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NAVIER-SLIP BOUNDARY CONDITIONS FOR ANALYTIC DATA*
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Abstract. In this paper, we establish the short time inviscid limit of the incompressible Navier—
Stokes equations with critical Navier-slip boundary conditions for analytic data on half-space, a
boundary condition that is physically derived from the hydrodynamic limit of the Boltzmann equa-
tions with the Maxwell boundary conditions. The analysis is built upon the recent framework
developed by T. T. Nguyen and T. T. Nguyen [Arch. Ration. Mech. Anal., 230 (2018), pp. 1103—
1129] in the case of the classical no-slip boundary conditions. The novelty in this paper is to derive
the precise pointwise bound on the Green kernel for the Stokes problem with a nonlocal boundary
condition and to propagate the boundary layer behavior for vorticity.
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1. Introduction. In this paper, we are interested in the inviscid limit of the
Navier—Stokes equations for incompressible fluids

(11) Owu+u - Vu + Vp = vAu,
V-u=0

posed on the half space (z,y) € T x R, with the slip boundary condition
(1.2) ug =0 and Oyur = v=Puy when y = 0.

Here v# is the slip length and u = u(t,z,y) = (u1(t,z,9),us(t, z,y)) € R? is the
velocity field. The goal of this paper is to justify the inviscid limit for analytic data
in the critical case g = 1.

First, let us mention some previous works on the inviscid limit and boundary
layer theory for 8 € [0,1). For 8 = 0, in which the slip length does not depend on v,
the picture is now complete: [8] derives a complete boundary layers expansion, and
[15] justifies the vanishing viscosity limit by a compactness argument for any bounded
domain and for half-space (see also [1, 3, 9, 11]). For 0 < 8 < 1, the inviscid limit
is established in [18] with a rate of convergence O(u#) for Sobolev data, while the
boundary layer expansion is proved to fail when g = % When g = 1, a Kato-type
criterion for the inviscid limit to hold is proved in [21].

1.1. Criticality of 3 = 1. When 8 = 1, we have the critical-slip boundary
condition

(1.3) 6yu1|y:0 = V_1u1|y:0.
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The boundary condition (1.3) is physically obtained from the hydrodynamic limit of
the Boltzmann equations with the Maxwell boundary conditions (see [10]). However,
the inviscid limit for the critical case 8 = 1 and stability of boundary layer expansions
for (1.3) remain open, due to the failure of standard energy estimates and even the
lack of approriate boundary layer theory for the Navier—-Stokes equations with the
boundary condition (1.3). Our work appears to be the first giving an affirmative
answer to the inviscid limit problem in the critical case 8 = 1, with the assumption
only placed on the initial data. The inviscid limit holds uniformly in a short time
interval independent of the viscosity v. There are numerical evidences that the inviscid
limit fails for longer time, leading to anomalous dissipation of the Navier—Stokes
equations (see [17]). At the time when the inviscid limit may fail, there would be
possible emergence of weak solutions to the Euler equations in the vanishing viscosity
limit (see [4]).

To illustrate why 8 = 1 is considered to be critical, let us give a proof of the
following theorem for any 5 € [0,1) for the reader convenience. The proof is quite
simple and is originally done in [18].

THEOREM 1.1 (see [18]). Let uf € C* ((0,T), W%>(Q) N L*(Q)) be a smooth
solution to Euler with the nonpenetration boundary condition u¥'|,—o = 0 and u” be
the solution to the Navier—Stokes equations with the slip boundary condition (1.2) with
0<pB <1 onthe domain Q=T x Ry. Then

1-8 y
sup_[[u* (£) = uP (1) |2 < Crv' T + [u”(0) — P (0)|2(a-
0<t<T

The convergence holds for any finite time T > 0, which is the time of existence of
Euler solutions in a Sobolev space.

Proof. Let v = u¥ — u¥ be the difference between the velocity of Navier—-Stokes
equations and Euler equations. Then v solves

8tv+uE-VU+U~VUE+U-VU—VAu”:—V(p”—pE).

Multiplying both sides of the first equation by v, integrating over 2 = T x R, and
using the nonpenetration boundary condition, we have

1.4 fl—d o||?. + v-VuP) v—v [ Au-v=0.
L
2dt Q Q

By integrating by parts and the slip boundary conditions, we have

—1// Au” -’U:V/ |Vv|2—|—u/ V’U,E~V’U-|-I/1_ﬂ/ luY (t,z,0)>dx
Q Q Q T
—ul_B/u?(t,x,O)uf(f,x,O)dw.
T

Combining the above with (1.4), we have

1d
§£H’UH%2+V/ |V’U|2—|—I/1_’8/u’f(t,m,O)Qd:)S:/ (v-VuP) v
Q T Q

(1.5)
- y/ Vuf - Vo + Vl_ﬂ/u{(t,x,O)uf(t,aO)dm.
Q T

Applying the standard Cauchy inequality (ab < ea® + C.b? for € > 0 small), we get
1d

30l < IVaP o ol + Cor VP s + Cot ™ [ uft,,0)ao.
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By the Gronwall inequality, we have
1-8
[v()llrz < [[v(0)||z2 + Cpr =,

where Cg is a constant that only depends on the Euler solution. The proof is com-
plete. 0

Remark 1.2. One can see that the bound in the above theorem proves the inviscid
limit precisely when 8 < 1, as v(!=8)/2 — 0 in the inviscid limit. Apparently, the
proof fails to imply anything at the critical case g = 1.

