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Abstract

We study the nonlocal vectorial transport equation 9,y 4+ (Py - V)y = 0 on
bounded domains of R¢ where P denotes the Leray projector. This equation was
introduced to obtain the unique optimal rearrangement of a given map yg as the
infinite time limit of the solution with initial data yp (Angenent et al.: STAM J Math
Anal 35:61-97, 2003; McCann: A convexity theory for interacting gases and equi-
librium crystals. Thesis (Ph.D.)-Princeton University, ProQuest LLC, Ann Arbor,
MI, p 163, 1994; Brenier: J Nonlinear Sci 19(5):547-570, 2009). We rigorously
justify this expectation by proving that for initial maps yo sufficiently close to
maps with strictly convex potential, the solutions y are global in time and converge
exponentially quickly to the optimal rearrangement of yg as time tends to infinity.

1. Introduction

Let 2 be a bounded domain in R? equiped with the Lebesgue measure. Two
L% maps yi, y2 : 2 — R? are rearrangements of each other if they define the same
image measure of the Lebesgue measure, i.e.,

/f(yl(X))dx:/ S (y2(x))dx
Q Q

for all compactly supported continuous function f : RY — R. A celebrated the-
orem due to Brenier [5] asserts that for each L? map yp : 2 — R there exists
a unique rearrangement y* with convex potential, i.e. y* = V p* for some convex
function p*. Moreover, among all possible rearrangements of yg, y* minimizes the
quadratic cost function

/ ly(x) — x|*dx.
Q
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We shall refer to y* as the optimal rearrangement of yg. Finding the unique optimal
rearrangement y* for a given map yy is thus among the main concerns in optimal
transport theory. As an attempt to get the optimal rearrangement y* of yp as an
equilibrium state in the infinite time of a dynamical system that could be efficiently
solved by computer, Angenent, Haker, and Tannenbaum [1] (see also McCann
[12,13] and Brenier [6]) proposed the following nonlocal vectorial transport model
(AHT):

oy+u-Vy =0, (L
u="Py,
where y = y(x,1) € R?, x € Q@ c R?, 1 > 0, and P denotes the classical Leray
projector onto the space of divergence-free vector fields. Throughout the paper, we
take either Q = T¢ (periodic domain) or a bounded domain in R4, d > 2 with
smooth boundary. The Leray projector u = Py is defined as follows: for a given
map y : @ — R?, we construct the potential p that solves

Ap=V-y in Q

ap (1.2)
— =y-n on 0%,
on

where 7 is the unit outward normal to 9€2. Then we define
Py=y—Vp.
As a consequence of the definition, the velocity u = Py is tangent to the boundary,
u-n=0 on 02Q. (1.3)

When © = T?, the Leray projector P = (P; ) is simply a Fourier multiplier matrix
of order 0 with
§i&j
Pij) =15 sl

Interestingly, the AHT model (1.1) can also be obtained as the zero inertial limit
of generalized (damped) Euler-Boussinesq equations in convection theory [6-8].
In addition, by specifying y(x) = (0, p(x)), (1.1) reduces to the incompressible
porous media (IPM) equations

U+ Vp = (. ) (1.4)

{8tp+(u~V)p:O, xeQcR2,
Here p plays the role of fluid density. Stability of the special solution p,(x, x2) =
x7 of (1.4) has been proved in [10] for Q2 = R2, T2, and in [9] for @ = T x (=11
which posses two horizontal boundaries. The presence of boundaries, though only
flat boundaries, makes the proof in [9] more involved.
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Following [6], let us explain why (1.1) is expected to capture the optimal rear-
rangement of initial maps as steady states in infinite time. First, since the velocity
u is divergence-free and tangent to the boundary, we have

i/ fy&,t)dx =0 V>0
dt Jqo

for any compactly supported continuous function f : R? — R. Integrating this
in time we obtain that each y(¢), ¢t > 0 is a rearrangement of y(0). Second, it is
readily checked that the balance law

d 1

— —|y—x|2dx=—/|u|2dx
dt Jg 2 Q

holds. In particular, steady states must be gradients since their Leray projections
vanish. Conversely, all gradients are clearly steady states of (1.1). Now if y is global
and the infinite-time limit y, of y exists (in a sufficiently strong topology) then
the integral fooo fQ |u|?dxdz is finite. Consequently, u vanishes as ¢t — oo and
thus y., must be a gradient, yoo = Vp. If we have in addition that py is a
convex function, then coupling with the fact that y is a rearrangement of y(0) we
conclude by virtue of the aforementioned theorem of Bernier that y is the unique
optimal rearrangement of y(0). The remaining issues in the above argument are
global existence and long time behavior for (1.1). On the other hand, the objects
that we expect (1.1) to capture in infinite time are maps with convex potential. A
natural problem then, is:

Aremapswithconvexpotentialgloballystable?

Our goal in the present paper is to prove that maps with strictly convex potential
are globally stable. Precisely, our main theorem reads as follow:

Theorem 1.1. Let s > 1 + % be an integer with d 2 2. Let Q be a C* bounded
domain in R, Consider y, = V p, for some strictly convex function py : @ — R
whose Hessian satisfies

V2p.(x) = 6pld Vx € Q, 6y > 0. (1.5)

Then, there exists a small positive number ¢ depending only on 0y and ||y« gs+1 ()
such that for all yo € H* () with ||yo — Y« |l s (@) < &, problem (1.1) has a unique
global solution y. In addition, there is a positive constant C depending only on 6
and || y«l gs+1(gq) so that

Iy(@®) — yellas@) = Cllyo — y«ll s (@) (1.6)
and
_%
IPy@) a5 < Cllyo — y«llmse” ¢’ (L.7)

for all t 2 0. Moreover, there exists a strictly convex function pso : 2 — R such
that

_ Yt
1Y) = V pooll g1y < Ce™ ¢ ¥ 2 0. (1.8)

In particular, V p is the optimal rearrangement of yy.
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Remark 1.2. The domain © need not be C* but only CI$1%"0 for a sufficiently
large integer ny.

For periodic perturbations, our result reads as follow:

Theorem 1.3. Let s > 1 + % be a real number with d = 2. Let Q be the box
[0, L1¢, L > 0. Consider y, = V py for some function py : @ — R whose Hessian
is L-periodic and satisfies

V2pu(x) = 6pld Vx € Q, 6y > 0. (1.9)

Then, there exists a small positive number € depending only on 6y and || y«|| gs+1(q)
such that the following holds. For all yo € H*(2) such that yo — v, is L-periodic
and || yo — y« |l a5 @) < €, problem (1.1) has a unique global solution y. In addition,
there is a positive constant C depending only on 0y and || y«|| gs+1 () o that y (1) — yx
is L-periodic,

ly(@) = ysllms@) = Cliyo — y<llms(@) (1.10)

and

_b
IPy@) a5 < Cllyo — yellgse™ ' (L.11)

Sorallt = 0. Moreover; there exists a strictly convex function peo : Q2 — R such
that

_fot
[y(#) = Vpoollgs—1(q) = Ce™ 4 V¥t 2 0. (1.12)

In particular, V ps is the optimal rearrangement of yy.

Remark 1.4. In Theorem 1.3, the steady solution y, = V p, need not be periodic,
only its Hessian V2 p, is required to be periodic and positive. A typical example
is px = |x|? + g« (x) where g, is L-periodic with sufficiently small V2, | Lo ().
The initial map yp need not be periodic, but if the initial perturbation yy — yy is
periodic then it remains so for all positive times.

The estimates (1.8) and (1.12) exhibit the exponential convergence towards the
optimal rearrangement of yy provided that yg is sufficiently close to a map with
strictly convex potential. This justifies the efficiency of the AHT model (1.1). The-
orem 1.1 also provides the first class of time-dependent global solutions to this
nonlocal vectorial transport equation for which the issues of global regularity and
finite-time blowup remain open.

