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Abstract

In this paper, we derive sharp bounds on the semigroup of the linearized incompressible Navier-Stokes
equations near a stationary shear layer in the half space (R%_ or Rj_), with Dirichlet boundary conditions,
assuming that this shear layer in spectrally unstable for Euler equations. In the inviscid limit, due to the
prescribed no-slip boundary conditions, vorticity becomes unbounded near the boundary. The novelty of
this paper is to introduce boundary layer norms that capture the unbounded vorticity and to derive sharp
estimates on this vorticity that are uniform in the inviscid limit.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Position of the problem

In this paper, we study the linearized incompressible Navier Stokes equations on the half space
(x,z) € T x R4 around a stationary boundary layer profile of the form Uy = (U (z), 0), where
U is a smooth function with U (0) = 0. In the whole paper, x is periodic, with 2 -period and
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z > 0. As will be apparent in the proof, the three dimensional case T? x R is similar. Precisely,
we consider the linear problem

v+ Up - Vo+v-VUp 4+ Vp=vAv
V-v=0

(1.1)

in the half space T x R, where p is the scalar pressure and v = (vy, v2) denotes the velocity
vector field, satisfying the classical no-slip boundary condition

vy =0. (1.2)
We will denote by w the vorticity
w = 3Z V] — 8x 1%

We are interested in the linear problem (1.1) in the vanishing viscosity limit v — 0. The lin-
earized problem around a stationary profile Uy, is a classical problem in Fluid Mechanics and
arises in the study of boundary layer instabilities and of the onset of turbulence. It has attracted
prominent physicists, including Rayleigh, Orr, Sommerfeld, Heisenberg, Tollmien, C.C. Lin,
Schlichting, among others. For a review of the physical literature on the subject, we refer the
readers to [1].

Two cases arise. Either the profile Uy, is spectrally unstable for the underlying Euler equation.
In this case it is also spectrally unstable for Navier Stokes equations, with a most unstable eigen-
value with a O (1) real part. Or the profile is spectrally stable for the underlying Euler equation.
In this case it turns out that it is spectrally unstable for Navier Stokes equations, with a much
slower instability, namely with a real part of order O(v'/?). In this paper we focus on the first
case and prove that the linear growth rate of a solution of linearized Navier Stokes equation is
arbitrarily close to the spectral radius of linearized Navier Stokes equations, which is known to
be arbitrarily close to that of Euler equations.

Motivated by the study of instabilities of Prandtl’s boundary layers [4—6], we are interested
in deriving sharp bounds on the semigroup of (1.1) that are uniform in the vanishing viscosity
limit. As v — 0, solutions to the linear problem (1.1) are expected to converge to solutions to the
corresponding linearized Euler problem around Uy,. In the limit, however, due to the discrepancy
of the corresponding boundary conditions between Euler and Navier-Stokes equations, boundary
layers of thickness of order /v appear, and thus, the vorticity near the boundary is of order v—!/2
and is unbounded as v vanishes.

In this paper, we introduce boundary layer function spaces that capture the behavior of the
vorticity near the boundary. Our semigroup estimates are uniform in the inviscid limit.

1.2. Boundary layer spaces
Let us first introduce various functional spaces. Let 8, y > 0 be fixed and let

=y (1.3)

be the boundary layer thickness. The constant y will be fixed later, large enough. For any function
of one variable f = f(z), we introduce the boundary layer norm
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-1
1715 =suplf @1 (14867 9p(6712)) (1.4)
z>0
with boundary layer weight function

op(z) = m

for some fixed constant P > 1. By definition, f decreases exponentially fast at infinity, like
e~P% and is bounded by & /(1 4 (z/8)") for small z. It is also possible to consider exponential
weights. Note that 8 may be arbitrarily small.

We denote by B7 the space that consists of functions with finite ||.| g,y boundary layer norm.
We expect the vorticity of the Navier-Stokes equations (1.1) to be in the boundary layer space
BE-Y  for each x and 1.

Finally, we denote by A#, the function space without a boundary layer behavior, with the
weighted norm

I fllpg= sulglf(z)|eﬂz.

