
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATH. ANAL. © 2020 Society for Industrial and Applied Mathematics
Vol. 52, No. 5, pp. 4616–4637
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Abstract. In this paper, we establish the short time inviscid limit of the incompressible Navier–
Stokes equations with critical Navier-slip boundary conditions for analytic data on half-space, a
boundary condition that is physically derived from the hydrodynamic limit of the Boltzmann equa-
tions with the Maxwell boundary conditions. The analysis is built upon the recent framework
developed by T. T. Nguyen and T. T. Nguyen [Arch. Ration. Mech. Anal., 230 (2018), pp. 1103–
1129] in the case of the classical no-slip boundary conditions. The novelty in this paper is to derive
the precise pointwise bound on the Green kernel for the Stokes problem with a nonlocal boundary
condition and to propagate the boundary layer behavior for vorticity.
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1. Introduction. In this paper, we are interested in the inviscid limit of the
Navier–Stokes equations for incompressible fluids

(1.1)
∂tu+ u \cdot \nabla u+\nabla p = ν∆u,

\nabla \cdot u = 0

posed on the half space (x, y) \in T\times R+, with the slip boundary condition

(1.2) u2 = 0 and ∂yu1 = ν - \beta u1 when y = 0.

Here ν\beta is the slip length and u = u(t, x, y) = (u1(t, x, y), u2(t, x, y)) \in R
2 is the

velocity field. The goal of this paper is to justify the inviscid limit for analytic data
in the critical case β = 1.

First, let us mention some previous works on the inviscid limit and boundary
layer theory for β \in [0, 1). For β = 0, in which the slip length does not depend on ν,
the picture is now complete: [8] derives a complete boundary layers expansion, and
[15] justifies the vanishing viscosity limit by a compactness argument for any bounded
domain and for half-space (see also [1, 3, 9, 11]). For 0 \leq β < 1, the inviscid limit

is established in [18] with a rate of convergence O(ν
1 - β
2 ) for Sobolev data, while the

boundary layer expansion is proved to fail when β = 1
2 . When β = 1, a Kato-type

criterion for the inviscid limit to hold is proved in [21].

1.1. Criticality of β = 1. When β = 1, we have the critical-slip boundary
condition

(1.3) ∂yu1| y=0 = ν - 1u1| y=0.
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The boundary condition (1.3) is physically obtained from the hydrodynamic limit of
the Boltzmann equations with the Maxwell boundary conditions (see [10]). However,
the inviscid limit for the critical case β = 1 and stability of boundary layer expansions
for (1.3) remain open, due to the failure of standard energy estimates and even the
lack of approriate boundary layer theory for the Navier–Stokes equations with the
boundary condition (1.3). Our work appears to be the first giving an affirmative
answer to the inviscid limit problem in the critical case β = 1, with the assumption
only placed on the initial data. The inviscid limit holds uniformly in a short time
interval independent of the viscosity ν. There are numerical evidences that the inviscid
limit fails for longer time, leading to anomalous dissipation of the Navier–Stokes
equations (see [17]). At the time when the inviscid limit may fail, there would be
possible emergence of weak solutions to the Euler equations in the vanishing viscosity
limit (see [4]).

To illustrate why β = 1 is considered to be critical, let us give a proof of the
following theorem for any β \in [0, 1) for the reader convenience. The proof is quite
simple and is originally done in [18].

Theorem 1.1 (see [18]). Let uE \in C1
\bigl( 

(0, T ),W 2,\infty (Ω) \cap L2(Ω)
\bigr) 

be a smooth

solution to Euler with the nonpenetration boundary condition uE2 | y=0 = 0 and u\nu be

the solution to the Navier–Stokes equations with the slip boundary condition (1.2) with
0 \leq β < 1 on the domain Ω = T\times R+. Then

sup
0\leq t\leq T

\| u\nu (t) - uE(t)\| L2(Ω) \leq CT ν
1 - β
2 + \| u\nu (0) - uE(0)\| L2(Ω).

The convergence holds for any finite time T > 0, which is the time of existence of

Euler solutions in a Sobolev space.

Proof. Let v = u\nu  - uE be the difference between the velocity of Navier–Stokes
equations and Euler equations. Then v solves

∂tv + uE \cdot \nabla v + v \cdot \nabla uE + v \cdot \nabla v  - ν∆u\nu =  - \nabla 
\bigl( 

p\nu  - pE
\bigr) 

.

Multiplying both sides of the first equation by v, integrating over Ω = T \times R+, and
using the nonpenetration boundary condition, we have

(1.4)
1

2

d

dt
\| v\| 2L2 +

\int 

Ω

\bigl( 

v \cdot \nabla uE
\bigr) 

\cdot v  - ν

\int 

Ω

∆u\nu \cdot v = 0.

By integrating by parts and the slip boundary conditions, we have

 - ν
\int 

Ω

∆u\nu \cdot v = ν

\int 

Ω

| \nabla v| 2 + ν

\int 

Ω

\nabla uE \cdot \nabla v + ν1 - \beta 

\int 

T

| u\nu 1(t, x, 0)| 2dx

 - ν1 - \beta 

\int 

T

u\nu 1(t, x, 0)u
E
1 (t, x, 0)dx.

Combining the above with (1.4), we have

(1.5)

1

2

d

dt
\| v\| 2L2 + ν

\int 

Ω

| \nabla v| 2 + ν1 - \beta 

\int 

T

u\nu 1(t, x, 0)
2dx =

\int 

Ω

\bigl( 

v \cdot \nabla uE
\bigr) 

\cdot v

 - ν

\int 

Ω

\nabla uE \cdot \nabla v + ν1 - \beta 

\int 

T

u\nu 1(t, x, 0)u
E
1 (t, x, 0)dx.

Applying the standard Cauchy inequality (ab \leq εa2 + C\varepsilon b
2 for ε > 0 small), we get

1

2

d

dt
\| v\| 2L2 \leq \| \nabla uE\| L\infty \| v\| 2L2 + C\varepsilon ν\| \nabla uE\| 2L2 + C\varepsilon ν

1 - \beta 

\int 

T

| uE1 (t, x, 0)| 2dx.
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4618 TRINH T. NGUYEN

By the Gronwall inequality, we have

\| v(t)\| L2 \leq \| v(0)\| L2 + CEν
1 - β
2 ,

where CE is a constant that only depends on the Euler solution. The proof is com-
plete.

Remark 1.2. One can see that the bound in the above theorem proves the inviscid
limit precisely when β < 1, as ν(1 - \beta )/2 \rightarrow 0 in the inviscid limit. Apparently, the
proof fails to imply anything at the critical case β = 1.

In this paper, we give a direct proof of the inviscid limit for data with analytic

regularity in the critical case β = 1, with a precise pointwise bound on the vorticity in
this class of initial data (see section 4 for the precise statement). The proof relies on
our previous framework in [16], which completely avoids boundary layer expansions.
More precisely, we work with the vorticity formulation and the boundary conditions
that capture (1.3), derive a pointwise bound for the Green function of the Stokes prob-
lems, and propagate boundary layer norms for the vorticity. The difficulty we have to
overcome in our analysis of (1.3) is the precise pointwise bound of the temporal Green
function for the Stokes problems, which allows us to propagate the boundary layer
norm in analytic function spaces. Interestingly, we shall see below that the nonlinear
iteration (with the Green kernel of Stokes) for the full Navier–Stokes equations with
the boundary condition (1.3) is just slightly better than the no-slip boundary con-
dition’s iteration in [16], due to a special cancellation of the pole in the resolvent
analysis of the Green function (see section 6.3). This might support the intuition
that if the fluid is allowed to slip even in the critical sense, it is less violent than the
no-slip boundary condition (see [5, 7]). Lastly, we remark that, just as for critical
slip, the inviscid limit is also largely open for the classical no-slip boundary condition
u\nu | \partial Ω = 0 (e.g., see [20, 13, 16, 12, 14]).

Notations. In this paper, for complex numbers A,B, we write A \lesssim B to mean
that | A| \leq C0| B| for some constant C0 > 0 independent of viscosity ν > 0; we also
denote \Re A,\Im A to be the real and imaginary part of A, respectively.

Organization of the paper. In section 2, we derive a suitable boundary con-
dition for the vorticity to ensure the critical slip boundary condition (1.3). In section
3, we introduce analytic boundary layer norms for the vorticity. In section 4, we state
our main results. In section 5, we recall several elliptic and bilinear estimates for the
velocity and the nonlinear terms in analytic norm. In section 6, we construct and de-
rive a pointwise estimate for the Green function of the Stokes problem. We conclude
the paper with section 7 with the proofs of the main theorems stated in section 4.

