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Abstract

We study the nonlocal vectorial transport equation ∂t y + (Py · ∇)y = 0 on

bounded domains of R
d where P denotes the Leray projector. This equation was

introduced to obtain the unique optimal rearrangement of a given map y0 as the

infinite time limit of the solution with initial data y0 (Angenent et al.: SIAM J Math

Anal 35:61–97, 2003; McCann: A convexity theory for interacting gases and equi-

librium crystals. Thesis (Ph.D.)-Princeton University, ProQuest LLC, Ann Arbor,

MI, p 163, 1994; Brenier: J Nonlinear Sci 19(5):547–570, 2009). We rigorously

justify this expectation by proving that for initial maps y0 sufficiently close to

maps with strictly convex potential, the solutions y are global in time and converge

exponentially quickly to the optimal rearrangement of y0 as time tends to infinity.

1. Introduction

Let � be a bounded domain in R
d equiped with the Lebesgue measure. Two

L2 maps y1, y2 : � → R
d are rearrangements of each other if they define the same

image measure of the Lebesgue measure, i.e.,

∫

�

f (y1(x))dx =

∫

�

f (y2(x))dx

for all compactly supported continuous function f : R
d → R. A celebrated the-

orem due to Brenier [5] asserts that for each L2 map y0 : � → R
d there exists

a unique rearrangement y∗ with convex potential, i.e. y∗ = ∇ p∗ for some convex

function p∗. Moreover, among all possible rearrangements of y0, y∗ minimizes the

quadratic cost function

∫

�

|y(x) − x |2dx .
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We shall refer to y∗ as the optimal rearrangement of y0. Finding the unique optimal

rearrangement y∗ for a given map y0 is thus among the main concerns in optimal

transport theory. As an attempt to get the optimal rearrangement y∗ of y0 as an

equilibrium state in the infinite time of a dynamical system that could be efficiently

solved by computer, Angenent, Haker, and Tannenbaum [1] (see also McCann

[12,13] and Brenier [6]) proposed the following nonlocal vectorial transport model

(AHT):

∂t y + u · ∇ y = 0,

u = Py,
(1.1)

where y = y(x, t) ∈ R
d , x ∈ � ⊂ R

d , t � 0, and P denotes the classical Leray

projector onto the space of divergence-free vector fields. Throughout the paper, we

take either � = T
d (periodic domain) or a bounded domain in R

d , d � 2 with

smooth boundary. The Leray projector u = Py is defined as follows: for a given

map y : � → R
d , we construct the potential p that solves

⎧

⎨

⎩

�p = ∇ · y in �

∂p

∂n
= y · n on ∂�,

(1.2)

where n is the unit outward normal to ∂�. Then we define

Py = y − ∇ p.

As a consequence of the definition, the velocity u = Py is tangent to the boundary,

u · n = 0 on ∂�. (1.3)

When � = T
d , the Leray projector P = (Pi j ) is simply a Fourier multiplier matrix

of order 0 with

Pi j (ξ) = 1 −
ξiξ j

|ξ |2
, ξ ∈ Z

d .

Interestingly, the AHT model (1.1) can also be obtained as the zero inertial limit

of generalized (damped) Euler-Boussinesq equations in convection theory [6–8].

In addition, by specifying y(x) = (0, ρ(x)), (1.1) reduces to the incompressible

porous media (IPM) equations

{

∂tρ + (u · ∇)ρ = 0, x ∈ � ⊂ R
2,

u + ∇ p = (0, ρ)T .
(1.4)

Here ρ plays the role of fluid density. Stability of the special solution ρ∗(x1, x2) =

x2 of (1.4) has been proved in [10] for � = R
2, T

2, and in [9] for � = T× (−l, l)
which posses two horizontal boundaries. The presence of boundaries, though only

flat boundaries, makes the proof in [9] more involved.
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Following [6], let us explain why (1.1) is expected to capture the optimal rear-

rangement of initial maps as steady states in infinite time. First, since the velocity

u is divergence-free and tangent to the boundary, we have

d

dt

∫

�

f (y(x, t))dx = 0 ∀t > 0

for any compactly supported continuous function f : R
d → R. Integrating this

in time we obtain that each y(t), t > 0 is a rearrangement of y(0). Second, it is

readily checked that the balance law

d

dt

∫

�

1

2
|y − x |2 dx = −

∫

�

|u|2 dx

holds. In particular, steady states must be gradients since their Leray projections

vanish. Conversely, all gradients are clearly steady states of (1.1). Now if y is global

and the infinite-time limit y∞ of y exists (in a sufficiently strong topology) then

the integral
∫ ∞

0

∫

�
|u|2dxdt is finite. Consequently, u vanishes as t → ∞ and

thus y∞ must be a gradient, y∞ = ∇ p∞. If we have in addition that p∞ is a

convex function, then coupling with the fact that y∞ is a rearrangement of y(0) we

conclude by virtue of the aforementioned theorem of Bernier that y∞ is the unique

optimal rearrangement of y(0). The remaining issues in the above argument are

global existence and long time behavior for (1.1). On the other hand, the objects

that we expect (1.1) to capture in infinite time are maps with convex potential. A

natural problem then, is:

Aremapswi thconvexpotentialgloballystable?

Our goal in the present paper is to prove that maps with strictly convex potential

are globally stable. Precisely, our main theorem reads as follow:

Theorem 1.1. Let s > 1 + d
2

be an integer with d � 2. Let � be a C∞ bounded
domain in R

d . Consider y∗ = ∇ p∗ for some strictly convex function p∗ : � → R

whose Hessian satisfies

∇2 p∗(x) � θ0Id ∀x ∈ �, θ0 > 0. (1.5)

Then, there exists a small positive number ε depending only on θ0 and ‖y∗‖H s+1(�)

such that for all y0 ∈ H s(�) with ‖y0 − y∗‖H s (�) � ε, problem (1.1) has a unique
global solution y. In addition, there is a positive constant C depending only on θ0

and ‖y∗‖H s+1(�) so that

‖y(t) − y∗‖H s (�) � C‖y0 − y∗‖H s (�) (1.6)

and

‖Py(t)‖H s (�) � C‖y0 − y∗‖H s (�)e
−

θ0
C t (1.7)

for all t � 0. Moreover, there exists a strictly convex function p∞ : � → R such
that

‖y(t) − ∇ p∞‖H s−1(�) � Ce−
θ0 t
C ∀t � 0. (1.8)

In particular, ∇ p∞ is the optimal rearrangement of y0.
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Remark 1.2. The domain � need not be C∞ but only C [s]+n0 for a sufficiently

large integer n0.

For periodic perturbations, our result reads as follow:

Theorem 1.3. Let s > 1 + d
2

be a real number with d � 2. Let � be the box
[0, L]d , L > 0. Consider y∗ = ∇ p∗ for some function p∗ : � → R whose Hessian
is L-periodic and satisfies

∇2 p∗(x) � θ0Id ∀x ∈ �, θ0 > 0. (1.9)

Then, there exists a small positive number ε depending only on θ0 and ‖y∗‖H s+1(�)

such that the following holds. For all y0 ∈ H s(�) such that y0 − y∗ is L-periodic
and ‖y0 − y∗‖H s (�) � ε, problem (1.1) has a unique global solution y. In addition,
there is a positive constant C depending only on θ0 and ‖y∗‖H s+1(�) so that y(t)−y∗

is L-periodic,

‖y(t) − y∗‖H s (�) � C‖y0 − y∗‖H s (�) (1.10)

and

‖Py(t)‖H s (�) � C‖y0 − y∗‖H s (�)e
−

θ0
4 t (1.11)

for all t � 0. Moreover, there exists a strictly convex function p∞ : � → R such
that

‖y(t) − ∇ p∞‖H s−1(�) � Ce−
θ0 t
4 ∀t � 0. (1.12)

In particular, ∇ p∞ is the optimal rearrangement of y0.

Remark 1.4. In Theorem 1.3, the steady solution y∗ = ∇ p∗ need not be periodic,

only its Hessian ∇2 p∗ is required to be periodic and positive. A typical example

is p∗ = |x |2 + q∗(x) where q∗ is L-periodic with sufficiently small ‖∇2q∗‖L∞(�).

The initial map y0 need not be periodic, but if the initial perturbation y0 − y∗ is

periodic then it remains so for all positive times.

The estimates (1.8) and (1.12) exhibit the exponential convergence towards the

optimal rearrangement of y0 provided that y0 is sufficiently close to a map with

strictly convex potential. This justifies the efficiency of the AHT model (1.1). The-

orem 1.1 also provides the first class of time-dependent global solutions to this

nonlocal vectorial transport equation for which the issues of global regularity and

finite-time blowup remain open.

Let y∗ = ∇ p∗ be a steady state of (1.1) where p∗ satisfies the strict convexity

condition (1.5). Introduce the perturbation z = y − y∗. Noticing that Py∗ = 0,

equation (1.1) yields

∂t z + u · ∇ y∗ + u · ∇z = 0,

u = Pz,
(1.13)

where u · n = 0 on ∂�. In order to obtain the global stability, some form of decay

is needed. Since z is transported, it is not expected to decay. Our idea is to obtain
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decay for the divergence-free part u of z. Indeed, taking Leray’s projection of (1.13)

one finds that u obeys

∂t u + P(u · ∇ y∗) + P(u · ∇z) = 0. (1.14)

An L2 energy estimate combined with the strict convexity of p∗ and the fact that

P is self-adjoint in L2 shows that u decays exponentially when measured in L2.

We need however decay of high Sobolev norms of u in order to close the nonlinear

iteration. In performing a direct H s energy estimate for u at the level of (1.14),

there are at least two difficulties:

(i) the term u · ∇z would induce a loss of derivatives due to the presence of ∇z;

(ii) to reveal the damping mechanism due to ∇ y∗ = ∇2 p∗ � θ0Id, one needs

to make appear the term Dsu · ∇ y∗ where Ds denotes any partial derivatives

of order s. However, in the presence of boundaries, Ds do not commute with

P. Moreover, in general the commutator [Ds, P] does not exhibit a gain of

derivative, and hence is of the same order as the damping term.

To handle (i) we commute P with u · ∇ as follows:

∂t u + P(u · ∇ y∗) + u · ∇u + [P, u · ∇]z = 0. (1.15)

The new nonlinear term u · ∇u is now an advection term, and thus does not induce

any loss of derivatives. However, a gain of one derivative in [P, u·∇]z is then needed.