In this paper, we give a direct proof of the inviscid limit for data with analytic
reqularity in the critical case f = 1, with a precise pointwise bound on the vorticity in
this class of initial data (see section 4 for the precise statement). The proof relies on
our previous framework in [16], which completely avoids boundary layer expansions.
More precisely, we work with the vorticity formulation and the boundary conditions
that capture (1.3), derive a pointwise bound for the Green function of the Stokes prob-
lems, and propagate boundary layer norms for the vorticity. The difficulty we have to
overcome in our analysis of (1.3) is the precise pointwise bound of the temporal Green
function for the Stokes problems, which allows us to propagate the boundary layer
norm in analytic function spaces. Interestingly, we shall see below that the nonlinear
iteration (with the Green kernel of Stokes) for the full Navier—Stokes equations with
the boundary condition (1.3) is just slightly better than the no-slip boundary con-
dition’s iteration in [16], due to a special cancellation of the pole in the resolvent
analysis of the Green function (see section 6.3). This might support the intuition
that if the fluid is allowed to slip even in the critical sense, it is less violent than the
no-slip boundary condition (see [5, 7]). Lastly, we remark that, just as for critical
slip, the inviscid limit is also largely open for the classical no-slip boundary condition
u’|aq = 0 (e.g., see [20, 13, 16, 12, 14]).

Notations. In this paper, for complex numbers A, B, we write A < B to mean
that |A| < Cy|B| for some constant Cy > 0 independent of viscosity v > 0; we also
denote KA, IA to be the real and imaginary part of A, respectively.

Organization of the paper. In section 2, we derive a suitable boundary con-
dition for the vorticity to ensure the critical slip boundary condition (1.3). In section
3, we introduce analytic boundary layer norms for the vorticity. In section 4, we state
our main results. In section 5, we recall several elliptic and bilinear estimates for the
velocity and the nonlinear terms in analytic norm. In section 6, we construct and de-
rive a pointwise estimate for the Green function of the Stokes problem. We conclude
the paper with section 7 with the proofs of the main theorems stated in section 4.

2. Boundary vorticity formulation. Let w(z,z) = 0,u; — d,us be the corre-
sponding vorticity in (z,z) € T x R;. Then, the vorticity equation reads

(2.1) Ow — vAw = —u - Vw

with v = V+A~!w. Here and throughout the paper, A~! denotes the inverse of
the Laplacian operator with the Dirichlet boundary condition: Precisely, ¢ = A~ 1w
solves A¢ = w on the half-space T x R, with ¢|__, = 0.

To ensure the critical slip boundary condition, we impose vw = u; on the bound-
ary. Taking the Fourier transform in z, namely, w(z, z) = Y ¢z wa(2)€'*", we impose
the following boundary condition
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(2.2) vwa(0) = — /00‘” e”"wa(y)dy,

which follows from the following lemma.

LEMMA 2.1. Let uy,, be the Fourier transform of the tangential component u;
and wo the Fourier transform of w. Then the value of uy o on the boundary z =0 is
given by

w10 (0) = / Vo (y)dy.
0

Proof. Since O,u1 + 0,us = 0, one can write u; = 0,¢ and us = —0,¢ for some
stream function ¢. Since A¢p =w on T x Ry and ¢|,—¢9 = 0, we have

(83 - a2)¢oz = Wa, QSQ(O) = 0,

where ¢, and w, are the Fourier transform of ¢ and w. The solution of the above
equation is given explicitly by

L% —aly+ ly—=]
- —oly+z| _ —aly—z
Palz) 5 /. (e e )wa(y)dy
1 oo z oo
=— < / e W) (y)dy — / e w, (y)dy — / e‘*(zy)wa(y)dy) :
200 \ Jo 0 z
Since u1,o = 0,04, a direct calculation yields
1 oo z
wale) = g (= [t O ity o [ ey
200 0 0
—a/ e"‘(z_y)wa(y)dy> .
The lemma follows, after evaluating u; o at z = 0. O

3. Analytic boundary layer function spaces. In this section, we recall an-
alytic boundary layer spaces introduced in our previous work [16] (see also [6, 7]).
Precisely, we consider holomorphic functions on the pencil-like complex domain:

(3.1) Q, = {z eC: |9z < min{a?]?z,a}}

for ¢ > 0. Let § = /v be the classical boundary layer thickness. We introduce the
analytic boundary layer function spaces B%? that consists of holomorphic functions
on (), with a finite norm

-1

(3.2) /]

0,6 = SUp \f(z)|65°m (1 +0 op (5*12))

2EQ,
for some small By > 0, and for boundary layer weight function

1

¢p(z) = TR

for some fixed constant P > 1. Here, we suppress the dependence on [y, P as they
are fixed throughout the paper. We expect that the vorticity function w(t,z, z), for
each fixed t,z, will be in B%?, precisely describing the behavior near the boundary
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and near infinity. In fact, there is an additional initial layer of thickness §; = /vt
that appears near the boundary. To capture this, we introduce the time-dependent
boundary layer norm:

1
(3.3) 1 fllosct) = sup jw(z)[eo (1 +0, 0p (6, 12) + 07 op (5_12)) ;

with §; = v/vt, § = \/v, and with the same boundary layer weight function ¢p(-). By
convention, the norm || |5 (o) at time ¢ = 0 is replaced by || |5,5, the boundary layer
norm with precisely one boundary layer behavior of thickness d, and || - ||,,0 denotes
the norm without the boundary layer behavior.

For functions depending on two variables f(x, z), we introduce the partial Fourier

transform in variable x ‘
flz,z) = Z fal(z)e™®
a€Z

and introduce the following analytic norm

1 llposty = D e fallosco

a€Z

for p,o > 0. We denote by B”79(*) the corresponding spaces. In section 5, we shall
recall some basic properties of such analytic function spaces.

