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Abstract. In this paper we give a proof of an Onsager-type conjecture on conservation
of energy and entropies of weak solutions to the relativistic Vlasov—-Maxwell equations.
As concerns the regularity of weak solutions, say in Sobolev spaces WP we determine
Onsager-type exponents « that guarantee the conservation of all entropies. In particular,
the Onsager exponent « is smaller than o = 1/3 established for fluid models. Entropies
conservation is equivalent to the renormalization property, which has been introduced
by DiPerna-Lions for studying well-posedness of passive transport equations and colli-
sionless kinetic equations. For smooth solutions, renormalization property or entropies
conservation are simply the consequence of the chain rule. For weak solutions the use
of the chain rule is not always justified. Then arises the question about the minimal
regularity needed for weak solutions to guarantee such properties. In the DiPerna—Lions
and Bouchut—Ambrosio theories, renormalization property holds under sufficient condi-
tions in terms of the regularity of the advection field, which are roughly speaking an
entire derivative in some Lebesgue spaces (DiPerna—Lions) or an entire derivative in the
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194 CLAUDE BARDOS, NICOLAS BESSE, aND TOAN T. NGUYEN

space of measures with finite total variation (Bouchut—Ambrosio). In return there is no
smoothness requirement for the advected density, except some natural a priori bounds.
Here we show that the renormalization property holds for an electromagnetic field with
only a fractional space derivative in some Lebesgue spaces. To compensate for this loss of
derivative for the electromagnetic field, the distribution function requires an additional
smoothness, typically fractional Sobolev differentiability in phase-space. As concerns the
conservation of total energy, if the macroscopic kinetic energy is in L?, then total energy
is preserved.

1. Introduction. The dimensionless relativistic Vlasov—Maxwell system reads,

Of+v-Vof +(E+vxB)-Vef=0, (1)
(9tE—V><B:—j, (9tB+V><E:0, (2)
V-E=p, V-B=0, (3)

where t € R, z € R, £ € R3, and v = £/4/1 + |£|? represent time, position, momentum,
and velocity of particles, respectively. The distribution function of particles f = f(¢,z, &)
satisfies the Vlasov equation (1) with acceleration given by the Lorentz force Fj =
E+vx B, while the electromagnetic field E = E(t,x) and B = B(t, z) satisfies Maxwell’s
equations (2)-(3). The coupling between the Vlasov equation and Maxwell’s equations
occurs through the source terms of Maxwell’s equations, which are the charge density
p = p(t,z) and the current density j = j(¢,2). These densities are defined as the first
v-moments of the phase-space density of particles f, namely,

pltoe)= | flto.e)de, j(ta) = / of (t.2,€) d. (4)
R3 R3

The initial value problem associated to the system (1)-(4) requires initial conditions given
by,

f(0,$,€) = fO(:E’g) >0, (5)
E(O,x):Eo(JJ), B(O,LL‘):B()(.’I}), V'E():po:/Rgfodf, VB()ZO (6)

In addition for the well-posedness of Maxwell’s equations (2)-(3), the densities of charge
p and current j must satisfy a compatibility condition given by the charge conservation
law,

op+V-j=0. (7)

This continuity equation is automatically satisfied if the Vlasov equation (1) is satisfied
since it can be recovered by integration in the momentum variable of the Vlasov equation.
Let us note that Maxwell-Gauss equations (3) are satisfied at any time if they are satisfied
initially. Indeed, it is a consequence of time integration of the divergence of the Maxwell—
Faraday—Ampere equations (2), in combination with the continuity equation (7) and
initial conditions (6).
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ONSAGER-TYPE CONJECTURE FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM 195

The Vlasov equation (1) has, at least formally, infinitely many invariants. Indeed, let
H : R — R be any smooth function. Multiplying (1) with H’(f) and applying the chain
rule, we then obtain,

OH(f) +v -V H(f) + (E+vxB) VeH(f) =0. (8)

A solution f to (1) in the sense of distributions is said to be a renormalized solution if for
any smooth nonlinear function H, f also solves (8) in the sense of distributions. We say
that the field (v, F1,) satisfies the renormalization property if any solution f to (1) in the
sense of distributions is a renormalized solution. The renormalization technique appeared
in the well-posedness of passive advection equations and ODEs [37], in the analysis of
the Boltzmann equation [38], in the theory of weak solutions of the compressible Navier-
Stokes equations [57], and in the theory of weak solutions of collisionless kinetic equations
such as the Vlasov—Poisson system [34,35]. The groundbreaking work [37] has highlighted
the fundamental link between renormalized solutions to the passive transport equation,

du+b-Vu=0, u:[0,T]xR* =R, b:[0,T] x R? - R, (9)
and the well-posedness theory for the associated ODE,
X (t,x) =b(t,X(t,2)), t€[0,T], X(0,2) =2 € R, (10)

where b is a nonsmooth vector field. Similarly to entropy conditions for hyperbolic
conservations laws, renormalization property provides additional stability under weak
convergence. Indeed, renormalized solutions come with a comparison principle, which
allows us to show uniqueness of renormalized solutions and some stability results for
sequences of solutions. In return, uniqueness at the PDE level (9) implies uniqueness at
the ODE level (10). It was first shown in [37] that the renormalization property holds
provided b € LW with p > 1, plus a bounded divergence and a global space growth
estimate on b (see also [55] for the case W,L'1). Moreover, there is no additional regularity
assumption for u except its boundedness or some LP-bounds. This result was extended
to b € Ly BV, with V-b € L}, first in [23] for the Vlasov equation (see also [53] for
a related result), and then in [9] for the general case (see also [28]). Very recently, in
[11] the authors developed a local version of the DiPerna—Lions’ theory under no global
assumptions on the growth estimate of b. We refer the reader to [10] for a recent survey.

For the Vlasov—Poisson system when f is merely L', the product Ef does not belong
to Li .. Therefore, higher integrability assumptions on f are needed to give a meaning
to the Vlasov—Poisson equation in the sense of distributions. For example, when d = 3,
for the term Ef to belong to L one needs to have f € LP with p = (12 + 3/5)/11
(see for instance [34,35]). To drop out this higher integrability hypotheses, in [34,35] the
authors considered the concept of renormalized solutions and obtained global existence
provided that the total energy is finite and folog(1 + fo) € L!. In addition, under some
suitable integrability hypotheses on f, they can show that the concepts of weak and
renormalized solutions are equivalent. For bounded density f, renormalization property
holds because elliptic regularity of the Poisson equation leads to E € WP with p > 1
(see [34,35]). For the Vlasov-Maxwell system the only available global existence result
is in [36], where the authors have constructed weak solutions for which it is not possible

to show the renormalization property. Indeed, the best electromagnetic field regularity,
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196 CLAUDE BARDOS, NICOLAS BESSE, aND TOAN T. NGUYEN

obtained so far for the DiPerna—Lions weak solutions, is in [22], where the authors show
that the electromagnetic field (E, B) belongs to Hi, (Rf x R3), with s = 6/(13 +/142),
if the macroscopic kinetic energy is in L2.