As mentioned in (ii), such a gain is not true in general for [P, ∂ j ]. Interestingly,

if one replaces partial derivatives ∂ j with u · ∇, this holds even in domains with

boundary, provided only that u is tangent to the boundary. This is the content of the

next theorem, which is of independent interest. Throughout this paper we denote

T
d := (R/LZ)d .

Theorem 1.5. Let s > 1 + d
2

be an integer with d � 2. Consider � = T
d or �

a bounded domain in R
d with smooth boundary. Let P denote the Leray projector

associated to �. Then, for any vector fields u, z ∈ H s(�; R
d) with u · n|∂� = 0

when ∂� 
= ∅, the commutator estimate

‖[P, u · ∇]z‖H s (�) � C‖u‖H s (�)‖z‖H s (�) (1.16)

holds for some universal constant C.

Regarding the difficulty (ii), we observe that “tangential derivatives” commute

nicely with the Leray projector while “normal derivatives” do not. We then introduce

a boundary adapted system of derivatives Ds (see Section 2.1) which are defined

everywhere and become the usual tangential and normal derivatives when restricted

to the boundary. Next, to avoid the commutator [Ds, P] when dealing with the

nonlocal term P(u · ∇ y∗), we write

∫

�
Dsu · Ds

P(u · ∇ y∗)dx =

∫

�
Dsu · Ds (u · ∇ y∗)dx +

∫

�
Dsu · Ds (P − Id)(u · ∇ y∗)dx
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and notice a special structure in the second integral. This allows us to prove a hier-
archy of estimates for the velocity u, ordered by the number of normal derivatives
in Ds , and hence to close our nonlinear iteration.

For the proof of Theorem 1.1 we will need the local well-posedness of the AHT

model (1.1) in Sobolev spaces.

Theorem 1.6. Let � be a bounded domain in R
d , d � 2 with smooth boundary or

periodic boundary conditions. Let s > 1 + d
2

be an integer. Then for any initial
data z0 ∈ H s(�), there exist a positive time T depending only on ‖z0‖H s (�) and
a unique solution z ∈ C([0, T ]; H s(�)) of (1.1).

Local well-posedness of (1.1) in Hölder spaces C1,α(�) has been obtained in [1].

Since the velocity u has the same Sobolev regularity as the unknown z, the proof

of Theorem 1.6 is standard via energy methods, and thus will be skipped.

The paper is organized as follows. Section 2 is devoted to various commutator

estimates involving the Leray projector. Theorem 1.3 is proved in Section 3, and

Theorem 1.1 is proved in Section 4.

Throughout this paper, we denote by ∂ j , j ∈ {1, ..., d} the j th partial derivative

and by Dm any partial derivatives of order m ∈ N.

2. Commutator Estimates

2.1. A Boundary Adapted System of Derivatives

For simplicity, we assume from now on that � is a C∞ domain. Let δ(x) =

dist(x, ∂�) be the distance function. There exists a small number κ > 0 such that

δ is C∞ in the neighborhood of the region

�3κ = {x ∈ � : δ(x) � 3κ},

and ∇δ(x) 
= 0 for any x ∈ �3κ . See Section 3.2, Chapter III in [4]. Note that the

unit outward normal n(x) = −∇δ(x) for x ∈ ∂�. We thus can extend n to �3κ by

setting

n(x) = −
∇δ(x)

|∇δ(x)|
, x ∈ �3κ .

For each x ∈ �3κ , we can choose τ(x) = {τ j (x) : j = 1, ..., d −1} an orthonormal

basis of (n(x))⊥ in R
d such that τ j ∈ C∞(�3κ).

Next we fix a cutoff function χ1 : � → [0, 1] satisfying

χ1 ≡ 1 in a neighborhood of �2κ , χ1 ≡ 0 in � \ �3κ . (2.1)

For a vector field v : � → R
d we define its weighted normal and tangential

components respectively by

vn(x) = χ1(x)v(x) · n(x), vτ j (x) = χ1(x)v(x) · τ j (x), j = 1, ..., d − 1
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for x ∈ �. In particular, v = vnn +
∑d−1

j=1 vτ j τ j in �2κ . In the special case of

gradient vectors ∇ f where f : � → R, we write

∂n f = (∇ f )n, ∂τ j f = (∇ f )τ j , j = 1, ..., d − 1.

Both ∂n f and ∂τ f are defined over � and become the usual normal and tangential

derivatives when restricted to the boundary. Note in addition that

∇ f = n∂n f +

d−1
∑

j=1

τ j∂τ j f in �2κ . (2.2)

For a vector field v : � → R
d we write ∂nv = (∇v) · n and similarly for ∂τ j v.

Then we have

|∇v|2 =

d
∑

i=1

|∇vi |
2 =

d
∑

i=1

(|∂nvi |
2 +

d−1
∑

j=1

|∂τ j vi |
2) = |∂nv|2 +

d−1
∑

j=1

|∂τ j v|2 (2.3)

for x ∈ �2κ .

Lemma 2.1. For v : � → R
d and f : � → R we have

∂nv · n +

d−1
∑

j=1

∂τ j v · τ j = div v (2.4)

and

∂2
n f +

d−1
∑

j=1

∂2
τ j

f = � f + ∇ f · (n · ∇)n +

d−1
∑

j=1

∇ f · (τ j · ∇)τ j (2.5)

at any x ∈ �2κ .

Proof. We first notice that since χ1 ≡ 1 in �2κ . If R denotes the matrix whose first

d − 1 columns are τ1, ..., τd−1 and whose dth column is n, then R is orthonormal;

that is, R RT = Id. Using this and the above definitions of ∂n and ∂τ j we have

∂nv · n +

d−1
∑

j=1

∂τ j v · τ j

=

d
∑

k,�=1

∂kv�nkn� +

d−1
∑

j=1

d
∑

k,�=1

∂kv�τ j,kτ j,�

=

d
∑

k,�=1

∂ku�

d
∑

j=1

Rk, j RT
j,�

=

d
∑

k,�=1

∂ku�δk,�

= div u.
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Similarly, we have

∂2
n f +

d−1
∑

j=1

∂2
τ j

f

=

d
∑

k,�=1

∂k∂� f nkn� +

d−1
∑

j=1

d
∑

k,�=1

∂k∂� f τ j,kτ j,� + ∇ f · (n · ∇)n +

d−1
∑

j=1

∇ f · (τ j · ∇)τ j

=

d
∑

k,�=1

∂k∂� f δk,� + ∇ f · (n · ∇)n +

d−1
∑

j=1

∇ f · (τ j · ∇)τ j

= � f + ∇ f · (n · ∇)n +

d−1
∑

j=1

∇ f · (τ j · ∇)τ j .

��

2.2. Proof of Theorem 1.5

In this section, we study the commutator term [P, u · ∇]z appearing in (1.15)

and prove Theorem 1.5. We start with the periodic case � = T
d , d � 2.

Lemma 2.2. Let s > 1 + d
2

be a real number and let P be the Leray projector.
Then, for any u, z ∈ H s(Td), there holds

‖[P, u · ∇]z‖H s (Td ) � C‖u‖H s ‖z‖H s (Td )

for some universal constant C.

Proof. For any two functions f, g : R
d → R, we have the following Bony’s

decomposition (see [2,3]):

f g = T f g + Tg f + R( f, g),

where T f g and Tg f are paraproducts so that the following hold:

• Pararoduct estimates:

‖T f g‖H r � C‖ f ‖L∞‖g‖H r ∀r ∈ R. (2.6)

• Reminder estimates:

‖R( f, g)‖
H r1+r2− d

2
� C‖ f ‖H r1 ‖g‖H r2 (2.7)

for all r1 and r2 in R satisfying r1 + r2 > 0.

• Commutator estimates:

‖[T f , m(D)]g‖H r−k+α � C‖ f ‖Wα,∞‖g‖H r (2.8)

for any homogeneous operator m(D) of order k, α ∈ (0, 1], and r ∈ R.
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Recall that on T
d , the Leray projector P = (Pi j ) is a Fourier multiplier matrix of

order 0. In addition, we note that [P,∇] = 0. Denoting by vk the kth component

of the vector v, we have

([P, u · ∇]z)k = (P(u · ∇z))k − (u · ∇Pz)k

= Pk j (ui∂i z j ) − ui∂i Pk j z j

= Pk j (ui∂i z j ) − ui Pk j∂i z j

= Pk j (Tui ∂i z j ) + Pk j (T∂i z j ui ) + Pk j R(ui , ∂i z j )

− Tui Pk j∂i z j − TPk j ∂i z j ui − R(ui , Pk j∂i z j )

= [Pk j , Tui ]∂i z j + Pk j (T∂i z j ui ) + Pk j R(ui , ∂i z j )

− TPk j ∂i z j ui − R(ui , Pk j∂i z j ).

Here and in what follows, the summation in i, j is understood. Since P is a Fourier

multiplier of order 0 and Tui has order 0, the commutator estimate (2.8) yields

‖[Pk j , Tui ]∂i z j‖H s � C‖u‖W 1,∞‖∇z‖H s−1 � C‖u‖H s ‖z‖H s

where we used the embedding H s ⊂ W 1,∞ for s > 1 + d
2

. The paraproduct terms

Pk j (T∂i z j ui ) and TPk j ∂i z j ui are estimated in H s by means of the paraproduct rule

(2.6), the embedding H s ⊂ W 1,∞, and the fact that P is continuous from H s to

H s . Finally, the reminder terms can be treated using (2.7) as follows:

‖R(ui , ∂i z j )‖H s � ‖R(ui , ∂i z j )‖
H s+s−1− d

2
� C‖u‖H s ‖∇z‖H s−1 � C‖u‖H s ‖z‖H s ,

which gives the lemma. ��

We next turn to the case when � has a boundary. Fix an integer s > 1 + d
2

. By

definition, we write z = Pz + ∇ f , where f solves
{

� f = div z in �,
∂ f
∂n = z · n on ∂�.

(2.9)

In particular, the standard elliptic regularity theory yields‖ f ‖H s+1(�) � C‖z‖H s (�).

Similarly, we write (u · ∇)z = P((u · ∇)z) + ∇g, where g solves
{

�g = div((u · ∇)z) in �,
∂g
∂n = (u · ∇)z · n on ∂�.

(2.10)

Combining things, we have

[P, u · ∇]z = P((u · ∇)z) − (u · ∇)Pz

= (u · ∇)z − ∇g − (u · ∇)(z − ∇ f )

= (u · ∇)(∇ f ) − ∇g.

