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Abstract

In this paper, we derive sharp bounds on the semigroup of the linearized incompressible Navier-Stokes 

equations near a stationary shear layer in the half space (R2
+ or R3

+), with Dirichlet boundary conditions, 

assuming that this shear layer in spectrally unstable for Euler equations. In the inviscid limit, due to the 

prescribed no-slip boundary conditions, vorticity becomes unbounded near the boundary. The novelty of 

this paper is to introduce boundary layer norms that capture the unbounded vorticity and to derive sharp 

estimates on this vorticity that are uniform in the inviscid limit.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Position of the problem

In this paper, we study the linearized incompressible Navier Stokes equations on the half space 

(x, z) ∈ T × R+ around a stationary boundary layer profile of the form Ubl = (U(z), 0), where 

U is a smooth function with U(0) = 0. In the whole paper, x is periodic, with 2π -period and 
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z > 0. As will be apparent in the proof, the three dimensional case T 2 × R+ is similar. Precisely, 

we consider the linear problem

∂tv + Ubl · ∇v + v · ∇Ubl + ∇p = ν�v

∇ · v = 0
(1.1)

in the half space T × R+, where p is the scalar pressure and v = (v1, v2) denotes the velocity 

vector field, satisfying the classical no-slip boundary condition

v|z=0
= 0. (1.2)

We will denote by ω the vorticity

ω = ∂zv1 − ∂xv2

We are interested in the linear problem (1.1) in the vanishing viscosity limit ν → 0. The lin-

earized problem around a stationary profile Ubl is a classical problem in Fluid Mechanics and 

arises in the study of boundary layer instabilities and of the onset of turbulence. It has attracted 

prominent physicists, including Rayleigh, Orr, Sommerfeld, Heisenberg, Tollmien, C.C. Lin, 

Schlichting, among others. For a review of the physical literature on the subject, we refer the 

readers to [1].

Two cases arise. Either the profile Ubl is spectrally unstable for the underlying Euler equation. 

In this case it is also spectrally unstable for Navier Stokes equations, with a most unstable eigen-

value with a O(1) real part. Or the profile is spectrally stable for the underlying Euler equation. 

In this case it turns out that it is spectrally unstable for Navier Stokes equations, with a much 

slower instability, namely with a real part of order O(ν1/2). In this paper we focus on the first 

case and prove that the linear growth rate of a solution of linearized Navier Stokes equation is 

arbitrarily close to the spectral radius of linearized Navier Stokes equations, which is known to 

be arbitrarily close to that of Euler equations.

Motivated by the study of instabilities of Prandtl’s boundary layers [4–6], we are interested 

in deriving sharp bounds on the semigroup of (1.1) that are uniform in the vanishing viscosity 

limit. As ν → 0, solutions to the linear problem (1.1) are expected to converge to solutions to the 

corresponding linearized Euler problem around Ubl. In the limit, however, due to the discrepancy 

of the corresponding boundary conditions between Euler and Navier-Stokes equations, boundary 

layers of thickness of order 
√

ν appear, and thus, the vorticity near the boundary is of order ν−1/2

and is unbounded as ν vanishes.

In this paper, we introduce boundary layer function spaces that capture the behavior of the 

vorticity near the boundary. Our semigroup estimates are uniform in the inviscid limit.

1.2. Boundary layer spaces

Let us first introduce various functional spaces. Let β, γ > 0 be fixed and let

δ = γ
√

ν (1.3)

be the boundary layer thickness. The constant γ will be fixed later, large enough. For any function 

of one variable f = f (z), we introduce the boundary layer norm
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‖f ‖β,γ = sup
z≥0

|f (z)|eβz
(

1 + δ−1φP (δ−1z)
)−1

(1.4)

with boundary layer weight function

φP (z) = 1

1 + zP

for some fixed constant P > 1. By definition, f decreases exponentially fast at infinity, like 

e−βz and is bounded by δ−1/(1 + (z/δ)P ) for small z. It is also possible to consider exponential 

weights. Note that β may be arbitrarily small.

We denote by Bβ,γ the space that consists of functions with finite ‖.‖β,γ boundary layer norm. 

We expect the vorticity of the Navier-Stokes equations (1.1) to be in the boundary layer space 

Bβ,γ , for each x and t .

Finally, we denote by Aβ , the function space without a boundary layer behavior, with the 

weighted norm

‖f ‖β = sup
z≥0

|f (z)|eβz.

1.3. Linearized Navier-Stokes

We shall work with the vorticity formulation of (1.1). Thanks to the divergence-free condition, 

we may introduce the stream function φ(t, x, z) and define

v = ∇⊥φ = (∂zφ,−∂xφ).