4. Main results. Our main results are as follows.

THEOREM 4.1. Let My > 0, and let wy be in BP2700 for p.o > 0 and for § = \/v,
with [|woll pg,00,6 < Mo. Then, there is a positive time T, independent of v > 0, so
that the solution w(t) to the Navier—Stokes equations (2.1)—~(1.2), with the initial data
w(0) = wo, exists in C1([0,T]; BF79D) for 0 < p < po and 0 < o < ay. In particular,
there is a Cy so that the vorticity w(t) satisfies

(4.1) w(t,@,2)] < Coe % (1467 0p (5712) +6726p(6712))

for (t,x,2) € [0,T] x T x Ry, with 6 = /vt and § = \/v.

THEOREM 4.2. Let My > 0, and let ufy be divergence-free analytic initial data so
that w§ =V x ul is in BP0 for p,o >0 and for § = /v, with ||w§|| py.00.6 < Mo.
Then, the inviscid limit holds for Navier—Stokes solutions with the initial data ug, with
the time scale set by Theorem 4.1. Precisely, there are unique local solutions u” (t) to
the Navier—Stokes equations (1.1)~(1.2), for small v > 0, and a unique solution u(t)
to the corresponding Euler equations, with initial data uf =lim,_ouY, so that

[ () =P (@)ll2 < lluf = ufllz2 + Cov/v+ Cr(wt)s  for t€0,T],

where Cr is a constant that only depends on the solution of Fuler and T'. In particular,
we have
sup |Ju”(t) — uP(t)||r — 0 as v—0
0<t<T
for any 2 < p < o0.

As mentioned, the proof of the main theorems is direct, using the vorticity for-
mulation (2.1)-(2.2). For Theorem 4.1, we first prove the local existence of solutions
in the analytic space L} , (see (5.1)) and then in boundary layer spaces in order to
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establish the precise pointwise behavior of the vorticity (see section 7.2). Theorem 4.1
applies in particular for well-prepared analytic data that satisfy the Prandtl ansatz of
size y/v. For general analytic data, beside the Prandtl layers, the initial layers whose
thickness is of order /vt appear as captured in (4.1). After proving Theorem 4.1, we
establish Theorem 4.2 by a direct energy estimate; see section 7.3.

5. Analytic function spaces. In this section, we recall basic properties of the
analytic norms as well as the elliptic estimates that yield bounds on velocity in term
of vorticity. These norms and estimates can be found in [16, 20]. Let f(x,z) be
holomorphic functions on T x ., with €, being the pencil-like complex domain
defined as in (3.1). For p,o > 0 and 1 < p < oo, we introduce the analytic function
spaces denoted by £F . with the finite norm

1/p
G510 e, =S W alis fallsg = sup (/m Ifa(2)|p|d2|> 7

= 0<0<o

in which f, = f,(2) denotes the Fourier transform of f(z, z). In the case when p = oo,
the LP norm is replaced by the sup norm over €2,. Recalling the analytic boundary
layer space B”?9() introduced in section 3, we have the following lemma.

LEMMA 5.1 (L' embedding). There holds the embedding B> C L} .

LEMMA 5.2 (recovering loss of derivatives). For any 0 < ¢’ < o, 0 < p < p,
and ¥ (z) = %=, there hold

1+z7
(5.2) 1folles . < I flles lglles ..
< ¢ < ¢
63 ot < =Wl 9GO, < Il
The same estimates hold for boundary layer norms || - |55 replacing || - [|z1  in the

above three inequalities.

LEMMA 5.3 (elliptic estimates). Let ¢ be the solution of —A¢ = w with the zero
Dirichlet boundary condition, and set u = V+¢. Then, there hold

(5.4) lullese, + lluzlles, < Cllwliey
(5.5) 10zurllcse, + IVuzllez, + ¥ uzllLes, < Cllwlles, + Cllzwlles
(5.6) [Vullzs , + [[Vuzllzr , < Cllwlles

with Y(z) = z/(1 + z), for some constant C.

LEMMA 5.4 (bilinear estimates). For any w and &, denoting by v the velocity
related to w, we have

lo- Vélley, < Cllwley I@eley, +C (Jwley, + lwalles,.) |

[v- V@05 < Cllw

WGl
p70,6||‘:)w||p70,6 +C (Hpr,U,é + wa||p,o,5) |\¢(Z)5z@

|p70,5~

We refer the readers to ([16], section 2) for detailed proofs of the above lemmas.
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6. The Stokes problem.

6.1. Main propositions. In this section, we state our Proposition 6.1 for the
inhomogenous Stokes problem

wy —VvAw = f(t,z,y) in T xQ,,

(6.1) vw = Uy on y=0,
u2‘y:0 = Oa
w‘t:() = Wwo.

Let e“*B denote the semigroup of the corresponding Stokes problem: namely, the
heat equation dyw — vAw = 0 on T x €, with the homogenous boundary condition
(vw — u1)|y=0 = 0. Solutions to the linear Stokes problem are then constructed via
the following Duhamel’s integral representation:

¢
(6.2) w(t) = e’*Buy +/ e’ =B f(s) ds.
0

In this section, we shall derive uniform bounds for the Stokes semigroup in analytic
spaces, with the analytic norm

HW”p,U,é(t) = Z erle! [wa Ha,5(t)
Q€L

with the boundary layer norm defined by

-1
(63)  wnllose = sup lwa(2)e™= (140 0p (5712) +676p(5712))

2€Q,

in which the boundary thicknesses are ; = v/vt and § = y/v. As for the initial data,
the norm is measured by ||wal|s,5(0), Which consists of precisely one boundary layer
behavior whose thickness is § = 1/v. We introduce

o Olllpos6 = D 1020(2)0:) w®) 0.6

JHe<k

and

Heolllwrs = D 192(4()0:) w(t)lles ,

<k
Next, we state our main proposition, which will be proved in section 6.6.

