf0)(∇vY0,t) + (∇xf0)(∇

2
vY0,t) + (∇2

x,vf0)(∇vY0,t)

+ (∇2
vf0)(∇vW0,t) + (∇2

vf0)(∇vW0,t)
2 + (∇vf0)(∇

2
vW0,t)}

dw

td+2

which satisfies the hypothesis for k = 2. Now by induction, we assume that this statement is true
for k, and we shall prove it for k + 1. Applying ∂xi

to the term (5.4) and using the product rules,
we have three types of terms that appear, namely:

I1 =

∫

Rd

d

dxi
(∇α

x,vf0)(∇
β1

v Y0,t)
k1 · · · (∇βr

v Y0,t)
kr · (∇γ1

v W0,t)
s1 · · · (∇γt

v W0,t)
st dw

td+k

I2 =

∫

Rd

(∇α
x,vf0)(∇vY0,t)(∇

β1

v Y0,t)
k1−1 · · · (∇βr

v Y0,t)
kr · (∇γ1

v W0,t)
s1 · · · (∇γt

v W0,t)
st dw

td+k+1

I3 =

∫

Rd

(∇α
x,vf0)(∇

β1

v Y0,t)
k1 · · · (∇βr

v Y0,t)
kr · (∇vW0,t)(∇

γ1
v W0,t)

s1−1 · · · (∇γt
v W0,t)

st dw

td+k+1

Here, I1, I2, I3 appear when ∂xi
hits ∇α

x,vf0, (∇
β1
v Y0,t)

k1 and (∇γ1
v W0,t)

s1 respectively. Note that we
assume that the derivative hits the above terms on just the pairs (β1, k1) or (γ1, s1), as this is up
to a permutation of indices.
Treating I1:

By a direct calculation, we see that I1 can be written as
∫

Rd

(
∇α+1

x,v f0 · ∇vY0,t +∇α+1
x,v f0(1 +∇vW0,t)

)
(∇β1

v Y0,t)
k1 · · · (∇βr

v Y0,t)
kr ·(∇γ1

v W0,t)
s1 · · · (∇γt

v W0,t)
st dw

td+k+1

which satisfies the induction hypothesis for |α|+ 1 = k + 1.
Treating I2:

For I2, we check the condition (5.5) for the new indices and multi-indices, which is

|α| ≤ k + 1 and 1 + β1(k1 − 1) + (β2k2 + · · ·+ βrkr) + (γ1s1 + · · · + γtst) ≤ k + 1

The statement |α| ≤ k + 1 is true, as |α| ≤ k. For the second condition, we note that, by the
induction hypothesis:

(β1k1 + β2k2 + · · ·+ βrkr) + (γ1s1 + · · ·+ γtst) ≤ k.

Adding both sides of the above by 1−β1, the new left hand side can be bounded by k+1−β1 ≤ k+1,
since β1 ≥ 0. The proof is complete. Finally, the term I3 is treated exactly as I2, and we skip the
details.
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Theorem 5.3. Assume that
max

0≤k≤N
‖∇k

x,vf0‖L1
xL

∞
v

≤ ǫ0

and E,Ys,t,Ws,t satisfy the decay estimates (4.3), (4.4), and (4.5) for 0 ≤ k ≤ N . Then

I(t, x) =

∫

Rd

f0(X0,t(x, v), V0,t(x, v))dv

satisfies the following decay estimate:

sup
0≤k≤N

(
〈t〉k‖∇k

xI(t)‖L1 + 〈t〉d+k‖∇k
xI(t)‖L∞

)
. ε0.

Proof. By the above lemma, it suffices to prove that

〈t〉k‖∇k
xJ (t)‖L1 + 〈t〉d+k‖∇k

xJ (t)‖L∞ . ε0.

where




J =
∫
Rd ∇α

x,vf0 · (∇
β1
v Y0,t)

k1 · · · (∇βr
v Y0,t)

kr · (∇γ1
v W0,t)

s1 · · · (∇γt
v W0,t)

st
dw

td+k

1 ≤ |α| ≤ k and (β1k1 + · · ·+ βrkr) + (γ1s1 + · · ·+ γtst) ≤ k.