Regularity of the rough vector field considered above, i.e., Sobolev or BV vector fields,
is somehow like the Lipschitz case because there is always a control (in Lebesgue spaces
or in the space of measures with finite total variation) on an entire derivative of the
vector field. By contrast, when b is not Lipschitz-like, the use of the chain rule is no
longer justified, and many counterexamples to renormalization have been obtained in
[2,4-7,29-31,33,65].

Here, we show that the renormalization property holds for an electromagnetic field
with only a fractional derivative in some Lebesgue spaces, i.e., E, B € LW/ with
0<pB<landl1l < q < oo. Tocompensate for this loss of derivative for the electro-
magnetic field, the density f requires additional smoothness, typically fractional Sobolev
differentiability in phase-space, i.e., f € L%Wg’gp with0<a<land1l<p<oo. Wede-
termine Onsager-type exponents [44] « and §, which ensure conservation of all entropies
and guarantee that the renormalization property holds. As concerns the conservation of
total energy, if the macroscopic kinetic energy is in L2, we then show that total energy is
preserved. A comparable work has been done in [3] for the renormalization of an active
scalar transport equation.

A similar situation occurs with systems of conservation laws of continuum physics,
which are endowed with natural companion laws: the so-called entropy conditions (in-
equality versus equality) coming from the second law of thermodynamics. In [20,52] the
authors have determined the critical regularity of weak solutions to a general system
of conservation laws to satisfy an associated entropy conservation law as an equality.
They obtained the famous Onsager exponent 1/3 [58]. The first result of this kind was
obtained in [32] (see also [43]), where the authors have shown that weak solutions of the
incompressible FEuler equations conserve energy provided they possess fractional Besov
differentiability of order greater than 1/3. Such a result has been extended in various
directions: In [27,41,47] the Besov criterium has been optimized; in [39,45,52,56,67] the
authors have considered compressible Euler, Navier-Stokes, and magnetohydrodynamic
equations; works [18,19,40,60,61] include boundary effects.

2. Basic properties. In this section, we recall the basic properties of the relativistic
Vlasov—Maxwell system, which are valid for any smooth solution (f, F, B), vanishing at
infinity. Theses formal properties, in particular, natural a priori estimates, are the key
cornerstones for proving the local-in-time well-posedness of this system [48]. Consider
the following set of equations:

Ohf+v-Vof +(E4+vxB)-Vef =0, (t,2,8) € RT x R® x R, (11)
8tE—VXB:—j, 8tB+V><E:0, (12)
pltr) = [ ftao)de )= [ ofa€)ds (13)

v =1+, v:V57:7%|£|2. (14)
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Observe that once the current density j and initial data (Ep, By) are given, the Maxwell
equations (12) are well defined. Indeed the Maxwell operator M defined by,

-V xB . ([ FE
X»—>MX_( V><E> with X_<B>’ (15)

is the generator of a strongly continuous unitary group t — S(t) := exp(—Mt) in L?(R3)
[14,42,66]. If (E(t = 0), B(t = 0)) = (Ey, By) € L*(R?) and j € L'(R*; L?(R?)), then,
using the properties of the group S(¢) and the Duhamel formula, we can show that the
solution (E,B) to (12) belongs to ¢ (R*; L%(R3)). Moreover for any s > 0, the H®
regularity is preserved, i.e., the previous statement remains valid if we replace L?(R3)
by H*(R?®). In the same way, once the smooth electromagnetic field (F, B) and initial
data fo(z,§) are given, the Vlasov equation is then well defined. Indeed, introducing the
characteristic curves t — (X (¢),Z(t)), which are the unique and smooth solution to the
ODEs,

B =vE0), S =B X0) +oE0) < Be,X(1),  (16)
X(0;0,z,8) =, Z(0;0,2,§) =¢, (17)

the Lagrangian solution to (11) is given by (e.g., see [24])
f(t,x,ﬁ):fO(X(O,t,x,f),E(O,t,x,f)) (18)

The relativistic Vlasov—-Maxwell system (11)-(14) satisfies some formal conservation
laws, summarized in

PROPOSITION 1. Let (f, E, B) be a smooth solution, vanishing at infinity, to the rela-
tivistic Vlasov—Maxwell system (11)-(14). Then the following a priori estimates hold:
1. (Maximum principle). 0 < fo < M < oo implies 0 < f(¢t) < M for all ¢ > 0.
2. (LP-norm conservation). For all £ > 0, and 1 <p < oo, one has || f(¢)| rrws) =

1 foll Lo (re)-
. (Entropies). For any function H € €*(R*;R"), one has for all ¢ > 0,

d
%/RB RS’H(f(t))d{dx:O.

4. (Energy conservation). For all ¢ > 0 one has

% (/Rg /Rs(v(é) — 1) f(t) dédx + %/Rg(|E(t)|2 + |B(t)|2)da:> —0.

5. (Momentum conservation). For all ¢ > 0 one has

w

d
— (/ Ef ) dﬁdm—i—/ (E(t) x B(t))dx) =0.
dt R3 JR3 R3
Proof. The proof is standard and can be found, for instance, in [24]. O

REMARK 1. Properties of Proposition 1 are key ingredients to obtain the global-in-time
existence of weak solutions [36,48,59] and the local-in-time existence, uniqueness, and
stability of classical solutions (e.g., see [48] and the references therein). Properties of
Proposition 1 are also independent of other a priori invariances described below. Indeed
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from the Maxwell-Faraday equation, 0;B + V x E = 0, we deduce that 0,V - B = 0,
which leads to V - B(t) = 0 for all ¢ > 0, if initially V - By = 0. In a similar way, from
the Maxwell-Ampeére equation, O, F —V x B = —j, we deduce that 9,(V-E)+V-j =0.
Using the charge conservation law (7) (obtained by integration of the Vlasov equation
(11) with respect to &) we then obtain 0;(p — V - E)) = 0, which leads to V - E(t) = p(?)
for all ¢ > 0, if initially V - Ey = pp.