By definition, there holds

�φ = ω. (1.5)

Taking the curl of (1.1) yields

∂tω − Lω = 0, Lω := −U∂xω + U ′′∂xφ + ν�ω, (1.6)

together with the boundary conditions

∂xφ|z=0
= ∂zφ|z=0

= 0. (1.7)

The problem (1.5)-(1.7) is equivalent to the linearized Navier-Stokes problem (1.1)-(1.2) around 

U(z). Similarly, the linearized Euler equations around U(z) are (1.5)-(1.6), with ν = 0 and 

boundary condition ∂xφ|z=0
= 0.

It is then convenient to introduce the Fourier transform in the x variable. Solutions to the 

linearized problem will be constructed in terms of Fourier series

ω(t, x, z) =
∑

α∈Z

eiαxω̂α(t, z) (1.8)
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where the Fourier coefficients ω̂α(t, z) solve

∂t ω̂α − Lαω̂α = 0, Lαω̂α := −iαUω̂α + iαφ̂αU ′′ + ν�αω̂α (1.9)

with

�αφ̂α = ω̂α,

together with the boundary conditions

αφ̂α = ∂zφ̂α = 0

at z = 0. Here,

�α = ∂2
z − α2.

Observe that at α = 0, the linear problem (1.9) becomes

∂t ω̂0 − ν∂2
z ω̂0 = 0

whose semigroup can be explicitly solved. In particular, ω̂0(t, z) = 0 for all positive times, if it 

is initially zero.

The aim of this paper is to prove the following result

Theorem 1.1. Let U(z) be a C∞ smooth boundary layer profile such that U(0) = 0 and

|∂k
z (U(z) − U+)| ≤ Cke

−η0z, ∀ z ≥ 0, k ≥ 0, (1.10)

for some constants Ck, U+, η0. Let λ0 be the maximal unstable eigenvalue of the linearized Euler 
equations around U , namely the eigenvalue which has the largest real part �λ0. We assume that 
U is spectrally unstable for Euler equations, namely that

�λ0 > 0.

Let α be fixed and let τ > 0. Then there is a constant Cτ , so that for any ν ≤ 1,

‖eLα tωα(0, .)‖β,γ ≤ Cτ e
(�λ0+τ)t‖ωα(0, .)‖β,γ , (1.11)

for any initial vorticity ωα(0, .) and for all t ≥ 0, provided β and γ are small enough.

Note that estimate (1.11) is uniform in ν as ν goes to 0. Note also that the vorticity is un-

bounded near the boundary as ν goes to 0. Theorem 1.1 provides a semigroup estimate for the 

linearized Navier-Stokes problem near an unstable boundary layer profile, which is uniform in 

the vanishing viscosity limit. Such an estimate is sharp without the knowledge of the multiplic-

ity of the maximal unstable eigenvalue λ0. The interest in deriving such a sharp bound on the 

linearized Navier-Stokes problem is pointed out in [4–6,8]; see also [2,3]. Certainly, the estimate 
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(1.11) is very natural, but, up to the best of our knowledge, it has never been proven in the lit-

erature. The difficulty lies in the fact that the initial data ω has a boundary layer type behavior 

and hence in order to propagate this boundary layer behavior, pointwise bounds on the Green 

function of linearized Navier-Stokes equations near a boundary layer are needed.

1.4. The resolvent

In order to study eLα t , it is convenient to take the Laplace transform of (1.9). This leads to the 

resolvent equation

(λ − Lα)ωα = fα (1.12)

with fα = ωα(0, z). As Lα is a compact perturbation of the Laplacian �α , standard energy 

estimates yield that the operator (λ − Lα)−1 is well-defined and bounded from H−1 to H−1

by |�λ − γ0|−1, for some possibly large constant γ0 and for any �λ > γ0. Hence, the classical 

semigroup theory (see, for instance, [11, Theorem 6.13] or [13]) yields

eLα tfα = 1

2πi

∫

�α

eλt (λ − Lα)−1fα dλ (1.13)

where �α is a contour lying on the right of the spectrum of Lα. It is traditional to introduce

c = iα−1 λ, ε = ν

iα
. (1.14)

Writing ωα = �αφα , the resolvent equation (1.12) becomes the classical Orr-Sommerfeld equa-

tions for the stream function φα

iν�2
αφα + (αU − iλ)�αφα − αU ′′φα = −ifα, (1.15)

together with the boundary conditions:

φα = ∂zφα = 0, on z = 0. (1.16)

We then solve the Orr-Sommerfeld equations thanks to their Green functions. For each fixed 

α ∈ N and c ∈ C, we let Gα,λ(x, z) be the corresponding Green kernel of the Orr-Sommerfeld 

problem (1.15)-(1.16). By definition, for each x ∈ R+, Gα,c(x, z) solves

OS(Gα,λ(x, ·)) = δx(·)

on z ≥ 0, together with the boundary conditions:

Gα,λ(x,0) = ∂zGα,λ(x,0) = 0, lim
z→∞

Gα,λ(x, z) = 0.

The solution φα to the Orr-Sommerfeld problem (1.15)-(1.16) is then constructed by
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φα(z) = −i

∞
∫

0

Gα,c(x, z)fα(x) dx.