We have

J (t, x) . t−k

∫

Rd

|∇α
x,vf0|(X0,t(x, v), V0,t(x, v))dv

Hence, we get
tk‖J (t)‖L1 + td+k‖J (t)‖L∞ . ε0.

The proof is complete.

5.2 Decay estimates for the reaction term

In this section, we estimate the derivatives of the reaction term

R = RL−RNL =

∫ t

0

∫

Rd

E(s, x−(t−s)v)·∇vµ(v)dvds−

∫ t

0

∫

Rd

E(s,Xs,t(x, v))·∇vµ(Vs,t(x, v))dvds

appearing as a forcing term in (5.1). For a general time-dependent vector field E(s) and a smooth
decaying function µ, we also denote T to be

T (E,µ) =

∫ t

0

∫

Rd

E(s, x−(t−s)v)·∇vµ(v)dvds−

∫ t

0

∫

Rd

E(s,Xs,t(x, v))·∇vµ(Vs,t(x, v))dvds (5.7)

Our main theorem is as follows:

Theorem 5.4. Let N > 1 be an integer. Assume that E,Ws,t, Ys,t satisfy the decay estimates (4.3),
(4.5) and (4.4) for all 0 ≤ k ≤ N , there holds

max
0≤k≤N

(
〈t〉k‖∇k

xR(t)‖L1 + 〈t〉d+k‖∇k
xR(t)‖L∞

)
. ε2.
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First, we recall the following proposition from [13]. We also give a detailed proof for the readers
convenience.

Proposition 5.5. Assuming that E,Ys,t,Ws,t satisfies the decaying estimates (4.3),(4.4) and (4.5)
respectively, we have

‖T (E,µ)‖L1 + 〈t〉d‖T (E,µ)‖L∞ . ε2.

Proof. Making the change of variables v → Ψs,t(x, v) so that Xs,t(x,Ψs,t(x, v)) = x− (t− s)v (see
Lemma 4.4), we have

T (E,µ) =

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇vµ(v)dvds −

∫ t

0

∫

Rd

E(s,Xs,t(x, v)) · ∇vµ(Vs,t(x, v))dvds

=

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇vµ(v)dvds

−

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇vµ(Vs,t(x,Ψs,t(x, v)) det(∇vΨs,t(x, v))dvds

Hence, one can rewrite T as T1 + T2, where

T1 =

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇v {µ(v)− µ(Vs,t(x,Ψs,t(x, v)))} dvds

T2 =

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇vµ(Vs,t(x,Ψs,t(x, v)) {1− det(∇vΨs,t(x, v))} dvds

Bounding T1(t):
We have

T1(t, x) =

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇v {µ(v) − µ(Vs,t(x,Ψs,t(x, v)))} dvds

.

∫ t

0

∫

Rd

|E(s, x− (t− s)v) · |〈v〉−M · |v − Vs,t(x,Ψs,t(x, v))|dvds

.

∫ t

0

∫

Rd

|E(s, x− (t− s)v)|〈v〉−M {|v − Vs,t(x, v)| + |Vs,t(x, v) − Vs,t(x,Ψs,t(x, v))|} dvds

.

∫ t

0

∫

Rd

|E(s, x− (t− s)v)|〈v〉−M {|v − Vs,t(x, v)|L∞ + ‖∇vVs,t‖L∞ |v −Ψs,t(x, v)|} dvds

Using the fact that

|v − Vs,t(x, v)| .
ε log(1 + s)

(1 + s)d−1
, |v −Ψs,t(x, v)| .

ε log(1 + s)

(1 + s)d
and ‖∇vVs,t‖L∞ . 1, (5.8)

we get

T1(t, x) .

∫ t

0

∫

Rd

|E(s, x − (t− s)v)|〈v〉−M

(
ε log(1 + s)

(1 + s)d−1
+

ε log(1 + s)

(1 + s)d

)
dvds.
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Hence

‖T1(t)‖L1 .