1.3. Linearized Navier-Stokes

We shall work with the vorticity formulation of (1.1). Thanks to the divergence-free condition,
we may introduce the stream function ¢ (¢, x, z) and define

V=Vt = (3.0, o).

By definition, there holds

Ap =w. 1.5)
Taking the curl of (1.1) yields
ow— Lw=0, Lo:=-Udw+U"0;¢ +vAw, (1.6)
together with the boundary conditions
0x P,y = 9;P),_, = 0. 1.7)

The problem (1.5)-(1.7) is equivalent to the linearized Navier-Stokes problem (1.1)-(1.2) around
U (z). Similarly, the linearized Euler equations around U(z) are (1.5)-(1.6), with v = 0 and
boundary condition dx¢),_, = 0.

It is then convenient to introduce the Fourier transform in the x variable. Solutions to the
linearized problem will be constructed in terms of Fourier series

ot.x,2) =Y e dy(t.2) (1.8)

aeZ
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where the Fourier coefficients @ (¢, z) solve
3o — La®o =0, LoyGo = —iaUdy + iadeU" + vAgde (1.9)

with

together with the boundary conditions

at z = 0. Here,
Ay = 822 —a?
Observe that at « = 0, the linear problem (1.9) becomes
ddo — V32 =0
whose semigroup can be explicitly solved. In particular, @g(¢, z) = O for all positive times, if it
is initially zero.
The aim of this paper is to prove the following result
Theorem 1.1. Let U (z) be a C*° smooth boundary layer profile such that U(0) =0 and
05U @) — U < Cre™™,  ¥z20, k=0, (1.10)
for some constants Cy, Uy, ng. Let Ao be the maximal unstable eigenvalue of the linearized Euler

equations around U, namely the eigenvalue which has the largest real part Whg. We assume that
U is spectrally unstable for Euler equations, namely that

Nro > 0.

Let a be fixed and let T > 0. Then there is a constant C, so that for any v < 1,

lle = wq (0, )p,y < Cre™ T g (0, )],y (1.11)
for any initial vorticity wy(0, .) and for all t > 0, provided B and y are small enough.

Note that estimate (1.11) is uniform in v as v goes to 0. Note also that the vorticity is un-
bounded near the boundary as v goes to 0. Theorem 1.1 provides a semigroup estimate for the
linearized Navier-Stokes problem near an unstable boundary layer profile, which is uniform in
the vanishing viscosity limit. Such an estimate is sharp without the knowledge of the multiplic-
ity of the maximal unstable eigenvalue 1. The interest in deriving such a sharp bound on the
linearized Navier-Stokes problem is pointed out in [4—6,8]; see also [2,3]. Certainly, the estimate
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(1.11) is very natural, but, up to the best of our knowledge, it has never been proven in the lit-
erature. The difficulty lies in the fact that the initial data w has a boundary layer type behavior
and hence in order to propagate this boundary layer behavior, pointwise bounds on the Green
function of linearized Navier-Stokes equations near a boundary layer are needed.

1.4. The resolvent

In order to study e’«’, it is convenient to take the Laplace transform of (1.9). This leads to the
resolvent equation

(A= Lo)wy = fu (1.12)
with f, = @ (0,7). As Ly is a compact perturbation of the Laplacian A, standard energy
estimates yield that the operator (A — Ly)~! is well-defined and bounded from H~! to H~!

by [MA — yo|~!, for some possibly large constant g and for any %A > . Hence, the classical
semigroup theory (see, for instance, [11, Theorem 6.13] or [13]) yields

1
el f, = —./e)‘t(k —Lo)  fudn (1.13)
2mi
Lo

where Iy, is a contour lying on the right of the spectrum of L. It is traditional to introduce

c=ia A, £=—. (1.14)

Writing wy, = Ay ¢y, the resolvent equation (1.12) becomes the classical Orr-Sommerfeld equa-
tions for the stream function ¢y

VA2 g + (U — iN) Ay — aU" o = —ifo, (1.15)
together with the boundary conditions:
$a = 0:¢o =0, on z=0. (1.16)