PROPOSITION 6.1. Let e’*B be the semigroup for the linear Stokes problem. Then,
0, commutes with e’*B. In addition, for any k >0, and for any 0 < s <t < T, there
hold
e Flllp.oser e S N p,ors0),0:

t t
v(t—s)B < v v
"2 0 5 gy 091

uniformly in the inviscid limit. Similarly, we also obtain
1€ flllyyea S Ay

uniformly in the inviscid limit.

p,0,5(5) ks
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6.2. Duhamel principle. We first treat the Stokes problem on T x R;. By
taking the Fourier transform in z, the problem is reduced to

Oiwa — VA wo = fa(tv Z) in Ry,

6.4 =
o0 = [

in which w,, denotes the Fourier transform of w with respect to z, and A, = 8% — a?.
Let G4 (t, z,y) be the corresponding Green function of the linear Stokes problem (6.4),
together with the initial data G4 (0, z,y) = 0,(2). For each fixed y > 0, the function
G(t, z,y) solves

(8t_VAO¢)GOé(t7zay) =0 in R-i—a

(6.5) <
VG (t,0,y) = —/ e~ Gy (t, 2, y)dz,
0

together with the initial data G (0, z,y) = d,(2).

PROPOSITION 6.2. The solution to (6.4) is constructed via Duhamel’s principle:

(6.6) wal(t,2) :/0 Ga(t, 2, y)wo,a(y) dy+/0 /0 Go(t —s,2,9) fa(s,y) dyds.

Proof. We first show that Ojw, — VAqws = fo. Without loss of generality, we
can assume wy o(y) = 0. We have

t [e'e)
Owa = 4 (/ / Galt —5,2,9) fa(s, y)dyd8>

_ / G0, 2.9) fot, y)dy + / / (0:Calt — 5,2,9)) faly, s)dyds
0 0 0

t oo
ot v [ [ BaGalt = sl s)duds
o Jo
= folt, 2) + VAjwq.
We now check the boundary condition in (6.4). Let z = 0, we have

[’} t [e’)
vioa(t,0) = v / Ga(t, 0, y)o.(y)dy + v / / Gt — 5,0,5) fa(s, y)dyds
0 0 0

-/ N / T (e Galt,0,9)d2) w0 (9)dy

t [e'e] [e'e]

/ (/ e" PG (t — s,z,y)dz> fal(s,y)dyds
0o Jo 0

o

= —/ Pwa(t, z)dz.
0

The proof is complete. ]

6.3. The Green function for the Stokes problem. In this section, we de-
rive sufficient pointwise bounds on the temporal Green function for the linear Stokes
problem (6.4). Precisely, we prove the following.
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PROPOSITION 6.3. Let G,(t,z,y) be the Green function of the Stokes problem
(6.4). There holds

(6.7) Ga(t,2,y) = Ho(t, 2,y) + Ra(t, 2,y),
in which Hu(t,z,y) is exactly the one-dimensional heat kernel with the homogenous

Neumann boundary condition and Ry (t, z,y) is the residual kernel due to the boundary
condition. Precisely, there hold

1 ly—z|2 lytz|?
Hu(t, 2,y) = o (6_ EE )e_a2”t,

22
0 Ra (1, 2,y)| S (vt) /20 (ut) 1o 0

fory,z2>0, k>0, and for some 6y > 0.

We proceed the construction of the Green function via the resolvent equation.
Namely, for each fixed y > 0, let G o(y,2) be the L' solution to the resolvent
problem

(A= vAL)Gr (Y, 2) = 0y(2)

(6.8) o
VCira(0,y) = — / G2, y)d.
0

Here, the second nonlocal boundary condition is derived as follows: Given a forcing
term f(y), we look for solution of the form:

orale) = [ " Grale ) Fw)dy.

We define the operator L to be L = —/(0? — y?), where = /2 + a? with positive
real part. Then we get

Lana() = | " LGhaly, 2) fy)dy = / TSy — ) )y = £(2).

Putting this in the boundary condition (6.4) we get

o[ T G0, f )y = / e ( / h Gx,a(z,y)f(y)dy> 0z

Hence we have

[T wosaomsea=— [ ([ Gratnaz) s

Thus we take the following condition on the Green function

(6.9) vGra(0,y) = —/ e YGyalz,y)dz for any y > 0.
0

We then obtain the following lemma.
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LEMMA 6.4. Let u = v=Y2\/X\+ o2v, having positive real part. There holds

(610) G)\,a (Zv y) = H)\,oz(za y) + R)\,oz(zv y),

in which Hy o(y,z) denotes the resolvent kernel of the heat problem with homoge-
nous Neumann boundary condition and Rq x(z,y) denotes the residue resolvent ker-
nel; namely,

{Hk’a(%y) = 2#% (e‘my—z\ + e—u(y+z)) 7

— L _a=X —puy+z) _

1 —Qy—pz
R)"O‘(Z’y) T opr AHp—a V()\+,u,7a)e .

In particular, Gy o(y,z) is meromorphic with respect to X in C \ {—a?v — R} with
a pole at A = 0.

Proof. We have

c1(y)et® + co(y)e =, z <y,
cs(y)e H2, z > .

(6.11) GMQM{

The continuity of G o at z = y gives

(6.12) c1(y)e*™ + ca(y) = es(y).

Now, the jump condition of —v0.G  at z =y gives
2py 1 Hy
(6.13) c3(y) = —c1(y)e™ + ca(y) + e

Combining (6.12) and (6.13), we get

1
.14 = —hy
(6 ) Cl(y) 2/1,V6 )
and hence (6.13) becomes
(6.15) c3(y) = ca(y) + L e,
2uv

Now we find ¢y. Using the boundary condition (6.9) and the form of G, , in (6.11),
we have

—v(ei(y) + ca(y)) = /Oy e (c1(y)e!” + ca(y)e ) dz + /OO e (es(y)e ) dz.