(2.11)

We shall bound the H s norm of [P, u · ∇]z, using the elliptic estimate

‖h‖H s (�) � C‖ div h‖H s−1(�) + C‖ curl h‖H s−1(�) + C‖h · n‖
H s− 1

2 (∂�)
(2.12)

for h = [P, u · ∇]z, where the terms on the right hand side are estimated in the

following lemmas:
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Lemma 2.3. There exists a positive constant C such that

‖ div([P, u · ∇]z)‖H s−1(�) � C‖u‖H s (�)‖z‖H s (�) (2.13)

and

‖ curl([P, u · ∇]z)‖H s−1(�) � C‖u‖H s (�)‖z‖H s (�). (2.14)

Proof. In view of (2.11), we compute, using (2.9),

div((u · ∇)(∇ f )) = ∇u : (∇ ⊗ ∇) f + u · ∇ div z.

On the other hand, using equation (2.10), we have

div(∇g) = �g = div((u · ∇)z). = ∇u : (∇z)T .

Combining, the above we have

div([P, u · ∇]z) = ∇u : [(∇ ⊗ ∇) f − (∇z)T ]. (2.15)

The estimate (2.13) thus follows directly from (2.15), upon using the fact that

H s−1(�) is an algebra and the elliptic estimates ‖ f ‖H s+1(�) � C‖z‖H s (�).

Next, in view of (2.11), we write

[P, u · ∇]z = ∇(u · ∇ f − g) − ∇uk∂k f,

which gives curl([P, u · ∇]z) = ∇uk × ∂k∇ f . The estimate (2.14) then follows

from elliptic estimates as before. ��

Lemma 2.4. There exists a positive constant C such that

‖[P, u · ∇]z · n‖
H s− 1

2 (∂�)
� C‖u‖H s (�)‖z‖H s (�). (2.16)

Proof. We use the decomposition u = unn+
∑d−1

j=1 uτ j τ j in �2κ . Then we compute

(u · ∇)z · n = (u · ∇)(z · n) − (u ⊗ z) : ∇n

= un(n · ∇)(z · n) +

d−1
∑

j=1

uτ j (τ j · ∇)(z · n) − (u ⊗ z) : ∇n

in �2κ . Since u · n = 0 on ∂�, we have un = 0 on ∂�. Taking the trace of the

above equation on ∂� and recalling (2.10), we get

∇g · n = (u · ∇)z · n =

d−1
∑

j=1

uτ j ∂τ j (z · n) − (u ⊗ z) : ∇n on ∂�.

Similarly, on ∂�, we have

(u · ∇)(∇ f ) · n =

d−1
∑

j=1

uτ j ∂τ j (∇ f · n) − (u ⊗ ∇ f ) : ∇n.
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Recalling (2.11) and using the boundary condition (2.9), which gives ∂τ j (∇ f ·n) =

∂τ j (z · n) on ∂�, we obtain

[P, u · ∇]z · n = (u · ∇)(∇ f ) · n − ∇g · n = [u ⊗ (z − ∇ f )] : ∇n

on ∂�. Using the trace inequality, we bound

‖[P, u · ∇]z · n‖
H s− 1

2 (∂�)
� C‖u ⊗ (z − ∇ f )‖H s (�)

� C‖u‖H s (�)

(

‖z‖H s (�) + ‖ f ‖H s+1(�)

)

,

which gives (2.16), upon recalling the elliptic estimates ‖ f ‖H s+1 � C‖z‖H s . ��

2.3. Commutators Between the Leray Projector and Tangential Derivatives

Proposition 2.5. Let m � 2 be an integer. There exists a constant C > 0 such that

‖[P, P]u‖L2(�) � C‖u‖Hm−1(�)

for any P ∈ {�m
j=1∂σ j : σ j ∈ {τ1, ..., τd−1}} and any vector field u ∈ Hm−1(�).

Proof. Without loss of generality we consider P = ∂m
τ1

. In view of the identity

[∂q+1
τ1

, P]u = [∂q
τ1

, P]∂τ1 u + ∂q
τ1

[∂τ1 , P]u, q � 1,

and by induction in m, it suffices to prove that

‖[∂τ1 , P]∂τ1 u‖L2(�) � C‖u‖H1(�) (2.17)

and

‖[∂τ1 , P]u‖H j (�) � C‖u‖H j (�) ∀ j � 1. (2.18)

To this end, for any vector field v, we write Pv = v−∇ f and P(∂τ1v) = ∂τ1v−∇g
where f and g solve

{

� f = div v in �,
∂ f
∂n = v · n on ∂�

and
{

�g = div(∂τ1v) in �,
∂g
∂n = (∂τ1v) · n on ∂�

respectively. Then

[∂τ1 , P]v = ∇g − ∂τ1∇ f = ∇(g − ∂τ1 f ) − [∂τ1 ,∇] f. (2.19)

We compute

�∂τ1 f = ∂τ1� f + �(χ1τ1) · ∇ f + 2∇(χ1τ1) : ∇∇ f,

div(∂τ1v) = ∂τ1 div v + ∇v : (∇(χ1τ1))
T ,
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where χ1 is defined as in (2.1). As a consequence, h := g − ∂τ1 f satisfies

�h = ∇v : (∇(χ1τ1))
T − �(χ1τ1) · ∇ f − 2∇(χ1τ1) : ∇∇ f in �. (2.20)

Regarding the boundary condition, we have

∂τ1(v · n) = ∂τ1v · n + ∇n : (v ⊗ τ1),

∂n(∂τ1 f ) = ∇∇ f : (n ⊗ τ1) + ∇τ1 : (∇ f ⊗ n),

∂τ1(∂n f ) = ∇∇ f : (n ⊗ τ1) + ∇n : (∇ f ⊗ τ1)

in �. This yields

∂nh = ∂ng − ∂τ1∂n f − ∇τ1 : (∇ f ⊗ n) + ∇n : (∇ f ⊗ τ1)

= (∂τ1v) · n − ∂τ1(v · n) − ∇τ1 : (∇ f ⊗ n) + ∇n : (∇ f ⊗ τ1)

= −∇n : (v ⊗ τ1) − ∇τ1 : (∇ f ⊗ n) + ∇n : (∇ f ⊗ τ1) on ∂�.

(2.21)

In addition, elliptic estimates combined with trace inequalities

‖v‖
H�− 3

2 (∂�)
� C‖v‖H�−1(�) ∀� � 2

yield

‖ f ‖H�(�) � C‖v‖H�−1(�) ∀� � 2. (2.22)

Proof of (2.18). In view of (2.20), (2.21) we deduce using elliptic estimates, trace

inequalities and (2.22) that for any � � 2,

‖h‖H�(�)
� C‖∇v : (∇(χ1τ1))T − �(χ1τ1) · ∇ f − 2∇(χ1τ1) : ∇∇ f ‖H�−2(�)

+ C‖ − ∇n : (v ⊗ τ1) − ∇τ1 : (∇ f ⊗ n) + ∇n : (∇ f ⊗ τ1)‖
H�− 3

2 (∂�)

� C‖∇v : (∇(χ1τ1))T − �(χ1τ1) · ∇ f − 2∇(χ1τ1) : ∇∇ f ‖H�−2(�)

+ C‖ − ∇n : (v ⊗ τ1) − ∇τ1 : (∇ f ⊗ n) + ∇n : (∇ f ⊗ τ1)‖H�−1(�)

� C‖v‖H�−1(�)
+ C‖ f ‖H�(�)

� C ′‖v‖H�−1(�)
.

(2.23)

Note that the trace inequality used in the second inequality in (2.23) does not hold

when � = 1. Now for any j � 1 using (2.19), (2.22) and (2.23) with � = j +1 � 2

together with the estimate

‖[∂τ1 ,∇] f ‖H j (�) � C‖ f ‖H j+1(�)

we obtain

‖[∂τ1 , P]v‖H j (�) � ‖h‖H j+1(�) + ‖[∂τ1 ,∇] f ‖H j (�)

� C‖v‖H j (�) + C‖ f ‖H j+1(�)

� C ′‖v‖H j (�)

which is the desired estimate (2.18) if we set v = u.
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Proof of (2.17). Again, we use the equations (2.20), (2.21) with v = ∂τ1 u and

H1 elliptic estimate for the Neumann problem to have

‖h‖H1(�) � C‖∇v : (∇(χ1τ1))
T − �(χ1τ1) · ∇ f − 2∇(χ1τ1) : ∇∇ f ‖H−1(�)

+ C‖ − ∇n : (v ⊗ τ1) − ∇τ1 : (∇ f ⊗ n) + ∇n : (∇ f ⊗ τ1)‖
H− 1

2 (∂�)

� C ′‖v‖L2(�) + C ′‖ f ‖H1(�) + C ′‖v‖
H− 1

2 (∂�)
+ C ′‖∇ f ‖

H− 1
2 (∂�)

.

Since v = ∂τ1 u we have ‖v‖L2(�) � C‖u‖H1(�) and

‖v‖
H− 1

2 (∂�)
� C‖u‖

H
1
2 (∂�)

� C ′‖u‖H1(�).

Moreover, using (2.2) and the Neumann boundary condition for f we can write

∇ f =

d−1
∑

j=1

τ j∂τ j f + n∂n f =

d−1
∑

j=1

τ j∂τ j f + n(∂τ1 u · n) on ∂�.

This implies

‖∇ f ‖
H− 1

2 (∂�)
� C

d−1
∑

j=1

‖∂τ j f ‖
H− 1

2 (∂�)
+ C‖∂τ1 u‖

H− 1
2 (∂�)

� C ′‖ f ‖
H

1
2 (∂�)

+ C‖u‖
H

1
2 (∂�)

� C ′′‖ f ‖H1(�) + C‖u‖H1(∂�).

Thus, we obtain

‖h‖H1(�) � C‖u‖H1(�) + C‖ f ‖H1(�).

The H1 elliptic estimate for f gives

‖ f ‖H1(�) � C‖∂τ1 u‖L2(�) + C‖∂τ1 u · n‖
H− 1

2 (∂�)

� C‖∂τ1 u‖L2(�) + C ′‖u‖
H

1
2 (∂�)

� C ′′‖u‖H1(�).

Consequently

‖h‖H1(�) � C‖u‖H1(�)

which combined with the commutator estimate

‖[∂τ1 ,∇] f ‖L2(�) � C‖ f ‖L2(�) � C‖ f ‖H1(�)

completes the proof of (2.17). ��

Next we fix a cutoff function χ2 : � → [0, 1] satisfying

χ2 ≡ 0 in �κ , χ2 ≡ 1 in � \ �2κ . (2.24)
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Proposition 2.6. Let m � 1 be an integer. There exists a constant C > 0 such that

‖[χ2 Dm, P]u‖L2(�) � C‖u‖Hm−1(�)

for any vector field u ∈ Hm−1(�).