We then solve the Orr-Sommerfeld equations thanks to their Green functions. For each fixed
a €N and c € C, we let Gy 5 (x, z) be the corresponding Green kernel of the Orr-Sommerfeld
problem (1.15)-(1.16). By definition, for each x € R, G4 ((x, 2) solves

OS(Ga,A(xv ) =08x()
on z > 0, together with the boundary conditions:
Gy (x,0)=0;Gy.(x,0) =0, lim Gy (x,z)=0.
—> 00

The solution ¢, to the Orr-Sommerfeld problem (1.15)-(1.16) is then constructed by
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0]

G (z) = —i / Go.c(x,2) fo(x)dx.

0

Hence, as wy = (A — La)_lfa = Ay o, We get

(A= La) ™! fu(2) Z_i/AaGa,A(xaz)fa(x) dx (1.17)
0
and
el f, =—%/‘/eMAaGa,A(x,z)fa(x) dxdx (1.18)
'y O

in which I'y, is chosen depending on « and lying in the resolvent set of L,,.

Such a spectral formulation of the linearized Navier-Stokes equations near a boundary layer
shear profile has been intensively studied in the physical literature. We in particular refer to [,
12,9,10] for the major works of Heisenberg, Tollmien, C.C. Lin, and Schlichting on the subject.
We also refer to [5—7] for the rigorous spectral analysis on the Orr-Sommerfeld equations.

We now recall the main results from [8] on the Green function G4, ;. We focus on the case
a > 0, the case « < 0 being similar. We introduce Rayleigh’s equation

Rayy, (@) = (@U —iMN)Aggp —alU"¢p =0.

oz

The Rayleigh equation Ray,(¢) = 0 has two solutions ¢, +, with respective behaviors e at

infinity. We define the Evans function E (¢, A) by

E(a, 1) = ¢a,—(0).
In this paper, we restrict ourselves to the case when A is away from the range of —iaU . Precisely,
let €y be an arbitrarily small, but fixed, positive constant, we shall consider the range of (¢, A) in

R4 x C so that

d(a,A) = inf |A+iaU(2)| > €. (1.19)
zeR4

Note that d(a, 1) = R\ if IX € —aRange(U). In any case, we have
d(a, A) = |NA|. (1.20)
The main result from [8] is as follows.

Theorem 1.2. Let U(z) be a boundary layer profile which satisfies (1.10). For each a, X, let by
Gy .. (x, 2) be the Green kernel of the Orr-Sommerfeld equation, with source term in x, and let

ps=lal,  pp@=v"*/A+va? +ial(2), (1.21)
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where we take the square root with positive real part. Let 0 < 6y < 1 and ¢ < 1/2. Let o9 > 0 be
arbitrarily small. Then, there exists Co > 0 so that

Co - - Co —6o| [P Ry d
1Gas(x,2)| < — e fomshe—zl =0 6ol [y Ny dyl (1.22)
¢ psd (e, 2) g ()ld (o, 1)

uniformly for all x, 7 > 0 and 0 < v < 1, and uniformly in (&, ) € R\ {0} x C so that |a| < v~¥,
(1.19) holds, and

|E(a, A)| > oyp.
In addition, there hold the following derivative bounds

k+¢ k+L .
Corts™ —gousx—zl . Coly @I o) Zouyep ayy

1959 G (x, )| < ——2— (1.23)
e 1sd(at, 1) i ()l (e, 1)
forall x,z>0and k,£ >0, in which M y = sup, Ru ¢ (z). In particular, we have
|AqGai(x,2)| < Co e—forslx—zl | Le—f)olf; Rpwy dyl (1.24)

d(a, 1)? vipp(x)]
where we “gain” a factor | in the first term on the right hand side.