Hence, as ωα = (λ − Lα)−1fα = �αφα , we get

(λ − Lα)−1fα(z) = −i

∞
∫

0

�αGα,λ(x, z)fα(x) dx (1.17)

and

eLα tfα = − 1

2π

∫

�α

∞
∫

0

eλt�αGα,λ(x, z)fα(x) dx dλ (1.18)

in which �α is chosen depending on α and lying in the resolvent set of Lα .

Such a spectral formulation of the linearized Navier-Stokes equations near a boundary layer 

shear profile has been intensively studied in the physical literature. We in particular refer to [1,

12,9,10] for the major works of Heisenberg, Tollmien, C.C. Lin, and Schlichting on the subject. 

We also refer to [5–7] for the rigorous spectral analysis on the Orr-Sommerfeld equations.

We now recall the main results from [8] on the Green function Gα,λ. We focus on the case 

α > 0, the case α < 0 being similar. We introduce Rayleigh’s equation

Rayα(φ) = (αU − iλ)�αφ − αU ′′φ = 0.

The Rayleigh equation Rayα(φ) = 0 has two solutions φα,±, with respective behaviors e±αz at 

infinity. We define the Evans function E(α, λ) by

E(α,λ) = φα,−(0).

In this paper, we restrict ourselves to the case when λ is away from the range of −iαU . Precisely, 

let ε0 be an arbitrarily small, but fixed, positive constant, we shall consider the range of (α, λ) in 

R+ × C so that

d(α,λ) = inf
z∈R+

|λ + iαU(z)| ≥ ε0. (1.19)

Note that d(α, λ) = �λ if �λ ∈ −αRange(U). In any case, we have

d(α,λ) ≥ |�λ|. (1.20)

The main result from [8] is as follows.

Theorem 1.2. Let U(z) be a boundary layer profile which satisfies (1.10). For each α, λ, let by 

Gα,λ(x, z) be the Green kernel of the Orr-Sommerfeld equation, with source term in x, and let

μs = |α|, μf (z) = ν−1/2
√

λ + να2 + iαU(z), (1.21)
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where we take the square root with positive real part. Let 0 < θ0 < 1 and ζ < 1/2. Let σ0 > 0 be 

arbitrarily small. Then, there exists C0 > 0 so that

|Gα,λ(x, z)| ≤ C0

μsd(α,λ)
e−θ0μs |x−z| + C0

|μf (x)|d(α,λ)
e−θ0|

∫ z
x �μf dy| (1.22)

uniformly for all x, z ≥ 0 and 0 < ν ≤ 1, and uniformly in (α, λ) ∈ R \ {0} ×C so that |α| ≤ ν−ζ , 
(1.19) holds, and

|E(α,λ)| > σ0.

In addition, there hold the following derivative bounds

|∂k
x∂�

zGα,λ(x, z)| ≤ C0μ
k+�
s

μsd(α,λ)
e−θ0μs |x−z| + C0|μf (z)|k+�

|μf (x)|d(α,λ)
e−θ0|

∫ z
x �μf dy| (1.23)

for all x, z ≥ 0 and k, � ≥ 0, in which Mf = supz �μf (z). In particular, we have

|�αGα,λ(x, z)| ≤ C0

d(α,λ)2
e−θ0μs |x−z| + C0

ν|μf (x)|e
−θ0|

∫ z
x �μf dy| (1.24)

where we “gain” a factor μs in the first term on the right hand side.

We believe that the θ0 factor is purely technical, and that this Theorem holds true for θ0 = 1. 

In addition, we note that in deriving the estimates for the slow modes we mainly have to invert 

∂2 −α2 which leads to a gain of μs = |α|, while the inversion of the fast modes leads to a gain of 

μf . Moreover, �αGα,λ enjoys better bounds since �αe±|α|z = 0 and �αφs ≈ iαφs/(λ + iαU)

for slow modes φs , which gains a prefactor α/d(α, λ) as stated in the estimates. Finally, we note 

that the condition (1.19) implies

�μf (z) = ν−1/2�
√

λ + να2 + iαU(z) ≥ ν−1/2
√

ε0/2 � μs (1.25)

for sufficiently small ν and for |α| ≤ ν−ζ for some ζ < 1/2. That is, the fast and slow behavior 

in the Green function is essentially separated. We refer the readers to [8] for further discussions 

and the proof of Theorem 1.2.