By a direct calculation, we get

1 p+a—-X _ 1 _
6.16 =L - TeM____— e,
(6.16) e2(y) 2/,LI/>\+/1,—056 V(/\—l—u—a)e

Combining the above equation with (6.15), we have

1 1 p+a—A _ 1 _
6.17 = ey = 7 Towy_ - oy
(6.17) c3(y) Z,uye Jr2p¢ux\—|—,u—oze V(A—I—,u—oz)e
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Hence, putting c1, ¢z, c3, computed in (6.14), (6.16), (6.17), in the formula of G o (2, y)
in (6.11), we get
G)\(Zv y) = H)\,OL(Z7 y) + R)\,Ot(zv y)a

where
Hyolz,y) = 2%,/ (e‘“‘y_ﬂ + e—u(y-irz)) 7
This completes the proof. ]

Proof of Proposition 6.3. The temporal Green function G,(t,z,y) can then be
constructed via the inverse Laplace transform:

1
(618) G(X(taz7y) = % /1" e)\tG)\,a(z7y)dAa

in which the contour of integration I' is taken such that it remains on the right of the
(say, L?) spectrum of the linear operator A — vA,, which is —a?v — R,.

In view of (6.10), we set H, (¢, z,y) and R (t, z,y) to be the corresponding tempo-
ral Green function of H o(z,y) and Ry (2, y), respectively. It follows that H, (¢, z,y)
is the temporal Green function of the one-dimensional heat problem with the homoge-
nous Neumann boundary condition, yielding

1 ly—=z2 2|2
Hoz(t,Z,y) = \/ﬁ(e_ 1’4,,,, —|—e_y4+7)e—yazt.

It remains to compute the residual Green function

1
R(X(tazvy) = 5 / eAtR)\,a(Zay)dAa
T

2
(6.19) ;” . )
R a(z,y) = 776_“(?4"7) i
7 A+ p—a vIA+p—a)

We note that Ry , has a pole when A 4+ pt — a = 0, which happens only when A = 0.
We consider two cases: when o?v < 1 and when o?v > 1.

Case 1: o?v < 1.
Let us give a bound on the first part of the kernel Ry ,, in (6.19):

1 a—A
R )= — — = e hlyta),
)\,a(z y) v )\+,U—Oze

By Cauchy’s theory, we may decompose the contour of integration as I' = 'y U T,
having

1

.= {)\ = —§a2l/+ v(a® — b?) 4 2abvi £ iM, +b e R+},
1 A

.= {)\ = f§a2y+ va® + Me", he [7r/2,7r/2]},

for some positive number M and a = % Since a?v < 1, we can take M large so

that the pole A = 0 remains on the left of the contour I'. It is clear that |A] 2 1 on T.
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On I'., we note that

1 ) 1
Ry = 1/1/23‘%\/21/&2 + va? + Met® > Vﬁl/Q\ / 51/042 +va2 > a,

1 )
Ru = 1/1/23‘%\/21/042 +va2 + Me® > cou V2V M

for some cg > 0.
This implies that $p > § + § and |plv > cov'/?. This proves that

/ekte—u(y-%z) <1 a—A >d)\‘
PUA+ L —

c

/2
—1,2 2 _a _a — a— A
g/ eJVIt ot atut, 2\y+z\e 2|y+z|y 1/2d9' sup
—m/2 AT, [ A+ pu—a
< V71/267%|y+z\ea2ut67%\erz\ef%azut
~
g V—1/2e—%|y+z\e—%a2ut

_ Clyrz? 12
(l/t) 1/26 T e 29 ut7

A

in which we used e®’“te~51v+2l = 1 by definition of a, and the fact that ‘,\ili\a is
bounded on I'.. Indeed, we write

a—A
Adpu—a

_*
Ad+pu—al

L
S Y
+’)\+uo¢

It suffices to estimate |575—| when A € I'c. Using the fact that A = v(u® — a?), we
can rewrite this term as follows:

« 1
6.20 1+ .
(6.20) ( uoz) vip+a)+1
First we see that ﬁ is bounded, since
(6.21)

lp—al > Ru—a > coVMv=?—a > coVMa—a = (coVM—1)a  (since a?v <1).
Moreover, we get
(6.22) lv(p+a)+1>14+av+vRe > 1.

Hence the quantity (6.20) is uniformly bounded when X € I'.. This implies that

a— A
sup |————| S
xelo [A+p—a
as claimed.
Now we estimate the term
1 - A
(6.23) / M YT A mulyra)gy,
r. M o Atp—a

On I'y, we note that

Ry = %\/;az +(a+ib)2 +iv'M > R\/(a + ib)? = a,
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upon noting that the sign of b and =M is the same on I'. Similarly, we note that
Ry = M /\/v. By definition of a, we have

il 1,2t _lykz2 e
|e)‘te u\y+z|‘§e sVt o= g bt

Moreover, by a similar argument as in (6.20), (6.21), and (6.22), we get

a— A

— <1
Adp—ao

~

sup
el L

Thus we get the following bound for the term in (6.23) as follows:

/ e/\ti a—A e~ Py+2) g\ g(yt)*l/Qe*%O‘Q”te*%.
Ty

WA+ —

The proof of the bound for fr e)‘tRi,a(y,z)d)\ is complete. Similarly, we get the
following bound for the second term in the kernel (6.19)

i / et 1 eV HEgN| < 6*049(,/0*1/26*%0‘2’”8*%,
2mi Jr o v(A+a—p)

which we skip the details. This completes the proof the case a?v < 1.

Case 2: o?v > 1.