Let y, = Vp, be a steady state of (1.1) where p, satisfies the strict convexity
condition (1.5). Introduce the perturbation z = y — y,. Noticing that Py, = 0,
equation (1.1) yields

0z+u-Vys+u-Vz=0,

1.13
i =Pz (1.13)

where u - n = 0 on 2. In order to obtain the global stability, some form of decay
is needed. Since z is transported, it is not expected to decay. Our idea is to obtain
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decay for the divergence-free part « of z. Indeed, taking Leray’s projection of (1.13)
one finds that u obeys

du+Pu - Vyy) +Pu-Vz) = 0. (1.14)

An L? energy estimate combined with the strict convexity of p, and the fact that
P is self-adjoint in L? shows that u decays exponentially when measured in L2,
We need however decay of high Sobolev norms of u in order to close the nonlinear
iteration. In performing a direct H® energy estimate for u at the level of (1.14),
there are at least two difficulties:

(1) the term u - Vz would induce a loss of derivatives due to the presence of Vz;

(i1) to reveal the damping mechanism due to Vy, = \& P« = 6old, one needs
to make appear the term D*u - Vy, where D® denotes any partial derivatives
of order s. However, in the presence of boundaries, D® do not commute with
P. Moreover, in general the commutator [D*, P] does not exhibit a gain of
derivative, and hence is of the same order as the damping term.

To handle (i) we commute P with u - V as follows:
Ou+Pw-Vy) +u-Vu+[P,u-V]z=0. (1.15)

The new nonlinear term « - Vu is now an advection term, and thus does not induce
any loss of derivatives. However, a gain of one derivative in [P, u-V]z is then needed.
As mentioned in (ii), such a gain is not true in general for [P, 9;]. Interestingly,
if one replaces partial derivatives d; with u - V, this holds even in domains with
boundary, provided only that u is tangent to the boundary. This is the content of the
next theorem, which is of independent interest. Throughout this paper we denote

T := (R/LZ)".

Theorem 1.5. Let s > 1 + % be an integer with d > 2. Consider Q = T¢ or Q
a bounded domain in R? with smooth boundary. Let P denote the Leray projector
associated to Q2. Then, for any vector fields u, z € H*(L; Rd) withu -nlyg =0
when 02 # (), the commutator estimate

1P, u - Vizllas@) = Cllullas @ llzllas @ (1.16)
holds for some universal constant C.

Regarding the difficulty (ii), we observe that “tangential derivatives” commute
nicely with the Leray projector while “normal derivatives” do not. We then introduce
a boundary adapted system of derivatives D* (see Section 2.1) which are defined
everywhere and become the usual tangential and normal derivatives when restricted
to the boundary. Next, to avoid the commutator [D*, P] when dealing with the
nonlocal term P(« - Vy,), we write

/ Du - D*P(u - Vyy)dx = / Du-D*(u - Vyy)dx +/ Diu-D*(P —1d)(u - Vys)dx
Q Q Q



676 Huy Q. NGUYEN & ToaN T. NGUYEN

and notice a special structure in the second integral. This allows us to prove a hier-
archy of estimates for the velocity u, ordered by the number of normal derivatives
in D*, and hence to close our nonlinear iteration.

For the proof of Theorem 1.1 we will need the local well-posedness of the AHT
model (1.1) in Sobolev spaces.

Theorem 1.6. Let Q2 be a bounded domain in RY, d 2 2 with smooth boundary or
periodic boundary conditions. Let s > 1 + ‘71 be an integer. Then for any initial
data zo € H’ (), there exist a positive time T depending only on ||zo|| gs (@) and
a unique solution z € C([0, T]; H*(2)) of (1.1).

Local well-posedness of (1.1) in Holder spaces C-%(2) has been obtained in [1].
Since the velocity u has the same Sobolev regularity as the unknown z, the proof
of Theorem 1.6 is standard via energy methods, and thus will be skipped.

The paper is organized as follows. Section 2 is devoted to various commutator
estimates involving the Leray projector. Theorem 1.3 is proved in Section 3, and
Theorem 1.1 is proved in Section 4.

Throughout this paper, we denote by 9;, j € {1, ..., d} the jth partial derivative
and by D™ any partial derivatives of order m € N.

2. Commutator Estimates

2.1. A Boundary Adapted System of Derivatives

For simplicity, we assume from now on that Q is a C* domain. Let §(x) =
dist(x, d2) be the distance function. There exists a small number ¥ > 0 such that
8 is C* in the neighborhood of the region

Q3 ={x € Q:68(x) < 3¢},

and Vé(x) # 0 for any x € Q23,. See Section 3.2, Chapter III in [4]. Note that the

unit outward normal n(x) = —V4(x) for x € 92. We thus can extend n to 23, by
setting
) Vi (x) co
nx)=— , X .
V8 ()| *
For each x € Q3,, we can choose t(x) = {7;(x) : j =1, ..., d— 1} an orthonormal

basis of (n(x))+ in R? such that 7; € C°(Q3).
Next we fix a cutoff function xi : Q — [0, 1] satisfying

x1 =1 inaneighborhood of Qp,, x1 =0 inQ\ Q3. 2.1

For a vector field v : @ — R we define its weighted normal and tangential
components respectively by

v () = x1()v(x) - n(x), vy (x) = x1(vx) - 7i(x), j=1,..,.d—1
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for x € Q. In particular, v = v,n + szz;} Ur; Tj in Q.. In the special case of
gradient vectors V f where f : Q@ — R, we write

nf = F e 0, f=f)g; j=1,d—1

Both 9, f and 0 f are defined over €2 and become the usual normal and tangential
derivatives when restricted to the boundary. Note in addition that

d—1
Vf=nduf+) 1o f inQ. (2.2)
j=1

For a vector field v : @ — R we write 9,v = (Vv) - n and similarly for 8,/.1).
Then we have

d d d—1 d—1
(Vo> =) Vol =Y (00> + Y 105007 = 18,017 + Y 10r,0]*(2.3)
i=l1 i=l1 j=1 j=1

for x € Q.

Lemma 2.1. Forv: Q — R? and f : Q — R we have

d—1
8,,v-n+28,jv~tj=divv 2.4)
j=1
and
d—1
3 f+282f Af+Vf-m-Vin+ Y V(- V) (2.5)
Jj=1 Jj=1

at any x € Q.

Proof. We first notice that since x; = 1in Q9. If R denotes the matrix whose first
d — 1 columns are 71, ..., 74— and whose dth column is n, then R is orthonormal;
that is, RRT = 1d. Using this and the above definitions of 9, and ij we have

d—1
8,,v-n+28,_/v T
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Similarly, we have

d—1

af+ 07 f
j=1
d d-1 d d—1
= Y Odefring+ Y D> e fTixtie+ VI (- Vn+ Y VE(tj- V)T
k,t=1 j=1k,t=1 j=1
d d—1
= eSS+ VS VIt Y VF(x;- V),
k=1 j=1
d—1

=Af+Vf-(n-Vn+ Y Vf(tj-V)1j.
j=1

2.2. Proof of Theorem 1.5

In this section, we study the commutator term [P, # - V]z appearing in (1.15)
and prove Theorem 1.5. We start with the periodic case Q = T¢, d > 2.

Lemma 2.2, Let s > 1 + % be a real number and let P be the Leray projector.
Then, for any u, z € H® (Td), there holds

I[P, w - Vzll gsray = Cllullas 1zl s pa)
for some universal constant C.