2. Semigroup bounds

In this section, we shall bound the semigroup eLα t for |α| ≤ ν−ζ with ζ < 1/2. In view of 

(1.18) and (1.24), we decompose eLα t as follows:

eLα tωα = Sα,1ωα + Sα,2ωα (2.1)

with
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Sα,1ωα(z) : = 1

2πi

∫

�α

∞
∫

0

eλt
S1(x, z)ωα(x) dxdλ,

Sα,2ωα(z) : = 1

2πi

∫

�α

∞
∫

0

eλt
S2(x, z)ωα(x) dxdλ,

(2.2)

where the kernels Sj (x, z) are meromorphic in λ, corresponding to the slow and fast behavior of 

the Green function �αGα,λ(x, z) as obtained in Theorem 1.2. Precisely, from (1.24), we have

|S1(x, z)| ≤ C0

d(α,λ)2
e−θ0μs |x−z|,

|S2(x, z)| ≤ C0

ν|μf (x)|e
−θ0|

∫ z
x �μf dy|,

(2.3)

for some universal positive constant θ0.

2.1. Bounds on Sα,1

In this section, we prove the following.

Proposition 2.1. For sufficiently small β and any positive τ , there is a constant Cτ so that

‖Sα,1ωα‖β,γ ≤ Cτ e
(�λ0+τ)t‖ωα‖β,γ , (2.4)

uniformly in t ≥ 0, small ν > 0, and |α| ≤ ν−ζ with ζ < 1/2.

Proof. We restrict ourselves to α > 0. Since the Green kernel S1(x, z) is meromorphic in λ, we 

can apply the Cauchy theory and take the contour �α of integration to consist of λ so that

�λ = �λ0 + τ (2.5)

for arbitrary small, but fixed, constant τ > 0. Since �α remains in the resolvent set of Lα , the 

(inviscid) Evans function E(α, λ) never vanishes. In addition, recalling the assumption (1.19)

and writing λ = �λ + i�λ, we have

d(α,λ) = inf
z∈R+

|λ + iαU(z)| ≥ ε0(1 + inf
z

|�λ − αU(z)|).

We thus obtain from (2.3) that

|S1(x, z)| ≤ Cτ (1 + inf
z

|�λ − αU(z)|)−2e−θ0μs |x−z|, (2.6)

for all λ ∈ �α .

Let us now estimate the convolution Sα,1ωα(z) in the boundary layer norm ‖ · ‖β,γ . First we 

recall from the definition that
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|ωα(x)| ≤ ‖ωα‖β,γ e−βx(1 + δ−1φP (δ−1x)).

Hence, recalling (2.2) and using (2.6), we have

|Sα,1ωα(z)| ≤ Cτ‖ω‖β,γ

∫

R

∞
∫

0

(1 + inf
z

|�λ − αU(z)|)−2e(�λ0+τ)t

× e−θ0μs |x−z|e−β|x|(1 + δ−1φP (δ−1x)) dx d�λ.

The integral in �λ is bounded, yielding

|Sα,1ωα(z)| ≤ Cτ‖ω‖β,γ e(�λ0+τ)t

∞
∫

0

e−θ0μs |x−z|e−β|x|(1 + δ−1φP (δ−1x)) dx.

Recall that μs = |α|. Using the triangle inequality |z| ≤ |x| + |x − z| and the fact that β � 1 and 

|α| ≥ 1, we obtain

e−θ0μs |x−z|e−β|x| ≤ e−βze− θ0
2 α|x−z|.

Hence, we get

|Sα,1ωα(z)| ≤ Cτ‖ω‖β,γ e(�λ0+τ)te−βz

∞
∫

0

e− θ0
2 α|x−z|(1 + δ−1φP (δ−1x)) dx

≤ Cτ‖ω‖β,γ e(�λ0+τ)te−βz
(

α−1 + δ−1

∞
∫

0

φP (δ−1x) dx
)

.

≤ Cτ‖ω‖β,γ e(�λ0+τ)te−βz,

completing the proof of the Proposition. �

2.2. Bounds on Sα,2

In this section, we give bounds on the semigroup Sα,2, defined as in (2.2). Precisely, we have

Proposition 2.2. For sufficiently small β and any positive τ , there is a constant Cτ so that

‖Sα,2ωα‖β,γ ≤ Cτ e
(�λ0+τ)t‖ωα‖β,γ , (2.7)

uniformly in t ≥ 0, small ν > 0, and |α| ≤ ν−ζ with ζ < 1/2.

To prove this proposition we will use the following Lemma
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Lemma 2.3. Let S2(x, z) be the Green kernel defined as in (2.2). Introduce the temporal Green 

function

G2(t, x, z) := 1

2πi

∫

�α

eλt
S2(x, z) dλ. (2.8)

Then, for any positive τ , there are constants Cτ , θτ so that there holds

|G2(t, x, z)|

≤ Cτ (νt)−1/2eτ te− |x−z|2
16νt + Cτ

∑

�λα≥τ

e(�λα+τ)tν−1/2e−θτ ν−1/2|x−z| (2.9)

uniformly in t ≥ 0, small ν > 0, and α ∈ Z
∗, in which

θτ = 1

2

√

�λα + τ + α2ν,

and the summation is taken over finitely many unstable eigenvalues λα of Lα such that �λα ≥ τ .