2. Boundary vorticity formulation. Let ω(x, z) = ∂zu1  - ∂xu2 be the corre-
sponding vorticity in (x, z) \in T\times R+. Then, the vorticity equation reads

(2.1) ∂tω  - ν∆ω =  - u \cdot \nabla ω

with u = \nabla \bot ∆ - 1ω. Here and throughout the paper, ∆ - 1 denotes the inverse of
the Laplacian operator with the Dirichlet boundary condition: Precisely, φ = ∆ - 1ω
solves ∆φ = ω on the half-space T\times R+, with φ| z=0

= 0.
To ensure the critical slip boundary condition, we impose νω = u1 on the bound-

ary. Taking the Fourier transform in x, namely, ω(x, z) =
\sum 

\alpha \in Z
ω\alpha (z)e

i\alpha x, we impose
the following boundary condition
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(2.2) νω\alpha (0) =  - 
\int \infty 

0

e - \alpha yω\alpha (y)dy,

which follows from the following lemma.

Lemma 2.1. Let u1,\alpha be the Fourier transform of the tangential component u1
and ω\alpha the Fourier transform of ω. Then the value of u1,\alpha on the boundary z = 0 is

given by

u1,\alpha (0) =  - 
\int \infty 

0

e - \alpha yω\alpha (y)dy.

Proof. Since ∂xu1 + ∂zu2 = 0, one can write u1 = ∂zφ and u2 =  - ∂xφ for some
stream function φ. Since ∆φ = ω on T\times R+ and φ| z=0 = 0, we have

(∂2z  - α2)φ\alpha = ω\alpha , φ\alpha (0) = 0,

where φ\alpha and ω\alpha are the Fourier transform of φ and ω. The solution of the above
equation is given explicitly by

φ\alpha (z) =
1

2α

\int \infty 

0

\Bigl( 

e - \alpha | y+z|  - e - \alpha | y - z| 
\Bigr) 

ω\alpha (y)dy

=
1

2α

\biggl( 
\int \infty 

0

e - \alpha (y+z)ω\alpha (y)dy  - 
\int z

0

e\alpha (y - z)ω\alpha (y)dy  - 
\int \infty 

z

e\alpha (z - y)ω\alpha (y)dy

\biggr) 

.

Since u1,\alpha = ∂zφ\alpha , a direct calculation yields

u1,\alpha (z) =
1

2α

\biggl( 

 - α
\int \infty 

0

e - \alpha (y+z)ω\alpha (y)dy + α

\int z

0

e\alpha (y - z)ω\alpha (y)dy

 - α
\int \infty 

z

e\alpha (z - y)ω\alpha (y)dy

\biggr) 

.

The lemma follows, after evaluating u1,\alpha at z = 0.

3. Analytic boundary layer function spaces. In this section, we recall an-
alytic boundary layer spaces introduced in our previous work [16] (see also [6, 7]).
Precisely, we consider holomorphic functions on the pencil-like complex domain:

Ω\sigma =
\Bigl\{ 

z \in C : | \Im z| < min\{ σ\Re z, σ\} 
\Bigr\} 

(3.1)

for σ > 0. Let δ =
\surd 
ν be the classical boundary layer thickness. We introduce the

analytic boundary layer function spaces \scrB \sigma ,\delta that consists of holomorphic functions
on Ω\sigma with a finite norm

\| f\| \sigma ,\delta = sup
z\in Ωσ

| f(z)| e\beta 0\Re z
\Bigl( 

1 + δ - 1φP
\bigl( 

δ - 1z
\bigr) 

\Bigr)  - 1

(3.2)

for some small β0 > 0, and for boundary layer weight function

φP (z) =
1

1 + | \Re z| P

for some fixed constant P > 1. Here, we suppress the dependence on β0, P as they
are fixed throughout the paper. We expect that the vorticity function ω(t, x, z), for
each fixed t, x, will be in \scrB \sigma ,\delta , precisely describing the behavior near the boundary
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4620 TRINH T. NGUYEN

and near infinity. In fact, there is an additional initial layer of thickness δt =
\surd 
νt

that appears near the boundary. To capture this, we introduce the time-dependent
boundary layer norm:

\| f\| \sigma ,\delta (t) = sup
z\in Ωσ

| ω(z)| e\beta 0\Re z
\Bigl( 

1 + δ - 1
t φP

\bigl( 

δ - 1
t z
\bigr) 

+ δ - 1φP
\bigl( 

δ - 1z
\bigr) 

\Bigr)  - 1

,(3.3)

with δt =
\surd 
νt, δ =

\surd 
ν, and with the same boundary layer weight function φP (\cdot ). By

convention, the norm \| \cdot \| \sigma ,\delta (0) at time t = 0 is replaced by \| \cdot \| \sigma ,\delta , the boundary layer
norm with precisely one boundary layer behavior of thickness δ, and \| \cdot \| \sigma ,0 denotes
the norm without the boundary layer behavior.

For functions depending on two variables f(x, z), we introduce the partial Fourier
transform in variable x

f(x, z) =
\sum 

\alpha \in Z

f\alpha (z)e
i\alpha x

and introduce the following analytic norm

| | f | | \rho ,\sigma ,\delta (t) =
\sum 

\alpha \in Z

e\rho | \alpha | | | f\alpha | | \sigma ,\delta (t)

for ρ, σ > 0. We denote by B\rho ,\sigma ,\delta (t) the corresponding spaces. In section 5, we shall
recall some basic properties of such analytic function spaces.

4. Main results. Our main results are as follows.

Theorem 4.1. Let M0 > 0, and let ω0 be in \scrB \rho 0,\sigma 0,\delta for ρ, σ > 0 and for δ =
\surd 
ν,

with \| ω0\| \rho 0,\sigma 0,\delta \leq M0. Then, there is a positive time T , independent of ν > 0, so
that the solution ω(t) to the Navier–Stokes equations (2.1)–(1.2), with the initial data

ω(0) = ω0, exists in C
1([0, T ];\scrB \rho ,\sigma ,\delta (t)) for 0 < ρ < ρ0 and 0 < σ < σ0. In particular,

there is a C0 so that the vorticity ω(t) satisfies

| ω(t, x, z)| \leq C0e
 - \beta 0z

\Bigl( 

1 + δ - 1
t φP

\bigl( 

δ - 1
t z
\bigr) 

+ δ - 1φP (δ
 - 1z)

\Bigr) 

(4.1)

for (t, x, z) \in [0, T ]\times T\times R+, with δt =
\surd 
νt and δ =

\surd 
ν.

Theorem 4.2. Let M0 > 0, and let u\nu 0 be divergence-free analytic initial data so

that ω\nu 
0 = \nabla \times u\nu 0 is in \scrB \rho 0,\sigma 0,\delta for ρ, σ > 0 and for δ =

\surd 
ν, with \| ω\nu 

0\| \rho 0,\sigma 0,\delta \leq M0.

Then, the inviscid limit holds for Navier–Stokes solutions with the initial data u\nu 0 , with
the time scale set by Theorem 4.1. Precisely, there are unique local solutions u\nu (t) to
the Navier–Stokes equations (1.1)–(1.2), for small ν > 0, and a unique solution uE(t)
to the corresponding Euler equations, with initial data uE0 = lim\nu \rightarrow 0 u

\nu 
0 , so that

\| u\nu (t) - uE(t)\| L2 \leq \| u\nu 0  - uE0 \| L2 + CT

\surd 
ν + CT (νt)

1
4 for t \in [0, T ],

where CT is a constant that only depends on the solution of Euler and T . In particular,

we have

sup
0\leq t\leq T

\| u\nu (t) - uE(t)\| Lp \rightarrow 0 as ν \rightarrow 0

for any 2 \leq p <\infty .

As mentioned, the proof of the main theorems is direct, using the vorticity for-
mulation (2.1)–(2.2). For Theorem 4.1, we first prove the local existence of solutions
in the analytic space L1

\rho ,\sigma (see (5.1)) and then in boundary layer spaces in order to
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establish the precise pointwise behavior of the vorticity (see section 7.2). Theorem 4.1
applies in particular for well-prepared analytic data that satisfy the Prandtl ansatz of
size

\surd 
ν. For general analytic data, beside the Prandtl layers, the initial layers whose

thickness is of order
\surd 
νt appear as captured in (4.1). After proving Theorem 4.1, we

establish Theorem 4.2 by a direct energy estimate; see section 7.3.

5. Analytic function spaces. In this section, we recall basic properties of the
analytic norms as well as the elliptic estimates that yield bounds on velocity in term
of vorticity. These norms and estimates can be found in [16, 20]. Let f(x, z) be
holomorphic functions on T \times Ω\sigma , with Ω\sigma being the pencil-like complex domain
defined as in (3.1). For ρ, σ > 0 and 1 \leq p \leq \infty , we introduce the analytic function
spaces denoted by \scrL p

\rho ,\sigma with the finite norm

\| f\| \scrL p
ρ,σ

:=
\sum 

\alpha \in Z

e\rho | \alpha | \| f\alpha \| Lp
σ
, \| f\alpha \| Lp

σ
:= sup

0\leq \theta <\sigma 

\biggl( 
\int 

\partial Ωθ

| f\alpha (z)| p | dz| 
\biggr) 1/p

,(5.1)

in which f\alpha = f\alpha (z) denotes the Fourier transform of f(x, z). In the case when p = \infty ,
the Lp norm is replaced by the sup norm over Ω\sigma . Recalling the analytic boundary
layer space B\rho ,\sigma ,\delta (t) introduced in section 3, we have the following lemma.