Proof. Without loss of generality we consider Dm = ∂m
1 . We have

[χ2∂
m
1 , P]u = χ2∂

m
1 (u − ∇ f ) − [χ2∂

m
1 u − ∇g]

= χ2∂
m
1 ∇ f − ∇g

= ∇(χ2∂
m
1 f − g) − ∇χ2∂

m
1 f.

where f and g solve

{

� f = div u in �,
∂ f
∂n = u · n on ∂�

and
{

�g = div(χ2∂
m
τ1

u) in �,
∂g
∂n = (χ2∂τm

1
u) · n on ∂�

respectively. By elliptic estimates for f we have

‖∇χ2∂
m
1 f ‖L2(�) � C‖u‖Hm−1(�). (2.25)

Setting h = χ2∂
m
1 ∇ f − g, we compute

�h = �χ2∂
m
1 f + 2∇χ2 · ∇∂m

1 f − ∇χ2 · ∂m
1 u

= �χ2∂
m
1 f + 2 div(∇χ2∂

m
1 f ) − 2�χ2∂

m
1 f − ∂ j (∇χ2 · ∂m−1

1 u)

+ ∇∂1χ2 · ∂m−1
1 u.

On the other hand, since χ2 ≡ 0 near ∂�, h ≡ 0 near ∂�. Thus, standard elliptic

estimates give

‖h‖H1(�) � C‖u‖Hm−1(�). (2.26)

A combination of (2.25) and (2.26) concludes the proof. ��

3. Proof of Theorem 1.3

Let us start with a priori estimates for the perturbation z = y− y∗, which solves

∂t z + u · ∇ y∗ + u · ∇z = 0, u = Pz (3.1)

in � = [0, L]d . We consider p∗ such that ∇ y∗ = ∇2 p∗ is L-periodic. In what

follows, u and z are L-periodic smooth solutions to (3.1), and s is real number

satisfying s > 1 + d
2

. We shall denote by T
d the box � with periodic boundary

conditions. We have the following:
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Lemma 3.1. We have

1

2

d

dt
‖z(t)‖2

H s (Td )
� C1(1 + ‖z(t)‖H s (Td ))‖u(t)‖H s (Td )‖z(t)‖H s (Td ), (3.2)

for some constant C1 depending only on s, d, and ‖y∗‖H s+1 .

Proof. Denote J s = (1 − �)
s
2 . Note that ‖ f ‖H s (Td ) = ‖J s f ‖L2(Td ). Applying

J s to (3.1), multiplying the resulting equation by J s z and integrating in space we

obtain

1

2

d

dt

∫

Td
|J s z|2 dx

= −

∫

Td

[

J s z · J s(u · ∇z) + J s(u · ∇ y∗) · J s z
]

dx

= −

∫

Td

[

J s z ·
(

[J s, u] · ∇z
)

dx + J s z ·
(

u · ∇ J s z
)

+ J s(u · ∇ y∗) · J s z
]

dx

= −

∫

Td

[

J s z ·
(

[J s, u] · ∇z
)

+
1

2
u · ∇|J s z|2dx + J s(u · ∇ y∗) · J s z

]

dx

= −

∫

Td

[

J s z ·
(

[J s, u] · ∇z
)

+ J s(u · ∇ y∗) · J s z
]

dx

where we used the fact that u = Pz is divergence free. Since s > 1 + d
2

, the

Kato-Ponce’s commutator estimate yields

‖[J s, u] · ∇z‖L2 � C‖u‖H s ‖z‖H s .

On the other hand, we have
∣

∣

∣

∣

∫

Td
J s(u · ∇ y∗) · J s z

∣

∣

∣

∣

� C‖y∗‖H s+1‖u‖H s ‖z‖H s .

Putting this all together leads to (3.2). ��

Lemma 3.2. Let θ0 be the constant as in (1.5). Then it holds that

1

2

d

dt
‖u(t)‖2

L2(Td )
+ θ0‖u(t)‖2

L2(Td )
� C2‖u(t)‖2

L2(Td )
‖z(t)‖H s (Td )

(3.3)

d

dt
‖u(t)‖2

H s (Td )
+ θ0‖u(t)‖2

H s (Td )
� C2‖u(t)‖2

H s (Td )
‖z(t)‖H s (Td )

+ C2‖u(t)‖2
L2(Td )

(3.4)

for some constant C2 depending only on s, d, and ‖y∗‖H s+1 .

Proof. Applying the Leray projection to the first equation in (3.1) gives

∂t u + P(u · ∇ y∗) + P(u · ∇z) = 0. (3.5)

A direct H s energy estimate for u from this equation requires a control for z in H s+1,

and thus the estimates cannot be closed. To resolve the issue, we first commute with

u to have

∂t u + P(u · ∇ y∗) + u · ∇u + [P, u · ∇]z = 0 (3.6)
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We now perform an H s energy estimate for this equation. As in the proof of

Lemma 3.1 we have

1

2

d

dt

∫

Td
|J su|2 dx +

∫

Td
J su · J s

P(u · ∇ y∗) dx

= −

∫

Td
J su ·

(

[J s, u] · ∇u
)

dx −

∫

Td
J su ·

(

u · ∇ J su
)

dx

−

∫

Td
J su · J s([P, u · ∇]z

)

dx

= −

∫

Td
J su ·

(

[J s, u] · ∇u
)

dx −
1

2

∫

Td
u · ∇|J su|2dx

−

∫

Td
J su · J s([P, u · ∇]z

)

dx

= −

∫

Td
J su ·

(

[J s, u] · ∇u
)

dx −

∫

Td
J su · J s([P, u · ∇]z

)

dx,

where the fact that u is divergence-free was used to cancel out the term
∫

Td u ·

∇|J su|2dx . In addition, using the facts that [J s, P] = 0 and P is self-adjoint in L2,

we obtain

∫

Td
J su · J s

P(u · ∇ y∗) =

∫

Td
J su · PJ s(u · ∇ y∗) =

∫

Td
J su · J s(u · ∇ y∗)

=

∫

Td
J su · (J su · ∇ y∗) +

∫

Td
J su ·

(

[J s,∇ y∗] · u
)

.

(3.7)

It follows from the convexity assumption (1.9) that

∫

Td
J su · (J su · ∇ y∗) =

∫

Td
J su · (J su · ∇2 p∗) � θ0‖u‖2

H s . (3.8)

Using Kato-Ponce’s commutator estimate gives

‖[J s, u] · ∇u‖L2 � C‖u‖H s ‖u‖H s

and

‖[J s , ∇ y∗] · u‖L2 � C‖∇ y∗‖W 1,∞‖u‖H s−1 + C‖∇ y∗‖H s ‖u‖L∞ � C‖y∗‖H s+1‖u‖H s−1 .

By virtue of Theorem 1.5 for � = T
d , we have

‖[P, u · ∇]z‖H s � C‖u‖H s ‖z‖H s .

Combining, and using ‖u‖H s � ‖z‖H s , we thus obtain

d

dt
‖u(t)‖2

H s + 2θ0‖u(t)‖2
H s � C2‖u(t)‖2

H s ‖z(t)‖H s + C3‖y∗‖H s+1‖u(t)‖H s ‖u(t)‖H s−1 ,

(3.9)
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in which, using interpolation and Young’s inequality, the last term can be estimated

by

‖u(t)‖H s ‖u(t)‖H s−1 � ‖u(t)‖
2− 1

s
H s ‖u(t)‖

1
s
L2 � γ ‖u(t)‖2

H s + Cγ ‖u(t)‖2
L2

for γ > 0. Taking γ sufficiently small, we get the claimed H s estimates in (3.4)

directly from (3.9).

Finally, by means of the Sobolev embedding ‖∇z‖L∞ � C‖z‖H s , the fact that

P is self-adjoint in L2, and the convexity assumption (1.5), an L2 energy estimate

for (3.5) gives the estimate (3.3). This ends the proof of the lemma. ��

For L-periodic smooth solutions (u, z) defined on the maximal interval [0, T ∗)

of (3.1), which exists thanks to the local existence theory in Theorem 1.6, let us

introduce the bootstrap norm

N (t) := sup
0�τ�t

(

‖z(τ )‖2
H s (Td )

+ M2e
θ0
2 τ‖u(τ )‖2

L2(Td )
+ Me

θ0
2 τ‖u(τ )‖2

H s (Td )

)

(3.10)

for some fixed and large M > 0 and for t < T ∗.

Proposition 3.3. There exist positive constants ε, C∗, depending only on θ0 and
‖y∗‖H s+1 , such that whenever N (0) < ε we have N (t) � C∗N (0) for all t < T ∗.

Proof. We shall prove that

N (t) � C0N (0) + C0N (t)3/2 (3.11)

for all t < T ∗. The proposition follows directly from the standard continuous

induction.

As for the claim (3.11), we integrate (3.2) in time and use the definition of N (t),
yielding

‖z(t)‖2
H s � ‖z(0)‖2

H s + C1

∫ t

0

(1 + ‖z(τ )‖H s )‖u(τ )‖H s ‖z(τ )‖H s dτ

� ‖z(0)‖2
H s + C1 M−1/2(1 + N (t)1/2)N (t)

∫ t

0

e−θ0τ/4 dτ

� ‖z(0)‖2
H s + C3 M−1/2(1 + N (t)1/2)N (t).

(3.12)

Next taking M sufficiently large so that θ0 M > C2, we obtain from (3.3) and (3.4)

that

d

dt
(M‖u(t)‖2

L2 + ‖u(t)‖2
H s ) + θ0(M‖u(t)‖2

L2 + ‖u(t)‖2
H s ) � C4 M‖u(t)‖2

H s ‖z(t)‖H s

where C4 = C2(2 + M). This yields

M2‖u(t)‖2
L2 + M‖u(t)‖2

H s

� e−θ0t
[

M2‖u(0)‖2
L2 + M‖u(0)‖2

H s

]

+ C4 M

∫ t

0
e−θ0(t−τ)‖u(τ )‖2

H s ‖z(τ )‖H s dτ

� e−θ0t
[

M2‖u(0)‖2
L2 + M‖u(0)‖2

H s

]

+ C4N (t)3/2
∫ t

0
e−θ0(t−τ)e−θ0τ/2 dτ

� e−θ0t/2
[

M2‖u(0)‖2
L2 + M‖u(0)‖2

H s

]

+ C5N (t)3/2e−θ0t/2.