Proof. We move the contour of integration �α in (2.8) from its initial position to the particular 

one defined below at (2.11). As �α moves to the left in the complex plane, it may meet unstable 

eigenvalues of Lα

We first bound the contribution of these unstable eigenvalues. To proceed, let τ be an arbitrary 

positive number, and let λα = −iαc be a zero of E(α, λ) such that �λα ≥ τ . As E(α, λ) is 

analytic in c, its zeros λα are isolated. Taking τ smaller if needed, we can assume that there 

is no other unstable eigenvalue in the ball B(λα, 1
2
τ) = {|λ − λα| ≤ 1

2
τ }. In particular, we have 

|E(α, λ)| ≥ Cτ for λ ∈ ∂B(λα, 1
2
τ). In addition, since �λ ≥ 1

4
(�λα + τ) on ∂B(λα, 1

2
τ), we 

have

�μf = ν−1/2�
√

λ + α2ν + iαU ≥ ν−1/2θτ ,

with θτ = 1
2

√

�λα + τ + α2ν. Thus, on ∂B(λα, 1
2
τ), there holds

|S2(x, z)| ≤ C0

ν|μf (x)|e
−θ0|

∫ z
x �μf dy| ≤ Cτν

−1/2e−θτ ν−1/2|x−z|,

upon recalling (1.19). This yields

∣

∣

∣

∫

∂B(λα, 1
2 τ)

eλt
S2(x, z) dλ

∣

∣

∣
≤ Cτν

−1/2e(�λα+τ)te−θτ ν−1/2|x−z|, (2.10)

which contributes to the last term in the Green function bound (2.9).

We are now ready to choose a suitable contour of integration �α. Let us consider the case 

when x < z, the other case is similar. Recall that
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Fig. 1. Shown the decomposition of contour �α .

μf (z) = ν−1/2
√

λ + iαU + α2ν.

By construction, S2(x, z) is holomorphic in λ, except on the complex half strip

Hα(x, z) :=
{

λ = −k − α2ν + iαU(y), k ∈ R+, y ∈ [x, z]
}

.

In our choice of contour of integration below, we shall avoid to enter this complex strip, as 

depicted in Fig. 1. Precisely, we deform the contour �α into

�α = �α,1 ∪ �α,2 ∪ �α,3

where

�α,1 :=
{

λ = γ1 − α2ν − iαc, min
y∈[x,z]

U(y) ≤ c ≤ max
y∈[x,z]

U(y)
}

�α,2 :=
{

λ = γ1 − α2ν − k2ν − iα min
[x,z]

U + 2νiak, k ≥ 0
}

�α,3 :=
{

λ = γ1 − α2ν − k2ν − iα max
[x,z]

U + 2νiak, k ≤ 0
}

with

γ1 = τ + a2ν + α2ν, a = |x − z| +
√

νt

4νt
. (2.11)

The choice of the parabolic contours �α,2 and �α,3 is necessary to avoid singularities in small 

time [14]. Note that they never meet the complex strip Hα(x, z). In addition, they may leave 

unstable eigenvalues to the right, in which case the contribution from unstable eigenvalues (2.10)

is added into the bounds on the Green function.

Bounds on �α,1.

We start our computation with the integral on �α,1. We first note that for λ ∈ �α,1, there holds

�μf = ν−1/2�
√

γ1 + iα(U − c) ≥ ν−1/2√γ1.
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Hence, we have

|S2(x, z)| ≤ C0

ν|μf (x)|e
−θ0|

∫ z
x �μf dy| ≤ Cν−1/2γ

−1/2
1 e−ν−1/2√γ1|x−z|.

Using γ1 ≥ a2ν and γ1 ≥ α2ν, we note that

e− 1
2 ν−1/2√γ1|x−z| ≤ e− a

2 |x−z| = e
− |x−z|2

8νt
− |x−z|

8
√

νt

e− 1
2 ν−1/2√γ1|x−z| ≤ e− 1

2 α|x−z|.

On the other hand, recalling (2.11), we compute

|eλt | = eγ1te−α2νt = eτ tea2νt = eτ te
|x−z|2

16νt
+ |x−z|

8
√

νt
+ 1

16 .

Thus, putting the above estimates together, we obtain

|eλt
S2(x, z)| ≤ Cν−1/2γ

−1/2
1 eτ te− |x−z|2

16νt
− 1

2 α|x−z| (2.12)

for any λ ∈ �α,1. Hence, we estimate

∣

∣

∣

∫

�α,1

eλt
S2(x, z) dλ

∣

∣

∣
≤ Cαν−1/2γ

−1/2
1 eτ te− |x−z|2

16νt
− 1

2 α|x−z|
max[x,z] U

∫

min[x,z] U

dc

≤ Cαν−1/2γ
−1/2
1 eτ te− |x−z|2

16νt
− 1

2 α|x−z||x − z|‖U ′‖L∞ .

Using the inequality Xe−X ≤ C for X ≥ 0, we have

e− 1
2 α|x−z|α|x − z| ≤ C.