We believe that the 6y factor is purely technical, and that this Theorem holds true for 6y = 1.
In addition, we note that in deriving the estimates for the slow modes we mainly have to invert
8% — a? which leads to a gain of j; = ||, while the inversion of the fast modes leads to a gain of
1 r. Moreover, Ay G, enjoys better bounds since AgeT¥e =0 and Aygs ~iaps /(L +ial)
for slow modes ¢, which gains a prefactor ov/d (e, A) as stated in the estimates. Finally, we note
that the condition (1.19) implies

Riwr(2) =v 204 +va? +ial(z) = v 2 e0/2 > s (1.25)
for sufficiently small v and for || < v=¢ for some ¢ < 1/2. That is, the fast and slow behavior
in the Green function is essentially separated. We refer the readers to [8] for further discussions
and the proof of Theorem 1.2.

2. Semigroup bounds

In this section, we shall bound the semigroup ele! for || < v~ with ¢ < 1/2. In view of
(1.18) and (1.24), we decompose ele! as follows:

" g = Sq, 106 + Su,20a @1

with
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o0
1
Saoa(0)i= 5 / / 81 (x, D) (x) dxd,
fo 0 (2.2)

o0
1
Sezen(0)i=5 / / 8y (x, D) (x) dxd,
'y 0

where the kernels S; (x, z) are meromorphic in A, corresponding to the slow and fast behavior of
the Green function A, G 3 (x, z) as obtained in Theorem 1.2. Precisely, from (1.24), we have

—Bopslx—z|
)

Co
< —_—
[S1(x,2)| < d(a,A)ze
. " 2.3)
|S2(x, 2)| < =0 bl vy dyl,
v (x)]

for some universal positive constant 6.
2.1. Bounds on S,
In this section, we prove the following.
Proposition 2.1. For sufficiently small B and any positive t, there is a constant C; so that
ISa,10allp,y < Cre™ 0 wgllg,y, (2.4)

uniformly in't >0, small v> 0, and |o| < v=¢ with ¢ < 1/2.

Proof. We restrict ourselves to o > 0. Since the Green kernel Sj(x, z) is meromorphic in A, we
can apply the Cauchy theory and take the contour I',, of integration to consist of A so that

RA=Rro+1 2.5)

for arbitrary small, but fixed, constant ¢ > 0. Since I', remains in the resolvent set of Ly, the
(inviscid) Evans function E(«, A) never vanishes. In addition, recalling the assumption (1.19)
and writing L = A + iJA, we have

d(a,A) = inf |A+iaU(2)| = €o(1 +inf|IA — aU(2)]).
z

zeR4

‘We thus obtain from (2.3) that
1S1(x, 2)| < Co (1 +inf |1 — aU (2)]) "2~ orslv =2l (2.6)
Z

for all A € T'y.
Let us now estimate the convolution Sy, 1w (z) in the boundary layer norm || - |, . First we
recall from the definition that
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o ()] < llwallgye P (1 +8"1pp 1))
Hence, recalling (2.2) and using (2.6), we have
o0
ISu102(2)] < Crllolls., / / (1 +inf |34 — aU (2)]) 2ot
Z

R O
x e~ torsx=zlg=BI¥l (1 4 571 p (571 x)) dx dIn.

The integral in I is bounded, yielding
o0
|Se, 100 (2)] < Cellw] g,y eMHo 1 / e~ omsi =zl =Bl (1 4 571 p (57 1)) dx.
0

Recall that uy = |«|. Using the triangle inequality |z| < |x| 4+ |x — z| and the fact that 8 < 1 and
|| > 1, we obtain

%
e fonslx—z|, ﬁ\XIfe Bz o=z alx—z|

Hence, we get

o0
- )
|Sw 106 (2)] < Cr |l e MPOHDT ¢ F / e T 457 pp (57 x)) dx
0

00
< Cr||a)||/3,ye(w‘0+r)te_ﬂz(oz_l +8_1/¢p(8_1x) dx).
0

< Cellollpye™ 0t e,
completing the proof of the Proposition. O
2.2. Bounds on Sy 2
In this section, we give bounds on the semigroup Sy 2, defined as in (2.2). Precisely, we have
Proposition 2.2. For sufficiently small B and any positive t, there is a constant C so that
1Su20allp,y < Cre™ O lagllg,,, @7
uniformly int >0, small v > 0, and |o| < v~ with ¢ < 1/2.