(3.13)
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Combining with (3.12) and choosing again M large, if needed, we obtain the claim

(3.11) and hence the proposition. ��

With the ε and C∗ given in Proposition 3.3, we have proven that ‖z(t)‖H s (Td ) �

C∗N (0) � C∗ε and ‖u(t)‖H s (Td ) � C‖y0 − y∗‖H s (Td )e
−

θ0
4 t for all time t < T ∗.

Consequently, the solution z of (3.1) is global in time and enjoys the same bounds

for all t > 0. Using equation (3.1) and the estimates (1.6) and (1.7), we deduce that

∂t z ∈ L1(0,∞; H s−1(Td)). This yields

lim
t→∞

z(x, t) = z0(x) +

∫ ∞

0

∂t z(x, τ )dτ := z∞(x) in H s−1(Td),

and thus

lim
t→∞

y(x, t) = y∞(x) := z∞(x) + y∗(x) in H s−1(�), � = [0, L]d .

Furthermore,

‖ y(t) − y∞‖H s−1(Td ) = ‖z(t) − z∞‖H s−1(Td )

= ‖

∫ ∞

t
u · ∇z(τ )dτ‖H s−1(Td ) � Ce−

θ0 t
4 (3.14)

for all t � 0. Using the Leray projection we write

y(x, t) = u(x, t) + ∇ p(x, t), y∞(x) = u∞(x) + ∇ p∞(x),

where u∞ = Py∞ : � → R
d and p : � → R. In view of the Pythagorean identity

‖y(t) − y∞‖2
L2(�)

= ‖u(t) − u∞‖2
L2(�)

+ ‖∇ p(t) − ∇ p∞‖2
L2(�)

,

we find that each term on the right hand side converges to 0 as t → ∞. This, together

with the fact that u(t) → 0 in H s(Td), implies that u∞ ≡ 0. Thus, y∞ = ∇ p∞ is

a gradient and in view of (3.14) we have

‖y(t) − ∇ p∞‖H s−1(Td ) � Ce−
θ0 t
4

for all t � 0. As a consequence of this, (1.9) and the bound‖y−y∗‖L∞(0,∞;H s (Td )) �

C∗ε, if ε is sufficiently small then ∇2 p∞ > 0. Thus, p∞ is (strictly) convex and

∇ p∞ is the optimal rearrangement of y0 by virtue of Brenier’s theorem ( [5]). This

ends the proof of Theorem 1.3.

4. Proof of Theorem 1.1

We now turn to the case when � is a bounded domain with smooth boundary.

Recall that the perturbation z = y − y∗ obeys

∂t z + u · ∇ y∗ + u · ∇z = 0, u = Pz. (4.1)

In what follows, we fix an integer s > 1 + d
2

.
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Lemma 4.1. There exists C > 0 depending only on ‖y∗‖H s+1(�) such that

1

2

d

dt
‖z(t)‖2

H s (�) � C1(1 + ‖z(t)‖H s (�))‖u(t)‖H s (�)‖z(t)‖H s (�). (4.2)

Proof. First of all, an L2 estimate for (4.1) gives

1

2

d

dt
‖z(t)‖2

L2(�)
= −

∫

�

z · (u · ∇ y∗)dx � ‖∇ y∗‖L∞(�)‖u‖L2(�)‖z‖L2(�),

(4.3)

where we used the fact that u ·n|∂� = 0 to have
∫

�
z · (u ·∇z) = 0 upon integration

by parts. Now let s be an integer greater than 1 + d/2. Recall that Ds denotes any

partial derivatives of order s. Applying Ds to equation (3.1) and arguing as in the

proof of Lemma 3.1 yields

1

2

d

dt
‖Ds z(t)‖2

L2(�)
� C1(1 + ‖z(t)‖H s (�))‖u(t)‖H s (�)‖z(t)‖H s (�) (4.4)

upon using the commutator estimate (see [11] page 129)

‖Ds( f g) − f Ds g‖L2(�) � C‖∇ f ‖L∞(�)‖g‖H s−1(�) + C‖ f ‖H s (�)‖g‖L∞(�)

(4.5)

and the fact that u · n|∂� = 0 when taking integration by parts in integral involving

the highest derivatives u ·∇|Ds z|2. Combining (4.3) and (4.4) leads to the estimate

(4.2). ��

Next let us recall equation (3.5) for u

∂t u + P(u · ∇ y∗) + P(u · ∇z) = 0. (4.6)

Repeating verbatim the proof of (3.3) we obtain

1

2

d

dt
‖u(t)‖2

L2(�)
+ θ0‖u(t)‖2

L2(�)
� C2‖u(t)‖2

L2(�)
‖z(t)‖H s (�). (4.7)

We will need decay of the H s norm of u. Let us note that the proof of (3.4) in

Lemma 3.2 does carry over to domains with boundary since the Leray projector

does not commute with Ds , as used in (3.7) for � = T
d . To treat the boundary and

the nonlocality of P, we use the derivatives ∂τ j and ∂n introduced in Section 2.3.

These derivatives are defined everywhere in � and become the usual tangential and

normal derivative when restricted to the boundary. The trade-off is that ∂τ j and ∂n

do not commute with usual partial derivatives, leading to commutators that are of

lower order.

For k ∈ {0, 1, .., s} we set

D
s
k =

{

�s
j=1∂σ j : σ j ∈ {τ1, ..., τd−1, n} and #{ j : σ j = n} = k

}

.
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In other words, each derivative in Ds
k has exactly k normal derivatives and s − k

tangential derivatives. We also define the norms

‖v‖s,k =
(

k
∑

j=0

∑

P∈Ds
j

‖Pv‖2
L2(�)

)
1
2

for v : � → R
d .

Due to the presence of χ1 in ∂n and ∂τ j , the norms ‖u‖s,k control u near the

boundary.

4.1. Interior Estimates for u

The next lemma provides a control of u in the interior.

Lemma 4.2. There exists C > 0 depending only on ‖y∗‖H s+1(�) such that

1

2

d

dt
‖χ2u‖2

H s + θ0‖χ2u‖2
H s � C‖u‖2

H s (�)‖z‖H s (�) + C‖u‖H s−1(�)‖u‖H s (�)

(4.8)

where χ2 is defined in (2.24).

Proof. As in (3.5), we commute P with u · ∇ in the last term of equation (4.6) to

have

∂t u + P(u · ∇ y∗) + u · ∇u + [P, u · ∇]z = 0. (4.9)

Set P = χ2∂
s
1 . Applying P to (4.9), then multiplying the resulting equation by Pu

and integrating over �, we obtain

1

2

d

dt

∫

�

|Pu|2 dx +

∫

�

Pu · PP(u · ∇ y∗) dx

= −

∫

�

Pu ·
(

[P, u] · ∇u
)

dx −

∫

�

Pu ·
(

u · [P,∇]u
)

dx

−

∫

�

Pu · P
(

[P, u · ∇]z
)

dx .

(4.10)

where we used the fact that
∫

�

Pu ·
(

u · Pu
)

dx =
1

2

∫

�

u · ∇|Pu|2dx = 0

since ∇ · u = 0 in � and u · n|∂� = 0. We now treat each term on the right-hand

side of (4.10). It is readily seen that

‖[P, u] · ∇u‖L2(�) � C‖u‖2
H s (�),

‖u · [P,∇]u‖L2(�) � C‖u‖2
H s−1(�)

.
(4.11)
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In addition, Theorem 1.5 applied to � gives

‖P
(

[P, u · ∇]z
)

‖L2(�) � C‖[P, u · ∇]z‖H s (�) � C‖u‖H s (�)‖z‖H s (�).(4.12)

Putting together (4.10), (4.11), (4.12) and using the estimate ‖u‖H s � C‖z‖H s we

obtain

1

2

d

dt

∫

�

|Pu|2 dx +

∫

�

Pu · PP(u · ∇ y∗) dx � C‖u‖2
H s (�)‖z‖H s (�).

(4.13)

As for the second term on the left-hand side of (4.13), we commute P with P and

then with ∇ y∗ to have

∫

�

Pu · PP(u · ∇ y∗) dx

=

∫

�

Pu · [P, P](u · ∇ y∗) dx +

∫

�

Pu · P([P,∇ y∗·]u) dx

+

∫

�

Pu · P(∇ y∗ · Pu) dx

=

∫

�

Pu · [P, P](u · ∇ y∗) dx +

∫

�

Pu · P([P,∇ y∗·]u) dx

+

∫

�

[P, P]u · (∇ y∗ · Pu) dx +

∫

�

Pu · (∇ y∗ · Pu) dx .

(4.14)

By virtue of Proposition 2.6,

‖[P, P]u‖H s (�) � C‖u‖H s−1(�)

and

‖[P, P](u · ∇ y∗)‖L2(�) � C‖u · ∇ y∗‖H s−1(�) � C‖u‖H s−1(�)‖y∗‖H s (�).

The local commutator [P,∇ y∗·]u can be bounded as

‖[P,∇ y∗·]u‖L2(�) � C‖y∗‖H s+1(�)‖u‖H s−1(�). (4.15)

On the other hand, the convexity condition (1.5) yields

∫

�

Pu · (∇ y∗ · Pu) dx � θ0‖Pu‖2
L2(�)

.

We then deduce from (4.14) that

∫

�

Pu · PP(u · ∇ y∗) dx � θ0‖Pu‖2
L2(�)

− C‖y∗‖H s+1(�)‖u‖H s−1(�)‖u‖H s (�)

(4.16)

which combined with (4.13) leads to (4.17). The same estimates hold for mixed

derivatives χ2 Ds where Ds is any partial derivative of order s. ��
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4.2. Estimates for Tangential Derivatives of u

Lemma 4.3. There exists C > 0 depending only on ‖y∗‖H s+1(�) such that

1

2

d

dt
‖u‖2

s,0 + θ0‖u‖2
s,0 � C‖u‖2

H s (�)‖z‖H s (�) + C‖u‖H s−1(�)‖u‖H s (�).(4.17)

Proof. The proof follows along the same lines as in Lemma 4.2 upon taking P ∈ Ds
0

and using Proposition 2.5 in place of Proposition 2.6. ��

4.3. Estimates for Mixed Derivatives of u

The next lemma concerns ‖u‖s,1.

Lemma 4.4. There exists M1 > 0 such that

1

2

d

dt
‖u‖2

s,1 +
θ0

2
‖u‖2

s,1

� M1‖u‖2
H s (�)‖z‖H s (�) + M1‖u‖H s−1(�)‖u‖H s (�) + M1‖u‖s,1‖u‖s,0.