Proof. For any two functions f, g : R? — R, we have the following Bony’s
decomposition (see [2,3]):

fe§=Trg +Tof + R(}. 8),
where Trg and T f are paraproducts so that the following hold:

e Pararoduct estimates:
ITrgllar < Cliflleliglar Vr e R. (2.6)
e Reminder estimates:

IRCE O -4 = Cllfllan gl am 2.7)

for all 1 and r, in R satisfying ri + o > 0.
e Commutator estimates:

ITf, m(D)Igll gr—r+a = Cl fllweoellgllar (2.8)

for any homogeneous operator m(D) of order k, @ € (0, 1], and r € R.
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Recall that on T¢, the Leray projector P = (P; ) is a Fourier multiplier matrix of
order 0. In addition, we note that [P, V] = 0. Denoting by vy the kth component
of the vector v, we have

([P, u - V]2)k = (P(u - V2)k — (u - VP2)i
= Prj(uidizj) — uidilPx;jz;
= Pyj(u;i0;z;) — uilPyjoiz;
= Prj(Tu; 9izj) + Prj(Toz;ui) + Prj R(ui, 9;z;)
— 1 Prj0izj — Tpyyo,zui — Rlui, Prjdizj)
= [Pkj, Tu;10izj + Prj (T2 ui) + Prj R(ui, 9;z;)
— T4 — Rui, Prjdiz).

Here and in what follows, the summation in Z, j is understood. Since IP is a Fourier
multiplier of order 0 and T, has order 0, the commutator estimate (2.8) yields

IPxj, Tu;10izjllms = CllullyroolVzllgs—1 = Cllullgs 2l as

where we used the embedding H® ¢ W1 fors > 1+ %. The paraproduct terms

Pyj (T ui) and Tp;p,-;u; are estimated in H ¥ by means of the paraproduct rule

(2.6), the embedding H®* C W12 and the fact that P is continuous from H® to
H?. Finally, the reminder terms can be treated using (2.7) as follows:

IR iy izl = NR i, izpllyioy-g = Cllullas IV2lgsr = Cllulgs Nzl e
which gives the lemma. O

‘We next turn to the case when 2 has a boundary. Fix an integer s > 1 + %. By
definition, we write z = Pz + V f, where f solves

af (2.9)

Af =divz in ,
3= n on 9%2.

In particular, the standard elliptic regularity theory yields || f || ys+1(q) = Cllzll a5 ()
Similarly, we write (1 - V)z = P((u - V)z) + Vg, where g solves

. 2.10
g—ﬁ:(wV)z-n on 0%2. ( )

{Ag =div((u - V)z) in<Q,
Combining things, we have
[P,u-V]z=P(u-V)z) — (u-V)Pz
=w-V)z—Vg—(w-V)(z—VY) (2.11)
=(u-V)(Vf)—Vg.
We shall bound the H* norm of [P, u - V]z, using the elliptic estimate
Il Es @) = CIldiv Al gs—1(q) + Cllcurl 2l ys—1 gy + Cllh - nIIHJ,%(aQ) (2.12)

for h = [P, u - V]z, where the terms on the right hand side are estimated in the
following lemmas:
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Lemma 2.3. There exists a positive constant C such that

I div([P, u - V1) gs-1) = Cllullas @zl s @ (2.13)

and
Feurl([P, u - V1)l gs-1(0) = Cllullas@llzllas @)- (2.14)
Proof. In view of (2.11), we compute, using (2.9),
div((u - V)(Vf) =Vu: (VR V)f+u-Vdivz.
On the other hand, using equation (2.10), we have
div(Vg) = Ag = div((u - V)z). = Vu : (Vo).
Combining, the above we have
div((P,u-V]z2) =Vu : [V V) f — (V2)T]. (2.15)

The estimate (2.13) thus follows directly from (2.15), upon using the fact that
H’~1(Q) is an algebra and the elliptic estimates I s+ < Clizllas)-
Next, in view of (2.11), we write

[P,u-V]z=Vu-Vf—g)— Vurorf,

which gives curl([P, u - V]z) = Vuy x 0V f. The estimate (2.14) then follows
from elliptic estimates as before. O

Lemma 2.4. There exists a positive constant C such that

P, u-V]z- nIIH < Cllullas @zl ms @)- (2.16)

1
T2(09)
Proof. We use the decompositionu = unn—i—Z‘f;i Ur; Tj in Q7,. Then we compute

u-Vyz-n=w-V)(z-n)—u®z):Vn
d—1
=up(n-V)(z-n) +Zurj(fj “V)(z-n)—u®z):Vn
j=1
in Q. Since # - n = 0 on 92, we have u, = 0 on 9. Taking the trace of the
above equation on 92 and recalling (2.10), we get

d—1
Vg n=@ V)z-n=>) urd;(z-n)—@®z):Vn ondQ.
j=1
Similarly, on 9<2, we have
d—1

W-VYVf) n=Y o, (Vf n)—@®Vf): Vn.

j=1
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Recalling (2.11) and using the boundary condition (2.9), which gives BTJ. Vf-n)=
Brj (z - n) on 0€2, we obtain
[P,u-Vlz-n=w-VY(Vf) - n—Vg-n=u®z—-Vf)]:Vn
on 9€2. Using the trace inequality, we bound

P, u- Viz-nll SCllu®(@—VHlu@

=3 5Q)
< Cllullas (Il s @) + 1 1 as+1q))-

which gives (2.16), upon recalling the elliptic estimates || f || ys+1 < Cllzllgs. O

2.3. Commutators Between the Leray Projector and Tangential Derivatives
Proposition 2.5. Let m = 2 be an integer. There exists a constant C > 0 such that
I[P, P]“”LZ(Q) = C||M||Hm71(s2)
forany P € {HTZIBHJ, :0j € {11, ..., Tg—1}} and any vector field u € H’"_l(Q).

Proof. Without loss of generality we consider P = d7/. In view of the identity

[0, Plu = (98, P1oqu + 04 [0, Plu, g = 1,

Ea
and by induction in m, it suffices to prove that
10z, 1oz ullr2(q) = Cllullgi(q) (2.17)
and
100z, Plull iy = Cllull iy Vi 21 (2.18)

To this end, for any vector field v, we write Pv = v —V f and P(d;,v) = 9, v — Vg
where f and g solve

Af =divv in £,
%:v-n on 492
and

Ag = div(dv) in €2,
% = (9,v) -n ondQ

respectively. Then
[0, Pl =Vg — 0y, Vf = V(g — 9y f) — [0y, V. (2.19)
We compute

Aaﬁf = afl Af +A(xnt) -V +2V(xity) : VV S,
div(d;,v) = 8, divv + Vv : (V)T
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where x is defined as in (2.1). As a consequence, h := g — 9, f satisfies
Ah=Vv:(Vonu)! = AGat) -V —2V(xit1) : VVf in Q. (2.20)
Regarding the boundary condition, we have

0y(v-n) =0 v-n+Vn: (vVT1),
003, f) = VVf: (n @) + YV : (Vf @n),
00 f)=VVf: @)+ Vn: (VfQ1)
in Q. This yields
Onh =008 — 00 f — VT : (Vf®n)+Vn: (Vf®1)
=00yv) n—0q-n)—=Vr : (Vfn)+Vn: (VFf®t) (221)
=-Vn:(v®1) -V : (VfRn)+Vn:(VfQ®rt)) onadf.