3. Renormalization property and entropies conservation.

3.1. Notation. We denote by R* the nonnegative real numbers, by D(R?) the space of
indefinitely differentiable with compact support, and by D’(R?) the space of distributions.
We also denote by S(R?) the space of indefinitely differentiable and rapidly decreasing
functions, and by S’(R?) the dual of S(R?), i.e., the space of tempered distributions. We
use the notation ng (0<a<1,1<p<oo,1<q< o0)for Besov spaces, the definition
of which can be found, e.g., in [1,21,63,64]. The notation W*? (0 <« < 1,1 <p < o0)
stands for the generalized Sobolev spaces of fractional order, whose precise definition can
also be found, e.g., in [1,21,63,64]. Let us simply recall first WP (R?) = Bg,p(]Rd) for
« positive but not an integer and 1 < p < oo, and second the continuous embeddings:
B (RY) ¢ WeP(R?) C B (R?) with 1 <p < co. We also define the functional space
L} such that

L# — {f >0 ae. | ||fHL§(R6) = /Rﬁ vf dwde < +OO} ' "

Moreover we define the function space & such that

& = {7—[ :RT — RT; # is nondecreasing, H € %I(R"’;R"’), lirf #(o) = —l—oo}
O—r—+00 g
(20)

3.2. Main theorems. In this section we present our main results. For this, we need
to recall the DiPerna-Lions theorem, which is the only existing result concerning the
existence of global-in-time (weak) solutions to the Vlasov—Maxwell system in RS.

THEOREM 1 (DiPerna-Lions [36]). Let fo € L} N L>(R%), and Ey, By € L*(R?), be
initial conditions which satisfy the constraints,

V- By =0, V~E0:p0:/ fodé in D'(R3).
RB

Then, there exists a global-in-time weak solution of the relativistic Vlasov-Maxwell sys-
tem, i.e., there are

feL®®RTLENL>®RY), E, BeL™RYL*RY), p,jeL>RLY3RY)),
(21)
such that (f, E, B) satisfy (11)-(12) in the sense of distributions, with p, j defined in
terms of (13). Constraint equation (3) and the charge conservation law (7) are satisfied
in the sense of distributions.
In addition, the mapping t — f(t) (resp., t — (E(t), B(t))) is continuous with respect
to the following topologies: the standard topology in the space of distributions D’(RS)
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(resp., D' (R?)), the weak topology of L?(R®) (resp., L?(R?)), and the strong topology of
H=%(Q) for any s > 0 and any bounded subset € of RS (resp., R?).

Futhermore, the total mass,
[ [ sasde
R3 JR3

is independent of time, and one has,
IOl zr@ey=follLrrey a.e. >0 for 1 <p < +oo, and £(t) <& < oo ae. t >0,

with the definition,

e0)i= [ fodedo+ 5 [ (B@F +BOP) do (2
RS R3
REMARK 2. 1. The conservation of mass and all the LP norms was in fact proved
in [59].
2. Using lower semi-continuity, weak solutions of Theorem 1 satisfy, for all H €
¢ (RY;RY),

’H(f(t))dfdwﬁ/ H(fo)dédx  for t > 0.
R6 R6

Now we intend to produce supplementary sufficient regularity conditions, which will
imply the validity of supplementary conservation laws. As the first step this is the aim of
Theorem 2 below: indeed, we first give sufficient regularity hypotheses which couple the
regularity of the distribution function f with the regularity of the electromagnetic field
(E, B). In the second step, we use Theorem 2 and the results of [22] on the regularity of
DiPerna—Lions weak solutions, to obtain Corollary 1 below, which involves only a suffi-
cient regularity condition on the distribution function f. As concerns the renormalization
property and entropies conservation, we have

THEOREM 2. Let (f, E, B) be a weak solution of the relativistic Vlasov—-Maxwell system
(11)-(14), given by Theorem 1. Assume that with

a, B eR, 0<a,f<1, and af+B+3a—1>0, (23)
this weak solution satisfies for some (p, q) € N? with
1 1 1
—+-=-<11if 1<pg<o0,
p g T (24)

1 <r < oo is arbitrary if p = ¢ = o0,
the supplementary regularity hypotheses,
fer=0,T;W*r(RS) and E,Be L>(0,T;W(R?)). (25)
Then for any entropy function H € €1(R™;R™"), we have the renormalization property,
O(H(f) + Vi - (VH(f)) + Ve - (FLH(f)) =0 in D'((0,T) x R°). (26)
Moreover, if H € & and the map,
t+ f(t,-,-) is uniformly integrable in R® for a.e. t € [0; T, (27)

Licensed to Penn St Univ, University Park. Prepared on Tue Apr 27 18:03:11 EDT 2021 for download from IP 132.174.254.159.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



200 CLAUDE BARDOS, NICOLAS BESSE, aND TOAN T. NGUYEN

then we have the local entropy conservation laws,

o) </Rs dgH(f)) + V- (/Rs dfv?—l(f)) =0 in D'((0,T) x R®), (28)

Oy (/R d:rH(f)) + Ve - (/R dxFLH(f)> =0 in D'((0,T) x R?), (29)

and the global entropy conservation law,

H(f(t, z,§&))dédx = /Rﬁ H(f(s,2z,§))dédx  for 0 <s<t<T. (30)

R6

The proof of Theorem 2 is postponed to Section 3.3. A few remarks are now in order.

REMARK 3. In fact, Theorem 2 is also true for the Vlasov—Poisson and the nonrelativistic
Vlasov-Maxwell systems, under the same regularity assumptions.

REMARK 4. 1. In fact, Theorem 2 still holds when we replace Sobolev spaces WP
(resp., WP9) by Besov spaces Bz‘i‘é{j (resp., Bgoo) with € > 0. Indeed, even
if Besov spaces By ., do not share the restriction property (needed for proving
commutator estimates of Lemma 2), we still have the following result (see [15,
26,54]): let N > 2, 1 <d< N, 0<p<g<oo, o >N(1/p—1)4, and
fe ng'(I(RN). Then,

ﬂ Rd for a.e. y e RV

a<a’
Therefore, in the Besov spaces framework, replacing o by a+¢ with ¢ > 0 in (23),
we observe that the condition af + 8 4 3a — 1 > 0 keeps the same, whereas the
phase-space regularity of f is slightly better than B . Since the interpolation
between BSiS and By, is Bpr, with a < o/ < a+¢ and 1 <7 < oo, (e.g.,
Theorem 6.4.5 in [21]) we then have Byte C WP,

2. Theorem 2 also includes the Holder spaces where

feL>0,T;¢%(R%) and E,BeL>®(0,T;¢"°R?)).
It corresponds to the case where p = q = 0o (24)—(25) €% = Wee°,