(4.18)

Proof. Let P ∈ Ds
1. Assume without loss of generality that P = ∂s−1

τ1
∂n . Com-

muting equation (4.9) with P gives

1

2

d

dt

∫

�

|Pu|2 dx +

∫

�

Pu · PP(u · ∇ y∗) dx

= −

∫

�

Pu ·
(

[P, u] · ∇u
)

dx −

∫

�

Pu ·
(

u · [P,∇]u
)

dx

−

∫

�

Pu · P
(

[P, u · ∇]z
)

dx .

(4.19)

Arguing as in the proof of Lemma 4.3, we find that the right-hand side is bounded

by C‖u‖2
H s (�)

‖z‖H s (�). Now we write using the definition of P that

∫

�

Pu · PP(u · ∇ y∗) dx =

∫

�

Pu · P(u · ∇ y∗) dx −

∫

�

Pu · P∇ f dx

where f solves

{

� f = div(u · ∇ y∗) in �,

∂n f = (u · ∇ y∗) · n on ∂�.
(4.20)

Commuting P with ∇ y∗ gives

∫

�

Pu · P(u · ∇ y∗) dx =

∫

�

Pu · (Pu · ∇ y∗) dx +

∫

�

Pu · [P,∇ y∗·]u dx

where the local commutator [P,∇ y∗·]u satisfies

‖[P,∇ y∗] · u‖L2(�) � C‖y∗‖H s+1(�)‖u‖H s−1(�)
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and by the convexity assumption (1.5),

∫

�

Pu · (Pu · ∇ y∗) dx � θ0‖Pu‖2
L2(�)

.

The rest of this proof is devoted to the control of
∫

�
Pu · P∇ f dx . First, since

χ1 ≡ 1 in �2κ ⊃ supp(1 − χ2), in view of (2.2), the decomposition

∇g = (1 − χ2)n∂ng + (1 − χ2)τ j∂τ j g + χ2∇g (4.21)

holds in � for any scalar g : � → R. Using this with g = P f , we write

∫

�

Pu · P∇ f dx

=

∫

�

Pu · ∇ P f dx +

∫

�

Pu · [P,∇] f dx

=

∫

�

(1 − χ2)(Pu · n)∂n P f dx +

∫

�

(1 − χ2)(Pu · τ j )∂τ j P f dx

+

∫

�

χ2 Pu · ∇ P f dx +

∫

�

Pu · [P,∇] f dx

= I1 + I2 + I3 + I4.

(4.22)

Due to the presence of the local commutator [P,∇] f , it is readily seen that

|I4| � C‖u‖H s ‖ f ‖H s (�) � C ′‖u‖H s ‖u‖H s−1(�). (4.23)

As for I3, we integrate by parts noticing that div u = 0 in � and χ2 ≡ 0 near ∂�

to obtain

I3 =

∫

�

χ2 Pu · ∇ P f dx = −

∫

�

[div, χ2 P]u P f, (4.24)

which implies

|I3| � C‖u‖H s (�)‖u‖H s−1(�). (4.25)

Estimate for I1. We first note that

Pu · n = ∂s−1
τ1

(∂nu · n) − [∂s−1
τ1

, n·]∂nu

= −∂s−1
τ1

(∂τ j u · τ j ) − [∂s−1
τ1

, n·]∂nu

= −(∂s−1
τ1

∂τ j u) · τ j − [∂s−1
τ1

, τ j ]∂τ j u − [∂s−1
τ1

, n·]∂nu

This implies

‖Pu · n‖L2(�) � C‖u‖s,0 + C‖u‖H s−1(�). (4.26)

On the other hand, it follows from (4.20) that

{

�∂s−1
τ1

f = [�, ∂s−1
τ1

] f + [∂s−1
τ1

, div](u · ∇ y∗) + div ∂s−1
τ1

(u · ∇ y∗) := g1 in �,

∂n∂s−1
τ1

f = [∂n , ∂s−1
τ1

] f + ∂s−1
τ1

{(u · ∇ y∗) · n} := g2 on ∂�.
(4.27)
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It is easy to see that

‖[�, ∂s−1
τ1

] f ‖L2(�) + [∂s−1
τ1

, div](u · ∇ y∗)‖L2(�) � C‖u‖H s−1(�).

In addition, (2.3) gives

‖ div ∂s−1
τ1

(u · ∇ y∗)‖L2(�)

� C‖∇∂s−1
τ1

(u · ∇ y∗)‖L2(�)

� C‖∂n∂s−1
τ1

(u · ∇ y∗)‖L2(�) + C‖∂τ j ∂
s−1
τ1

(u · ∇ y∗)‖L2(�)

� C‖u‖s,1 + C‖u‖s,0.

Consequently

‖g1‖L2(�) � C‖u‖H s−1(�) + C‖u‖s,0 + C‖u‖s,1.

Using the trace inequality and arguing as above we obtain that

‖g2‖
H

1
2 (∂�)

� C‖u‖H s−1(�) + C‖u‖s,0 + C‖u‖s,1.

Then the H2 elliptic estimate for (4.27) leads to

‖∂s−1
τ1

f ‖H2(�) � C‖g1‖L2(�) + C‖g2‖
H

1
2 (∂�)

� C‖u‖H s−1(�) + C‖u‖s,0 + C‖u‖s,1. (4.28)

Next we write

I1 =

∫

�

(1 − χ2)(Pu · n)∂n P f dx

=

∫

�

(1 − χ2)(Pu · n)P∂n f dx +

∫

�

(1 − χ2)(Pu · n)[∂n, P] f dx

=

∫

�

(1 − χ2)(Pu · n)∂s−1
τ1

∂2
n f dx +

∫

�

(1 − χ2)(Pu · n)[∂n, P] f dx

=

∫

�

(1 − χ2)(Pu · n)∂2
n ∂s−1

τ1
f dx +

∫

�

(1 − χ2)(Pu · n)[∂s−1
τ1

, ∂2
n ] f dx

+

∫

�

(1 − χ2)(Pu · n)[∂n, P] f dx .

In view of (4.26) and (4.28) we deduce that

|I1| � C‖u‖2
H s−1(�)

+ C‖u‖2
s,0 + C‖u‖s,1‖u‖s,0. (4.29)

Estimate for I2. We first write

I2 =

∫

�

(1 − χ2)(Pu · τ j )∂τ j ∂
s−1
τ1

∂n f dx

=

∫

�

(1 − χ2)(Pu · τ j )∂n∂τ j ∂
s−1
τ1

f dx +

∫

�

(1 − χ2)(Pu · τ j )[∂τ j ∂
s−1
τ1

, ∂n] f dx
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where
∣

∣

∣

∣

∫

�

(1 − χ2)(Pu · τ j )[∂τ j ∂
s−1
τ1

, ∂n] f dx

∣

∣

∣

∣

� C‖u‖H s (�)‖u‖H s−1(�). (4.30)

On the other hand, by Hölder’s and Young’s inequalities

∣

∣

∣

∣

∫

�

(1 − χ2)(Pu · τ j )∂n∂τ j ∂
s−1
τ1

f dx

∣

∣

∣

∣

� C‖Pu · τ j‖L2(�)‖∂n∂τ j ∂
s−1
τ1

f ‖L2(�)

� C‖Pu‖L2(�)‖∂τ j ∂
s−1
τ1

f ‖H1(�)

�
θ0

2
‖Pu‖2

L2(�)
+ C ′‖∂τ j ∂

s−1
τ1

f ‖2
H1(�)

.

(4.31)

Using again equation (4.20) we find

{

�∂τ j ∂
s−1
τ1

f = [�, ∂τ j ∂
s−1
τ1

] f + [∂τ j ∂
s−1
τ1

, div](u · ∇ y∗) + div ∂τ j ∂
s−1
τ1

(u · ∇ y∗) in �,

∂n∂τ j ∂
s−1
τ1

f = [∂n , ∂τ j ∂
s−1
τ1

] f + ∂τ j ∂
s−1
τ1

{(u · ∇ y∗) · n} on ∂�.

(4.32)

Multiplying the first equation by ∂τ j ∂
s−1
τ1

f then integrating over � and using the

second equation to cancel out the leading boundary term, we deduce that h =

∂τ j ∂
s−1
τ1

f satisfies

∫

�

|∇h|2dx = −

∫

�

h
{

[�, ∂τ j ∂
s−1
τ1

] f + [∂τ j ∂
s−1
τ1

, div](u · ∇ y∗)
}

dx

+

∫

∂�

h[∂n, ∂τ j ∂
s−1
τ1

] f dS

= I2a + I2b.

We observe that ‖h‖L2(�) � C‖u‖H s−1(�) and

‖[�, ∂τ j ∂
s−1
τ1

] f ‖L2(�) + [∂τ j ∂
s−1
τ1

, div](u · ∇ y∗)‖L2(�) � C‖u‖H s (�),

hence

|I2a | � C‖u‖H s (�)‖u‖H s−1(�).

On the other hand, by virtue of the trace inequality and interpolation, the surface

integral is controlled as

|I2b| � C‖ f ‖2
H s (∂�) � C ′‖ f ‖2

H s+ 1
2 (�)

� C ′′‖ f ‖H s (�)‖ f ‖H s+1(�) � C ′′′‖u‖H s−1(�)‖u‖H s (�).

It follows that

‖h‖2
H1(�)

� ‖h‖2
L2(�)

+ ‖∇h‖2
L2(�)

� C‖u‖H s (�)‖u‖H s−1(�).
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Plugging this into (4.31) and recalling (4.30) we deduce that

|I2| �
θ0

2
‖Pu‖2

L2(�)
+ C‖u‖H s (�)‖u‖H s−1(�). (4.33)

Putting together the above considerations we arrive at

1

2

d

dt
‖Pu‖2

L2 +
θ0

2
‖Pu‖L2 � C‖u‖2

H s (�)‖z‖H s (�) + C‖u‖H s (�)‖u‖H s−1(�).

Then summing over all P ∈ Ds
1 yields

1

2

d

dt
‖u‖2

s,1 +
θ0

2
‖u‖2

s,1 � M1‖u‖2
H s (�)‖z‖H s (�) + M1‖u‖H s (�)‖u‖H s−1(�)

which combined with (4.17) for tangential derivatives leads to the desired estimate

(4.18). ��

Lemma 4.5. For each k ∈ {1, 2, ..., s} there exists Mk > 0 such that

1

2

d

dt
‖u‖2

s,k +
θ0

2
‖u‖2

s,k

� Mk‖u‖2
H s (�)‖z‖H s (�) + Mk‖u‖H s−1(�)‖u‖H s (�) + Mk‖u‖s,k‖u‖s,k−1.