In addition, elliptic estimates combined with trace inequalities

”v”H27%(8§2) g C”U”Hlfl(g) Ve z 2

yield
I fllge) = Clivllger gy VE€=2. (2.22)

Proof of (2.18). In view of (2.20), (2.21) we deduce using elliptic estimates, trace
inequalities and (2.22) that for any £ = 2,

Il ey < CIVY: (Voam) = AGuT) - Vi =2V0at) - VY Fll e q
HY(Q) (@

+Cl—-Vn:(w®rt) -V : (Vf@n)+Vn: (V) 3
H ™29

SCIVe: (Voam)! = AGat) -V =2V () : VV fllge-2q) (2.23)
F+CIl=Vn: (@) =V : (Vf@n) +Vn: (VI )l ge-1(g
é C”UllHifl(Q) + C”f”HZ(Q)

§ C/”v”HK—l(Q)-

Note that the trace inequality used in the second inequality in (2.23) does not hold
when £ = 1. Now forany j = 1 using (2.19), (2.22) and (2.23) with¢ = j+1 = 2
together with the estimate

108z, V1fllmio = Clf it g
we obtain

100z, Ploll iy = Il i) + 10z, VISl mice)
S Clvll i) + Clf L+ a)
S C/”U“Hj(sz)

which is the desired estimate (2.18) if we set v = u.
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Proof of (2.17). Again, we use the equations (2.20), (2.21) with v = 9, u and
H' elliptic estimate for the Neumann problem to have
Al i) € CIIVY: (Vour)” — AGat) - Vif =2V 0at) - VV fll -1

TCI=Vn:@n) -V : (Vf@n+Vn: (Vi@ _ 1(09)

< C'lvllzzgy + C ey + Col, oy o+ CIVAI g o

Since v = 97, u we have ||v||Lz(Q) < Cllull g1 () and

< /
01,4 o S Clul, C'llulli .

Moreover, using (2.2) and the Neumann boundary condition for f we can write

d—1
V=) 1jd f+nduf = erarjf+n(8nu n) ondQ.
Jj=1 Jj=1
This implies
d—1
1951, 4 ey cg 135 S,y g + Clldeull, o
IIfIIHZ(a )+CIIMIIH%(BQ)

= CN”f”H'(Q) + Cllull g1
Thus, we obtain
1Al g1y = Cllull gy + ClLf g q)-
The H' elliptic estimate for f gives

Il = Clloqull2@) + Cllonu - nll . Y

< Clldmulag +C'llull,y
< CMlull g gy
Consequently
Il 1) = Cllullg o)

which combined with the commutator estimate

109z, V1fll2) = Cllfll2) = ClLf g
completes the proof of (2.17). O
Next we fix a cutoff function x> : Q@ — [0, 1] satisfying

=0 inQ, x2=1 inQ\ . (2.24)
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Proposition 2.6. Let m = 1 be an integer. There exists a constant C > 0 such that
I D™, Plull2q) = Cllull gm-1(q)
for any vector fieldu € H" ().

Proof. Without loss of generality we consider D" = 9{". We have

(207", Plu = 207" (u — V f) — [x20{"'u — Vg
= x20{'Vf = Vg
=V(x20"f —8) — Vx20' f.

where f and g solve

{Af —divu inQ,
and

Ag = div(x207/u) in g,
g—i = (Xzarlmu) -n ondf

respectively. By elliptic estimates for f we have
IV 20! Fll 2 < Cllull gn-1 (). (2.25)
Setting h = x20"V f — g, we compute
Ah = Ax2d"'f+2Vyx2 - V3" f —Vx2 - 3]'u
= A" f +2div(Vy2d" f) — 2Ax200" f — (V2 - 07 ')
+Voix - afl_lu.

On the other hand, since x> = 0 near 92, 1 = 0 near d€2. Thus, standard elliptic
estimates give

Il g @) = Cllull gm-1 - (2.26)

A combination of (2.25) and (2.26) concludes the proof. 0O

3. Proof of Theorem 1.3

Let us start with a priori estimates for the perturbation z = y — y,, which solves
z+u-Vy,+u-Vz=0, u=1Pz 3.1

in Q = [0, L]¢. We consider px such that Vy, = V2 P« is L-periodic. In what
follows, u and z are L-periodic smooth solutions to (3.1), and s is real number
satisfying s > 1 + %. We shall denote by T¢ the box Q with periodic boundary
conditions. We have the following:
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Lemma 3.1. We have

5 3 12Oy S CLOA MO s ) 1 sy 12O sy, (B2)

Sfor some constant C| depending only on s, d, and || y|| gs+1.
Proof. Denote J* = (1 — A)%. Note that || f1l s (pay = IIV* fllz2(1e). Applying

J*¥ to (3.1), multiplying the resulting equation by J*z and integrating in space we
obtain

1d
- |J5z|? dx
2 dt Td
= —/ _]Sz~JS(u~Vz)+JS(u-Vy*)-Jsz] dx
Td L
= —/ -Jsz . ([JS, ul - Vz)dx + J%z- (u . VJSz) + J5(u - Vy,) - Jsz] dx
Td

r 1 !
= —/ Jiz- ([]s, ul - Vz) + Fu VI z)Pdx + JS(u - Vyy) - Jsz] dx
Td

2—/ Jsz-([Js,u]-Vz)+JS(u-Vy*)-Jsz] dx
Td

where we used the fact that u = Pz is divergence free. Since s > 1 + %, the
Kato-Ponce’s commutator estimate yields

1%, ul- Vzli2 = Cllullgs llzllgs-

On the other hand, we have

/;Td S - Vye) - Iz = Cllysll s lull gs 2l s
Putting this all together leads to (3.2). O

Lemma 3.2. Let 0y be the constant as in (1.5). Then it holds that

SO, + IO 2y S ol ) 120 s (3.3)
%nuunﬁ,w) + 001135y S ColUO et 120 sty + Colu @23 gy (3:4)
for some constant Cy depending only on s, d, and ||y.|| gs+1.
Proof. Applying the Leray projection to the first equation in (3.1) gives
Ou +Pu-Vy,) +Pu-Vz) =0. (3.5)

A direct H* energy estimate for u from this equation requires a control for z in H5+1,
and thus the estimates cannot be closed. To resolve the issue, we first commute with
u to have

Ou~+Pu-Vy)+u-Vu+[P,u-V]z=0 (3.6)
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We now perform an H® energy estimate for this equation. As in the proof of
Lemma 3.1 we have

1d ) '
—— |Jsu|2dx+/ Jiu - J°P(u-Vy,) dx
2dt Td Td
= —/ Jsu-([J‘Y,u]-Vu)dx—/ Jsu-(u-VJsu)dx
Td Td
—/ Ju-J*([P,u- Viz)dx
Td
1
= —/ Jsu-([Js,u]-Vu)dx——/ u-V|Ju>dx
Td 2 Td
—/ Ju- J([P,u- V]z)dx
Td

_—/ Jsu-([JS,u]-Vu)dx—/ Jsu-JS([]P’,u-V]Z)dX,
Td Td

where the fact that u is divergence-free was used to cancel out the term 14 u -
V|J5u|*dx. In addition, using the facts that [J*, P] = 0 and P is self-adjoint in L?,
we obtain

/ Jsu-JSIE”(u-Vy*)zf Jsu-]P’Js(u~Vy*)=/ Jou - J5(u - Vyy)
Td Td Td
=/ Jsu-(Jsu-Vy*)—l—/ Jsu~([JS,Vy*]-u).
Td Td
3.7

It follows from the convexity assumption (1.9) that

f Tu-(Jou-Vy) = f Pu-(Ju-V2p.) 2 0llulys.  (38)
Td Td
Using Kato-Ponce’s commutator estimate gives

1", ul - Vullpe < Cllullgs llull #s

and

ILT*, Vysl - ull ;2 S ClVYsllytoo lull gs—1 + ClIVysllgs lull Lo S Cllysll st el grs—1-
By virtue of Theorem 1.5 for Q = T4, we have
1P, u - Vizllgs < Cllullgsllzllas-

Combining, and using ||u| gs < ||z|l gs, we thus obtain

d
EIIM(I)H%,S +200llu@ I3 < Colu@Fs 1Ol s + C3llyall grsa lu@ s lu @l 1.
(3.9)
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in which, using interpolation and Young’s inequality, the last term can be estimated
by

21 1
@ s @ gs-1 = Nu@ s lu@®ll;, =y lu@®ll7s + Cy lu®)|7

for y > 0. Taking y sufficiently small, we get the claimed H* estimates in (3.4)
directly from (3.9).