REMARK 5. Our result is almost in agreement with the structure-function scaling expo-
nents derived in the study of dissipative anomalies in nearly collisionless plasma turbu-
lence [44].
1. Here, the rigorous analysis is purely deterministic and regularity conditions (23)-
(25) give a sufficient condition for the conservation of entropies for any individual
solution as in [44]. In other words, by contraposition, a necessary condition for
anomalous dissipation/nonconservation of entropies is, af + 8+ 3a —1 < 0
with 0 < o, 8 < 1. Nevertheless, this condition is not sufficient. Indeed, as in
fluid mechanics with the Onsager critical regularity exponent 1/3 [16,17,62], this
necessary condition does not rule out the existence of some solutions that are less
regular than the critical regularity (exponent) and that also satisfy the absence
of anomalous entropy dissipation.
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ONSAGER-TYPE CONJECTURE FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM 201

2. In [44] the author obtains, in a particular case, the critical exponent value
a = /5 — 2, assuming that f € L“(O,T;B]‘;OO(R?;;BSVOO(RE))) and E,B €
L>(0,T; B;‘,OO(H@)) with p > 3. From Remark 4 on the restriction property of
Besov spaces, in order to obtain f € L>(0,T; By o (R3; By o (R?))), we must re-
quire the distribution function f to belong to the functional space
L>(0,T; B1E(R%)) with € > 0. Now, taking a = 3, the condition o +
B+3a—1 > 0 in (23) becomes a? + 4a — 1 > 0, which is satisfied for
a > /5 — 2. We then recover the same critical exponent value o = V5 — 2, but
for f € L(0,T; WP(R%)) and E, B € L>(0,T; W%*(R3)) with 1/p + 1/q < 1.
Therefore, our regularity conditions (23)-(25) are weaker, but less restrictive
than those of [44]. Indeed, we have Byt C WP, Ve > 0, and the condition
1/p+1/q <1 is less restrictive than the condition p = ¢ > 3.

3. In [44] the author obtains a refined version of the condition (23), by consider-
ing anisotropic regularity for the distribution function f between the space of
velocities and the physical space, namely, f € L>(0,T; By , (R3; BZ7OO(R§))).
From Remark 4 on the restriction property of Besov spaces, this anisotropic reg-
ularity implies that f € L°°(0,T; BytS(R®)) with o := max{k,o} and € > 0.
This regularity condition is still more restrictive than our regularity condition,
namely, f € L°°(0,T; W*P(R®)) with the same index . In addition, anisotropic
regularity in phase space is questionable because of the following physical ar-
gument. Phase-space turbulence involves typical structures known as vortices
that are the result of the filamentation and the trapping (or wave-particle syn-
chronization) phenomena. The fact that characteristic curves roll up in phase
space seems to contradict that phase-space regularity is anisotropic between the
space of velocities and the physical space. On the contrary, this mixing motion
must propagate regularity versus singularities from one direction to another. By
constrast, anisotropic regularity between the electromagnetic field (E, B) and
the distribution f is justified and crucial, because the velocity integration of f
can lead to additional regularity in the physical space for the moments such as
charge and current densities, and hence for the electromagnetic field (through
Maxwell’s equations). This is the essence of averaging lemma [36] and the spirit
of regularity results obtained for the Diperna—Lions weak solutions [22,25]. This
anisotropy of regularity is handled both here and in [44].

REMARK 6. In the nonself-consistent case, i.e., when the Lorentz force Fy, is a given
external force, renormalization property (26) implies straightforwardly the uniqueness
of weak solutions of Theorem 2, if such solutions exist. Indeed, let f%, i = 1,2, be two
solutions of the Vlasov equation (11), with initial conditions f, i = 1,2, and where the
electromagnetic field (F, B) is prescribed. Such solutions satisfy the regularity properties
of Theorem 2, in particular (25). Setting f = f! — f2, and taking H(-) = (-)? (H € &),
we obtain from Theorem 2,

O(H(f) + Vi - (VH(f)) + Ve (FLH(f)) =0 in D'((0,T) x RY),
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and

HF(®) dede = [ (o) ded.

RS RS

Therefore, taking fi = f2, i.e., fo = f1 — f2 = 0, we obtain f = 0 a.e., i.e., fi = fo
a.e. In a similar way we can show the following comparison principle: fi < f2 a.e.
implies f' < f2 a.e. Two open issues remain. The first one is the uniqueness of solutions
of Theorem 2, which corresponds to the self-consistent case. Of course the existence
of solutions of Theorem 2 is also an open big problem. Following the program of [36],
the second one is the existence and uniqueness of corresponding Lagrangian solutions,
i.e., solutions constructed from almost-everywhere-well-defined characteristic curves, as
in the smooth framework (16)-(18).

REMARK 7. Another open issue is the case of bounded domains in space, with specular
reflection and/or absorbing conditions [49]. This is not an easy task since, for such natural
boundary conditions, some singularities could occur at the boundary and propagate inside
the domain [50, 51].

From Theorem 2 and the result of [22] on the regularity of the DiPerna—Lions weak
solutions, we deduce the following corollary, which involves hypotheses concerning only
the distribution function f.

COROLLARY 1. Let 8 =6/(13 + +/142), and let a € R be the solution to
af+p+3a—-1>0 and O<a<l. (31)

Let (f, E,B) be a weak solution to the relativistic Vlasov—Maxwell system (11)-(14),
given by Theorem 1. Assume the additional hypotheses: initial conditions (Fy, By)
belong to H'(R3), the distribution function f satisfies the supplementary integrability
condition,

[ s de e = (o.7i @), (32)
R3
and the regularity assumption,

f € L>(0,T; H*(RY)). (33)

Then for any entropy function H € €*(R*;R"), renormalization property (26) holds.
Moreover, if H € & and the map t — f(t, -, ) is uniformly integrable in RS for a.e. t € R,
then local entropy conservation laws (28)-(29), as well as global entropy conservation law
(30), hold.

Proof of Corollary 1. Using assumptions Fy, By € H'(R?), and (32) from Theorem
1.1 of [22], we obtain that the electromagnetic field (E, B) belongs to H{ZC(R"‘ x R3)
with 8 = 6/(13 + v/142). Setting p = ¢ = 2 and 3 = 6/(13 + /142) in the hypotheses of
Theorem 2, and using assumption (33) under constraints (31), we obtain from Theorem 2
the desired result. ]
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REMARK 8. From Corollary 1, we deduce that for a such that

1-8  7+/142

1>a> =
3+ 08 45+ 3V142

~0.234, (34)

the Vlasov equation (11), which is a first-order conservation law in the phase-space RS,
has an infinite number of conserved entropies. A similar situation occurs with general
systems of conservation laws, which are studied in [20] within the regularity framework
of Holder spaces ¢%®. Nevertheless, in [20], the authors show conservation of entropies
under the sufficient condition o > 1/3 (the famous Onsager exponent [58]), which is
more restrictive than the present result, from two points of view. First, Sobolev spaces
H® are less regular than Hélder spaces €% for the same «. Secondly, our index «
is smaller than 1/3. An explanation of such a discrepancy comes from our commutator
estimates which exploit the anisotropy between the velocity and physical spaces, whereas
commutator estimates in [20,52] use some Taylor expansions, which does not advantage
a particular direction of space. Finally, we observe that the critical exponent o = (7 +
V/142) /(45 + 3+/142), which is smaller that v/5 — 2, cannot be retrieved with the method
of [44], since the latter is obtained under the condition p = ¢ > 3 and hence cannot deal
with the case p = ¢ = 2.