We thus obtain

∣

∣

∣

∫

�α,1

eλt
S2(x, z) dλ

∣

∣

∣
≤ Cν−1/2γ

−1/2
1 eτ te− |x−z|2

16νt .
(2.13)

This yields the claimed estimate on �α,1, upon noting that 
√

t ≤ Cτ e
τ t for any t ≥ 0.

Bounds on �α,2 and �α,3.

By symmetry, it suffices to give bounds on �α,2. For λ ∈ �α,2 and y ∈ [x, z], we compute

μf (y) = ν−1/2
√

γ1 − k2ν + iα(U − min
[x,z]

U) + 2iνak

= ν−1/2
√

τ + α2ν + iα(U − min
[x,z]

U) + (a + ik)2ν.
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Recalling that k, α, τ ≥ 0, the above yields

�μf (y) ≥ �
√

(a + ik)2 = a (2.14)

for y ∈ [x, z]. So, using a = (|x − z| +
√

νt)/4νt , we get

a2νt − a|x − z| = |x − z|2 + 2
√

νt |x − z| + νt

16νt
− |x − z|2 +

√
νt |x − z|

4νt

= 1

16
− 3|x − z|2 + 2

√
νt |x − z|

16νt

and hence

e�λte−
∫ z
x �μf (y) dy ≤ eτ tea2νt−νk2te−a|x−z| ≤ Ceτ te−νk2te− 3|x−z|2

16νt . (2.15)

Moreover

μf (x) = ν−1/2
√

τ + α2ν + a2ν − k2ν + iα(U − min
[x,z]

U) + 2iνak.

This implies that

|μf (x)| ≥ ν−1/2
√

α(U − min
[x,z]

U) + 2νak ≥
√

2ak,

recalling k ≥ 0. In addition, we also have |μf (x)| ≥ �μf (x) ≥ a (see (2.14)). Hence, combining 

the two estimates, we have

|μf (x)| ≥ 1

2
(a +

√
ak).

Hence, recalling iαε = ν and noting dλ = 2νi(a + ik)dk on �α,2, we can estimate

∣

∣

∣

∫

�α,2

eλt
S2(x, z) dλ

∣

∣

∣
≤ Cτ e

τ te− |x−z|2
4νt

∫

R+

e−νk2t |a + ik|dk

a +
√

ak

≤ Cτ e
τ te− |x−z|2

4νt

∫

R+

e−νk2t (1 + a−1/2
√

k)dk

≤ Cτ (νt)−1/2eτ te− |x−z|2
4νt (1 + a−1/2(νt)−1/4)

up to the contribution from unstable eigenvalues (2.10). Note that a ≥ (νt)−1/2 and hence 

a−1/2(νt)−1/4 ≤ 1. The Lemma follows. �
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Lemma 2.4. Let

H(t, x, z) := (νt)−1/2e− |x−z|2
Mνt

for some positive M . For any positive β , there is a constant C0 so that

∥

∥

∥

∞
∫

0

H(t, x, ·)ωα(x) dx

∥

∥

∥

β,γ
≤ C0e

Mβ2νt‖ωα‖β,γ .

Proof. Let ωα(z) be a boundary layer function that satisfies

|ωα(z)| ≤ ‖ωα‖β,γ

(

1 + δ−1φP (δ−1z)
)

e−βz. (2.16)

We first show that the convolution has the right exponential decay at infinity. Indeed, in the case 

when |x − z| ≥ Mβνt , using |x| ≥ |z| − |x − z|, we have

e− |x−z|2
Mνt e−β|x| ≤ e−β|z|e−|x−z|

( |x−z|
Mνt

−β
)

≤ e−β|z|.

Whereas, for |x − z| ≤ Mβνt , we note that

e− |x−z|2
Mνt e−β|x| ≤ e−Mβ2νte−β|x| ≤ e−β|x−z|e−β|x| ≤ e−β|z|.

Combining, we have

e− |x−z|2
Mνt e−βx ≤ e−β|z|, ∀x, z ∈ R (2.17)

which yields the spatial decay e−βz in the norm ‖ · ‖β,γ .

It remains to study the integral

∞
∫

0

(νt)−1/2e− |x−z|2
Mνt

(

1 + δ−1φP (δ−1x)
)

dx. (2.18)

The integral without the boundary layer behavior is clearly bounded. Next, using the fact that 

φP (δ−1x) is decreasing in x, we have

∞
∫

z/2

(νt)−1/2e− |x−z|2
Mνt δ−1φP (δ−1x) dx

≤ C0δ
−1φP (δ−1z)

∞
∫

z/2

(νt)−1/2e− |x−z|2
Mνt dx

≤ C0δ
−1φP (δ−1z).
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Whereas on x ∈ (0, z/2), we have |x − z| ≥ z
2

and φP ≤ 1. We have

z/2
∫

0

(νt)−1/2e− |x−z|2
Mνt δ−1φP (δ−1x) dx

≤ C0e
− |z|2

8Mνt δ−1

z/2
∫

0

(νt)−1/2e− |x−z|2
2Mνt dx

≤ C0e
− |z|2

8Mνt δ−1.