∫ t

0

ε log(1 + s)

(1 + s)d−1

∫

Rd

‖E(s)‖L1〈v〉−Mdv

.

∫ t

0

ε2 log(1 + s)2

(1 + s)d−1
ds . ε2,

and

‖T1(t)‖L∞ .

∫ t

0

∫

Rd

‖E(s)‖L∞〈v〉−M

(
ε log(1 + s)

(1 + s)d−1
+

ε log(1 + s)

(1 + s)d

)
dvds

.

∫ t

0

ε2 log(1 + s)2

(1 + s)2d−1
ds . ε2 log(1 + t)

∫ t

0

log(1 + s)

(1 + s)2d−1
ds

. ε2
log(1 + t)2

(1 + t)2d−2
. ε2〈t〉−d.

Thus
‖T1(t)‖L1 + 〈t〉d‖T1(t)‖L∞ . ε2.

Bounding T2(t):
Since v → Ψs,t(x, v) is a differomorphism, making the change of variables Ψ−1

s,t : Ψs,t(x, v) → v

gives

T2(t, x) =

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇vµ(Vs,t(x, v))(1 − det(∇vΨs,t(x, v)) det(∇v(Ψ
−1
s,t (x, v)))dvds

.

∫ t

0

∫

Rd

|E(s, x− (t− s)v)| · |∇vµ| (Vs,t(x, v)) ·
∣∣det(∇vΨs,t(x, v))

−1 − 1
∣∣ dvds

Using the inequality |∇v(Ψs,t(x, v)− v)| . ε log(1+s)
(1+s)d−1 , we have

T2(t, x) .

∫ t

0

∫

Rd

|E(s, x − (t− s)v)| · |∇vµ|(Vs,t(x, v)) ·
ε log(1 + s)

(1 + s)d−1
dsdv

Hence we have

‖T2(t)‖L1 .

∫ t

0

{
ε
log(1 + s)

(1 + s)d−1
‖E(s)‖L1

∫

Rd

sup
x∈Rd

|∇vµ|(Vs,t(x, v))dv

}
ds

.

∫ t

0
ε2

log(1 + s)2

(1 + s)d
ds . ε2.

and

‖T2(t)‖L∞ .

∫ t

0
‖E(s)‖L∞ ·

ε log(1 + s)

(1 + s)d−1
sup
x∈Rd

∫

Rd

|∇vµ|(Vs,t(x, v))dvds

.

∫ t

0
ε2

log(1 + s)2

(1 + s)2d−1
ds . ε2 log(1 + t)

∫ t

0

log(1 + s)

(1 + s)2d−1
ds . ε2

log(1 + t)

(1 + t)2d−2

. ε2〈t〉−d
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This implies that
‖T2(t)‖L1 + 〈t〉d‖T2(t)‖L∞ . ε2.

The proof is complete.

Lemma 5.6. There holds

∂jT (E,µ) =
1

t
(T (s∂jE,µ) + T (E, ∂jµ))

+
1

t

d∑

k=1

∫ t

0

∫

Rd

∂vjYs,t(x− tv, v) · ∇xEk(s,Xs,t(x, v))(∂kµ)(Vs,t(x, v))dvds

+
1

t

d∑

k=1

∫ t

0

∫

Rd

Ek(s,Xs,t(x, v))(∂vjWs,t)(x− tv, v) · ∇v(∂kµ)(Vs,t(x, v))dvds.

Proof. We recall that

RNL =

∫ t

0

∫

Rd

E(s,Xs,t(x, v)) · ∇vµ(Vs,t(x, v))dvds.

Using the identities (4.1), we have

RNL =

∫ t

0

∫

Rd

E(s, x− (t− s)v + Ys,t(x− tv, v)) · ∇vµ(v +Ws,t(x− tv, v))dvds.