Take a = 5=;. Consider first the case when |a — | > Ja. In this case, we move the

contour of integration to
= {)\ = —va? +v(a® — b?) + 2uiab, +be R+},

which may pass the pole at A = 0 (precisely, it does when a = «). By the Cauchy
theory, we have

1
Ra(ta Z, y) = Tm /F e)\tRA7a(Za y) X + ReSOa
1

in which the residue at the pole A = 0 is computed explicitly by
(6.24) Resp = 0.
Indeed, at the pole A = 0, we have y = «. Hence

1
A+ p—a)Rya= L emnly+a) _ Zemoy—nz - 0, since ©= .
v v

Hence, we have

1
Rolt29) = 50 [ Baaly )i
1

where

1 _ 1 _a=X _—u(y+z
{}%Xa(zﬁy) T opv A+u—ae ( %

1 —ay—
Ri’a(z’y) = — oot ay—pz,
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Now we estimate
(6.25)
1 A

1 o —

At pl RAL

— R (zy)d) < ) e S
27ri/rle ral2:9) ‘N/rle V|u|’>\+u—o¢

a—A / 6—042ut+1/a2t—ub2t (e—%ze—%z) db
)\ + M — R

e M| d)|

< sup

~

el

5 (Vt)_1/26_$€_a2w.

Here, we used the fact that e”@ te=51v+2 = 1, |d\| = v|dpy| and

a— A
6.26 sup [————| < 1.
(6.26) A61P1 At p—al™
Indeed, we have
(6.27)
a—A W W Iz
— 2 =1 —E =1+
‘/\ﬂLa ’ Nri—als ‘/\+ua ‘(ua)(V(u+a)+1)

« 1 o 1
<14+(1+ <14+ (1+
p—o)vip+a)+1 ln—al) lvp+av+1]

§1+<1+ “ >§1,
n =«

since [p —al > |Ru —a| = |a — a| > La. The bound for |, MR} ,(z,y)dA| is
complete. Similarly, one can obtain the following bound

1 22
T / e)\th\,a(zvy)d)" S (Vt)—l/Ze—me—aZVte—ay’
™ r,

which we skip the details. Combining the above bounds for R} , and Rj ,, we have

22

Ra(t,2,y) S (vt)~/2e Ve,

It remains to consider the case when |a —a| < %a and a?v > 1. We note in particular
that %a <a< %a. In this case, we take the contour of integration as follows:

1
Iy = {)\ = —éyoz2 + V(a2 — b2) + 2uviab, =+b¢€ R+} .

Observe that the contour I'; always leaves the origin on the left; hence the pole at the
origin does not appear. Proceeding as in the estimate (6.33) and (6.27), it suffices to
check that

@
0=«

<1

~

(6.28) sup
AET,

in order to conclude

1 22 1
T2

2
(6.29) 211
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1

To check (6.28), we first see that the contour Ty cuts the real axis at v(a* — $a?) and

cuts the imaginary axis at +2av4/a? — éaQ. In particular this implies

1 1 1 1 1
A > v (a2 — 80z2) >v (4@2 - 8a2> > gazu, since a > Pl
Hence we have
L,
(6.30) (Al > Flalid

Now using the fact A = v(u? — o?) and (6.30), we see that

_le*vravl _ oty avll _ o avlu

A T\ R P\ R A

av(u+a)
v(u? — a?)

@
u—a

Now to bound O“V/\‘f“, we note that A = v(u? — a?) and (6.30), and hence

vip> < X[+ a®v < 9N

Thus
avll _ avlu]

ez | |

2 <

Ru
This completes the proof of the bound stated in (6.29). As for the derivatives bound,
it is straight forward that

<1

Q\Q

_k 1 o lu—=z]? —6o \y+2|
0L Ho(t,2,y)| S (vt) ™2 e hTmT e ) k>
~ Vut

for some 6y > 0. For the residue kernel R (t,2,y) = 7= [ e Ry o(2,y)dA, we note

that . )
R Y’ _ o
0, (27”/1“6 RA}a(z7y)d)\) 27ri/1~e uRo(z,y)dA.

Hence, we get

1 )
|8zR0¢(t7 Z, y)' 5 (Vt)_1/2 ' 7156—%@6—00&214
14

by the exact same argument represented for the bound R, (¢, z,y) and the fact that
2

Iz b= db < (vt)~1/2 and Ze~ %7 < (vt)"1/2e~% %7 which we skip the details (see

also [16]). 0

6.4. The Green function on Q,. The Green function constructed in Propo-
sition 6.3 can be directly extended to the complex domain €, defined by

Q, = {z eC: 9zl < min{o|§Rz|,U}}

for some small o > 0. Indeed, the Green function involves precisely the heat kernel
G(t,z) = \/% e~ /% which is extended to the complex domain. In addition, we

note that, for z € T',, there holds &z < oz, which implies that

|€7z2/4t| < ef\§RZ|2/4t+\§z\2/4t < 67(1702)@?2\2/415.
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Similar estimates hold for the other terms in the Green function G, (¢, z,y) = H/(t, z,
y) + Ra(t, 2,y), yielding

Ho(t, z,y) < b <e—(1—02)“y45?22 + e—(l—#)“ﬁf”) e~ ka?vt,
6.31 vt
(6.31) o

Ral(t,z,y) S e 000t (ut) = /200 (1=0") 5

for y,z € ', and for some 6y > 0. Precisely, for any z € Q,, let  be the positive
constant so that z € 9Qp. The Duhamel principle (6.6) then becomes

(6.32)

t
walt,2) = [ Galt,zy)woaly) dy + / Galt — 5,2,9) fa(s,y) dyds,
0y 0 0Ny

which is well defined for z € Q,, having the Green function G,(t, z,y) satisfies the
pointwise estimates (6.31), similar to those on the real line. For this reason, it suffices
to derive convolution estimates for real values vy, z.