Lemma 5.1 (L1 embedding). There holds the embedding \scrB \rho ,\sigma ,\delta (t) \subset \scrL 1
\rho ,\sigma .

Lemma 5.2 (recovering loss of derivatives). For any 0 < σ\prime < σ, 0 < ρ\prime < ρ,
and ψ(z) = z

1+z , there hold

\| fg\| \scrL 1
ρ,σ

\leq \| f\| \scrL \infty 
ρ,σ

\| g\| \scrL 1
ρ,σ
,(5.2)

\| ∂xf\| \scrL 1
ρ\prime ,σ

\leq C

ρ - ρ\prime 
\| f\| \scrL 1

ρ,σ
, \| ψ(z)∂zf\| \scrL 1

ρ,σ\prime 
\leq C

σ  - σ\prime \| f\| \scrL 1
ρ,σ
.(5.3)

The same estimates hold for boundary layer norms \| \cdot \| \rho ,\sigma ,\delta replacing \| \cdot \| \scrL 1
ρ,σ

in the

above three inequalities.

Lemma 5.3 (elliptic estimates). Let φ be the solution of  - ∆φ = ω with the zero

Dirichlet boundary condition, and set u = \nabla \bot φ. Then, there hold

(5.4) \| u1\| \scrL \infty 
ρ,σ

+ \| u2\| \scrL \infty 
ρ,σ

\leq C\| ω\| \scrL 1
ρ,σ
,

(5.5) \| ∂xu1\| \scrL \infty 
ρ,σ

+ \| \nabla u2\| \scrL \infty 
ρ,σ

+ \| ψ - 1u2\| L\infty 
ρ,σ

\leq C\| ω\| \scrL 1
ρ,σ

+ C\| ∂xω\| \scrL 1
ρ,σ
,

(5.6) \| \nabla u1\| \scrL 1
ρ,σ

+ \| \nabla u2\| \scrL 1
ρ,σ

\leq C\| ω\| \scrL 1
ρ,σ
,

with ψ(z) = z/(1 + z), for some constant C.

Lemma 5.4 (bilinear estimates). For any ω and ω̃, denoting by v the velocity

related to ω, we have

\| v \cdot \nabla ω̃\| \scrL 1
ρ,σ

\leq C\| ω\| \scrL 1
ρ,σ

\| ω̃x\| \scrL 1
ρ,σ

+ C
\Bigl( 

\| ω\| \scrL 1
ρ,σ

+ \| ωx\| \scrL 1
ρ,σ

\Bigr) 

\| ψ(z)∂zω̃\| \scrL 1
ρ,σ
,

\| v \cdot \nabla ω̃\| \rho ,\sigma ,\delta \leq C\| ω\| \rho ,\sigma ,\delta \| ω̃x\| \rho ,\sigma ,\delta + C (\| ω\| \rho ,\sigma ,\delta + \| ωx\| \rho ,\sigma ,\delta ) \| ψ(z)∂zω̃\| \rho ,\sigma ,\delta .

We refer the readers to ([16], section 2) for detailed proofs of the above lemmas.
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6. The Stokes problem.

6.1. Main propositions. In this section, we state our Proposition 6.1 for the
inhomogenous Stokes problem

(6.1)

\left\{ 

 

 

 

 

 

 

 

 

ωt  - ν∆ω = f(t, x, y) in T\times Ω\sigma ,

νω = u1 on y = 0,

u2| y=0 = 0,

ω| t=0 = ω0.

Let e\nu tB denote the semigroup of the corresponding Stokes problem: namely, the
heat equation ∂tω  - ν∆ω = 0 on T \times Ω\sigma with the homogenous boundary condition
(νω  - u1)| y=0 = 0. Solutions to the linear Stokes problem are then constructed via
the following Duhamel’s integral representation:

(6.2) ω(t) = e\nu tBω0 +

\int t

0

e\nu (t - s)Bf(s) ds.

In this section, we shall derive uniform bounds for the Stokes semigroup in analytic
spaces, with the analytic norm

\| ω\| \rho ,\sigma ,\delta (t) =
\sum 

\alpha \in Z

e\rho | \alpha | \| ω\alpha \| \sigma ,\delta (t)

with the boundary layer norm defined by

\| ω\alpha \| \sigma ,\delta (t) = sup
z\in Ωσ

| ω\alpha (z)| e\beta \Re z
\Bigl( 

1 + δ - 1
t φP

\bigl( 

δ - 1
t z
\bigr) 

+ δ - 1φP (δ
 - 1z)

\Bigr)  - 1

,(6.3)

in which the boundary thicknesses are δt =
\surd 
νt and δ =

\surd 
ν. As for the initial data,

the norm is measured by \| ω\alpha \| \sigma ,\delta (0), which consists of precisely one boundary layer
behavior whose thickness is δ =

\surd 
ν. We introduce

| | | ω(t)| | | \rho ,\sigma ,\delta (t),k =
\sum 

j+\ell \leq k

\| ∂jx(ψ(z)∂z)\ell ω(t)\| \rho ,\sigma ,\delta (t)

and
| | | ω| | | \scrW k,1

ρ,σ
=
\sum 

j+\ell \leq k

\| ∂jx(ψ(z)∂z)\ell ω(t)\| \scrL 1
ρ,σ
.

Next, we state our main proposition, which will be proved in section 6.6.

Proposition 6.1. Let e\nu tB be the semigroup for the linear Stokes problem. Then,

∂x commutes with e\nu tB. In addition, for any k \geq 0, and for any 0 \leq s < t \leq T , there
hold

| | | e\nu tBf | | | \rho ,\sigma ,\delta (t),k \lesssim | | | f | | | \rho ,\sigma ,\delta (0),k,

| | | e\nu (t - s)Bf | | | \rho ,\sigma ,\delta (t),k \lesssim 

\sqrt{} 

t

t - s
| | | f | | | \scrW k,1

ρ,σ
+

\sqrt{} 

t

s
| | | f | | | \rho ,\sigma ,\delta (s),k,

uniformly in the inviscid limit. Similarly, we also obtain

| | | e\nu tBf | | | \scrW k,1
ρ,σ

\lesssim | | | f | | | \scrW k,1
ρ,σ
,

uniformly in the inviscid limit.
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6.2. Duhamel principle. We first treat the Stokes problem on T \times R+. By
taking the Fourier transform in x, the problem is reduced to

(6.4)

∂tω\alpha  - ν∆\alpha ω\alpha = f\alpha (t, z) in R+,

νω\alpha (0) =  - 
\int \infty 

0

e - \alpha yω\alpha (y)dy,

in which ω\alpha denotes the Fourier transform of ω with respect to x, and ∆\alpha = ∂2z  - α2.
Let G\alpha (t, z, y) be the corresponding Green function of the linear Stokes problem (6.4),
together with the initial data G\alpha (0, z, y) = δy(z). For each fixed y \geq 0, the function
G\alpha (t, z, y) solves

(6.5)

(∂t  - ν∆\alpha )G\alpha (t, z, y) = 0 in R+,

νG\alpha (t, 0, y) =  - 
\int \infty 

0

e - \alpha zG\alpha (t, z, y)dz,

together with the initial data G\alpha (0, z, y) = δy(z).

Proposition 6.2. The solution to (6.4) is constructed via Duhamel’s principle:

ω\alpha (t, z) =

\int \infty 

0

G\alpha (t, z, y)ω0,\alpha (y) dy +

\int t

0

\int \infty 

0

G\alpha (t - s, z, y)f\alpha (s, y) dyds.(6.6)

Proof. We first show that ∂tω\alpha  - ν∆\alpha ω\alpha = f\alpha . Without loss of generality, we
can assume ω0,\alpha (y) = 0. We have

∂tω\alpha =
d

dt

\biggl( 
\int t

0

\int \infty 

0

G\alpha (t - s, z, y)f\alpha (s, y)dyds

\biggr) 

=

\int \infty 

0

G\alpha (0, z, y)f\alpha (t, y)dy +

\int t

0

\int \infty 

0

(∂tG\alpha (t - s, z, y)) f\alpha (y, s)dyds

= f\alpha (t, z) + ν

\int t

0

\int \infty 

0

∆\alpha G\alpha (t - s, z, y)f\alpha (y, s)dyds

= f\alpha (t, z) + ν∆\alpha ω\alpha .

We now check the boundary condition in (6.4). Let z = 0, we have

νω\alpha (t, 0) = ν

\int \infty 

0

G\alpha (t, 0, y)ω0,\alpha (y)dy + ν

\int t

0

\int \infty 

0

G\alpha (t - s, 0, y)f\alpha (s, y)dyds

=  - 
\int \infty 

0

\int \infty 

0

\bigl( 

e - \alpha zG\alpha (t, 0, y)dz
\bigr) 

ω0,\alpha (y)dy

 - 
\int t

0

\int \infty 

0

\biggl( 
\int \infty 

0

e - \alpha zG\alpha (t - s, z, y)dz

\biggr) 

f\alpha (s, y)dyds

=  - 
\int \infty 

0

e - \alpha zω\alpha (t, z)dz.