(4.34)

Proof. The base case k = 1 has been proved in Lemma 4.4. Assume (4.34) for

some k ∈ {1, 2, ..., s − 1} we prove it for k + 1 in place of k. Let P ∈ Ds
k+1.

We assume without loss of generality that P = ∂s−k−1
τ1

∂k+1
n . Commuting equation

(4.9) with P gives

1

2

d

dt

∫

�

|Pu|2 dx +

∫

�

Pu · PP(u · ∇ y∗) dx

= −

∫

�

Pu ·
(

[P, u] · ∇u
)

dx −

∫

�

Pu ·
(

u · [P,∇]u
)

dx

−

∫

�

Pu · P
(

[P, u · ∇]z
)

dx .

(4.35)

As in the proof of Lemma 4.4 it suffices to treat the damping term

∫

�

Pu · PP(u · ∇ y∗) dx =

∫

�

Pu · P(u · ∇ y∗) dx −

∫

�

Pu · P∇ f dx

where f solves (4.20):

{

� f = div(u · ∇ y∗) in �,

∂n f = (u · ∇ y∗) · n on ∂�.
(4.36)

Commuting P with ∇ y∗ gives

∫

�

Pu · P(u · ∇ y∗) dx =

∫

�

Pu · (Pu · ∇ y∗) dx +

∫

�

Pu · [P,∇ y∗] · u dx
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where the local commutator [P,∇ y∗] · u satisfies

‖[P,∇ y∗] · u‖L2(�) � C‖y∗‖H s+1(�)‖u‖H s−1(�),

and by the convexity assumption (1.5),

∫

�

Pu · (Pu · ∇ y∗) dx � θ0‖Pu‖2
L2(�)

.

Then it remains to prove that

∫

�

Pu · P∇ f dx � C‖u‖H s (�)‖u‖H s−1(�) + C‖u‖s,k+1‖u‖s,k . (4.37)

To this end, let us write using the decomposition (4.21) that for k � 1,

P∇ f = ∇∂s−k−1
τ1

∂k−1
n ∂2

n f + [∂s−k−1
τ1

∂k+1
n ,∇] f

= (1 − χ2)∇∂s−k−1
τ1

∂k−1
n ∂2

n f + χ2∇∂s−k−1
τ1

∂k−1
n ∂2

n f + [∂s−k−1
τ1

∂k+1
n ,∇] f.

The commutator is a lower order term in the sense that

‖[∂s−k−1
τ1

∂k+1
n ,∇] f ‖L2(�) � C‖ f ‖H s (�) � C‖u‖H s−1(�),

leading to the bound

∫

�

Pu · [∂s−k−1
τ1

∂k+1
n ,∇] f dx � C‖Pu‖L2(�)‖u‖H s−1(�) � C‖u‖H s (�)‖u‖H s−1(�).

Integration by parts as in (4.25) yields

∣

∣

∣

∣

∫

�

Pu · χ2∇∂s−k−1
τ1

∂k−1
n ∂2

n f

∣

∣

∣

∣

� C‖u‖H s (�)‖u‖H s−1(�).

In the main term (1 − χ2)∇∂s−k−1
τ1

∂k−1
n ∂2

n f , since the support of (1 − χ2) is

contained in �2κ , we can use (2.5) and (4.36) to write

∇∂s−k−1
τ1

∂k−1
n ∂2

n f

= −∇∂s−k−1
τ1

∂k−1
n ∂2

τ j
f + ∇∂s−k−1

τ1
∂k−1

n div(u · ∇ y∗)

+ ∇∂s−k−1
τ1

∂k−1
n

[

∇ f · (n · ∇)n + ∇ f · (τ j · ∇)τ j

]

= −∇∂k−1
n ∂s−k−1

τ1
∂2
τ j

f − ∇[∂s−k−1
τ1

, ∂k−1
n ]∂2

τ j
f + ∇∂s−k−1

τ1
∂k−1

n div(u · ∇ y∗)

+ ∇∂s−k−1
τ1

∂k−1
n

[

∇ f · (n · ∇)n + ∇ f · (τ j · ∇)τ j

]

in�2κ , where the sums over j were taken. Since the commutator [∂s−k−1
τ1

, ∂k−1
n ]∂2

τ j
f

is bounded in H1(�) by C‖ f ‖H s (�) � C‖u‖H s−1(�) we obtain

∣

∣

∣

∣

∫

�

(1 − χ2)Pu · ∇[∂s−k−1
τ1

, ∂k−1
n ]∂2

τ j
f dx

∣

∣

∣

∣

� C‖u‖H s (�)‖u‖H s−1(�). (4.38)
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In addition, we have

∣

∣

∣

∣

∫

�

(1 − χ2)Pu · ∇∂s−k−1
τ1

∂k−1
n

[

∇ f · (n · ∇)n + ∇ f · (τ j · ∇)τ j

]

dx

∣

∣

∣

∣

� C‖u‖H s (�)‖u‖H s−1(�). (4.39)

Thus, we are left with the two integrals

I1 =

∫

�

(1 − χ2)Pu · ∇∂k−1
n ∂s−k−1

τ1
∂2
τ j

f dx,

I2 =

∫

�

(1 − χ2)Pu · ∇∂s−k−1
τ1

∂k−1
n div(u · ∇ y∗)dx .

Estimate for I1. We claim that

‖∇∂k−1
n ∂s−k−1

τ1
∂2
τ j

f ‖L2(�) � ‖u‖H s−1(�) + C‖u‖s,k . (4.40)

First, taking ∂s−k−1
τ1

∂τ j of (4.36) gives

⎧

⎪

⎨

⎪

⎩

�∂s−k−1
τ1

∂τ j f = [�, ∂s−k−1
τ1

∂τ j ] f + [∂s−k−1
τ1

∂τ j , div](u · ∇ y∗) + div ∂s−k−1
τ1

∂τ j (u · ∇ y∗)

:= g1 in �,

∂n∂s−k−1
τ1

∂τ j f = [∂n , ∂s−k−1
τ1

∂τ j ] f + ∂s−k−1
τ1

∂τ j {(u · ∇ y∗) · n} := g2 on ∂�.

(4.41)

In view of the bound

‖∇∂k−1
n ∂s−k−1

τ1
∂2
τ j

f ‖L2(�)

� ‖(∇∂k−1
n ∂τ j )∂

s−k−1
τ1

∂τ j f ‖L2(�) + ‖∇∂k−1
n [∂s−k−1

τ1
, ∂τ j ]∂τ j f ‖L2(�)

� C‖∂s−k−1
τ1

∂τ j f ‖H k+1(�) + C‖ f ‖H s (�)

� C‖∂s−k−1
τ1

∂τ j f ‖H k+1(�) + C ′‖u‖H s−1(�)

and elliptic estimates for (4.41) we have

‖∇∂k−1
n ∂s−k+1

τ1
f ‖L2(�) � C‖g1‖H k−1(�) + C‖g2‖

H k− 1
2 (∂�)

+ C‖u‖H s−1(�).

(4.42)

The H k−1 norm of g1 is bounded as

‖g1‖H k−1(�) � ‖[�, ∂s−k−1
τ1

∂τ j ] f ‖H k−1(�) + ‖[∂s−k−1
τ1

∂τ j , div](u · ∇ y∗)‖H k−1(�)

+ ‖ div ∂s−k−1
τ1

∂τ j (u · ∇ y∗)‖H k−1(�)

� C‖ f ‖H s (�) + C‖u‖H s−1(�) + C‖∂s−k−1
τ1

∂τ j (u · ∇ y∗)‖H k (�)

� C ′‖u‖H s−1(�) + C‖∂s−k−1
τ1

∂τ j (u · ∇ y∗)‖H k (�).

We observe that there are at most k normal derivatives appearing when measure

∂s−k−1
τ1

∂τ j (u · ∇ y∗) in H k−1(�), hence

‖∂s−k−1
τ1

∂τ j (u · ∇ y∗)‖H k (�) � C‖u‖s,k .
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Consequently,

‖g1‖H k−1(�) � C‖u‖H s−1(�) + C‖u‖s,k . (4.43)

As for g2 we first use the trace theorem to have

‖[∂n, ∂s−k−1
τ1

∂τ j ] f ‖
H k− 1

2 (∂�)

� C‖[∂n, ∂s−k−1
τ1

∂τ j ] f ‖H k (�) � C‖ f ‖H s (�) � C‖u‖H s−1(�).

The fact that k � 1 was used in the first inequality. Then we write

∂s−k−1
τ1

∂τ j (u · ∇ y∗) = (∂s−k−1
τ1

∂τ j u) · ∇ y∗ + [∂s−k−1
τ1

∂τ j ,∇ y∗·]u

where the commutator can be bounded using the trace theorem as follows

‖[∂s−k−1
τ1

∂τ j ,∇ y∗·]u‖
H k− 1

2 (∂�)
� C‖[∂s−k−1

τ1
∂τ j ,∇ y∗·]u‖H k (�) � C‖u‖H s−1(�).

In addition,

‖(∂s−k−1
τ1

∂τ j u) · ∇ y∗‖
H k− 1

2 (∂�)
� C‖∂s−k−1

τ1
∂τ j u‖

H k− 1
2 (∂�)

� C‖∂s−k−1
τ1

∂τ j u‖H k (�)

� C‖u‖s,k .

Thus,

‖g2‖
H k− 1

2 (∂�)
� ‖u‖H s−1(�) + C‖u‖s,k . (4.44)

Combining (4.42), (4.43) and (4.44) leads to the bound (4.40), which implies that

I1 � C‖Pu‖L2(�)‖u‖H s−1(�) + C‖Pu‖L2(�)‖u‖s,k

� C‖u‖H s (�)‖u‖H s−1(�) + C‖u‖s,k+1‖u‖s,k .
(4.45)

Estimate for I2. Decomposing ∇ = τ j∂τ j + n∂n in �2κ ⊃ supp(1 − χ2) gives

I2 = I2a + I2b where

I2a =

∫

�

(1 − χ2)
{

(∂s−k−1
τ1

∂k+1
n u) · τ j

}{

∂τ j ∂
s−k−1
τ1

∂k−1
n div(u · ∇ y∗)

}

dx,

I2b =

∫

�

(1 − χ2)
{

(∂s−k−1
τ1

∂k+1
n u) · n

}{

∂n∂s−k−1
τ1

∂k−1
n div(u · ∇ y∗)

}

dx .