3.3. Proof of Theorem 2. Before giving the proof of Theorem 2, we first introduce
some standard regularization operators and we recall their main properties. Using a
smooth nonnegative function g such that

e 20 0eDE), swp(e) -1 [eldr=1,  (3)
R
one defines the radially-symmetric compactly-supported Friedrichs mollifier z — o.(z2),
given by
R — RT

z — ge(z)_eidg(ﬁ>, e>0. (36)

€

For any distribution f € D'(R* x RY), we define its ¥ >°-regularization by
PPt €) = on(t) g 0c ()  0(€) 1 F (£, ), (37)

where the operator x denotes the standard convolution product. We denote by (-, )
the dual bracket between spaces D’ and D. Using previous definitions, we have for the
regularization operator (-)¢ the following standard properties (see, e.g., [8]), which are
summarized in the following.

LEMMA 1. 1. For any distribution f € D'(R?), we have

(f&,9)=(f,9°), g€DRY).
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2. For any function f € L'NL®NW*P(RY), with 0 < a < 1 and 1 < p < 0o, there
exists a constant C such that

I fNzamay < N fllLarey, 1<q< o0,
£ llwer@ay < Ifllwermay,

I1£€ = fllr@may < Ce*|| fllweop(rays
IV £l e ey < Ce* I fllwargay-

3. For any function f € Bg‘m(IRd)7 with 0 < @ < 1 and 1 < p < oo, there exists a
constant C such that

1f(-—2)— f(‘)||Lp(Rd) < C\Z|a||f||Bgm(Rd)~

Proof. Since the proof is elementary, it is left to the reader. ]
In order to prove Theorem 2, we use some commutator estimates which are given by

LEMMA 2. Let (f, E, B) be a weak solution of the relativistic Vlasov—-Maxwell system
(11)-(14), given by Theorem 1, satisfying the regularity assumptions (23)-(25) of The-
orem 2. Let us recall that F;, := E + v x B is the Lorentz force field. Then there
exist a constant C'y, depending on || f{| zoc (0, 7;we.»(rs)) and a constant Cy; depending on
I fll oo 0, 7;w e p o))y 1B Lo (0,03w 5093y and || B[ Les (0,75 8.4 (r3)) such that

[V - ((wf)™e0 =0 f720) HLl(O,T;LP(RG)) < Cpoootlee! (38)
and

IVe - ((Frfyme® = =0 free) ) SCp(eea ™ +5%), (39)

HLl (0,757 (RE; L7 (RS))

where a, S, p, q, and r satisfy relations (23)-(24).

REMARK 9. The precise estimates obtained in Lemma 2 seem to be compulsory to
obtain the precise Onsager exponents «, 8 in the main theorem, Theorem 2, instead of
the general exponent 1/3 established for fluid models.

Proof. We start with two basic estimates, which will be used often throughout the
proof. Using the fundamental theorem of calculus and

I3 E®E 2
Veu| = - < <2, 40
Vel = s epp e e < Vi S w
we obtain the first basic estimate,
1
o6 = w) ~w(©)| < ful | [Ve(é — rw)ldr < 2lul. (41)
0

Licensed to Penn St Univ, University Park. Prepared on Tue Apr 27 18:03:11 EDT 2021 for download from IP 132.174.254.159.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ONSAGER-TYPE CONJECTURE FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM 205

Using the fundamental theorem of calculus twice, we obtain componentwise,

vi—v) = dw 05 (w)(vi (&) — vi(§ — w))

g
= > [ awastey; [ dropuie—ru
_ Zajw@ / dw os(w)w;

—I—Z/ dw gs5(w ijk/ dT/ ds 02 i (§ — sTw). (42)

Since the smooth function g is radially symmetric and compactly supported, we have,
/ dw p(w)w; =0 and / dw o(w)|w;|jw;| < Cp < 400 Vi,7,€{1,2,3}, (43)
R3 R3
where C, is a numerical constant depending only on the function p. Using the first

equality in (43), the first term of the right-hand side of (42) vanishes. Using the second
inequality of (43), and

0i5€k 0jk&i dir; 3&i&;&k 6
V2 i = J + z + 2 . < <6,
e (R R (R (T R R e
we obtain from (42) the second basic estimate,
v — 0] < 60,6% (44)

We now deal with commutator estimate (38) for the free-streaming term. We define

rnes(f,9)(t x,§) = /dT/Rde/ dw 0y (7) 0 (y) 05 (w)
(ft—mz—y,E—w)— f(t,z,) (gt — .2 —y,§ —w) —g(t,2,8)). (45)

Using (45), it is easy to check that
()20 =0 20 oy 50, f) = (f = f790) (0 = 0°). (46)
Observing that
Poes (v, f) =50, f1°) + (f = f7) (0 =),
equation (46) becomes
(0f)150 =0 [0 =150, f7°) = ((f7°)° = f7) (v = 2°). (47)

Using estimate (41), Lemma 1, continuous embedding W**(R%) c Bg  (R?) with
1 < p < oo, the restriction property for Sobolev spaces W*P(R%) (see Remark 4),
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and regularity assumptions (23)-(25), we obtain,

HV %) HLl(OTLP(]RG))

/ dt / dw 03(w) [[(0(E — w) — v(£))
(Ve f" (G, € —w) = Ve f7(E,2,8)) | o rs, )

<c / dt / dw sl VS (0) et g, )
T

<€ [ VL O vy
’ T

< 0= 15 [t PO lwesiwsavesay

T
< Cealgott / dt 0y (t) % || () [we s (zo)

< Ce® 18| Fll ot o.mswenr(re)) - (48)

Using estimate (44), Lemma 1, the restriction property for Sobolev spaces WP (R%),
and regularity assumptions (23)-(25), we obtain,