To prove this proposition we will use the following Lemma
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Lemma 2.3. Let Sy (x, 2) be the Green kernel defined as in (2.2). Introduce the temporal Green
function

1
Gy(t,x,7):= —,/e“sz(x,z) dh. (2.8)
27
g

Then, for any positive t, there are constants Cr, 0, so that there holds

|Ga(t, x, 2)]

x—z|? -
SC,(vt)*l/ze”e*% el Z et =172 ,—000 ™12 x—] (2.9)

Rha>T

uniformly in t > 0, small v > 0, and « € Z*, in which

1
0; = 5\/5}%Aa + 7+ a2y,

and the summation is taken over finitely many unstable eigenvalues Ay of Ly, such that fihy > T.

Proof. We move the contour of integration I'y in (2.8) from its initial position to the particular
one defined below at (2.11). As I', moves to the left in the complex plane, it may meet unstable
eigenvalues of L,

We first bound the contribution of these unstable eigenvalues. To proceed, let T be an arbitrary
positive number, and let A, = —iac be a zero of E(«, A) such that Ry, > 7. As E(x, A) is
analytic in c, its zeros Ay are isolated. Taking 7 smaller if needed, we can assume that there
is no other unstable eigenvalue in the ball B(Ay, %‘L’) ={|A — Ao| < %‘L’}. In particular, we have
|E(at, 1)| = C; for A € 3B(Aq, 57). In addition, since RA > L(Rrg + 7) on IB(he, 37), we
have

R p =v 12RVA+@2v +ialU > v /20,
with 6, = %\/ﬂika + v+ «2v. Thus, on 4B (g, %r), there holds
1Sy, 2)| < —C0 =00l [y vl < ¢,y =1/2 =000 Pl 2],
vl r(x)]
upon recalling (1.19). This yields

-1/2

‘ / M8 (x. 7) di| < Cov~ 12t Dt =00y Pli—z] (2.10)

9B(ha,57)
which contributes to the last term in the Green function bound (2.9).

We are now ready to choose a suitable contour of integration I'y. Let us consider the case
when x < z, the other case is similar. Recall that
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Fa,2 I C

o
Ha
A —
0 1—‘a,l
o
Fa 3 Fa

B

Fig. 1. Shown the decomposition of contour Ty .
nr(z) = v_l/z\/m.
By construction, S;(x, z) is holomorphic in A, except on the complex half strip
He(x,2) = {k:—k—a2v+iaU(y), keRy, ye[x,z]}.

In our choice of contour of integration below, we shall avoid to enter this complex strip, as
depicted in Fig. 1. Precisely, we deform the contour I'y, into

Fot = F(x,l ) Fa,Z ) Fa,3

where
[y 1:= {k:yl—azv—iac, min U(y) <c¢ < max U(y)}
Y€lx,z] yelx,z]
Fypo:i= {A:m —a2v—k2v—ia[mir}U—|—2viak, kzO}
X,Z
[y3:= {A:yl —azv—kzv—ial[na)J(U—l—Zviak, ka}
X,z
with
— 1
v =1 +a*v+a, a:m. (2.11)

4vt

The choice of the parabolic contours I'y 2 and I'y 3 is necessary to avoid singularities in small
time [14]. Note that they never meet the complex strip Hy (x, z). In addition, they may leave
unstable eigenvalues to the right, in which case the contribution from unstable eigenvalues (2.10)
is added into the bounds on the Green function.

Bounds on Ty 1.
We start our computation with the integral on Iy, 1. We first note that for A € Iy 1, there holds

R =v 2R +iaU —c) = v 12 /yp.
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Hence, we have

1S2(x, 2)| < Le—eouj Rusdyl < CU71/2y1_1/2e7”71/2m|)f*1\‘
T vlpp )] -

2 2

Using y1 > a“v and y; > o~ v, we note that

=z g

1. — =z
o2V ATzl < =Szl T B s

1— 1
e~ 2V 12 mlx—z < e*ja\xle

On the other hand, recalling (2.11), we compute

2
) ) x—z| +\xfz +L
|e)»t| — VIt g0Vt _ Tt ,a"vt _ T, Ter T3 T 16

Thus, putting the above estimates together, we obtain

x—z)?
€M Sy(x, 2)] < Cv= 12y 2T o= i — ekl 2.12)

for any A € 'y 1. Hence, we estimate

maxy ;) U
‘ f M8 (x,z)dr| < Cow_l/zyl_l/ze”e_ ‘Xlgir‘z_%“‘x_zl / dc
| minpy ;U
lx—z|?