The proof is complete.

6.3. The Green function for the Stokes problem. In this section, we de-
rive sufficient pointwise bounds on the temporal Green function for the linear Stokes
problem (6.4). Precisely, we prove the following.
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Proposition 6.3. Let G\alpha (t, z, y) be the Green function of the Stokes problem

(6.4). There holds

G\alpha (t, z, y) = H\alpha (t, z, y) +R\alpha (t, z, y),(6.7)

in which H\alpha (t, z, y) is exactly the one-dimensional heat kernel with the homogenous

Neumann boundary condition and R\alpha (t, z, y) is the residual kernel due to the boundary

condition. Precisely, there hold

H\alpha (t, z, y) =
1\surd 
4πνt

\Bigl( 

e - 
| y - z| 2

4νt + e - 
| y+z| 2

4νt

\Bigr) 

e - \alpha 2\nu t,

| ∂kzR\alpha (t, z, y)| \lesssim (νt) - k/2e - \theta 0\alpha 
2\nu t \cdot (νt) - 1/2e - \theta 0

z2

4νt

for y, z \geq 0, k \geq 0, and for some θ0 > 0.

We proceed the construction of the Green function via the resolvent equation.
Namely, for each fixed y \geq 0, let G\lambda ,\alpha (y, z) be the L1 solution to the resolvent
problem

(6.8)

(λ - ν∆\alpha )G\lambda ,\alpha (y, z) = δy(z)

νG\lambda ,\alpha (0, y) =  - 
\int \infty 

0

e - \alpha zG\lambda ,\alpha (z, y)dz.

Here, the second nonlocal boundary condition is derived as follows: Given a forcing
term f(y), we look for solution of the form:

ω\lambda ,\alpha (z) =

\int \infty 

0

G\lambda ,\alpha (z, y)f(y)dy.

We define the operator L to be L =  - ν(∂2z  - µ2), where µ =
\sqrt{} 

\lambda 
\nu + α2 with positive

real part. Then we get

Lω\lambda ,\alpha (z) =

\int \infty 

0

LG\lambda ,\alpha (y, z)f(y)dy =

\int \infty 

0

δ(y  - z)f(y)dy = f(z).

Putting this in the boundary condition (6.4) we get

ν

\int \infty 

0

G\lambda ,\alpha (0, y)f(y)dy =  - 
\int \infty 

0

e - \alpha z

\biggl( 
\int \infty 

0

G\lambda ,\alpha (z, y)f(y)dy

\biggr) 

dz.

Hence we have

\int \infty 

0

(νG\lambda ,\alpha (0, y))f(y)dy =  - 
\int \infty 

0

\biggl( 
\int \infty 

0

e - \alpha zG\lambda ,\alpha (z, y)dz

\biggr) 

f(y)dy.

Thus we take the following condition on the Green function

(6.9) νG\lambda ,\alpha (0, y) =  - 
\int \infty 

0

e - \alpha zG\lambda ,\alpha (z, y)dz for any y \geq 0.

We then obtain the following lemma.
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Lemma 6.4. Let µ = ν - 1/2
\surd 
λ+ α2ν, having positive real part. There holds

(6.10) G\lambda ,\alpha (z, y) = H\lambda ,\alpha (z, y) +R\lambda ,\alpha (z, y),

in which H\lambda ,\alpha (y, z) denotes the resolvent kernel of the heat problem with homoge-

nous Neumann boundary condition and R\alpha ,\lambda (z, y) denotes the residue resolvent ker-

nel; namely,

\Biggl\{ 

H\lambda ,\alpha (z, y) = 1
2\mu \nu 

\bigl( 

e - \mu | y - z| + e - \mu (y+z)
\bigr) 

,

R\lambda ,\alpha (z, y) = 1
\mu \nu 

\alpha  - \lambda 
\lambda +\mu  - \alpha e

 - \mu (y+z)  - 1
\nu (\lambda +\mu  - \alpha )e

 - \alpha y - \mu z.

In particular, G\lambda ,\alpha (y, z) is meromorphic with respect to λ in C \setminus \{  - α2ν  - R+\} with

a pole at λ = 0.

Proof. We have

(6.11) G\lambda ,\alpha (z, y) =

\Biggl\{ 

c1(y)e
\mu z + c2(y)e

 - \mu z, z < y,

c3(y)e
 - \mu z, z > y.

The continuity of G\lambda ,\alpha at z = y gives

(6.12) c1(y)e
2\mu y + c2(y) = c3(y).

Now, the jump condition of  - ν∂zG\lambda ,\alpha at z = y gives

(6.13) c3(y) =  - c1(y)e2\mu y + c2(y) +
1

µν
e\mu y.

Combining (6.12) and (6.13), we get

(6.14) c1(y) =
1

2µν
e - \mu y,

and hence (6.13) becomes

(6.15) c3(y) = c2(y) +
1

2µν
e\mu y.

Now we find c2. Using the boundary condition (6.9) and the form of G\lambda ,\alpha in (6.11),
we have

 - ν(c1(y) + c2(y)) =

\int y

0

e - \alpha z
\bigl( 

c1(y)e
\mu z + c2(y)e

 - \mu z
\bigr) 

dz +

\int \infty 

y

e - \alpha z
\bigl( 

c3(y)e
 - \mu z
\bigr) 

dz.

By a direct calculation, we get

(6.16) c2(y) =
1

2µν

µ+ α - λ

λ+ µ - α
e - \mu y  - 1

ν(λ+ µ - α)
e - \alpha y.

Combining the above equation with (6.15), we have

(6.17) c3(y) =
1

2µν
e\mu y +

1

2µν

µ+ α - λ

λ+ µ - α
e - \mu y  - 1

ν(λ+ µ - α)
e - \alpha y.
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Hence, putting c1, c2, c3, computed in (6.14), (6.16), (6.17), in the formula ofG\lambda ,\alpha (z, y)
in (6.11), we get

G\lambda (z, y) = H\lambda ,\alpha (z, y) +R\lambda ,\alpha (z, y),

where
\Biggl\{ 

H\lambda ,\alpha (z, y) = 1
2\mu \nu 

\bigl( 

e - \mu | y - z| + e - \mu (y+z)
\bigr) 

,

R\lambda ,\alpha (z, y) = 1
\mu \nu 

\alpha  - \lambda 
\lambda +\mu  - \alpha e

 - \mu (y+z)  - 1
\nu (\lambda +\mu  - \alpha )e

 - \alpha y - \mu z.

This completes the proof.

Proof of Proposition 6.3. The temporal Green function G\alpha (t, z, y) can then be
constructed via the inverse Laplace transform:

G\alpha (t, z, y) =
1

2πi

\int 

Γ

e\lambda tG\lambda ,\alpha (z, y)dλ,(6.18)

in which the contour of integration Γ is taken such that it remains on the right of the
(say, L2) spectrum of the linear operator λ - ν∆\alpha , which is  - α2ν  - R+.

In view of (6.10), we set H\alpha (t, z, y) and R\alpha (t, z, y) to be the corresponding tempo-
ral Green function of H\lambda ,\alpha (z, y) and R\lambda ,\alpha (z, y), respectively. It follows that H\alpha (t, z, y)
is the temporal Green function of the one-dimensional heat problem with the homoge-
nous Neumann boundary condition, yielding

H\alpha (t, z, y) =
1\surd 
4πνt

\Bigl( 

e - 
| y - z| 2

4νt + e - 
| y+z| 2

4νt

\Bigr) 

e - \nu \alpha 2t.

It remains to compute the residual Green function

(6.19)

R\alpha (t, z, y) =
1

2πi

\int 

Γ

e\lambda tR\lambda ,\alpha (z, y)dλ,

R\lambda ,\alpha (z, y) =
1

µν

α - λ

λ+ µ - α
e - \mu (y+z)  - 1

ν(λ+ µ - α)
e - \alpha y - \mu z.

We note that R\lambda ,\alpha has a pole when λ+ µ - α = 0, which happens only when λ = 0.
We consider two cases: when α2ν \leq 1 and when α2ν \geq 1.

Case 1: α2ν \leq 1.
Let us give a bound on the first part of the kernel R\lambda ,\alpha in (6.19):

R1
\lambda ,\alpha (z, y) =

1

µν
\cdot α - λ

λ+ µ - α
e - \mu (y+z).