Making the change of variable w = x− tv, we obtain

RNL =

∫ t

0

∫

Rd

E

(
s,w +

s

t
(x− w) + Ys,t(w,

x− w

t
)

)
· ∇vµ

(
x− w

t
+Ws,t(w,

x− w

t
)

)
t−ddwds

= t−d
d∑

k=1

∫ t

0

∫

Rd

Ek

(
s,w +

s

t
(x− w) + Ys,t(w,

x−w

t
)

)
∂kµ

(
x− w

t
+Ws,t(w,

x− w

t
)

)
dwds

Similarly, for RL we have

RL =

∫ t

0

∫

Rd

E(s, x− (t− s)v) · ∇vµ(v)dvds = t−d
d∑

k=1

∫ t

0

∫

Rd

Ek

(
s,w +

s

t
(x− w)

)
∂kµ

(
x− w

t

)
dwds

The lemma follows by a direct calculation. The proof is complete.

Now we establish the following lemma, by induction on the degree of derivatives.

Lemma 5.7. Let n ≥ 2, then ∇n
xR(t, x) can be written as a sum of terms, are all either of the

form
1

tn
T (sk∇k

xE, f(µ))
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or the form

1

tn

∫ t

0

∫

Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}
·
{
(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
}

×
{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dvds

where f(µ) is some expression only depending on µ(v) or its derivatives. Moreover, the indices
satisfy the following set of conditions:

• No loss of derivative condition: k ≤ n, max{{m1, k1, · · · ,ma, ka} ∪ {n1, l1, · · · , nb, lb} ∪
{t1, u1, · · · , tc, uc}} ≤ n.

• E-decay condition: (t1, t2, · · · , tc) ≤ (u1, u2, · · · , uc).

• Y-W show-up condition: min{a, b} ≥ 1.

• E-show up condition: c ≥ 1.

• W -E decay condition: If b = 0 then th + 1 ≤ uh for some 1 ≤ h ≤ c.

Let us call the first form to be type-I and the second one is type-II.

Remark 5.8. The conditions on the indices are important for the decay estimates. The first
condition means that we do not lose derivatives in the estimates. The second condition requires a
good decay for the quantities sti∇ui

x E. The third condition means that at least Ys,t or Ws,t (or their
derivatives) shows up in the expression. The forth condition means that E or its derivatives must
show up in the expression. Finally, the last condition means that if Ws,t (or its derivatives) does
not show up, then we have more gradient of E to control the power of s. The reason for the last
condition will be clear when we estimate (5.11) later in the paper.

Proof. The lemma is proved by induction on n. Assuming the lemma is true for n, we justify the
above claim for n+ 1.
Gradient of type-I terms:

Applying ∂j to the term T (sk∇k
xE, f(µ)) and using Lemma 5.6, we have

1

tn
∂jT (s

k∇k
xE, f(µ)) =

1

tn+1

(
T (sk+1∇k

x∂jE, f(µ)) + T (sk∇k
xE, ∂jf(µ))

)

+
1

tn+1

∫ t

0

∫

Rd

((
∂vjYs,t(x− tv, v)

)
· ∇x(s

k∇k
xE) (s,Xs,t(x, v)) (∇vf(µ)) (Vs,t(x, v)))

)
dvds

+
1

tn+1

∫ t

0

∫

Rd

(sk∇k
xE) (s,Xs,t(x, v)))

{
∂vjWs,t(x− tv, v) · ∇2

vf(µ)(Vs,t(x, v))
}
dvds.

We can see that all of the above terms are either type-I or type-II, and satisfy the induction
hypothesis with order n+ 1.
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Gradient of type-II form:

Now we consider the type-II term:

D =
1

tn

∫ t

0

∫

Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}
·
{
(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
}

×
{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dvds.

Here (∇mi
v Ys,t)

ki , (∇
nj
v Ws,t)

lj is evaluated at (x − tv, v) and ∇ur
x E is evaluated at (s,Xs,t(x, v)).