Finally, by means of the Sobolev embedding ||Vz| L~ < Clz| g+, the fact that
P is self-adjoint in L2, and the convexity assumption (1.5), an L? energy estimate
for (3.5) gives the estimate (3.3). This ends the proof of the lemma. 0O

For L-periodic smooth solutions (u, z) defined on the maximal interval [0, T*)
of (3.1), which exists thanks to the local existence theory in Theorem 1.6, let us
introduce the bootstrap norm

2 2 %r 2 % 2
N(t) ‘= Ssup (”Z(T)”HS(T‘]) + M=e2 ”u(‘[)”LZ(’]I‘d) + Me? ||u(t)||HA(Td)>
0<t<t
(3.10)
for some fixed and large M > 0 and for ¢t < T*.

Proposition 3.3. There exist positive constants ¢, Cy, depending only on 6y and
| |l gs+1, such that whenever N'(0) < & we have N (1) < C.N(0) forall t < T*.

Proof. We shall prove that
N () £ CoN(0) + CoN (1) (3.11)

for all # < T*. The proposition follows directly from the standard continuous
induction.

As for the claim (3.11), we integrate (3.2) in time and use the definition of N'(¢),
yielding

t
Iz 1Zs = 2013 + C1/O A+ llz@ M) Nu@ s llz(0) a5 dT

t
< z(0) |35 + CM 121 +N(t)'/2)J\/(z)/ et/ g 312
0

SNz 13 + M 2A+ NN @).

Next taking M sufficiently large so that 6o M > C3, we obtain from (3.3) and (3.4)
that

d
a(Mnu(t)ui2 + u®l7gs) + oM@ 5 + ) 3s)  CaMu® 35 120 s
where C4 = C2(2 4+ M). This yields

M@ 125 + Mllu()|3s

IIA

t
e—9of[M2nu(o>||2L2 n M||u(0)|\%~1A'] +C4M / e 0w |15 (@) s de
0 (3.13)

IIA

t
e [ IO, + MOy ]+ CN @ [ e D e

IIA

[ M2 )12, + M) 15 | + CsN (0 2e 012,
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Combining with (3.12) and choosing again M large, if needed, we obtain the claim
(3.11) and hence the proposition. O

With the ¢ and C, given in Proposition 3.3, we have proven that [|z(¢)|| g5 (T4) <
%

C.N(0) < C,e and ()Nl s (ray = Cllyo — yall grsraye™* " for all time t < T*.
Consequently, the solution z of (3.1) is global in time and enjoys the same bounds
for all > 0. Using equation (3.1) and the estimates (1.6) and (1.7), we deduce that
8z € L1(0, oo; HS~1(T¢)). This yields

Jlim z(x, 1) = 20(x) + /OOO dz(x, T)dT := z00(x) in H~1(TY),
and thus
Am yQx, 1) = yoo(x) 1= Zoo(¥) + yx(x) in 2@, @=[0, L.
Furthermore,

I y(®) = Yool gs—1(1ay = 12(t) — Zooll grs—1(T4)
ot

o0 0
= ||/ u- VZ(T)d'L'”Hs—](Td) S Ce 4 (3.14)
t

for all + = 0. Using the Leray projection we write
Y, ) =ulx, 1) + Vpx,1), Yoolx) = ttoo(x) + Vpoo(x),

where oo = Pyso : 2 — R and p : 2 — R. In view of the Pythagorean identity

1Y(®) = Yool 2y = Iu4(®) = toclFaiq) + IVP@) = Vpooll7a g

we find that each term on the right hand side converges to O ast — oo. This, together
with the fact that u(r) — 0 in H*(T%), implies that u, = 0. Thus, yoo = V peo i
a gradient and in view of (3.14) we have

oot

||Y(l) - Vpoo”[—]x—l(']rd) é Ce_ 4

foralls = 0. Asaconsequence of this, (1.9) and the bound |y =l Loo 0,00 B3 (T4Y) <

C.e, if ¢ is sufficiently small then V2 Poo > 0. Thus, p is (strictly) convex and
V po 1s the optimal rearrangement of yg by virtue of Brenier’s theorem ( [S]). This
ends the proof of Theorem 1.3.

4. Proof of Theorem 1.1

We now turn to the case when €2 is a bounded domain with smooth boundary.
Recall that the perturbation z = y — y, obeys

0z+u-Vy,+u-Vz=0, u = Pz. 4.1

In what follows, we fix an integer s > 1 + %
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Lemma 4.1. There exists C > 0 depending only on ||y || gs+1(q) such that

1d
EE”Z(I)”%—[S(Q) s Gl + lzOllas@) el as@ lzOll s @) (4.2)

Proof. First of all, an L2 estimate for (4.1) gives

1d
EEIIZ(I)IIiz(Q) = —f 2 (- Vy)dx S [[Vyelire@llull 2@ llzlliz2 @)
Q
(4.3)

where we used the fact that u - n|3q = 0 to have fQ Z-(u-Vz) = 0upon integration
by parts. Now let s be an integer greater than 1 4+ d/2. Recall that D® denotes any
partial derivatives of order s. Applying D* to equation (3.1) and arguing as in the
proof of Lemma 3.1 yields

EEIIDSZ(I)IILz(Q) = i+ llzOlas@) lu@ s @ llzOll s (44)
upon using the commutator estimate (see [11] page 129)

ID*(fg) — fD’gll2) = CIV fllLe@ g1 + Clfllas@ligliLew
4.5)

and the fact that u - n|3 = 0 when taking integration by parts in integral involving
the highest derivatives u - V|Dz|?. Combining (4.3) and (4.4) leads to the estimate
“4.2). O

Next let us recall equation (3.5) for u
ou+Pu-Vy,) +Pu-Vz) =0. (4.6)

Repeating verbatim the proof of (3.3) we obtain

1d

e ()17 2y + Oollu@Il72 ) S Collu® 72 Iz llms @y @7

We will need decay of the H* norm of u. Let us note that the proof of (3.4) in
Lemma 3.2 does carry over to domains with boundary since the Leray projector
does not commute with D*, as used in (3.7) for Q2 = T. To treat the boundary and
the nonlocality of P, we use the derivatives 9, ; and 9, introduced in Section 2.3.
These derivatives are defined everywhere in 2 and become the usual tangential and
normal derivative when restricted to the boundary. The trade-off is that afj and 0,
do not commute with usual partial derivatives, leading to commutators that are of
lower order.
Fork € {0, 1, .., s} we set

Dl = {njzlagj to; €Ty, Ty n} and #{j : o) = n} = k}.
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In other words, each derivative in D} has exactly k normal derivatives and s — k
tangential derivatives. We also define the norms

k 1
2
lolle = (30 D2 1Pvl3)

Jj=0 PeD‘j‘.

forv:Q — RY.
Due to the presence of x in 9, and 9 15 the norms ||u||s x control u near the
boundary.

4.1. Interior Estimates for u

The next lemma provides a control of « in the interior.

Lemma 4.2. There exists C > 0 depending only on ||y« | gs+1(q) such that

1d 2 2 < 2
Eallxzullys +6olxeulys = Cllullys g llzllas @) + Cllull gs—1 @) llull 75 )
(4.8)

where x3 is defined in (2.24).