Ve - ((f79)° = f™) (v = ”6))HL1(0,T;LP(R6))
< v =0z o) | (Ve f ) = Ve || 10,0 ey
< COFHIVa f™ |l 0,70 (3 wew (2)))
< CEQ*l(SO‘H||fn||Ll(o,T;Wa,P(Rg;WW(RS)))

< Ce* 16| fll (0, 7wen (RSY) - (49)

Using (48)-(49), we obtain from (47), commutator estimate (38). We continue with
commutator estimate (39) for the Lorentz force term. Using definition (45), we first
make the following decomposition:

(FLf)"e? = F= f15° = Tpp + T, (50)
where
5= (Bf*)" = E™(f*)"° =1y (E, f°) = (B = E™)(f* = (f°)") (51)
and
T = (v x Bf)®° —0v° x BEf%9, (52)

Let us first deal with the term Tg. Passing to the limit n — 0 in r, . (E, f9), which can
be justified by the Lebesgue dominated convergence theorem and regularity assumptions
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(23)-(25), we obtain,

Ve rne(E, 0 Ve ro(E, f°

)HLl(o,T;Lp(Rg;Lr(Rg))) < } )HLl(o,T;Lp(Rg;Lr(Rg)))

< / dy 0-W)I|(E(t, z — y) — E(t,2))
R3

’ (fog(t’l‘ -v,8) — vffé(taxaf))HLl(O,T;LP(Rg;LT(Ri)))' (53)

Using Hoélder inequality, Lemma 1, continuous embedding W?(R?) C Bg’OO(Rd) with
1 < p < oo, the restriction property for Sobolev spaces WP (R?), and regularity as-
sumptions (23)-(25), we obtain from (53),

. 5
Ve ry:(EB, f )HLl(O,T;LP(]Rg;LT(]Rg)))
< [ dyew)IE(ta — ) - Bt )1 oasms)
R
IVefo(t,x—y,&) — Vﬁfé(tvxa§)||L1(O,T;LP(R2£))
<c [ ol
R3
BN Lo t0.7:82 . oy I Ve S o 0,700 (m2:35 . (=2 )))
< C€a+5”E”LN(O,T;W&‘I(R?’))”Vﬁfé”L1(0,T;LP(R2;W°‘=P(R§)))
< CEOHrB(Sa?l”E”LOO(O,T;Wﬁ’q(]R?'))”fHLl(O,T;W‘lvP(Rg;Wa’P(R};)))

< Ce* P58 El Lo o,mswsa oy | Fl L1 (0,mswrer 9))- (54)

Using the Lebesgue dominated convergence theorem and regularity assumptions (23)-
(25), we can pass to the limit 7 — 0 in the term, (E — E™)(f° — (f°)™¢), to obtain

HV5 ’ ((E - En,a)(fé - (fé)n’a))HLl(OvT;LP(RE;Lr(Rg)))
S HVE : ((E - EE)(]NS - (f6)6))HL1(07T;LP(R2;LT(R2)))' (55)

Using Hélder inequality, Lemma 1, continuous embedding W*?(R%) ¢ Bg  (R?) with
1 < p < oo, the restriction property for Sobolev spaces W®P?(R?), and regularity as-
sumptions (23)-(25), we obtain from (55),

va . ((E — E"»E)(fé . (f'(s)"],s))|‘L1(07T;LP(R2;LT(]R3)))
IVef® = (Vef*) lio.r:Le @sy)

< CEOH_ﬁHEHLoo(O’T;Bg‘OO(RQ)||v§f5||L1(07T;LP(R2’;B370C(R§)))

<||E — Ef|| Lo (0,150 (r3))

< C€a+ﬁ5a_lHEHLW(O,T;WBH(H@))Hf”Ll(O,T;W%P(RS;W&»P(]RQ)))
< Ce* P8 El| poo o,75w 50 @y 1 f | L1 0, 75wp (moyy - (56)
From (53) and (56), we obtain,

Ve Toll o ine iy S €78 Bl o, mwsap Il o miwen ee))-
(57)
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We now deal with the term T'g, given by (52), and which can be recast as,

To= ["ar [y [ dwortme sl - - ofe)
XBt—m,x—y)ft—1,2—y,&—w)
+ o x [(Bf°)e = B (f°)"] + (v —0") x B™(f°)"
=1Tp1 +Tpe +Ths. (58)

The term V¢ - Tg; can be decomposed as

Ve To = / dT/dey/ dw 0,(7)0- () Vo)
(1€ = w) —w(©)] x Bt ~ .2~ )t ~ 2~ 1,6)

T
+/ dT/ dy / dw 0,(7) 0:(y) Vwos(w)
0 3

([v(€ = )] X B(t—1,2—y))
(f(t—T,x—y,f—w)—f(t—T,x—y,f))
= Tg11 + TB1o. (59)

Using integration by parts, we observe that

TBll—/ dT/ dy/ dw 0, (7)0:(y) 05 (w)
Rz R3

Vo - ([v(§ —w) =v(€)] x Bt =7, —y)) f(t = 7,0 —y,£) =0, (60)

because V, - ([v(§ —w) —v(§)] x B(t,z —y)) = 0. Using Holder inequality, estimate (41),
Lemma 1, continuous embedding W*»(R?) C Bg (R?) with 1 < p < oo, the restriction
property for Sobolev spaces W*P(R?), and regularity assumptions (23)-(25), we obtain

T
HTBl2"Ll(()’T;Lp(Rg;LT(Ri))) S 2/0 dT/Rs dy/RS dw QU(T)QE(y)|va5(w)Hw|

1Bt —7,0 —y)(f(t =T,0 —y,§ —w) = f(t =T, 2 — ?Jaf))HLI(O,T;LP(Rg;Lr(Rg)))

<2 [ ar [ [ wone Vool

IB(t =72 —y)llLeorLa@epllf(t— T2 —y,§ —w) = f(t — 7,2 —y, §)||L1(OTLP(R6£))

< C/ dw [V 05(w )||w‘a+1HBHLW(OTLLI R3) ||fHL1(OTLP(]R3 iBY o (RY)))

< OO Bl Lo o,mwo a ey 1 fl| L1 0,75w e r o)) - (61)
In a way similar to how we have obtained estimate (57) for V¢ - T, we also obtain for

V¢ - Tpa,

IV - Tzl s o rotmqgasir ey < €278 IBllz o ziwsa@op 1l o mwen o).
(62)
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Using estimate (44), Holder inequality, and Lemma 1, we obtain for V¢ - T'gs,

Ve 'TBS"Ll(O,T;LP(Rg;L’”(Rg))) < lw- v’) x Bw(vdé)wHLl(O,T;LP(RE;LT(Ri)))
< CO%||B" |~ (oriLo@ ) IVe S "L 0,110 m9))
< OBl (o.r:La@sn | fllLiomswar ey (63)
Gathering estimates (60)-(63), we obtain from decompositions (58)-(59),