—1/2

—1/2 — _Llx—
< Cav™ 12y 12t e o 2ol U .

Using the inequality X e~X < C for X > 0, we have
e_%alx_zlodx -zl =C.
‘We thus obtain

li—z?

_ —1/2 —
‘/e“Sz(x,Z)d)» <12y et e T (2.13)

1—‘0(,1

This yields the claimed estimate on I'y, 1, upon noting that v/t < Cre*’ for any ¢ > 0.

Bounds on Ty 2 and Ty 3.
By symmetry, it suffices to give bounds on I'y 2. For A € I'y 2 and y € [x, z], we compute

wr(y) = V_l/z\/)/l — kv +ia(U — minU) + 2ivak

= vl/z\/t +a?v+ia(U — {nll} U) + (a +ik)?v.
X,Z
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Recalling that k, o, T > 0, the above yields

Rier () =R (@ +ik)2=a (2.14)
for y € [x, z]. So, using a = (|x — z| + /1) /4vt, we get

|x—z|2+2ﬁ|x—zl+vl_ Ix —z|? 4+ /vilx — 2|

a’vt —alx —z|=

16vt 4vt
1 3lx—zP +2vilx — g
16 16vt
and hence
- 2
MM = [0 () dy <ertea vi—vkt ,—alx—z| <Ce Tt ,— vkt = 3zl _ (2.15)
Moreover

nr(x) = vl/z\/t +o2v+a?v—k2v+ia(U — {mr} U) +2ivak.
X,Z

This implies that

g ()] = v 2 \/a(U —minU) +2vak = v/2ak,
X,Z

recalling k > 0. In addition, we also have |u ¢ (x)| = R ¢ (x) = a (see (2.14)). Hence, combining
the two estimates, we have

1
p (0l S+ Vak).

Hence, recalling ice = v and noting dA = 2vi(a 4 ik)dk on I'y 2, we can estimate

X*Zz
‘[e“Sz(x,z) i Screne,\@) / okt |a+zk|dk

a—++a
Fa,2 +
\x—zz
<Crete T fe—”sza +a"2Vk)dk
R4

X_Zz
< Coun Vet e T (14 a2 )14

1/2

up to the contribution from unstable eigenvalues (2.10). Note that a > (vt)~ and hence

czfl/z(vt)fl/4 < 1. The Lemma follows. 0O
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Lemma 2.4. Let

lx—z|

H(t, x,z) := (vt) "2~ o

for some positive M. For any positive B, there is a constant Cy so that
o
2
| [ #exouw ] <o os,.
By
0

Proof. Let w,(z) be a boundary layer function that satisfies
0 (@] < ol (1457907 2) ). 2.16)

We first show that the convolution has the right exponential decay at infinity. Indeed, in the case
when |x — z| > MBvt, using |x| > |z| — |x — z|, we have

lx—zI2 lx—z|

o~ S oAl < o= Bial~l 2 (SR —B) < Bzl

Whereas, for |x — z| < MBvt, we note that

_ \.rfz\z

o= S o= BIrl < o= MBvt = Blx| < p=Blx—2l ,=Blx| < ,=BII,

Combining, we have

_l=z?

e~ i e P < o7 Pl Vx,zeR 2.17)

which yields the spatial decay e~#7 in the norm || - || B.y-
It remains to study the integral

/(ut)—l/%—‘??if‘z (1 +3—1¢p(3—1x)) dx. (2.18)
0

The integral without the boundary layer behavior is clearly bounded. Next, using the fact that
op(8x) is decreasing in x, we have

o0
X*Zz
/(vt)—l/%—%s—l(pp(s—lx) dx

z/2

oo
x—z)?
< Cos'pp(57'2) / ()~ 2= " dx
z/2

<Cos 'pp 87 12).
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Whereas on x € (0, z/2), we have |x — z| > % and ¢p < 1. We have
z/2