By Cauchy’s theory, we may decompose the contour of integration as Γ = Γ\pm \cup Γc,
having

Γ\pm =

\biggl\{ 

λ =  - 1

2
α2ν + ν(a2  - b2) + 2abνi\pm iM, \pm b \in R+

\biggr\} 

,

Γc =

\biggl\{ 

λ =  - 1

2
α2ν + νa2 +Mei\theta , θ \in [ - π/2, π/2]

\biggr\} 

,

for some positive number M and a = | y+z| 
2\nu t . Since α2ν \leq 1, we can take M large so

that the pole λ = 0 remains on the left of the contour Γ. It is clear that | λ| \gtrsim 1 on Γ.
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On Γc, we note that

\Re µ = ν - 1/2\Re 
\sqrt{} 

1

2
να2 + νa2 +Mei\theta \geq ν - 1/2

\sqrt{} 

1

2
να2 + νa2 \geq a,

\Re µ = ν - 1/2\Re 
\sqrt{} 

1

2
να2 + νa2 +Mei\theta \geq c0ν

 - 1/2
\surd 
M

for some c0 > 0.
This implies that \Re µ \geq a

2 + a
2 and | µ| ν \geq c0ν

1/2. This proves that
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\int 

Γc

e\lambda te - \mu (y+z)

\biggl( 

1

µν

α - λ

λ+ µ - α

\biggr) 

dλ

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim 

\int \pi /2

 - \pi /2

eMt - 1
2\alpha 

2\nu tea
2\nu te - 

a
2 | y+z| e - 

a
2 | y+z| ν - 1/2dθ \cdot sup

\lambda \in Γc

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α - λ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim ν - 1/2e - 
a
2 | y+z| ea

2\nu te - 
a
2 | y+z| e - 

1
2\alpha 

2\nu t

\lesssim ν - 1/2e - 
a
2 | y+z| e - 

1
2\alpha 

2\nu t

\lesssim (νt) - 1/2e - 
| y+z| 2

4νt e - 
1
2\alpha 

2\nu t,

in which we used ea
2\nu te - 

a
2 | y+z| = 1 by definition of a, and the fact that | \alpha  - \lambda 

\lambda +\mu  - \alpha | is
bounded on Γc. Indeed, we write

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α - λ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

 - 1 +
µ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 1 +

\bigm| 

\bigm| 

\bigm| 

\bigm| 

µ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

.

It suffices to estimate | \mu 
\lambda +\mu  - \alpha | when λ \in Γc. Using the fact that λ = ν(µ2  - α2), we

can rewrite this term as follows:

(6.20)

\biggl( 

1 +
α

µ - α

\biggr) 

1

ν(µ+ α) + 1
.

First we see that \alpha 
\mu  - \alpha is bounded, since

(6.21)

| µ - α| \geq \Re µ - α \geq c0
\surd 
Mν - 1/2 - α \geq c0

\surd 
Mα - α = (c0

\surd 
M - 1)α (since α2ν \leq 1).

Moreover, we get

(6.22) | ν(µ+ α) + 1| \geq 1 + αν + ν\Re µ \geq 1.

Hence the quantity (6.20) is uniformly bounded when λ \in Γc. This implies that

sup
\lambda \in Γc

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α - λ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim 1

as claimed.
Now we estimate the term

(6.23)

\int 

Γ\pm 

e\lambda t
1

µν
\cdot α - λ

λ+ µ - α
e - \mu (y+z)dλ.

On Γ\pm , we note that

\Re µ = \Re 
\sqrt{} 

1

2
α2 + (a+ ib)2 \pm iν - 1M \geq \Re 

\sqrt{} 

(a+ ib)2 = a,
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upon noting that the sign of b and \pm M is the same on Γ\pm . Similarly, we note that
\Re µ \gtrsim 

\surd 
M/

\surd 
ν. By definition of a, we have

| e\lambda te - \mu | y+z| | \leq e - 
1
2 \nu \alpha 

2te - 
| y+z| 2

4νt e - \nu b2t.

Moreover, by a similar argument as in (6.20), (6.21), and (6.22), we get

sup
\lambda \in Γ\pm 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α - λ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim 1.

Thus we get the following bound for the term in (6.23) as follows:

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\int 

Γ\pm 

e\lambda t
1

µν

α - λ

λ+ µ - α
e - \mu (y+z)dλ

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim (νt) - 1/2e - 
1
2\alpha 

2\nu te - 
| y+z| 2

4νt .

The proof of the bound for
\int 

Γ
e\lambda tR1

\lambda ,\alpha (y, z)dλ is complete. Similarly, we get the
following bound for the second term in the kernel (6.19)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2πi

\int 

Γ

e\lambda t
1

ν(λ+ α - µ)
e - \alpha y - \mu zdλ

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim e - \alpha y(νt) - 1/2e - 
1
2\alpha 

2\nu te - 
z2

4νt ,

which we skip the details. This completes the proof the case α2ν \leq 1.

Case 2: α2ν \geq 1.
Take a = z

2\nu t . Consider first the case when | a  - α| \geq 1
2α. In this case, we move the

contour of integration to

Γ1 :=
\Bigl\{ 

λ =  - να2 + ν(a2  - b2) + 2νiab, \pm b \in R+

\Bigr\} 

,

which may pass the pole at λ = 0 (precisely, it does when a = α). By the Cauchy
theory, we have

R\alpha (t, z, y) =
1

2πi

\int 

Γ1

e\lambda tR\lambda ,\alpha (z, y) dλ+Res0,

in which the residue at the pole λ = 0 is computed explicitly by

Res0 = 0.(6.24)

Indeed, at the pole λ = 0, we have µ = α. Hence

(λ+ µ - α)R\lambda ,\alpha =
α

µν
e - \mu (y+z)  - 1

ν
e - \alpha y - \mu z = 0, since µ = α.

Hence, we have

R\alpha (t, z, y) =
1

2πi

\int 

Γ1

e\lambda tR\lambda ,\alpha (y, z)dλ,

where
\Biggl\{ 

R1
\lambda ,\alpha (z, y) = 1

\mu \nu \cdot \alpha  - \lambda 
\lambda +\mu  - \alpha e

 - \mu (y+z),

R2
\lambda ,\alpha (z, y) =  - 1

\nu (\lambda +\mu  - \alpha )e
 - \alpha y - \mu z.
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Now we estimate
(6.25)
\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2πi

\int 

Γ1

e\lambda tR1
\lambda ,\alpha (z, y)dλ

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim 

\int 

Γ1

e\Re \lambda t 1

ν| µ| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α - λ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

e - \Re \mu (y+z)| dλ| 

\lesssim sup
\lambda \in Γ1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α - λ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\int 

R

e - \alpha 2\nu t+\nu a2t - \nu b2t
\bigl( 

e - 
a
2 ze - 

a
2 z
\bigr) 

db

\lesssim (νt) - 1/2e - 
z2

4νt e - \alpha 2\nu t.

Here, we used the fact that e\nu a
2te - 

a
2 | y+z| = 1, | dλ| = ν| dµ| and

(6.26) sup
\lambda \in Γ1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α - λ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim 1.

Indeed, we have
(6.27)
\bigm| 

\bigm| 

\bigm| 

\bigm| 

α - λ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

 - 1 +
µ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 1 +

\bigm| 

\bigm| 

\bigm| 

\bigm| 

µ

λ+ µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

= 1 +

\bigm| 

\bigm| 

\bigm| 

\bigm| 

µ

(µ - α)(ν(µ+ α) + 1)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 1 +

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggl( 

1 +
α

µ - α

\biggr) 

1

ν(µ+ α) + 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 1 +

\biggl( 

1 +
α

| µ - α| 

\biggr) 

1

| νµ+ αν + 1| 

\leq 1 +

\biggl( 

1 +
α

| µ - α| 

\biggr) 

\lesssim 1,

since | µ  - α| \geq | \Re µ  - α| = | a  - α| \geq 1
2α. The bound for | 

\int 

Γ1
e\lambda tR1

\lambda ,\alpha (z, y)dλ| is
complete. Similarly, one can obtain the following bound

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2πi

\int 

Γ1

e\lambda tR2
\lambda ,\alpha (z, y)dλ

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim (νt) - 1/2e - 
z2

4νt e - \alpha 2\nu te - \alpha y,

which we skip the details. Combining the above bounds for R1
\lambda ,\alpha and R2

\lambda ,\alpha , we have

R\alpha (t, z, y) \lesssim (νt) - 1/2e - \alpha 2\nu te - 
z2

4νt .

It remains to consider the case when | a - α| \leq 1
2α and α2ν \geq 1. We note in particular

that 1
2α \leq a \leq 3

2α. In this case, we take the contour of integration as follows:

Γ2 :=

\biggl\{ 

λ =  - 1

8
να2 + ν(a2  - b2) + 2νiab, \pm b \in R+

\biggr\} 

.

Observe that the contour Γ1 always leaves the origin on the left; hence the pole at the
origin does not appear. Proceeding as in the estimate (6.33) and (6.27), it suffices to
check that

(6.28) sup
\lambda \in Γ2

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α

µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim 1

in order to conclude

(6.29)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2πi

\int 

Γ2

e\lambda tR1
\lambda ,\alpha (z, y)dλ

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim (νt) - 1/2e - 
z2

4νt e - 
1
8\alpha 

2\nu .
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To check (6.28), we first see that the contour Γ2 cuts the real axis at ν(a2 - 1
8α

2) and

cuts the imaginary axis at \pm 2aν
\sqrt{} 

a2  - 1
8α

2. In particular this implies

| λ| \geq ν

\biggl( 

a2  - 1

8
α2

\biggr) 

\geq ν

\biggl( 

1

4
α2  - 1

8
α2

\biggr) 

\geq 1

8
α2ν, since a \geq 1

2
α.