We notice that there are at most k normal derivatives in ∂τ j ∂
s−k−1
τ1

∂k−1
n div(u ·∇ y∗),

hence

|I2a | � C‖u‖s,k+1‖u‖s,k .

As for I2b we write using (2.4) that

(∂s−k−1
τ1

∂k+1
n u) · n = ∂s−k−1

τ1
∂k

n (∂nu · n) + [∂s−k−1
τ1

∂k
n , n·]∂nu

= −∂s−k−1
τ1

∂k
n (∂τ j u · τ j ) + [∂s−k−1

τ1
∂k

n , n·]∂nu.
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It is readily seen that
∣

∣

∣

∣

∫

�

(1 − χ2)
{

[∂s−k−1
τ1

∂k
n , n·]∂nu

}{

∂n∂s−k−1
τ1

∂k−1
n div(u · ∇ y∗)

}

dx

∣

∣

∣

∣

� C‖u‖H s−1(�)‖u‖H s (�).

On the other hand, there are at most k normal derivatives in ∂s−k−1
τ1

∂k
n

(∂τ j u · τ j ), and thus

∣

∣

∣

∣

∫

�

(1 − χ2)
{

∂s−k−1
τ1

∂k
n (∂τ j u · τ j )

}{

∂n∂s−k−1
τ1

∂k−1
n div(u · ∇ y∗)

}

dx

∣

∣

∣

∣

� C‖u‖s,k‖u‖s,k+1.

All together we have prove that

|I2| � C‖u‖H s (�)‖u‖H s−1(�) + C‖u‖s,k+1‖u‖s,k (4.46)

In view of (4.45) and (4.46) we finish the proof of (4.37), and hence the proof of

(4.34) with k + 1 in place of k. ��

4.4. H s Estimate for u

We have proved in Lemmas 4.3, 4.4 and 4.5 that

1

2

d

dt
‖u‖2

s,0 + θ0‖u‖2
s,0 � M0‖u‖2

H s (�)‖z‖H s (�) + M0‖u‖H s−1(�)‖u‖H s (�)

(4.47)

and

1

2

d

dt
‖u‖2

s,k +
θ0

2
‖u‖2

s,k � Mk‖u‖2
H s (�)‖z‖H s (�) + Mk‖u‖H s−1(�)‖u‖H s (�)

+ Mk‖u‖s,k‖u‖s,k−1

(4.48)

for all k ∈ {1, 2, ..., s}. Applying Young’s inequality yields

Mk‖u‖s, j‖u‖s, j−1 �
θ0

4
‖u‖2

s, j−1 + M ′
j‖u‖2

s, j−1, 1 � j � s.

It follows from this and (4.48) with k = s and k = s − 1 that

d

dt
‖u‖2

s,s +
θ0

2
‖u‖2

s,s

� 2Ms‖u‖2
H s (�)‖z‖H s (�) + 2Ms‖u‖H s−1(�)‖u‖H s (�) + 2M ′

s‖u‖2
s,s−1

(4.49)

and

d

dt
‖u‖2

s,s−1 +
θ0

2
‖u‖2

s,s−1

� 2Ms−1‖u‖2
H s (�)‖z‖H s (�) + 2Ms−1‖u‖H s−1(�)‖u‖H s (�)

+ 2M ′
s−1‖u‖2

s,s−2.

(4.50)
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Let Ns−1 > 0 be such that θ0
2

Ns−1 − 2M ′
s−1 = θ0

2
. Multiplying (4.50) by Ns−1

then adding the resulting inequality to (4.49) we obtain

d

dt

(

‖u‖2
s,s + Ns−1‖u‖2

s,s−1

)

+
θ0

2

(

‖u‖2
s,s + ‖u‖2

s,s−1

)

� N ′
s−1‖u‖2

H s (�)‖z‖H s (�)

+ N ′
s−1‖u‖H s−1(�)‖u‖H s (�) + N ′

s−1‖u‖2
s,s−2

for some N ′
s−1 > 0. Continuing this process, one can find s + 1 positive constants

B and N j , 0 � j � s − 1 such that

d

dt

(

‖u‖2
s,s +

s−1
∑

j=0

N j‖u‖2
s, j

)

+
θ0

2

s
∑

j=0

‖u‖2
s, j � B‖u‖2

H s (�)‖z‖H s (�) + B‖u‖H s−1(�)‖u‖H s (�).

Setting

Z2(u) = ‖u‖2
s,s +

s−1
∑

j=0

N j‖u‖2
s, j

and

2θ1 =
θ0

2 max0� j�s−1{1, N j }
,

we arrive at

d

dt
Z2(u) + 2θ1 Z2(u) � B‖u(t)‖2

H s (�)‖z(t)‖H s (�) + B‖u‖H s−1(�)‖u‖H s (�).

(4.51)

Set

W 2(u) = Z2(u) + ‖χ2u‖2
H s (�) (4.52)

where χ2 is given by (2.24). Combining (4.51) with (4.8) one can find a constant

C > 0 such that

d

dt
W 2(u) + 2θ1W 2(u) � C‖u(t)‖2

H s (�)‖z(t)‖H s (�) + C‖u‖H s−1(�)‖u‖H s (�).

(4.53)

To recover the H s estimate for u from the preceding estimate on W (u), we prove

the next lemma.

Lemma 4.6. There exists A > 0 depending only on s such that

1

A
W 2(u) � ‖u‖2

H s (�) � AW 2(u) + A‖u‖2
L2(�)

(4.54)

for any H s vector field u : � → R
d .
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Proof. First, the inequality

Z2(u) � A‖u‖2
H s (�) + A‖χ2u‖2

H s (�)

is obvious if A is sufficiently large.

Next recall from (4.21) and (2.3) that for any w : � → R
2 it holds that

|∇w|2 � |∂nw|2 +

d
∑

j=1

|∂τ j w|2 + ‖χ2∇w‖2
L2(�)

. (4.55)

In the rest of this proof, the sum over j ∈ {1, ..., d − 1} will be omitted. Let Ds−1

be an arbitrary partial derivative of order s − 1. Without loss of generality, assume

Ds−1 = ∂1 Ds−2 for some partial derivative Ds−2 of order s − 2. Applying (4.55)

with w = Ds−1u gives

‖∇Ds−1u‖2
L2(�)

� ‖∂n∂1 Ds−2u‖2
L2(�)

+ ‖∂τ j ∂1 Ds−2u‖2
L2(�)

+ ‖χ2∇w‖2
L2(�)

.

We thus have replaced one partial derivative with one normal and one tangential

derivative. To continue, we commute ∂n with ∂1 to have

‖∂n∂1 Ds−2u‖2
L2(�)

� 2‖∂1∂n Ds−2u‖2
L2(�)

+ 2‖[∂n, ∂1]Ds−2u‖2
L2(�)

� 2‖∂1∂n Ds−2u‖2
L2(�)

+ C‖u‖2
H s−1(�)

.

Similarly for ‖∂τ j ∂1 Ds−2u‖2
L2(�)

we obtain

‖∇Ds−1u‖2
L2(�)

� 2‖∇∂n Ds−2u‖2
L2(�)

+2‖∇∂τ j Ds−2u‖2
L2(�)

+ C‖u‖2
H s−1(�)

+ ‖χ2u‖2
H s (�).

Now applying (4.55) with w = ∂n Ds−2u and w = ∂τ Ds−2u leads to

‖∇Ds−1u‖2
L2(�)

� 2‖∂n∂n Ds−2u‖2
L2(�)

+ 2‖∂τ j ∂n Ds−2u‖2
L2(�)

+ 2‖∂n∂τ j Ds−2u‖2
L2(�)

+ 2‖∂τ j ∂τ j Ds−2u‖2
L2(�)

+ C‖u‖2
H s−1(�)

+ ‖χ2u‖2
H s (�).

Next we write Ds−2 = ∂ j Ds−3 with j ∈ {1, ..., d} and continue the process until

no partial derivatives are left on the right-hand side, yielding

‖∇Ds−1u‖2
L2(�)

� C Z2(u) + C‖u‖2
H s−1(�)

+ ‖χ2u‖2
H s (�).

This combined with the interpolation inequality ‖u‖H s−1 � C‖u‖α
H s ‖u‖1−α

L2 , α ∈

(0, 1) and a Young inequality implies the desired estimate (4.54). ��

By interpolation and Young’s inequality, the last term on the right-hand side of

(4.53) is bounded as

C‖u(t)‖H s (�)‖u(t)‖H s−1(�) � γ ‖u(t)‖2
H s (�) + Cγ ‖u(t)‖2

L2(�)

for any γ > 0. Using (4.54) and choosing γ sufficiently small so that Aγ < θ1, we

deduce from (4.53) that

d

dt
W 2(u) + θ1W 2(u) � C2‖u(t)‖2

H s (�)‖z(t)‖H s (�) + C2‖u(t)‖2
L2(�)

(4.56)

for some C2 > 0.
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4.5. Proof of Theorem 1.1

We define the bootstrap norm by (3.10)

N (t) := sup
0�τ�t

(

‖z(τ )‖2
H s (�) + M2e

θ1
2 τ‖u(τ )‖2

L2(�)
+ Me

θ1
2 τ‖u(τ )‖2

H s (�)

)

(4.57)

for some large M > 0 to be fixed and for t < T ∗, the maximal time of existence

which is positive thanks to the local existence theory, Theorem 1.6.

Proposition 4.7. There exist positive constants ε, C∗, depending only on θ0 and
‖y∗‖H s+1 , such that whenever N (0) < ε, we have N (t) � C∗N (0) for all t < T ∗.

Proof. As in the proof of Proposition 3.3, it suffices to prove that

N (t) � C0N (0) + C0N (t)3/2 (4.58)

for all t < T ∗. Repeating verbatim the proof of (3.12) we obtain from (4.2) that

‖z(t)‖2
H s � ‖z(0)‖2

H s + C3 M−1/2(1 + N (t)1/2)N (t). (4.59)

Next we combine the estimates (4.7) and (4.56) and argue as in (3.13) to get

M2eθ1t/2‖u(t)‖2
L2 + Meθ1t/2W 2(u) �

[

M2‖u(0)‖2
L2 + M‖u(0)‖2

H s

]

+ C5N (t)3/2.

(4.60)

Then (4.58) follows from (4.59), (4.60) and (4.54). ��

Finally, the proof of Theorem 1.3 follows along the same lines as that of Theo-

rem 1.1.
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