Making the change of variables w = x− tv, we can rewrite D as

t−d 1

tn

∫ t

0

∫

Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}{

(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
}

×
{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dwds.

where (∇mi
v Ys,t)

ki , (∇
nj
v Ws,t)

lj is evaluated at (w, x−w
t ) and ∇ur

x E is evaluated at

(
s, Ys,t(w,

x− w

t
) + w +

s

t
(x− w)

)

Applying ∇x to D and using the product rules, we have





D1 = t−d 1
tn

∫ t
0

∫
Rd k1

(
(∇m1

v Ys,t)
k1−1 {∇m1+1

v Ys,t

}
1
t

)
· · · (∇ma

v Ys,t)
ka

{
(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
}{

(st1∇u1
x E) · · · (stc∇uc

x E)
}
f(µ)dwds,

D2 = t−d 1
tn

∫ t
0

∫
Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}

(
l1
{
(∇n1

v Ws,t)
l1−1(∇n1+1

v Ws,t)
}

1
t

)
· · · (∇nb

v Ws,t)
lb

{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dwds,

D3 = t−d 1
tn

∫ t
0

∫
Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}{

(∇n1
v Ws,t)

l1 · · · (∇nb
v Ws,t)

lb
}

(
1
t

{
st1(∇u1+1

x E)(∇vYs,t)
}
+ 1

t

{
st1+1∇u1+1

x E
})

· · · (stc∇uc
x E)f(µ)dwds.

Now making the change of variables v = x−w
t , we get





D1 = 1
tn+1

∫ t
0

∫
Rd k1

(
(∇m1

v Ys,t)
k1−1 {∇m1+1

v Ys,t

})
· · · (∇ma

v Ys,t)
ka

{
(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
} {

(st1∇u1
x E) · · · (stc∇uc

x E)
}
f(µ)dvds,

D2 = 1
tn+1

∫ t
0

∫
Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}

(
l1
{
(∇n1

v Ws,t)
l1−1(∇n1+1

v Ws,t)
})

· · · (∇nb
v Ws,t)

lb
{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dvds,

D3 =
1

tn+1

∫ t
0

∫
Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
} {

(∇n1
v Ws,t)

l1 · · · (∇nb
v Ws,t)

lb
}

{
st1(∇u1+1

x E)(∇vYs,t) + st1+1∇u1+1
x E

}
· · · (stc∇uc

x E)f(µ)dvds.

From the above expressions, it is straightforward that the new terms are of type-II, which satisfy
the induction hypothesis with n+ 1. The proof is complete.
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Proposition 5.9. Let R be defined as in (5.7). There holds, for n ≥ 2, the decaying estimates

〈t〉n‖∇n
xR(t)‖L1 + 〈t〉d+n‖∇k

xR(t)‖L∞ . ε2.

Proof. By Lemma 5.7, ∇n
xR(t, x) can be decomposed as a sum of many terms, all are either of the

form R1 or R2, where





R1 = 1
tnT (sk∇k

xE, f(µ))

R2 = 1
tn

∫ t
0

∫
Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}
·
{
(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
}

{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dvds

where

k ≤ n and max{{m1, k1, · · · ,ma, ka} ∪ {n1, l1, · · · , nb, lb} ∪ {t1, u1, · · · , tc, uc}} ≤ n.

Bounding R1(t):
We have

R1(t) =
1

tn
T (sk∇k

xE, f(µ))

with k ≤ n and f(µ) is a decay function in v which only depends on µ or its derivatives. Applying
Proposition 5.5, we only need to check the assumption

‖sk∇k
xE(s)‖L∞ .

ε log(1 + s)

(1 + s)d
,

which is true, since ‖∇k
xE(s)‖L∞ .

ε log(1+s)
(1+s)d+k . The proof for R1 is complete.

Bounding R2(t):
Now we bound R2(t), where

R2(t, x) =
1

tn

∫ t

0

∫

Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}
·
{
(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
}

{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dvds

Here (∇mi
v Ys,t)

ki , (∇
nj
v Ws,t)

lj is evaluated at (x− tv, v) and ∇ur
x E is evaluated at (s,Xs,t(x, v)).