(2.19)

It remains to prove that

e− |z|2
8Mνt δ−1 ≤ C0δ

−1e8Mνte−z/
√

ν (2.20)

for some constant C0. Indeed, the inequality is clear, for |z| ≥ 8Mν3/2t , since e− |z|2
8Mνt ≤ e−z/

√
ν . 

Next, for |z| ≤ 8Mν3/2t , we have

1 ≤ e8Mνte−z/
√

ν .

This proves (2.20), and so (2.19) is again bounded by C0e
8Mνtδ−1φP (δ−1z), upon recalling that 

the boundary layer thickness is of order δ = γ
√

ν. �

Lemma 2.5. Let

R(t, x, z) := ν−1/2e−θτ ν−1/2|x−z|

for some positive θτ . Then, for any positive β , there is a constant Cτ , depending on θτ , so that

∥

∥

∥

∞
∫

0

R(t, x, ·)ωα(x) dx

∥

∥

∥

β,γ
≤ Cτ‖ωα‖β,γ .

Proof. We need to bound the integral

∞
∫

0

ν−1/2e−θτ ν−1/2|x−z|
(

1 + δ−1φP (δ−1x)
)

e−β|x| dx.

First, taking ν smaller, if needed, we can assume that 1
2
θτν

−1/2 ≥ β , and thus by the triangle 

inequality |z| ≤ |x| + |x − z|, we have

e− 1
2 θτ ν−1/2|x−z|e−β|x| ≤ e−β|z|.

Next, similarly as done in the previous lemma, we have
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∞
∫

z/2

ν−1/2e−θτ ν−1/2|x−z|δ−1φP (δ−1x) dx

≤ C0δ
−1φP (δ−1z)

∞
∫

z/2

ν−1/2e−θτ ν−1/2|x−z| dx

≤ Cτ δ
−1φP (δ−1z),

and

z/2
∫

0

ν−1/2e−θτ ν−1/2|x−z|δ−1φP (δ−1x) dx

≤ ν−1/2e− 1
2 θτ ν−1/2|z|

z/2
∫

0

δ−1φP (δ−1x) dx

≤ C0ν
−1/2e− 1

2 θτ ν−1/2|z|,

which is again bounded by Cτ δ
−1φP (δ−1z), upon recalling that δ = γ

√
ν and φP (Z) = (1 +

ZP )−1. �

Proof of Proposition 2.2. In view of (2.2) and (2.8), we have

Sα,2ωα(z) =
∞

∫

0

G2(t, x, z)ωα(x) dx.

For each fixed positive τ , we first show that the set of unstable eigenvalues λα of Lα , for all 

α ∈ Z
∗, such that �λα ≥ τ is finite. We recall that, in the inviscid limit, such eigenvalues are per-

turbations of eigenvalues of the limit problem ν = 0, namely of Rayleigh equation. It is therefore 

sufficient to study the Rayleigh problem

�αφ − U ′′

U − c
φ = 0, c = −λα

iα
,

with the boundary condition φ|z=0
= 0. For each α ∈ Z

∗, it is clear that there are only finitely 

many unstable eigenvalues, since the Rayleigh operator is a compact perturbation of the Lapla-

cian �α . In addition, multiplying the Rayleigh equation by φ and integrating by parts, we get

∞
∫

0

(|∂zφ|2 + α2|φ|2) dz ≤ 1

|�c|

∞
∫

0

|U ′′||φ|2 dz.
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In particular, if α2|�c| ≥ ‖U ′′‖L∞ , there is no nontrivial solution to the Rayleigh problem. This 

implies that there is no unstable eigenvalue λα , whenever α�λα ≥ ‖U ′′‖L∞ . In particular, there 

are no unstable eigenvalues �λα ≥ τ , whenever α ≥ τ−1‖U ′′‖L∞ .

This proves that there are finitely many unstable eigenvalues of Lα so that �λα ≥ τ for all 

α ∈ Z
∗. In particular, the summation in (2.9) from Lemma 2.3 is finite, independent of α ∈ Z

∗, 

yielding

|G2(t, x, z)| ≤ Cτ (νt)−1/2eτ te− |x−z|2
8νt + Cτ e

(�λ0+τ)tν−1/2e−θτ ν−1/2|x−z|

with θτ = 1
2

√

�λ0 + τ + α2ν, where λ0 denotes the maximal unstable eigenvalue. Finally, ap-

plying Lemmas 2.4 and 2.5, respectively, to the above pointwise bounds, we complete the proof 

of the Proposition. �

3. Elliptic estimates

For the sake of completeness we now detail how the weighted estimates on vorticity may be 

translated into weighted estimates on the velocity field.