Proof. Asin (3.5), we commute P with « - V in the last term of equation (4.6) to
have

oou+Pu-Vy,)4+u-Vu+[P,u-V]z=0. 4.9)
Set P = x29;. Applying P to (4.9), then multiplying the resulting equation by Pu
and integrating over €2, we obtain

1d
-—/ [Pul? dx+/ Pu - PP(u - Vy,) dx
2dt Jo Q

= —f Pu - ([P, ul - Vu)dx - f Pu - (u - [P, V]u)dx (4.10)
Q

Q
- / Pu - P([P,u - V]z)dx.
Q
where we used the fact that
1 2
Pu~(u~Pu)dx=— u-V|Pu|*dx =0
Q 2 Ja
since V-u =0in Q and u - n|yq = 0. We now treat each term on the right-hand
side of (4.10). It is readily seen that
1P, u] - Vull2iq) S CllullFys g

) (4.11)
lu - [P, Vil 20y < Cllules -
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In addition, Theorem 1.5 applied to 2 gives
I1P([P,u- VI2)ll 2 S CIIP, u- Vizllas@) = Cllullas @zl as ). (4.12)

Putting together (4.10), (4.11), (4.12) and using the estimate ||u| gs < C|lz|lgs we
obtain

1 d 5 5
> — | [Pul"dx+ [ Pu-PP(u-Vy,) dx = Cllullys g lzllms -
2 dt Jo Q
(4.13)

As for the second term on the left-hand side of (4.13), we commute P with P and
then with Vy, to have

/QPu-PIE”(u-Vy*) dx
:/QPM-[P,]P’](u-Vy*) dx—l—/QPu-]P’([P, Vy,lu) dx
—i—/QPu-IP’(Vy*-Pu) dx (4.14)
:/qu.[P,P](u-vy*) dx+/QPu-]P>([P, Vyelu) dx
+fQ[]P’, Plu - (Vys - Pu) dx+/QPu~(Vy*'Pu) dx.

By virtue of Proposition 2.6,
I[P, Plullas @) = Cllull gs-1(q)
and
0P, Pl - Vyi)ll 2 = Cllu - Vysllgs—1) = Cllull gs—1 )l vl as -
The local commutator [P, Vy,-]u can be bounded as
I[P, Vyelull 2@y = Cllyell s+ lull gs-1(q)- (4.15)
On the other hand, the convexity condition (1.5) yields
/qu ~(Vyy - Pu) dx = 90||Pu||§2(m.
We then deduce from (4.14) that
/Q Pu - PP - Vy,) dx Z 6] Pull} ) = Cllyal gt o lull o1 g el s
(4.16)

which combined with (4.13) leads to (4.17). The same estimates hold for mixed
derivatives y» D® where D* is any partial derivative of order s. O
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4.2. Estimates for Tangential Derivatives of u

Lemma 4.3. There exists C > 0 depending only on ||y« || gs+1(q) such that

537 1.0 + G0llulSo < Cllulzys g Izl s + Clltll sy el s (@) (4:17)

Proof. The proof follows along the same lines as in Lemma 4.2 upon taking P € Dy
and using Proposition 2.5 in place of Proposition 2.6. O

4.3. Estimates for Mixed Derivatives of u

The next lemma concerns ||u||s. 1.

Lemma 4.4. There exists M| > O such that

1d 2 00 2
——||lu —||U
5 g el + Sl (4.18)
< M[”I/l”%.Is(Q)”Z”HS(Q) + Ml||I,{||H571(Q)||M||HS(Q) + My |lulls,1llulls.0-

Proof. Let P € Dj. Assume without loss of generality that P = 35~ 19,. Com-
muting equation (4.9) with P gives

11]1) 2d +/P PP(u - Vy,) d
> q Q| ul” dx i u - u-Vy,) dx
=—/ Pu-([P,u]~Vu)dx—/ Pu-(u-[P,Viu)dx  (4.19)
Q Q
—/Pu~P([P,u~V]z)dx.
Q

Arguing as in the proof of Lemma 4.3, we find that the right-hand side is bounded
by C|lu II%p(Q) Izl &5 (). Now we write using the definition of PP’ that

/ Pu-PIP’(u-Vy*)dxzf Pu~P(u~Vy*)dx—/ Pu- PV f dx
Q Q Q
where f solves

{ Af =div(u-Vy,) inQ, (4.20)

onf=@W@-Vy,)-n onod.
Commuting P with Vy, gives
/ Pu-P(u-Vy,) dx = / Pu - (Pu-Vy,) dx +/ Pu-[P,Vy,]Judx
Q Q Q
where the local commutator [P, Vy,-]u satisfies

0P, Vy:l - ull 2y = Cllysell sy llull gs—1(q)
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and by the convexity assumption (1.5),

2
/Q Pu- (Pu-Vy.) dx = 60l Pl

The rest of this proof is devoted to the control of [, Pu - PV f dx. First, since
x1 = lin Q. D supp(l — x2), in view of (2.2), the decomposition
Vg == x2)nong + (1 — x2)7;0,8 + x2Vg (4.21)

holds in €2 for any scalar g : 2 — R. Using this with g = Pf, we write

/ Pu - PV fdx
Q
=/ Pu-VPfdx +/ Pu-[P,V]fdx
Q Q
- / (1 — x2)(Pu - n)d, Pfdx + f (1 = x2)(Pu - 7))d,, Pfdx 422
Q Q
+/ x2Pu - VPfdx +/ Pu-[P,V]fdx
Q Q
=h+L+L+ 1
Due to the presence of the local commutator [P, V] f, it is readily seen that
gl = Cllullas 1 f sy = Cllullgs lull gs-1(q)- (4.23)

As for I3, we integrate by parts noticing that divu = 0 in 2 and x2 = 0 near 992
to obtain

I3 = / x2Pu-VPfdx = —/ [div, yo PluPf, (4.24)
Q Q
which implies
] = Cllullgs @ llull gs-1(q)- (4.25)
Estimate for I. We first note that
Pu-n =085 @ -n) — [, n10,u
= —8;_1(81].14 STj) — [3;_17 n-10,u
= =@} ou) Ty — (037, 710 ,u — 057 n-]uu
This implies
1Pu - nll 2y < Clulls.o + Cliull s gy- (4.26)
On the other hand, it follows from (4.20) that

AT = 1A, 03571 + 1957 divi(u - Vys) +divas - Vyw) i= g1 inQ,

N Ml (4.27)
3n3{?1 f = 1[0n, 3% 1f + 3%1 {(u-Vyx) -n}:=gr ondQ.
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It is easy to see that
A, 35 fll 2 + (0571 divi - Vy) 2 < Cllull gs-1q)-
In addition, (2.3) gives

Idivay " - Vy)ll 2q)

< CIVE - Yyl 2

< Cl13u057 - Yyl 2 + Cllo, 837 @ - Yyl 2
< Clulls,1 + Cllullso.

Consequently

lgillz2) = Cllullgs—1(q) + Cllulls,o + Cllulls, 1.
Using the trace inequality and arguing as above we obtain that

<
8213 g < Clieliror) + Cllullo + Cluls .

Then the H? elliptic estimate for (4.27) leads to

1957 fll2 ) < Cligillr2) + C||g2||H2(39)
= Cllull gs-1(q) + Cllulls,o + Cllulls,1- (4.28)

Next we write
I = /9(1 — x2)(Pu - n)d, Pfdx
= /Q(l — x2)(Pu -n)Po, fdx + / (1 = x2)(Pu - n)[0y,, P]fdx
= /Q(l —x2)(Pu-n BS 1E)Zfdx + / (1 — x2)(Pu - n)[0,, P]fdx
=/Q<1 — x2)(Pu-n)dyo5" lfdx+/9(1 — x2)(Pu-m)[357", 97] fdx
+ /9(1 — x2)(Pu - n)[0,, P]fdx.
In view of (4.26) and (4.28) we deduce that

1] S Cllull o1 gy + Cllull o + Cllulls,illulls.o- (4.29)

Estimate for I,. We first write
L= f (1 — x2)(Pu - 7j)d, 35" 9, fdx
Q

=/(1 — X2)(Pu - T}) e, 05 1fdx+/(1 — x2)(Pu - )[0, 95", 9] fdx
Q Q
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where

< Cllullas @ lull gs-1(gy- (4.30)

VQ(l — ) (Pu - 7)[35,857", 3] fdx

On the other hand, by Holder’s and Young’s inequalities

/9(1 — X2)(Pu - 7}) 30,03 ' fdx

< ClIPu -7l 20 18002,85 7" Fll 120
< CllPull 212,057 fll e

o 2 / —1 42
g 3||PM||L2(Q) +C ”81']8?1 f”Hl(Q)

(4.31)

Using again equation (4.20) we find

{Aafj O =14, 97,05 f +[0r,057 1 divi(u - Vys) +divar, 97 (- V) in @,

Ondz; 03, f = [9n, 92,0311 f + 97, 9%, H{(w - Vys) -} on 0.