We also recall the following set of conditions, proved in Lemma 5.7:





k ≤ n and max{{m1, k1, · · · ,ma, ka} ∪ {n1, l1, · · · , nb, lb} ∪ {t1, u1, · · · , tc, uc}} ≤ n,

(t1, t2, · · · , tc) ≤ (u1, u2, · · · , uc),

min{a, b} ≥ 1,

c ≥ 1

If b = 0 then th + 1 ≤ uh for some 1 ≤ h ≤ c.

(5.9)
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First, we will show that ‖R2(t)‖L1 . ε2〈t〉−n.
Using the third condition in (5.9) and the fact that

max
0≤k≤n

(
‖∇k

vYs,t‖L∞ + ‖∇k
vWs,t‖L∞

)
. ε

log(1 + s)

(1 + s)d−2
,

we get

R2(t, x) . t−n

∫ t

0

∫

Rd

ε
log(1 + s)

(1 + s)d−2

c∏

i=1

(
sti‖∇ui

x E(s)‖L∞

)
|f(µ)|(Vs,t(x, v))dvds. (5.10)

Now using the second and the forth condition in (5.9), and the decay of ∇ui
x E, we get

sti‖∇ui
x E(s)‖L∞ .

ε log(1 + s)

(1 + s)d+ui−ti
.

ε log(1 + s)

(1 + s)d
.

Applying the above inequality to (5.10), we obtain

R2(t, x) . t−n

∫ t

0

∫

Rd

ε2 ·
log(1 + s)

(1 + s)d−2
·
log(1 + s)

(1 + s)d
|f(µ)|(Vs,t(x, v))dvds

. ε2t−n

∫ t

0

∫

Rd

log(1 + s)2

(1 + s)2d−2
|f(µ)|(Vs,t(x, v))dvds.

Hence, using the decaying assumption of µ, we obtain

‖R2(t)‖L1 . ε2t−n

∫ t

0

log(1 + s)2

(1 + s)2d−2

(∫

Rd×Rd

|f(µ)|(Vs,t(x, v))dxdv

)
ds . ε2t−n.

The decaying bound for ‖R2(t)‖L1 is complete.

We split the integral in R2 into
∫ t/2
0 +

∫ t
t/2, so that R2 = R3 +R4, where





R3(t, x) = 1
tn

∫ t
t/2

∫
Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}
·
{
(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
}

{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dvds

R4(t, x) = 1
tn

∫ t/2
0

∫
Rd

{
(∇m1

v Ys,t)
k1 · · · (∇ma

v Ys,t)
ka
}
·
{
(∇n1

v Ws,t)
l1 · · · (∇nb

v Ws,t)
lb
}

{
(st1∇u1

x E) · · · (stc∇uc
x E)

}
f(µ)dvds

For R3(t, x), by the same argument for R1(t, x), we have the pointwise bound

R3(t, x) . ε2t−n

∫ t

t/2

log(1 + s)2

(1 + s)2d−2

∫

Rd

|f(µ)|(Vs,t(x, v))dvds

. ε2t−n−d

∫ t

t/2

log(1 + s)2

(1 + s)d−2
ds . ε2t−(n+d)

Thus ‖R3(t)‖L∞ . ε2t−(n+d).
Now to bound ‖R4(t)‖L∞ , we use the inequalities

max
0≤k≤n

(
〈s〉d−2‖∇k

vYs,t‖L∞ + 〈s〉d−1‖∇k
vWs,t‖L∞

)
. ε log(1 + s)
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to get

R4(t, x) . t−n

∫ t/2

0

∫

Rd

(
ε log(1 + s)

(1 + s)d−2

)a(
ε log(1 + s)

(1 + s)d−1

)b

×
c∏

i=1

(
sti |∇ui

x E|(s,Xs,t(x, v))
)
· |f(µ)|(Vs,t(x, v))dvds

. t−nεa+b

∫ t/2

0

∫

Rd

(log(1 + s))a+b

(1 + s)a(d−2)+b(d−1)

×
c∏

i=1

{
sti |∇ui

x E|(s,Xs,t(x, v))
}
· |f(µ)|(Vs,t(x, v))dvds

Using the change of variable v → Ψs,t(x, v) so that Xs,t(x,Ψs,t(x, v)) = x− (t− s)v, we have