3.1. Inverse of Laplace operator in one space dimension

Let us now solve the classical Laplace equation

�αφ = ∂2
z φ − α2φ = f (3.1)

on the half line z ≥ 0, with Dirichlet boundary conditions

φ(0) = 0. (3.2)

Note that α is a non zero integer. We assume that α > 0. We start with bounds in the space Aβ , 

namely without boundary layers. We will prove

Proposition 3.1. If f ∈ Aβ , then the solution φ to (3.1)-(3.2) belongs to Aβ provided β ≤ 1/2. 
In addition, there holds

α2‖φ‖β + α‖∂zφ‖β + ‖∂2
z φ‖β ≤ C‖f ‖β , (3.3)

where the constant C is independent of α ∈ N
∗.

Proof. The solution φ of (3.1)-(3.2) is explicitly given by

φ(z) =
∞

∫

0

G(x, z)f (x)dx (3.4)

where G(x, z) is the Green function of ∂2
z −α2, with the Dirichlet boundary condition. Precisely, 

we have
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G(x, z) = − 1

2α

(

e−α|z−x| − e−α|z+x|
)

.

In particular, |G(x, z)| ≤ α−1e−α|x−z|. Therefore, as |f (z)| ≤ ‖f ‖βe−βz, we have

|φ(z)| ≤ α−1‖f ‖β

∞
∫

0

e−α|z−x|e−βxdx.

Using the triangle inequality |z| ≤ |x| + |x − z| and the assumption that β ≤ 1/2 < α, we have

|φ(z)| ≤ α−1‖f ‖βe−βz

∞
∫

0

e− 1
2 α|z−x|dx ≤ 2α−2‖f ‖βe−βz,

which yields the claimed bound for α2φ. The estimate for ∂zφ follows similarly, upon noting that 

|∂zG(x, z)| ≤ e−α|x−z|. Finally, writing ∂2
z φ = α2φ +f , we obtain the estimate for ∂2

z φ from that 

of α2φ. �

Next, we establish similar elliptic estimates when the source term f has a boundary layer 

behavior.

Proposition 3.2. If f ∈ Bβ,γ , then the solution φ to (3.1)-(3.2) belongs to Aβ provided β ≤ 1/2. 
In addition, there hold

α‖φ‖β + ‖∂zφ‖β ≤ C‖f ‖β,γ ,

‖∂2
z φ‖β,γ ≤ C‖f ‖β,γ + C‖αf ‖β,γ ,

(3.5)

where the constant C is independent of α ∈ N
∗.

Proof. For a boundary layer function f ∈ Bβ,γ , using (3.4), we have

|φ(z)| ≤ α−1‖f ‖β,γ

∞
∫

0

e−α|z−x|e−βx
(

1 + δ−1φP (δ−1x)
)

dx

≤ α−1‖f ‖β,γ e−βz

∞
∫

0

e− 1
2 α|z−x|

(

1 + δ−1φP (δ−1x)
)

dx

≤ α−1‖f ‖β,γ e−βz
(

2α−1 + C
)

,

upon noting that δ−1φP (δ−1·) is bounded in L1. This proves the claimed bound for αφ. The 

estimate for ∂zφ follows similarly, upon noting that |∂zG(x, z)| ≤ e−α|x−z|. The estimate for ∂2
z φ

follows from ∂2
z φ = α2φ + f . �

Because of the boundary layer behavior of f , we cannot get a good control on second order 

derivatives without an extra control on f (precisely, on αf ) as is the case in Proposition 3.2.
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3.2. Stream function and vorticity

We recall that the stream function and vorticity are linked through the elliptic equation

−�φ = ω (3.6)

with the zero Dirichlet boundary condition on φ at z = 0. Let

v = ∇⊥φ (3.7)

be the velocity vector field. We obtain the following Proposition

Proposition 3.3. Let β ≤ 1/2 and let ω be a vorticity function so that ωα ∈ Bβ,γ , for α ∈ Z. 
Then, for each α ∈ Z, there hold the following elliptic estimates:

‖vα‖β ≤ C‖ωα‖β,γ ,

‖∂zv2,α‖β + ‖∂zv1,α‖β,γ ≤ C
(

‖ωα‖β,γ + ‖αωα‖β,γ

)

,

‖ψ(z)−1v2,α‖β ≤ C
(

‖ωα‖β,γ + ‖αωα‖β,γ

)

,

(3.8)

with ψ(z) = z/(1 + z).

Proof. In Fourier variables, the elliptic equation (3.6) reads

(∂2
z − α2)φα = ωα.

The estimates on vα and ∂zvα are derived using Proposition 3.2, with vα,1 = ∂zφα and v2,α =
−iαφα . Next, using φα(0) = 0, we write

ψ(z)−1φα(z) = ψ(z)−1

z
∫

0

∂zφα dy ≤ ‖∂zφα‖β ψ(z)−1

z
∫

0

e−βy dy

which is bounded by C‖∂zφα‖β . The proposition follows. �
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