Ve Tl 11 0 110 s rayyy < CETP0 T 40N Bl pow 0, mw00 oy | 1|1 0,750 (5 -

(64)
Eventually, from (57) and (64), we obtain commutator estimate (39), which ends the
proof of Lemma 2 |

Proof of Theorem 2. Let us now give the proof of the main theorem. The weak for-
mulation for the Vlasov equation reads,

T
/ dt/ dx/ A€ f(0,0 +v -V, U + Ff - Vel) =0, YW € D((0,7) xR®)  (65)
0 R3 R3

with F, := E+v X B. Let us note that all integrals in (65) have a sense since for DiPerna—
Lions weak solutions [36] we have f € L°°(0,T; L*(RS)), and E, B € L*(0,T; L?(R?)).
We choose in (65) the test function,

U= W5 = (W (f150)®)"50 € D((0,T) x RY) (66)
with ® € D((0,T) x RS) and H € €1 (R*;RT). Using the first property of Lemma 1 and
successive integrations by parts, we obtain from (65)-(66),

T
|t [ o [ ag{mimen@ o Ve Fp0 v
0 R3 R3

+ OH (1) [V ((0f)7 = " f190) 4 Ve - ((Fuf)"ef = Fp=tref) | b =0 (67)

for all ® € D((0,T) x R%). We now establish the renormalized Vlasov equation (26).
Using regularity assumptions (23)-(25), (66), and Lemmas 1 and 2, we obtain from (67),

T
/ dt / de [ dEH(FP) 0,8 + 0 - Vod + FI50 . VD)
0 R3 R3

S C* (6a+1€a71 + €a+65a71 + 5&) , (68)

where C. depends on || f| pe (0,11 ®s)), Cys, Cp1, H, and ®. Balancing contributions
coming from the free-streaming and Lorentz force terms in the right-hand side of (68),
we obtain

@152 —§ — 2P =, (69)

and estimate (68) becomes

T
/ dt/ d:v/ dEH(f=0)(0,® +v° - V& + FF¥° . Ve ®)| < Cup (70)
0 R3 R3

with the definition

n = e oot
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Solving quadratic equation (69) in 4, the only positive solution is given by

14+ VI 4e2athl
2ea-1 '
Two cases are to be considered according to the value of a and :
i) 2a + B —1 < 0. We then have § ~ £(#T1/2 and n ~ gl@f+A+3a=1)/2 _, () a5
e—=>0ifaf+F+3a—-1>0.
ii) 2a + 8 —1 > 0. We then have § ~ ¢!=% and n ~ gal=®) 5 0 ase — 0 if
O0<a<l
Assuming that the free-streaming contribution dominates the Lorentz force contribution,
this implies e*~16%2 — § — e*T# > 0, which leads to a contradiction as § — 0. On the
contrary, assuming that the Lorentz force contribution dominates the free-streaming
contribution, this implies e*~162 — § — £*T# < 0, which leads also to a contradiction as
first § — 0 and next € — 0. In conclusion, if a8 + 8+ 3a — 1 > 0, then the right-hand
side of (70) vanishes as (g,d) — 0, and we obtain the renormalized Vlasov equation (26).
We continue with the local-in-space entropy conservation law (28). For this purpose,
we first restrict entropy functions H to the set &, defined by (20), and secondly we take
in (70) a test function ® such that

(t,z,€) = A(t,x)0(€) with A € D((0,T) x R*) and © € D(R?).
We then choose the test function © such that
O(§) =0g(&) :=0(¢/R) with R > 0.

Here the function § € D(R?) is such that supp(f) C Bgs(0,2), § = 1 on Bgs(0,1) and
0<6<1on Bgs(0,2) \ Bgs(0,1). We then have

0

©Or — 1, ae. as R— +oo and V¢Or — 0, ae. as R— +oo. (71)

From the uniform integrability assumption (27), and the de La Vallée Poussin theorem,
there exists a constant Cy > 0, independent of (e, d), but depending on #H such that

/ dx/ dEH(f15°) < Oy < +oo0 YHEE. (72)
R3 R3

Using estimate (72), regularity assumptions (23)-(25), and property (71), we obtain from
the Lebesgue dominated convergence theorem that

T T
/ it / dx / dEH ()9, AO p —> / dt / dx / dEH(F7)9,A, as R — +o0,
0 R3 R3 0 R3 R3 (73)

T
/ dt/ dx/ dEH(f= %) - V,AOR
0 R3 R3

T
—>/ dt/ d:c/ dEH(f50)0° -V, A, as R — +oo, (74)
0 R3 R3

and

T
R, ;:/ dt/ dm/ dE H(f7<9) EIE0 16 7. @A —30 as R+ +oo.  (75)
0 R3 R3
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Limits (73)-(75) are uniform in (n,¢,d), and in addition there exists a constant x, >
0, independent of (n,¢,d), but depending on || f||re(0,7;020L®s)), |BllLoe(0,1;02®3)),
| Bl Lo (0,112 (®3)), A and € such that

|R1| < kiR (76)
Using (73)-(76), we obtain from (70),

T
/ dt/ dx/ dEH(F=7) (DA +0° - Vo A)| < Cuy + 1R (77)
0 R3 R3

Under the condition, a8 + 8 + 3a — 1 > 0, the right-hand side of (77) vanishes as
(n,e,0) = 0 and R — 400, and we obtain from (77) the local-in-space conservation law
(28). In a similar way, by interchanging the role of the test functions A and ©, we obtain
local-in-momentun conservation law (29).

We pursue with global entropy conservation law (30). For this aim, we first take in
(77) a test function A such that

A(t,z) = (t)A(x) with ¢ € D((0,T)) and A € D(R?).
We then choose the test function A such that
A(z) = Ag(x) := AMz/R) with R > 0.