Hence we have

(6.30) | λ| \geq 1

8
α2ν.

Now using the fact λ = ν(µ2  - α2) and (6.30), we see that

\bigm| 

\bigm| 

\bigm| 

\bigm| 

α

µ - α

\bigm| 

\bigm| 

\bigm| 

\bigm| 

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

αν(µ+ α)

ν(µ2  - α2)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

=
| α2ν + ανµ| 

| λ| \leq α2ν

| λ| +
αν| µ| 
| λ| \leq 8 +

αν| µ| 
| λ| .

Now to bound \alpha \nu | \mu | 
| \lambda | , we note that λ = ν(µ2  - α2) and (6.30), and hence

ν| µ| 2 \leq | λ| + α2ν \leq 9| λ| .

Thus
αν| µ| 
| λ| \lesssim 

αν| µ| 
ν| µ| 2 =

α

| µ| \lesssim 
α

\Re µ \lesssim 
α

a
\lesssim 1.

This completes the proof of the bound stated in (6.29). As for the derivatives bound,
it is straight forward that

| ∂kzH\alpha (t, z, y)| \lesssim (νt) - 
k
2

1\surd 
νt

\biggl( 

e - \theta 0
| y - z| 2

4νt + e - \theta 0
| y+z| 2

4νt

\biggr) 

, k \geq 1

for some θ0 > 0. For the residue kernel R\alpha (t, z, y) =
1

2\pi i

\int 

Γ
e\lambda tR\lambda ,\alpha (z, y)dλ, we note

that

∂z

\biggl( 

1

2πi

\int 

Γ

e\lambda tR\lambda ,\alpha (z, y)dλ

\biggr) 

=
1

2πi

\int 

Γ

e\lambda tµR\alpha (z, y)dλ.

Hence, we get

| ∂zR\alpha (t, z, y)| \lesssim (νt) - 1/2 \cdot 1\surd 
νt
e - \theta 0

z2

4νt e - \theta 0\alpha 
2\nu t

by the exact same argument represented for the bound R\alpha (t, z, y) and the fact that
\int 

R
be - \nu tb2db \lesssim (νt) - 1/2 and z

\nu te
 - z2

4νt \lesssim (νt) - 1/2e - \theta 0
z2

4νt , which we skip the details (see
also [16]).

6.4. The Green function on Ωσ. The Green function constructed in Propo-
sition 6.3 can be directly extended to the complex domain Ω\sigma defined by

Ω\sigma =
\Bigl\{ 

z \in C : | \Im z| < min\{ σ| \Re z| , σ\} 
\Bigr\} 

for some small σ > 0. Indeed, the Green function involves precisely the heat kernel
G(t, z) = 1\surd 

4\pi t
e - z2/4t, which is extended to the complex domain. In addition, we

note that, for z \in Γ\sigma , there holds \Im z \leq σ\Re z, which implies that

| e - z2/4t| \leq e - | \Re z| 2/4t+| \Im z| 2/4t \leq e - (1 - \sigma 2)| \Re z| 2/4t.
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Similar estimates hold for the other terms in the Green function G\alpha (t, z, y) = H\alpha (t, z,
y) +R\alpha (t, z, y), yielding

H\alpha (t, z, y) \lesssim 
1\surd 
νt

\biggl( 

e - (1 - \sigma 2)
| \Re y - \Re z| 2

4νt + e - (1 - \sigma 2)
| \Re y+\Re z| 2

4νt

\biggr) 

e - 
1
8\alpha 

2\nu t,

R\alpha (t, z, y) \lesssim e - \theta 0\alpha 
2\nu t(νt) - 1/2e - \theta 0(1 - \sigma 2)

(\Re z)2

4νt ,

(6.31)

for y, z \in Γ\sigma , and for some θ0 > 0. Precisely, for any z \in Ω\sigma , let θ be the positive
constant so that z \in ∂Ω\theta . The Duhamel principle (6.6) then becomes

ω\alpha (t, z) =

\int 

\partial Ωθ

G\alpha (t, z, y)ω0,\alpha (y) dy +

\int t

0

\int 

\partial Ωθ

G\alpha (t - s, z, y)f\alpha (s, y) dyds,

(6.32)

which is well defined for z \in Ω\sigma , having the Green function G\alpha (t, z, y) satisfies the
pointwise estimates (6.31), similar to those on the real line. For this reason, it suffices
to derive convolution estimates for real values y, z.

6.5. Convolution estimates. We now derive convolution estimates. We start
with the analytic L1 norms. For k \geq 0, we introduce

\| ω\alpha \| \scrW k,1
σ

=

k
\sum 

j=0

\| (ψ(z)∂z)jω\alpha \| L1
σ
.

We prove the following.

Proposition 6.5. Let T > 0, and let G\alpha (t, z, y) be the Green function of the

Stokes problem (6.4), constructed in Proposition 6.3. Then, for any 0 \leq s < t \leq T
and k \geq 0, there is a universal constant CT so that

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int \infty 

0

G\alpha (t, \cdot , y)ω\alpha (y) dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\scrW k,1
σ

\leq CT \| ω\alpha \| \scrW k,1
σ
,

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int \infty 

0

G\alpha (t - s, \cdot , y)ω\alpha (y, s) dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\scrW k,1
σ

\leq CT \| ω\alpha (s)\| \scrW k,1
σ
,

uniformly in the inviscid limit.

Proof. We shall prove the convolution for real values y, z. For the complex ex-
tension, see section 6.4. Recall from Proposition 6.3 that G\alpha (t, z, y) = H\alpha (t, z, y) +
R\alpha (t, z, y), with

\left\{ 

 

 

H\alpha (t, z, y) = 1\surd 
4\pi \nu t

\Bigl( 

e - 
| y - z| 2

4νt + e - 
| y+z| 2

4νt

\Bigr) 

e - \alpha 2\nu t,

R\alpha (t, z, y) \lesssim e - \theta 0\alpha 
2\nu t(νt) - 

1
2 e - \theta 0

z2

νt .

For H\alpha , we apply ([16], Proposition 3.7) to get
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int \infty 

0

H\alpha (t - s, \cdot , y)ω\alpha (y, s) dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\scrW k,1
σ

\leq CT \| ω\alpha (s)\| \scrW k,1
σ
.

Now we will prove that
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int \infty 

0

R\alpha (t - s, \cdot , y)ω\alpha (y, s) dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\scrW k,1
σ

\leq CT \| ω\alpha (s)\| \scrW k,1
σ
.
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Using the pointwise bound of R\alpha (t - s, z, y) in Proposition 6.3, we have
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\int \infty 

0

R\alpha (t - s, z, y)ω\alpha (s, y)dy

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim e - \theta 0\alpha 
2\nu (t - s)e - \theta 0

z2

4ν(t - s) (ν(t - s)) - 1/2

\int \infty 

0

| ω\alpha (s, y)| dy.

Integrating in z, we have
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int \infty 

0

R\alpha (t - s, z, y)ω\alpha (s, y)dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

L1
z

\lesssim \| ω\alpha (s)\| L1
y
.

As for derivatives, we have

(6.33)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

(ψ(z)∂z)
k

\biggl( 
\int \infty 

0

R\alpha (t - s, y, z)ω\alpha (s, y)dy

\biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim 

\biggl( 

z2

ν(t - s)

\biggr) k

(ν(t - s)) - 1/2e - \theta 0
z2

ν(t - s)

\int \infty 

0

| ω\alpha (s, y)| dy

\lesssim (ν(t - s)) - 1/2e - \theta 0
z2

ν(t - s) \| ω\alpha (s)\| L1
y
.

From here, we get
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

(ψ(z)∂z)
k

\int \infty 

0

R\alpha (t - s, y, z)ω\alpha (s, y)dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

L1
z

\lesssim \| ω\alpha (s)\| L1
y
.

The proof is complete.

6.6. Convolution estimates with boundary layer behaviors. In this sec-
tion, we provide the convolution estimates of the Green function against functions in
the boundary layer spaces, whose norm is defined by

\| ω\alpha \| \sigma ,\delta (t) = sup
z\in Ωσ

| ω\alpha (z)| e\beta \Re z
\Bigl( 

1 + δ - 1
t φP

\bigl( 

δ - 1
t z
\bigr) 

+ δ - 1φP (δ
 - 1z)

\Bigr)  - 1

,(6.34)

for t > 0 and β > 0, in which the boundary thicknesses are δt =
\surd 
νt and δ =

\surd 
ν and

for boundary layer weight φP (z) =
1

1+| \Re z| P , P > 1. We also introduce the boundary

norm for derivatives

\| ω\alpha \| \sigma ,\delta (t),k =

k
\sum 

j=0

\| (ψ(z)∂z)jω\alpha \| \sigma ,\delta (t)

for k \geq 0. In the case t = 0, the norm \| \cdot \| \sigma ,\delta (0) is defined to consist of precisely one
boundary layer with thickness δ =

\surd 
ν.