6.5. Convolution estimates. We now derive convolution estimates. We start
with the analytic L' norms. For k > 0, we introduce

k
Hwanij = Z |‘(¢(Z)82)jwaHL},-
7=0

We prove the following.

PROPOSITION 6.5. Let T > 0, and let G,(t, z,y) be the Green function of the
Stokes problem (6.4), constructed in Proposition 6.3. Then, for any 0 < s <t < T
and k > 0, there is a universal constant Cr so that

/Ga(t—s,-,y)wa@,s)dyH < Crpllwa(s)llyyps
0 W;&l

oo
/ Ga(t, - y)wa(y) dyH < Crllwallyer,
0 W:’l

uniformly in the inviscid limit.

Proof. We shall prove the convolution for real values y, z. For the complex ex-
tension, see section 6.4. Recall from Proposition 6.3 that G, (¢, z,y) = Hu(t, z,y) +
Ra (tv Zy y)7 with

2 2
o _ly=z] _ ly+=] a2t
Ha(t’z7y) - At (6 vt + € avt € * 9

Ra(t,z7y) 5 e_goazyt(vt)_%e—eo%i_

For H,, we apply ([16], Proposition 3.7) to get

o0
| Halt = s ghntyes) dy| < Crllwa(s) g
0

wh
Now we will prove that

< Crllea(s)

Wg’

)
/ Ra(t_s7'7y)wa(y7s) dy
0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/27/21 to 132.174.254.159. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

4632 TRINH T. NGUYEN

Using the pointwise bound of R, (¢ — s, z,y) in Proposition 6.3, we have

0o 2 0o
/ Rao(t - s,z,y)wa(svy)dy‘ S ettt omin (V(t—S))’l/Q/ |wa (s, y)|dy.
0 0

Integrating in z, we have

As for derivatives, we have

/ Ra(t_ S,Zay)wa(‘s’y)dy
0

< Jwas)llzy-
L

000 ([ Ralt = s 2honts.an )|

()) =) 2 [ (sl

v(t—s

(6.33)

A

z2
S w(t - 5)) "2 T

wa(s)zs.

From here, we get

S llwa(s)]
L

1.
LZ’/

H<w<z>az>k [ Rt s 2o,

The proof is complete. ]

6.6. Convolution estimates with boundary layer behaviors. In this sec-
tion, we provide the convolution estimates of the Green function against functions in
the boundary layer spaces, whose norm is defined by

-1
(639)  Jwallosw = sup lwa(2)|e™ (1467 6p (6712) + 57 "0p(07'2))

2€Q,

for ¢t > 0 and 3 > 0, in which the boundary thicknesses are §; = /vt and § = /v and
for boundary layer weight ¢p(z) = P > 1. We also introduce the boundary
norm for derivatives

1
1+|Rz| P

k
lwalloseern = D 1(%(2)0:) wallosr)
=0

for k > 0. In the case t = 0, the norm || - ||, 5(0) is defined to consist of precisely one
boundary layer with thickness § = /v.

We prove the following.

PROPOSITION 6.6. Let T > 0, and let G,(t, z,y) be the Green function of the

Stokes problem (6.4), constructed in Proposition 6.3. Then, for any 0 < s <t < T
and k > 0, there is a universal constant Cr so that

/ G&(tisaﬁy)u')a(svy) dy
0

Aoo Ga (tv "y y)wa (y) dy

< Crllwalls,s00),k
o,8(t),k

t t
‘ < CT\/ija(S)Ho,a(s),k +Cry tina(S)HWI;J
0,8(t),k s -

uniformly in the inviscid limit.
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Proof. Since G, (t — s,2,y) = Hy(t — s,2,y) + Ra(t — s, 2,y), the convolution
estimates are needed for the heat kernel H, and R,,. For H,, we apply ([16], Lemma

3.10) to get
t
< cT\fwa@
7,8(t),k s

Now we will prove that

| < Oy (o

S Uy T llWalS)lle,8(s),k-
0,5(t),k t—s

By the estimate (6.33), it suffices to check that

—1/2_—6pa’v(t—s) 790L t —Boz (s—1 1
(At — )2 000wt <\ Lo (5716 (5772))

-5

To this end, we have

/ Ha(t_sa'ay)wa(svy) dy
0

0,6(s),k*

/ Ralt — 5, y)wa(s,y) dy
0

(v(t — 8))_1/26_900‘2”“‘3)@_90%

t L L 2
= 5 te dosuti=s) ¢ =00 suti—5) g~ oo v (t=s)

t—s

< L (5;167005—2) 6*90Wis)6732-901/(1575)632-901/(1575)
~Vit—s

t _ _ _
<\ et e

as long as [y < 26y, by a simple Cauchy inequality WQ_S) + 32u(t — s) > 2z. The

proof is complete. 0

7. Proof of the main theorems. As mentioned in the introduction, we con-
struct the solutions to the Navier—Stokes equation via the vorticity formulation:

(71) Oiw — VAw = —u - Vw,

(vw — u1)|z=0 = 0,

in which © = V+*A~!w, with A~! being the inverse of Laplacian with the Dirichlet
boundary condition. For convenience, we set N = u-Vw. The solution to the Navier—
Stokes is then constructed via the Duhamel’s principle:

¢
(7.2) w(t) = e"*Bugy — / e’ =IBN(s) ds
0

with wy € BPo:70° for some pg, oo > 0.

7.1. Nonlinear iteration. Let us fix positive numbers -, {, and pg and intro-
duce the following nonlinear iterative norm for vorticity:

73) A= s sup {Iw®llyss + llo®lllyzs (oo — p =78}
0<yt<po p<po—~t ’ ’
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with recalling

lelllyges = S 102 (W(2)0:) w(®)zs, .