R4(t, x) . t−nεa+b

∫ t/2

0

∫

Rd

(log(1 + s))a+b

(1 + s)a(d−2)+b(d−1)

c∏

i=1

{
sti |∇ui

x E|(s, x− (t− s)v)
}

· |f(µ)|(Vs,t(x,Ψs,t(x, v)))|det(∇vΨs,t(x, v))|dvds

Now making the change of variables w = x− (t− s)v, we have

R4(t, x) . t−nεa+b

∫ t/2

0
(t− s)−d

∫

Rd

(log(1 + s))a+b

(1 + s)a(d−2)+b(d−1)

c∏

i=1

{
sti |∇ui

x E|(s,w)
}

· |f(µ)|

(
Vs,t(x,Ψs,t(x,

x−w

t
)

)
dwds

. t−(n+d)εa+b

∫ t/2

0

log(1 + s)a+b

(1 + s)a(d−2)+b(d−1)
· min
1≤i≤c

{
sti‖∇ui

x E(s)‖L1

}
ds

. t−(n+d)εa+b

∫ t/2

0

log(1 + s)a+b

(1 + s)a(d−2)+b(d−1)
· min
1≤i≤c

{
sti

ε log(1 + s)

(1 + s)ui

}
ds

. t−(n+d)εa+b+1

∫ t/2

0

(log(1 + s))a+b+1

(1 + s){a(d−2)+b(d−1)+max1≤i≤c(ui−ti)}
ds.

Now using the third condition in (5.9), we get εa+b+1 . ε2 as long as ε is small. Hence we get

‖R4(t)‖L∞ . ε2t−(n+d)

∫ t/2

0

(log(1 + s))a+b+1

(1 + s){a(d−2)+b(d−1)+max1≤i≤c(ui−ti)}
ds. (5.11)

Thus, it suffices to prove that

C =

∫ t/2

0

(log(1 + s))a+b+1

(1 + s){a(d−2)+b(d−1)+max1≤i≤c(ui−ti)}
ds . 1.

We consider two cases:
Case 1 : b = 0.
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In this case, we use use the last condition listed in (5.9) to get max1≤i≤c(ui − ti) ≥ 1, and hence

C .

∫ t/2

0

(log(1 + s))a+1

(1 + s)a(d−2)+1
.

∫ t/2

0

(log(1 + s))a+1

(1 + s)a(d−2)+1
ds . 1.

Case 2 : b ≥ 1.
In this case, we estimate C as follows:

C .

∫ t/2

0

(log(1 + s))a

(1 + s)a(d−2)
·
(log(1 + s))b+1

(1 + s)b(d−1)
ds .

∫ t/2

0

(log(1 + s))b+1

(1 + s)b(d−1)
ds . 1.

The proof is complete.

Finally, we give the proof for the main Theorem 2.1.
Proof of Theorem 2.1. Let

N (t) = sup
0≤s≤t

max
0≤k≤N

(
〈s〉k‖∇k

xρ(s)‖L1 + 〈s〉k+d‖∇k
xρ(s)‖L∞

)

log(1 + s)
.

Now we fix a constant M0 > 0, which will be chosen later. We prove that N (t) ≤ M0ε0 for all
t ≥ 0, as long as ε0 is small enough. Let

T⋆ = sup{T > 0 : N (t) ≤ M0ε0 for all 0 ≤ t ≤ T} (5.12)

We shall prove that T⋆ = ∞ by contradiction argument. Assuming that T⋆ < ∞, we have

N (T⋆) = ε0 and sup
0≤t≤T

N (t) < ε0 for all T < T⋆.

For t ∈ (0, T⋆), by Theorem 3.3 and 5.3, there exists C0, C1 > 0 such that

N (t) ≤ C0‖S‖Y N
t

≤ C0C1(ε0 + ε20)

for ε0 small enough. Let t → T⋆, we have

M0ε0 ≤ C0C1(ε0 + ε20)

which is false, as long as M0 > 2C0C1 and ε0 small. The proof is complete.
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