We prove the following.

Proposition 6.6. Let T > 0, and let G\alpha (t, z, y) be the Green function of the
Stokes problem (6.4), constructed in Proposition 6.3. Then, for any 0 \leq s < t \leq T
and k \geq 0, there is a universal constant CT so that

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int ∞

0

Gα(t, \cdot , y)ωα(y) dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

σ,δ(t),k

\leq CT \| ωα\| σ,δ(0),k,

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int ∞

0

Gα(t - s, \cdot , y)ωα(s, y) dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

σ,δ(t),k

\leq CT

\sqrt{} 

t

s
\| ωα(s)\| σ,δ(s),k + CT

\sqrt{} 

t

t - s
\| ωα(s)\| Wk,1

σ

uniformly in the inviscid limit.
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Proof. Since G\alpha (t  - s, z, y) = H\alpha (t  - s, z, y) + R\alpha (t  - s, z, y), the convolution
estimates are needed for the heat kernel H\alpha and R\alpha . For H\alpha , we apply ([16], Lemma
3.10) to get

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int \infty 

0

H\alpha (t - s, \cdot , y)ω\alpha (s, y) dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\sigma ,\delta (t),k

\leq CT

\sqrt{} 

t

s
\| ω\alpha (s)\| \sigma ,\delta (s),k.

Now we will prove that

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\int \infty 

0

R\alpha (t - s, \cdot , y)ω\alpha (s, y) dy

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\sigma ,\delta (t),k

\leq CT

\sqrt{} 

t

t - s
\| ω\alpha (s)\| \sigma ,\delta (s),k.

By the estimate (6.33), it suffices to check that

(ν(t - s)) - 1/2e - \theta 0\alpha 
2\nu (t - s)e - \theta 0

z2

4ν(t - s) \lesssim 

\sqrt{} 

t

t - s
e - \beta 0z

\bigl( 

δ - 1
t φP (δ

 - 1
t z)

\bigr) 

.

To this end, we have

(ν(t - s)) - 1/2e - \theta 0\alpha 
2\nu (t - s)e - \theta 0

z2

4ν(t - s)

=

\sqrt{} 

t

t - s
δ - 1
t e - \theta 0

z2

8ν(t - s) e - \theta 0
z2

8ν(t - s) e - \theta 0\alpha 
2\nu (t - s)

\lesssim 

\sqrt{} 

t

t - s

\Bigl( 

δ - 1
t e - \theta 0

z2

8νt

\Bigr) 

e - \theta 0
z2

8ν(t - s) e - 32\cdot \theta 0\nu (t - s)e32\cdot \theta 0\nu (t - s)

\lesssim 

\sqrt{} 

t

t - s

\bigl( 

δ - 1
t φP (δ

 - 1
t z)

\bigr) 

e - \beta 0z

as long as β0 \leq 2θ0, by a simple Cauchy inequality z2

8\nu (t - s) + 32ν(t  - s) \geq 2z. The

proof is complete.

7. Proof of the main theorems. As mentioned in the introduction, we con-
struct the solutions to the Navier–Stokes equation via the vorticity formulation:

(7.1)
∂tω  - ν∆ω =  - u \cdot \nabla ω,

(νω  - u1)| z=0 = 0,

in which u = \nabla \bot ∆ - 1ω, with ∆ - 1 being the inverse of Laplacian with the Dirichlet
boundary condition. For convenience, we set N = u \cdot \nabla ω. The solution to the Navier–
Stokes is then constructed via the Duhamel’s principle:

(7.2) ω(t) = e\nu tBω0  - 
\int t

0

e\nu (t - s)BN(s) ds

with ω0 \in \scrB \rho 0,\sigma 0,\delta , for some ρ0, σ0 > 0.

7.1. Nonlinear iteration. Let us fix positive numbers γ, ζ, and ρ0 and intro-
duce the following nonlinear iterative norm for vorticity:

(7.3) A(γ) = sup
0<\gamma t<\rho 0

sup
\rho <\rho 0 - \gamma t

\Bigl\{ 

| | | ω(t)| | | \scrW 1,1
ρ,ρ

+ | | | ω(t)| | | \scrW 2,1
ρ,ρ

(ρ0  - ρ - γt)\zeta 
\Bigr\} 

D
o
w

n
lo

ad
ed

 0
4
/2

7
/2

1
 t

o
 1

3
2
.1

7
4
.2

5
4
.1

5
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4634 TRINH T. NGUYEN

with recalling

| | | ω(t)| | | \scrW k,1
ρ,ρ

=
\sum 

j+\ell \leq k

\| ∂jx(ψ(z)∂z)\ell ω(t)\| L1
ρ,ρ
.

Here, for sake of presentation, we take the same analyticity radius in x and z; namely,
σ = ρ < ρ0. Thanks to Lemma 5.1, ω0 \in \scrW k,1

\rho ,\rho , for any k \geq 0.
We shall show that the vorticity norm remains finite for sufficiently large γ. The

weight (ρ0  - ρ - γt)\zeta , with a small ζ > 0, is standard to avoid time singularity when
recovering the loss of derivatives ([2, 19]). Let ρ < ρ0  - γt. Thanks to Lemma 5.4,
we have

| | | N(t)| | | \scrW 0,1
ρ,ρ

\lesssim | | | ω(t)| | | 2\scrW 1,1
ρ,ρ

\leq A(γ)2,

| | | N(t)| | | \scrW 1,1
ρ,ρ

\lesssim | | | ω(t)| | | \scrW 1,1
ρ,ρ

| | | ω(t)| | | \scrW 2,1
ρ,ρ

\leq A(γ)2(ρ0  - ρ - γt) - \zeta .
(7.4)

Now, using the Duhamel integral formula (7.2), we estimate

| | | ω(t)| | | \scrW k,1
ρ,ρ

\leq | | | e\nu tBω0| | | \scrW k,1
ρ,ρ

+

\int t

0

| | | e\nu (t - s)BN(s)| | | \scrW k,1
ρ,ρ

ds.

In view of Proposition 6.1, the term from the initial data is already estimated, giving
| | | e\nu tBω0| | | \scrW k,1

ρ,ρ
\leq \| ω0\| \scrW k,1

ρ,ρ
. As for the integral terms, we estimate

\int t

0

| | | e\nu (t - s)BN(s)| | | \scrW 1,1
ρ,ρ

ds \leq C0

\int t

0

| | | N(s)| | | \scrW 1,1
ρ,ρ

ds

\leq C0A(γ)
2

\int t

0

(ρ0  - ρ - γs) - \zeta ds

\leq C0γ
 - 1A(γ)2.

Next, we give estimates for k = 2. Noting that ρ < ρ0  - γt \leq ρ0  - γs, we take
ρ\prime = \rho +\rho 0 - \gamma s

2 and compute

\int t

0

| | | e\nu (t - s)BN(s)| | | \scrW 2,1
ρ,ρ

ds \leq C0

\int t

0

| | | N(s)| | | \scrW 2,1
ρ,ρ

ds

\leq C0

\int t

0

1

ρ\prime  - ρ
| | | N(s)| | | \scrW 1,1

ρ\prime ,ρ\prime 
ds

\leq C0A(γ)
2

\int t

0

(ρ0  - ρ - γs) - 1 - \zeta ds

\leq C0γ
 - 1A(γ)2(ρ0  - ρ - γt) - \zeta .

Same computation holds for the trace operator Γ(νt), yielding

A(γ) \leq C0\| ω0\| \scrW 2,1
ρ,ρ

+ C0γ
 - 1A(γ)2.

By taking γ sufficiently large, the above yields the uniform bound on the iterative
norm in term of initial data. This yields the local solution in L1

\rho ,\rho for t \in [0, T ], with
T = γ - 1ρ0.

7.2. Propagation of boundary layers. It remains to prove that the construc-
ted solution has the boundary layer behavior as expected, having already constructed
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solutions in L1
\rho ,\rho spaces. Indeed, we now introduce the following nonlinear iterative

norm for vorticity:

(7.5) B(γ) = sup
0<\gamma t<\rho 0

sup
\rho <\rho 0 - \gamma t

\Bigl\{ 

| | | ω(t)| | | \rho ,\delta (t),1 + | | | ω(t)| | | \rho ,\delta (t),2(ρ0  - ρ - γt)\zeta 
\Bigr\} 

with the boundary layer norm

| | | ω(t)| | | \rho ,\delta (t),k =
\sum 

j+\ell \leq k

\| ∂jx(ψ(z)∂z)\ell ω(t)\| \rho ,\rho ,\delta (t).