X—Zz
/(w)—l/ze—W—via—%p(s—lx) dx
0

, 2 ) (2.19)
_ el 1 —12 _lx—zl
< Cpe™ 8Mv1 § f(vt) e~ i dx
0

|22
< Cpe™ 8Mwt s

It remains to prove that

Iz

e sl < CO(S_leSM”’e_Z/ﬁ (2.20)

. _ . 2
for some constant Cg. Indeed, the inequality is clear, for |z| > 8M v3/2¢, since e~ 8 < =%/ Vv,
Next, for |z] < 8Mv3/2¢t, we have

1 < 8MVIg=2/VV,

This proves (2.20), and so (2.19) is again bounded by Coe®MVis=lpp(5~17), upon recalling that
the boundary layer thickness is of order § = y/v. O

Lemma 2.5. Let

12— v~ 125
R(t,x,z) 1= v~ /270y Tlx =l

for some positive 0;. Then, for any positive B, there is a constant Cy, depending on 0, so that
00
| [ Rexsouwan] | <cotoule,
0
Proof. We need to bound the integral

00
/U—1/26—9TV_]/2|X—Z|<1 + 6—1¢P(8—1x))e—13|x| dx.
0

First, taking v smaller, if needed, we can assume that %9,1}‘1/ 2> B, and thus by the triangle
inequality |z| < |x|+ |x — z|, we have
e 20 Pzl =Blxl < —Blal.

Next, similarly as done in the previous lemma, we have
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o0
/v—l/2e—9fv_1/2|x—z|8—l¢P(5—1x) dx
/2

b4

o
SC0571¢P(5712)/V71/2670’v71/2|x71| dx
z/2

<C.57'9p67 1),
and

z/2
/v—1/2e—0,v—1/2|x—z|3—1¢P(5—1x) dx
0

z/2
<y /2= 307l [ 8 'pp (87 x) dx
0

1 —1/2
< Cov~1/2e— 20 / Izl

which is again bounded by C.8 '¢p(87'z), upon recalling that § = /v and ¢p(Z) = (1 +
zP-1. o

Proof of Proposition 2.2. In view of (2.2) and (2.8), we have

oo

S, 20q(2) = / Go(t, x, 2wy (x) dx.
0

For each fixed positive 7, we first show that the set of unstable eigenvalues A, of L, for all
a € Z*, such that WA, > 7 is finite. We recall that, in the inviscid limit, such eigenvalues are per-
turbations of eigenvalues of the limit problem v = 0, namely of Rayleigh equation. It is therefore
sufficient to study the Rayleigh problem

v’ A
¢209 C=__a

A - £
ad U—-c i

with the boundary condition ¢ _, = 0. For each o € Z*, it is clear that there are only finitely
many unstable eigenvalues, since the Rayleigh operator is a compact perturbation of the Lapla-
cian A, . In addition, multiplying the Rayleigh equation by ¢ and integrating by parts, we get

3¢

o0 1 o0
/<|az¢|2+a2|¢|2> dz < f|U”||¢|2dz.
0 0
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In particular, if &?|Jc| > ||U” ||, there is no nontrivial solution to the Rayleigh problem. This
implies that there is no unstable eigenvalue A, whenever afidy > ||U” || L. In particular, there
are no unstable eigenvalues 9ii, > 7, whenever o > YU poo.

This proves that there are finitely many unstable eigenvalues of L, so that i, > t for all
o € Z*. In particular, the summation in (2.9) from Lemma 2.3 is finite, independent of o € Z*,
yielding

x—z|2 N —12
1Ga(t, x, 2)| < Ct(vt)_l/ze”e_XST +Cre(ﬂlko+r)tv—l/26—9,u 12|x—z|

with 6; = %\/ER)»O + 1 4 o2, where Ao denotes the maximal unstable eigenvalue. Finally, ap-
plying Lemmas 2.4 and 2.5, respectively, to the above pointwise bounds, we complete the proof
of the Proposition. O

3. Elliptic estimates

For the sake of completeness we now detail how the weighted estimates on vorticity may be
translated into weighted estimates on the velocity field.