Here the function A € D(R?) is such that supp(\) C Bgs(0,2), A = 1 on Bgs(0,1), and
0<A<1on (Bgrs(0,2)\ Bgs(0,1)). We then have

Ar — 1, ae. as R— +oo and V,Ar — 0, a.e. as R — +oo. (78)

Using estimate (72), regularity assumptions (23)-(25), and property (78), we obtain from
the Lebesgue dominated convergence theorem that

T T
/ dt/ dx/ d{H(f"’5’5)8tgpAR—>/ dt/ dx/ AEH(f75) Dy as R — +oo,
0 R3 R3 0 R3 R3 (79)

T
Ro ;:/ dt/ dx/ dEMH(f5°)° - VoArp — 0 as R — +oo. (80)
0 R3 R3

Limits (79)-(80) are uniform in (7,¢,9), and in addition there exists a constant ko > 0,
independent of (n,¢,d), but depending on Cy, ¢, and X such that

|Ra| < koR™E (81)
Using (79)-(81), we obtain from (77),

T
/ dt &g(p/ de [ deH(f"%)| < Can+ rm R + roR7L. (82)
0 RS RS

Under the condition, a8 + 8 + 3a — 1 > 0, the right-hand side of (82) vanishes as
(n,e,0) = 0 and R — 400, and we obtain from (82) the global entropy conservation law
(30). This ends the proof of Theorem 2. O
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4. Energy conservation. As concerns conservation of total energy we have

THEOREM 3. Let (f, E, B) be a weak solution to the relativistic Vlasov—Maxwell system
(11)-(14), given by Theorem 1. If the macroscopic kinetic energy density satisfies the
supplementary integrability condition,

[ s dee = o.1i @), (83)
R3
then, using definition (22), we have the local conservation law of total energy,
HE+ V- (/ yfvdé+ E x B) =0 the following in D’((0,7) x R?), (84)
R3

and the global conservation law of total energy,
Et)=E(s) for 0<s<t<T. (85)

REMARK 10. Under assumption (83), it has been proved in [22] that the electromagnetic
field (E, B) belongs to Hf (RS x R3) with s = 6/(13 + v/142). Then, such solutions
satisfy the conservation laws (84)-(85).

Proof. Choosing in the weak formulation (65) the test function,

U(t,z,€) = At,2)0(6)7(£) €D((0,T) x R%)  with AeD((0,T) x R*) and © € D(R?),
(86)
and using V¢y = v, we obtain

/OTdt/ua?»dx( R3d§7f9> atA+/0Tdt/R3dac( R3d§7fy@> VLA

T T
: A : A=0.
+/O dt/R3dac<R3d§fv E@) +/O dt/RSda:<R3d£7fFL vfe) 0. (87)

We now establish the local conservation law of total energy. For this we take in (87) a
test function © such that

O(€) = On(€) := 0(¢/R) with R > 0.

Here the function § € D(R?) is such that supp(#) C Bgs(0,2), § = 1 on Bgs(0,1), and
0<6<1on Bgs(0,2) \ Brs(0,1). We then have

©Or — 1, ae. as R— +oo and V¢Or — 0, ae. as R— +oo. (88)

Using (88) and regularity properties (21), we obtain from the Lebesgue dominated con-
vergence theorem,

/OTdt/Rde (/RBdSWf@R) 5tA_>/OTdt/RSdgg (/Rgdgyf>8tA as R — oo (89)
and
/OTdt/RSd:c(/de&va@R).va—>/OTdt/RBda:</de57fv> "V,A as R — oo

(90)
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Using assumption (83), regularity properties (21), and Holder inequality, we obtain

/OTdt/Rs dz (/R3 dgfyfFL.VgeR) A

dg H E|lLe0,1:L7 + | B| 0717 — 0 as R — o0
H/Ra Evf L (O,T;LT'(]R3))(|| Lo 0,157 (R#)) + | Bl Lo 0,750 (R2))) as
(91)

< ORIV L ||A]| Lo

with 1/r +1/r" =1 and setting r = 2. We now claim that
fo-BAISNB) € LTS @) it [ deaf € LXOTSLR®Y). (92
R3

Indeed using interpolation Lemma 2.3 in [22], we obtain

| [ aes| <o) [ dena] (98)
RS Lo=(0,T;L2(R3)) — L Jgs K Lo°(0,T;L3/2(R3))

Therefore, (92) results from (93) and Cauchy-Schwarz inequality. We notice that the
L3/2-integrability condition in (92) results from regularity properties (21), assumption
(83), and standard interpolation results between Lebesgue spaces. Using (88) we have
fv-EOrA — fv-EA a.e. as R — +oo. Moreover, using (92), we obtain from the
Lebesgue dominated convergence theorem,

T T
/ dt/ dx( dffv-E@R)A—>/ dt | drj-EAN as R — oo. (94)
0 R3 R3 0 R3

Using the weak formulation of the Maxwell equation, we obtain

T T 2 2 T
/ dt/ d:cj.EA:/ dt/ dxmat/&—i—/ dt/ dx E x BV A. (95)
0 R3 0 R3 2 0 RS

Using (89)-(91) and (94)-(95), we obtain from (87),

ATthSdz{(Asd§7f>+7|E|2;BQ}@A
+/0Tdt/de:z:{</RSd§7fv)+ExB}~VxA—O, (96)

which gives the local conservation law of total energy (84). We continue by deriving the
global conservation law of total energy. For this we take in (96) a test function A such
that

A(t,z) = (t)A(z) with » € D((0,T)) and A € D(R?).
We then choose the test function A such that
A(z) = Ag(x) := AMz/R) with R > 0.

Here the function A € D(R?) is such that supp(A\) C Bgs(0,2), A = 1 on Bgs(0,1), and
0<A<1on (Bg:(0,2)\ Brs(0,1)). We then have

Ar — 1, ae. as R— +oo and V,Ar — 0, a.e. as R — +oo. (97)
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Using (97) and regularity properties (21), especially f € L*>(0,T; L}Y(R(S)) and F, B €
L>(0,T; L?(R?)), we obtain from the Lebesgue dominated convergence theorem,

T 2 2
|E]® + |B| }
/0 dt/Rde{</RSd§7f>+72 AROp

T 2 2
|E]® + |B|
—>/O dt/R3da:{(/Rgd§7f>+—2 }Btap as R— +oco (98)

T
/ dt/ da:{(/ d{’yfv)+ExB}~VmAR<p—>O as R — +oo. (99)
0 R3 R3
Using (98)-(99), and passing to the limit R — +o0 in (96), with A(t,z) = ¢(t)A\(z/R),

and

we obtain .
E|? +|B|?
/ dtat<p/ dx{(/ dgyf)+@}=o, (100)
0 R3 R3 2
which gives the global conservation law of total energy (85). O
REMARK 11. 1. If B, B € L>(0,T; L>=(R"%)), we observe that the proof of Theo-

rem 3 remains valid without condition (83), and then local and global conserva-
tion of total energy (84)-(85) are satisfied.

2. Using the continuous embedding W4 4(R3) ¢ L34/G-A)(R3), with B¢ < 3, we
observe that if E, B € L>=(0,T; L?> N W#4(R?)), and

/ ¢~ f € L*°(0,T; L3/ (3HRAa=3)(R3)),
R3

then estimates (91) and (94) still hold. Therefore, local and global conservation
of total energy (84)-(85) are satisfied.
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