Thanks to Lemma 5.4, we estimate

| | | N(t)| | | \rho ,\delta (t),0 \lesssim | | | ω(t)| | | 2\rho ,\delta (t),1 \leq B(γ)2

| | | N(t)| | | \rho ,\delta (t),1 \lesssim | | | ω(t)| | | \rho ,\delta (t),1| | | ω(t)| | | \rho ,\delta (t),2 \leq B(γ)2(ρ0  - ρ - γt) - \zeta .
(7.6)

Now, using the Duhamel integral formula (7.2), we estimate

| | | ω(t)| | | \rho ,\delta (t),k \leq | | | e\nu tBω0| | | \rho ,\delta (t),k +

\int t

0

| | | e\nu (t - s)BN(s)| | | \rho ,\delta (t),k ds.

In view of Proposition 6.1, the term from the initial data is already estimated, giving
| | | e\nu tBω0| | | \rho ,\delta (t),k \leq \| ω0\| \rho ,\delta (0),k. We estimate

\int t

0

| | | eν(t−s)B
N(s)| | | ρ,δ(t),1 ds

\lesssim 

\int t

0

\Biggl( 

\sqrt{} 

t

s
| | | N(s)| | | ρ,δ(s),1 +

\sqrt{} 

t

t - s
| | | N(s)| | | 

W
1,1
ρ,ρ

\Biggr) 

ds

\lesssim B(γ)2
\int t

0

\sqrt{} 

t

s
(ρ0  - ρ - γs)−ζ

ds+ sup
0≤s≤T

| | | N(s)| | | 
W

1,1
ρ,ρ

\int t

0

\sqrt{} 

t

t - s
ds

\lesssim B(γ)2
\Biggl( 

\int t/2

0

+

\int t

t/2

\Biggr) 

\sqrt{} 

t

s
(ρ0  - ρ - γs)−ζ

ds+ t \cdot sup
0≤s≤T

| | | N(s)| | | 
W

1,1
ρ,ρ

\leq C0B(γ)2
\Biggl( 

t

\biggl( 

ρ0  - ρ - 
1

2
γt

\biggr) −ζ

+
1

γ

\biggl( 

ρ0  - ρ - 
1

2
γt

\biggr) 1−ζ
\Biggr) 

+ t \cdot sup
0≤s≤T

| | | N(s)| | | 
W

1,1
ρ,ρ

\leq C0γ
−1

B(γ)2(ρ0  - ρ)−ζ + t \cdot sup
0≤s≤T

| | | N(s)| | | 
W

1,1
ρ,ρ

,

in which we used γt \leq ρ0 and γt < ρ0  - ρ. Next, noting that ρ < ρ0  - γt \leq ρ0  - γs,
we take ρ\prime = \rho +\rho 0 - \gamma s

2 and compute

\int t

0

| | | e\nu (t - s)BN(s)| | | \rho ,\delta (t),2 ds

\lesssim 

\int t

0

\Biggl( 

\sqrt{} 

t

s
| | | N(s)| | | \rho ,\delta (s),2 +

\sqrt{} 

t

t - s
| | | N(s)| | | \scrW 2,1

ρ,ρ

\Biggr) 

ds

\lesssim 

\int t

0

\sqrt{} 

t

s

1

ρ\prime  - ρ
| | | N(s)| | | \rho \prime ,\delta (s),1 ds+ t \cdot sup

0\leq s\leq T
| | | N(s)| | | \scrW 2,1

ρ,ρ

\lesssim B(γ)2
\int t

0

\sqrt{} 

t

s
(ρ0  - ρ - γs) - 1 - \zeta ds+ t \cdot sup

0\leq s\leq T
| | | N(s)| | | \scrW 2,1

ρ,ρ
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\leq C0B(γ)2

\Biggl( 

\int t/2

0

+

\int t

t/2

\Biggr) 

\sqrt{} 

t

s
(ρ0  - ρ - γs) - 1 - \zeta ds+ t \cdot sup

0\leq s\leq T
| | | N(s)| | | \scrW 2,1

ρ,ρ

\leq C0B(γ)2

\Biggl( 

t

\biggl( 

ρ0  - ρ - 1

2
γt

\biggr)  - 1 - \zeta 

+
1

γ
(ρ0  - ρ - γt) - \zeta 

\Biggr) 

+ t \cdot sup
0\leq s\leq T

| | | N(s)| | | \scrW 2,1
ρ,ρ

\leq C0γ
 - 1B(γ)2(ρ0  - ρ - γt) - \zeta + t \cdot sup

0\leq s\leq T
| | | N(s)| | | \scrW 2,1

ρ,ρ
.

This proves the boundedness of the iterative norm B(γ), and hence the propagation
of the boundary layer behaviors. Theorem 4.1 follows.

7.3. Proof of the inviscid limit. In this section, we conclude the paper by
proving the inviscid limit of Navier–Stokes for the critical slip boundary condition
(1.3).

Proof of Theorem 4.2. Let uE \in W 2,\infty (Ω)\cap W 2,2(Ω) be the solution to Euler (in
our case, uE is even analytic). As in (1.5), we have

(7.7)

1

2

d

dt
\| v\| 2L2 +

\int 

Ω

\bigl( 

v \cdot \nabla uE
\bigr) 

\cdot v + ν

\int 

Ω

\nabla uE \cdot \nabla v + ν

\int 

Ω

| \nabla v| 2

+

\int 

T

| u\nu 1(t, x, 0)| 2dx - ν

\int 

T

ω\nu (t, x, 0)uE1 (t, x, 0) = 0.

By Cauchy inequality, we have

d

dt
\| v\| 2L2 \lesssim CE

\biggl( 

\| v\| 2L2 + ν + ν

\int 

T

| ω\nu (t, x, 0)| dx
\biggr) 

,

where CE is a constant only depending on uE . Now, since \| ω\nu (t)\| \sigma ,\rho ,\delta (t) is uniformly
bounded in ν, there exists C0 > 0 such that

| ω\nu (t, x, y)| \leq C0e
 - \beta 0y

\bigl( 

1 + δ - 1φP (δ
 - 1y) + δ - 1

t φP (δ
 - 1
t y)

\bigr) 

.

Putting y = 0, we get

(7.8) | ω\nu (t, x, 0)| \lesssim δ - 1
t .

Combining (7.7) and (7.8), we get

d

dt
\| v(t)\| 2L2 \lesssim \| v(t)\| 2L2 +

\surd 
ν\surd 
t
+ ν.

Hence, by Gronwall inequality, we get

\| v(t)\| L2 \lesssim (νt)1/4 +
\surd 
ν + \| v(0)\| L2 .

The proof is complete.
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Palaiseau, 2017, Exp. No. II.

[11] J. P. Kelliher, Navier-Stokes equations with Navier boundary conditions for a bounded do-

main in the plane, SIAM J. Math. Anal., 38 (2006), pp. 210–232.
[12] I. Kukavica, V. Vicol, and F. Wang, The inviscid limit for the Navier-Stokes equations with

data analytic only near the boundary, preprint, arXiv:1904.04983v2, 2019.
[13] Y. Maekawa, On the inviscid limit problem of the vorticity equations for viscous incompressible

flows in the half-plane, Comm. Pure Appl. Math., 67 (2014), pp. 1045–1128.
[14] Y. Maekawa and A. Mazzucato, The inviscid limit and boundary layers for Navier-Stokes

flows, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer,
Cham, 2018, pp. 781–828.

[15] N. Masmoudi and F. Rousset, Uniform regularity for the Navier-Stokes equation with Navier

boundary condition, Arch. Ration. Mech. Anal., 203 (2012), pp. 529–575.
[16] T. T. Nguyen and T. T. Nguyen, The inviscid limit of Navier-Stokes equations for analytic

data on the half-space, Arch. Ration. Mech. Anal., 230 (2018), pp. 1103–1129.
[17] R. Nguyen van yen, M. Farge, and K. Schneider, Energy dissipating structures produced by

walls in two-dimensional flows at vanishing viscosity, Phys. Rev. Lett., 106 (2011), 184502.
[18] M. Paddick, Stability and instability of Navier boundary layers, Differential Integral Equations,

27 (2014), pp. 893–930.
[19] M. V. Safonov, The abstract Cauchy-Kovalevskaya theorem in a weighted Banach space,

Comm. Pure Appl. Math., 48 (1995), pp. 629–637.
[20] M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-

Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm.
Math. Phys., 192 (1998), pp. 463–491.

[21] Y.-G. Wang, J. Yin, and S. Zhu, Vanishing viscosity limit for incompressible Navier-Stokes

equations with Navier boundary conditions for small slip length, J. Math. Phys., 58 (2017),
101507.

D
o
w

n
lo

ad
ed

 0
4
/2

7
/2

1
 t

o
 1

3
2
.1

7
4
.2

5
4
.1

5
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s


	Introduction
	Criticality of beta = 1

	Boundary vorticity formulation
	Analytic boundary layer function spaces
	Main results
	Analytic function spaces
	The Stokes problem
	Main propositions
	Duhamel principle
	The Green function for the Stokes problem
	The Green function on Omega_{sigma}
	Convolution estimates
	Convolution estimates with boundary layer behaviors

	Proof of the main theorems
	Nonlinear iteration
	Propagation of boundary layers
	Proof of the inviscid limit

	References