3.1. Inverse of Laplace operator in one space dimension
Let us now solve the classical Laplace equation
Ao =02p —o’p = f (X))
on the half line z > 0, with Dirichlet boundary conditions

$(0) =0, (3.2)

Note that « is a non zero integer. We assume that o > 0. We start with bounds in the space A?,
namely without boundary layers. We will prove

Proposition 3.1. If f € AP, then the solution ¢ to (3.1)-(3.2) belongs to AP provided p < 1/2.
In addition, there holds

a?lipllp +alldpllg + 13261ls < Cll fllg, (3.3)
where the constant C is independent of o € N*,

Proof. The solution ¢ of (3.1)-(3.2) is explicitly given by

o0

¢(2) = / G(x,2) f(x)dx (3.4)

0

where G (x, z) is the Green function of 822 — a2, with the Dirichlet boundary condition. Precisely,
we have
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| _
G2 = L (etemst i)
20
In particular, |G (x, z)| < a~le~*¥~2l Therefore, as | f(z)| < ||f||,3e_/3z, we have

o]

()] <a™! ||f||ﬁ/e—a|z—x|e—ﬂxdx.

0
Using the triangle inequality |z| < |x| + |x — z| and the assumption that 8 < 1/2 < «, we have

e¢]

1
lp@)| <a ' fllgeP? / em 2%k ax <2072 fllge 77,

0

which yields the claimed bound for a?¢. The estimate for d,¢ follows similarly, upon noting that
10,G(x, z)| < e~ 2l Finally, writing 8§¢ =a?¢ + f, we obtain the estimate for 8z2¢ from that
of a?¢p. O

Next, we establish similar elliptic estimates when the source term f has a boundary layer
behavior.

Proposition 3.2. If f € BP7, then the solution ¢ to (3.1)-(3.2) belongs to AP provided g < 1/2.
In addition, there hold

allpllp + 11981l < Cllfllp.y

) (3.5)
10:0llg,y <Cllfllgy +Clleef gy,

where the constant C is independent of o € N*.

Proof. For a boundary layer function f € B, using (3.4), we have

o0

19 (2)] sa*lufuﬁ,y/e*“'Z*X‘e*ﬁX(l+a*1¢P(s*1x))dx

A lpye” /e I (145719p (657 ) )dx
0

S lppe (207 +C),

upon noting that § '¢p(8~!-) is bounded in L'. This proves the claimed bound for a¢. The
estimate for d,¢ follows similarly, upon noting that |3, G (x, z)| < e~**~Zl. The estimate for 83(;5
follows from 834& =a?¢ + f. O

Because of the boundary layer behavior of f, we cannot get a good control on second order
derivatives without an extra control on f (precisely, on «f) as is the case in Proposition 3.2.
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3.2. Stream function and vorticity
We recall that the stream function and vorticity are linked through the elliptic equation
—Ap=w (3.6)
with the zero Dirichlet boundary condition on ¢ at z = 0. Let
v=Vie (3.7)
be the velocity vector field. We obtain the following Proposition

Proposition 3.3. Ler 8 < 1/2 and let w be a vorticity function so that we € B?Y, for a € Z.
Then, for each o € Z, there hold the following elliptic estimates:

lvallg < Cllwallp,y

192l + 10.01.0l7 = C(lloalpy + lowallp,y ). (3.8)
1@ v2alls = C(I@allpy + lawalls,y ).
with ¥ (z) = z/(1 + 2).

Proof. In Fourier variables, the elliptic equation (3.6) reads

(07 — &®)po = Wa.

The estimates on v, and 0,v, are derived using Proposition 3.2, with v, 1 = 0;¢¢ and vy o =
—iagy. Next, using ¢y (0) =0, we write

Z Z

V(@) () =Y (2)7! f 0 dy < 19:0allp ¥ ()~ / e P ay

0 0

which is bounded by C||d,¢ || g. The proposition follows. O
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