(4.32)

Multiplying the first equation by dr; 8;’1 f then integrating over €2 and using the
second equation to cancel out the leading boundary term, we deduce that & =
0z, 8§I_If satisfies

/Q|Vh|2dx - —/Qh{[A, 00,057 1f + [0, 05", divi(u Vy*)]dx
+ [ oy, an0 g
0Q
= g + Iyp.
We observe that ||| 12(q) = Cllull ys-1 g and
IA. 82,51 F 1 2 + 19,0570, divie - Vo) 2 < Cllullascay.
hence

|2a| = Cllullms@llull gs—1(q)-

On the other hand, by virtue of the trace inequality and interpolation, the surface
integral is controlled as

1| < Cllf s o) = C/Ilfllfﬁ%(m
S ClIifllas @l f gty S C ull s gy llull s ()

It follows that

31y S 101320, + VAT q) S Cllullms @) lull g1 @)-
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Plugging this into (4.31) and recalling (4.30) we deduce that

o
L] = —||P“||iz o) T Cllullms @ llull gs-1(q)- (4.33)
2 (€)

Putting together the above considerations we arrive at

1d 6o
muPuniz + S IPull2 < Cllullzsollzllas@) + Cllullas @ lull gs-1q)-
Then summing over all P € Dy yields

Oo
SNl + S llul?y < MyllulFs @zl as@) + Millull gs e lul g1 g
2 dt : 2 )

which combined with (4.17) for tangential derivatives leads to the desired estimate
(4.18). O

Lemma 4.5. For each k € {1, 2, ..., s} there exists My > 0 such that

-“ 2
> 3 Il wan

< Millullgs Izl (@) + Micllull g1 lull s ) + Micllulls g llulls k-1
()

kT ?”M”s,k

Proof. The base case k = 1 has been proved in Lemma 4.4. Assume (4.34) for
some k € {1,2,...,s — 1} we prove it for k 4+ 1 in place of k. Let P € Di+1.

We assume without loss of generality that P = 97~ k=1 8,’:“. Commuting equation
(4.9) with P gives

EE/Q|PM| dx—i—/QPu-P]P’(roy*) dx
= —/ Pu - ([P, ul - Vu)dx — / Pu - (u - [P, V]u)dx (4.35)
Q Q

—/ Pu - P([P,u - Viz)dx.
Q

As in the proof of Lemma 4.4 it suffices to treat the damping term
/ Pu-PIP(u-Vy*)dx:/ Pu~P(u~Vy*)dx—/ Pu- PV f dx
Q Q Q
where f solves (4.20):

{Af =div(u - Vys) inQ, (4.36)

onf =W-Vyy)-n ondQ.

Commuting P with Vy, gives

/Pu~P(u~Vy*)dx:/Pu-(Pu-Vy*)dx—}—/Pu~[P,Vy*]~udx
Q Q Q
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where the local commutator [P, Vy,] - u satisfies
I[P, Vys] - u||L2(Q) = C”y*”HH'I(Q)”u”HS—'(Q)a
and by the convexity assumption (1.5),
fQ Pu - (Pu - Vy.) dx 2 6]l Pullj .
Then it remains to prove that

f Pu- PV fdx = Cllullzs@lullgs-1@) + Cllulls g+t lullsk.  (4.37)
Q

To this end, let us write using the decomposition (4.21) that for k = 1,

Pvfzva_?*k*lak la f+[af —k— ]8k+1 V]f
_(1_X2)V8S —k— lak 18 f+X2V8S —k— lak 18 f+[as —k— 18k+1,V]f.

The commutator is a lower order term in the sense that
aS—k—lak-’r] V < C C
19z, n s V1fllz) = Cllifllas@) = Cllull gs-1(q)
leading to the bound

/ Pu - [357 K198V fdx < CllPull 2 llull go-1 gy < Cllull s @ lull g1 -
Q

Integration by parts as in (4.25) yields

[ P9 0192 1| <l o

In the main term (1 — x2)Vo7~ —k— 18" 182f since the support of (1 — xp) is
contained in €2;,, we can use (2. 5) and (4.36) to write

Vas—k—lak—182f
o 182 [+ Vo ok divu - V)
+ va“’“lak*[w VI Vfe (T V)rj]
= —voy ok 132f vias Tt ok 182f+V8s =19k div(u - V)

in 7, , where the sums over j were taken. Since the commutator [B‘Y_k_1 , 8,’:‘ 1 3,21, f
is bounded in H'(Q) by CI| f | is(@) < Cllull s—1 gy We obtain

’/(1—;(2)1%; vias ok ‘]afjfdx < Cllull s llull gs—1(q)- (4.38)
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In addition, we have

V (1 — x2)Pu - va;‘;"*la,’j”[Vf ~(n-V)n+Vf- (- V)fj]dx
Q

= Cllullgs @ lull gs-1(q)- (4.39)

Thus, we are left with the two integrals
I = f(l—xz)Pu vorlas ke 182 fdx,
12=/(1 — x2)Pu - Vo 1ot div(u - Vy,)dx.

Estimate for 1. We claim that

1Vay =037 7107 Fll 2@y < lullgs1 @y + Clluls - (4.40)

First, taking 95, ¥ ~10;, of (4.36) gives

=g1 inQ, (4.41)

lAailklarjf (A, 93757 00 1 + 105,57 0r,, divie - V) + div oy 1ae, u - V)
0nd3 Mg, f = [0, 03741011 + 037 o (- V) i) = g2 on Q.

In view of the bound
Ivay =037 7107 Fllpay
SNV 005 0 fll 2y + IIVO 103471 95,10, £l 12
< Cll5 7 o, fll i@y + CllLf s
< CIAEF 0, fll iy + Clllull g1

and elliptic estimates for (4.41) we have

-3 3R

IV, 1057 flliag) < Cllgill - + Cligall |+ Cllullsi g

(4.42)
The H*~! norm of g is bounded as
S I0A, 35771001 1 @ + 1103751 0e, diviGe - V) llge-1(q
+  div ad T o (- V)l geer g
< Cllfllms@ + Cllull g1y + IS 10z, (- Vy) e
< Clull gs—1 gy + CIBS* 0z, (- Vy)ll g -

lgill me-1() =

We observe that there are at most k normal derivatives appearing when measure
8;—1‘_18” (u - Vyy) in H*=1(Q), hence

19575710z, (- Vyoll ey < Cllullsk-
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Consequently,
gl pr-1() = Cllull gs-1(g) + Cllulls k- (4.43)
As for g, we first use the trace theorem to have
100, 02710011 ey

< ClBw. 3575710 1 f i) < Cllf sy = Cllull gs-1 (-

The fact that k = 1 was used in the first inequality. Then we write
05 0 (u - V) = (@57 oru) - Vs + 1057510, Ve lu

where the commutator can be bounded using the trace theorem as follows

1005 0oy, Vyadull oy S CHIOET T or. Vi dull ey < Cllull s g-

(6Q>
In addition,
s—k—1 . < s—k—1
(37, " Or;u) - Vyxll gy = Clloy, ™ ozull .