J+e<k
Here, for sake of presentation, we take the same analyticity radius in x and z; namely,

0 = p < pg. Thanks to Lemma 5.1, wy € W,’f;;, for any k£ > 0.

We shall show that the vorticity norm remains finite for sufficiently large . The
weight (po — p — 7t)¢, with a small ¢ > 0, is standard to avoid time singularity when
recovering the loss of derivatives ([2, 19]). Let p < po — v¢. Thanks to Lemma 5.4,

we have
< 2 2
(r4) HIN@lhwes S lw@®lllyes < AR)
INOlhyzs S M@l lle®llhyzs < A0 - p 78

Now, using the Duhamel integral formula (7.2), we estimate

t
leo®lllyes < e Peolllypes + / 1" N(s)][yes ds.

In view of Proposition 6.1, the term from the initial data is already estimated, giving
|[le”*Bupol|lpra < [lwollyyr1. As for the integral terms, we estimate
0. PP

t t
/O e =B N (s)llyys.1 ds < co/o N ()2 ds
t

< CoA(’y)Q/O (po—p =) ds
< Coy A7)

Next, we give estimates for k¥ = 2. Noting that p < pg — vt < po — s, we take
o= w and compute

t t
/0 1PN (5)] |21 ds < Co / 1IN ()l ds

t
1
< C N(s 1 ds
<G [ = lING by,

< CoA()? /Ot(po —p—7s) " ds
< CoytAM)(po — p = t) .
Same computation holds for the trace operator I'(vt), yielding
A() < Collwollyzs + Coy™ A

By taking ~ sufficiently large, the above yields the uniform bound on the iterative
norm in term of initial data. This yields the local solution in L}, , for ¢ € [0, T], with

T =~"po.

7.2. Propagation of boundary layers. It remains to prove that the construc-
ted solution has the boundary layer behavior as expected, having already constructed
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solutions in L}L ,» spaces. Indeed, we now introduce the following nonlinear iterative
norm for vorticity:

(7.5) By = sup sup {|||w(t)|||p75(t),1 + Nw®lp.s506).2(p0 — p — 775)4}
0<yt<po p<po—~t

with the boundary layer norm

w5066 = Z 10,4 W) p.p.ocy-

J+e<k

Thanks to Lemma 5.4, we estimate

IIN®Ilpsw.0 < MBI 5.0 < B()?
IIN®psw. S N ®Opswalllo®llps.2 < BO)* (o = p—7t)~°

Now, using the Duhamel integral formula (7.2), we estimate

t
@ ps. < e’ Fwolllpse.e +/0 11" EN ($)I1],,500)5 ds.

In view of Proposition 6.1, the term from the initial data is already estimated, giving
e Bwolll stk < llwollp,s0y,k- We estimate

t
v(t—s)B
/ e =92 N($)llp.sc00n ds
0

¢ t t

</ <\/Z||N(s>|||p,5<s>,1+,/m||N(s>||W;J;> ds

5 [t [t ¢ ¢ t
<B Z(po— p—rs)~%d N 4
<867 [\ o=t s NGy [ 0

t/
2 S
— S ds+1t- su N(s ,
</ //2>\fpo p—s)” s IVl

1\ 1 1 \'7¢
< B(v)? |t —p— =t —p— —~t t- N
< CoB() ( <P0 p Qv) +7(Po P 27) + o?ﬁET”‘ ()1
< Coy ' B(y)(po —p) "+t sup [[[N(s)|[l,yr1,
0<s<T PP

in which we used vt < pg and vyt < pg — p. Next, noting that p < pg —~t < pg — s,
we take p' = £H2=% and compute

[ et
t<\/z|N(S)|||p,6(s),2+\E||N(s)|||W§:;> e
I

t 1-
<8 [ \ﬂpo—p—ws) st sup [Nz
o VS 0<s<T .

, ds+t- su N(s 2,1
(Ml 50601 (LN

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/27/21 to 132.174.254.159. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

4636 TRINH T. NGUYEN

t/2 t n
< CoB(v)? (/ +/ > \/7(,00 —p—7s) " "Cds+t- sup [|[N(s)]|lyy21

0 t/2 8 0<s<T ne

—1—¢ 1
< CoB(v)* (t po—p— 7t> +—=(po—p— vt)_c> +t- sup [[[N(s)l[lyy22
Y 0<s<T ’
< Cov ' B(v)*(po —p =)+t sup [[IN(s)|llyz1-
0<s<T ’

This proves the boundedness of the iterative norm B(7), and hence the propagation
of the boundary layer behaviors. Theorem 4.1 follows.

7.3. Proof of the inviscid limit. In this section, we conclude the paper by
proving the inviscid limit of Navier—Stokes for the critical slip boundary condition
(1.3).

Proof of Theorem 4.2. Let u¥ € W2°°(Q) NW?22(Q) be the solution to Euler (in

our case, u” is even analytic). As in (1.5), we have

1d
§@||v||2L2+/ (U'VUE)'U+V/VUE‘VU+V/ |Vol?
Q Q Q

(7.7)
+/ [u¥ (t,,0)|*dx — u/w”(t,x,())uf(t,x,()) =0.
T T

By Cauchy inequality, we have
d 2 2 v
Ivllze S Cp { Iollze +v+v | |w"(t,z,0)ldz |,
T

where Cg is a constant only depending on u”. Now, since [|w” (t)|5,p.5() is uniformly
bounded in v, there exists Cy > 0 such that

W (t,2,y)| < Coe™ PV (146 op(6y) +6; "op (5, 'y)) -
Putting y = 0, we get
(7.8) lw” (t,z,0)| < 6,7 .
Combining (7.7) and (7.8), we get

d Vv
@l S lle@®z: + i

Hence, by Gronwall inequality, we get

[v(®)llz2 S @O + Vo + [[0(0)] 2
The proof is complete. 0
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