< CINO5F 0g ull gr o
S Cllulls k-

Thus,

IlgzllHk_z(m) < lullgs-1¢q) + Cllulls.x- (4.44)

Combining (4.42), (4.43) and (4.44) leads to the bound (4.40), which implies that

I = CllPull 2 llull gs—1(q) + ClIIPull 20y llulls k (4.45)
= Cllullgs @ lull gs—1(q) + Cllwlls k1 llulls k-
Estimate for I,. Decomposing V. = 7;d;; + ndy, in 2 D supp(l — x2) gives
I, = I, + I, where
D —/(1 —x{ @5 oy ) -7 o057 9 diviw - Ve Jdx
by _/(1 —x){ @ ok ) 9,08 F ok div(u - Vi) Jdx

‘We notice that there are at most £ normal derivatives in 8, 85 k-1 8"’1 div(u-Vy,),
hence

|al = Cllulls et l|ulls -
As for I, we write using (2.4) that

@39k ) - = 83K 9% Buu - m) + [937F 0, n-10u
= 5 R @ - T) + 19375195, nYdu.
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It is readily seen that

/Q(l — x) {10519k, n19,u {8,051 ok T divw - V) Jdx

S Cllull gs-1 (g lull s ().

On the other hand, there are at most k normal derivatives in 9z~ k=1gk
(0r;u - 7j), and thus

‘[ (1 — )] 0% 0 u - Tj) M8, 05 ar ! div(u - Vo) Jdx
Q

= Cllullsillulls, k1.
All together we have prove that
|12 = Cllullgs @ llull gs—1@) + Cllulls k1 llulls (4.46)
In view of (4.45) and (4.46) we finish the proof of (4.37), and hence the proof of
(4.34) with k + 1 in place of k. O
4.4. H® Estimate for u

We have proved in Lemmas 4.3, 4.4 and 4.5 that

S—lullf o+ follull? o < Mollullgys gzl s @) + Mollull o1 o el 115 ()

2 dt
(4.47)
and
5 gl e+ —||u||A e S Millul3ps g 2l s () + Ml s g el e )
+ Ml
(4.48)
forallk € {1, 2, ..., s}. Applying Young’s inequality yields
6? .
Millulls, jllulls,j—1 = IIMII My, 1SS,
It follows from this and (4.48) with k = s and k = s — 1 that
d 2 bo 2
” lleell$.s + 5 leells.s (4.49)

< 2Myl|ull s oIzl s @) + 2Mi el syl s ) + 2M Nl 5

and

d o
L LGP o ]

< 2M i Nulys gy Izl sy + 2Ms—tlluell g gy Ml sy 40

+2M 1||u||A s—2°
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Let Ny_; > 0 be such that ©N,_; — 2M/_, = %. Multiplying (4.50) by Ny_;
then adding the resulting inequality to (4. 49) we obtain

d 6o
a7 (1S Nl ) + = (el + Tl 1) S NGy el g e
+ Nl s Nl sy + Ni_yllull} sy

for some N;_, > 0. Continuing this process, one can find s 4 1 positive constants
Band N;j,0 = j < s — I such that

||u|| +ZN luell? ;

+= Z luell? ; < Bl Gy o llzll s ) + Bl o1 o 1l s -
Setting
s—1
Z2u) = lul3s + ) Njllul
and

Oo

201 = ,
2max0§jgs_1{l, Nj}

we arrive at
d s 20\ < 2
3270 +26122 ) = Blu® g IO lrs@ + Bllul oo lull s -
4.51)
Set
W) = Z*(u) + [ x2ull3s o (4.52)

where y; is given by (2.24). Combining (4.51) with (4.8) one can find a constant
C > 0 such that

d
3 W2 +200W2 @) = Clu®)lligs @) 1203 + Clltll sy el s 0.
(4.53)

To recover the H® estimate for u from the preceding estimate on W (u), we prove
the next lemma.

Lemma 4.6. There exists A > 0 depending only on s such that
1o 2 2 2
e W) = Nlullps @) = AW ) + Allully2q) (4.54)

for any H* vector field u : Q@ — R4.
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Proof. First, the inequality
Z*u) £ Allullfys ) + Allxaullys o

is obvious if A is sufficiently large.
Next recall from (4.21) and (2.3) that for any w : Q — RR? it holds that

d
IVl S 8wl + Y 19wl + X2 Vwll 7 q)- (4.55)
j=I
In the rest of this proof, the sum over j € {1, ..., d — 1} will be omitted. Let D* -1
be an arbitrary partial derivative of order s — 1. Without loss of generality, assume
D*~! = 3, D2 for some partial derivative D’~2 of order s — 2. Applying (4.55)
with w = D*~lu gives

IVD* ~ ull 72y S 19,01 D°2ull o) + 192,01 D°2ullfa ) + X2 Vw72 -

We thus have replaced one partial derivative with one normal and one tangential
derivative. To continue, we commute 9, with 9; to have

18081 D°2ull 72, ) < 20018, D°2ulls ) + 208, 011D°2ul ]

< 201019, D2l g + Cllullzys i -

()

Similarly for |0, 81DS’2u||iz(Q> we obtain

|vDs! < 2|Va, D52

2 2
u“LZ(Q) u”L2(Q)

+21Vae, D 2ullfa gy + Cllull o1 ) + x2ulfps -
Now applying (4.55) with w = 8, D*2u and w = 9, D*~2u leads to

VD~ ul7s g

< 201808, D°2ul G2 ) + 2010205 D° 2ull G2 ) + 2118505, D°2ull 72 g

+ 2(19;0r; DS_2””%2(Q) + C||”||ip71(9) + 1 x2ul s -

Next we write DS ™2 = 0; D3 with j € {1, ..., d} and continue the process until
no partial derivatives are left on the right-hand side, yielding

IVD*  ull}a gy S CZ2W) + Cllullfysr g + 2t s oy-

This combined with the interpolation inequality [[u]l z7s—1 < Cllul|%;s ||u||lL§°‘,
(0, 1) and a Young inequality implies the desired estimate (4.54). 0O

o€

By interpolation and Young’s inequality, the last term on the right-hand side of
(4.53) is bounded as
Cllu@) s 4@l -1y < v Ilu@ s 0 + C)/”u(t)”iZ(Q)

for any y > 0. Using (4.54) and choosing y sufficiently small so that Ay < 61, we
deduce from (4.53) that

d
EWZ(“) +OW? W) £ Callu® s g1zl s (@) + Callu(®)l7 gy (4-56)

for some C > 0.



On Global Stability of Optimal Rearrangement Maps 703
4.5. Proof of Theorem 1.1

We define the bootstrap norm by (3.10)

o o
N(@) == sup (IIZ(I)II%,S(Q) + M?%e? T||M(T)||iz(9) + Me? T||M(T)||12L1s(9))
0St<s

(4.57)

for some large M > 0 to be fixed and for r < T*, the maximal time of existence
which is positive thanks to the local existence theory, Theorem 1.6.

Proposition 4.7. There exist positive constants ¢, Cy, depending only on 6y and
| |l gs+1, such that whenever N'(0) < &, we have N (1) < C N (0) forallt < T*.

Proof. As in the proof of Proposition 3.3, it suffices to prove that
N(#) £ CoN(0) + CoN(1)*? (4.58)
for all t < T*. Repeating verbatim the proof of (3.12) we obtain from (4.2) that
217 < 121 + C:M ™21+ NOVHN ). (4.59)

Next we combine the estimates (4.7) and (4.56) and argue as in (3.13) to get

M2 u@2y + MM PW2 ) < [MA ]2, + MIu©) s |+ N2,
(4.60)

Then (4.58) follows from (4.59), (4.60) and (4.54). O

Finally, the proof of Theorem 1.3 follows along the same lines as that of Theo-
rem 1.1.
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