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Abstract. In this paper we give a proof of an Onsager-type conjecture on conservation

of energy and entropies of weak solutions to the relativistic Vlasov–Maxwell equations.

As concerns the regularity of weak solutions, say in Sobolev spaces Wα,p, we determine

Onsager-type exponents α that guarantee the conservation of all entropies. In particular,

the Onsager exponent α is smaller than α = 1/3 established for fluid models. Entropies

conservation is equivalent to the renormalization property, which has been introduced

by DiPerna–Lions for studying well-posedness of passive transport equations and colli-

sionless kinetic equations. For smooth solutions, renormalization property or entropies

conservation are simply the consequence of the chain rule. For weak solutions the use

of the chain rule is not always justified. Then arises the question about the minimal

regularity needed for weak solutions to guarantee such properties. In the DiPerna–Lions

and Bouchut–Ambrosio theories, renormalization property holds under sufficient condi-

tions in terms of the regularity of the advection field, which are roughly speaking an

entire derivative in some Lebesgue spaces (DiPerna–Lions) or an entire derivative in the
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194 CLAUDE BARDOS, NICOLAS BESSE, AND TOAN T. NGUYEN

space of measures with finite total variation (Bouchut–Ambrosio). In return there is no

smoothness requirement for the advected density, except some natural a priori bounds.

Here we show that the renormalization property holds for an electromagnetic field with

only a fractional space derivative in some Lebesgue spaces. To compensate for this loss of

derivative for the electromagnetic field, the distribution function requires an additional

smoothness, typically fractional Sobolev differentiability in phase-space. As concerns the

conservation of total energy, if the macroscopic kinetic energy is in L2, then total energy

is preserved.

1. Introduction. The dimensionless relativistic Vlasov–Maxwell system reads,

∂tf + v · ∇xf + (E + v ×B) · ∇ξf = 0, (1)

∂tE −∇×B = −j, ∂tB +∇× E = 0, (2)

∇ · E = ρ, ∇ ·B = 0, (3)

where t ∈ R, x ∈ R
3, ξ ∈ R

3, and v = ξ/
√

1 + |ξ|2 represent time, position, momentum,

and velocity of particles, respectively. The distribution function of particles f = f(t, x, ξ)

satisfies the Vlasov equation (1) with acceleration given by the Lorentz force FL =

E+v×B, while the electromagnetic field E = E(t, x) and B = B(t, x) satisfies Maxwell’s

equations (2)-(3). The coupling between the Vlasov equation and Maxwell’s equations

occurs through the source terms of Maxwell’s equations, which are the charge density

ρ = ρ(t, x) and the current density j = j(t, x). These densities are defined as the first

v-moments of the phase-space density of particles f , namely,

ρ(t, x) =

∫

R3

f(t, x, ξ) dξ, j(t, x) =

∫

R3

vf(t, x, ξ) dξ. (4)

The initial value problem associated to the system (1)-(4) requires initial conditions given

by,

f(0, x, ξ) = f0(x, ξ) ≥ 0, (5)

E(0, x) = E0(x), B(0, x) = B0(x), ∇ · E0 = ρ0 =

∫

R3

f0 dξ, ∇ ·B0 = 0. (6)

In addition for the well-posedness of Maxwell’s equations (2)-(3), the densities of charge

ρ and current j must satisfy a compatibility condition given by the charge conservation

law,

∂tρ+∇ · j = 0. (7)

This continuity equation is automatically satisfied if the Vlasov equation (1) is satisfied

since it can be recovered by integration in the momentum variable of the Vlasov equation.

Let us note that Maxwell–Gauss equations (3) are satisfied at any time if they are satisfied

initially. Indeed, it is a consequence of time integration of the divergence of the Maxwell–

Faraday–Ampère equations (2), in combination with the continuity equation (7) and

initial conditions (6).
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ONSAGER-TYPE CONJECTURE FOR THE RELATIVISTIC VLASOV–MAXWELL SYSTEM 195

The Vlasov equation (1) has, at least formally, infinitely many invariants. Indeed, let

H : R → R be any smooth function. Multiplying (1) with H′(f) and applying the chain

rule, we then obtain,

∂tH(f) + v · ∇xH(f) + (E + v ×B) · ∇ξH(f) = 0. (8)

A solution f to (1) in the sense of distributions is said to be a renormalized solution if for

any smooth nonlinear function H, f also solves (8) in the sense of distributions. We say

that the field (v, FL) satisfies the renormalization property if any solution f to (1) in the

sense of distributions is a renormalized solution. The renormalization technique appeared

in the well-posedness of passive advection equations and ODEs [37], in the analysis of

the Boltzmann equation [38], in the theory of weak solutions of the compressible Navier-

Stokes equations [57], and in the theory of weak solutions of collisionless kinetic equations

such as the Vlasov–Poisson system [34,35]. The groundbreaking work [37] has highlighted

the fundamental link between renormalized solutions to the passive transport equation,

∂tu+ b · ∇u = 0, u : [0, T ]× R
d → R, b : [0, T ]× R

d → R
d, (9)

and the well-posedness theory for the associated ODE,

∂tX(t, x) = b(t,X(t, x)), t ∈ [0, T ], X(0, x) = x ∈ R
d, (10)

where b is a nonsmooth vector field. Similarly to entropy conditions for hyperbolic

conservations laws, renormalization property provides additional stability under weak

convergence. Indeed, renormalized solutions come with a comparison principle, which

allows us to show uniqueness of renormalized solutions and some stability results for

sequences of solutions. In return, uniqueness at the PDE level (9) implies uniqueness at

the ODE level (10). It was first shown in [37] that the renormalization property holds

provided b ∈ L1
tW

1,p
x with p ≥ 1, plus a bounded divergence and a global space growth

estimate on b (see also [55] for the case W 1,1
loc ). Moreover, there is no additional regularity

assumption for u except its boundedness or some Lp-bounds. This result was extended

to b ∈ L1
tBVx with ∇ · b ∈ L1

t,x, first in [23] for the Vlasov equation (see also [53] for

a related result), and then in [9] for the general case (see also [28]). Very recently, in

[11] the authors developed a local version of the DiPerna–Lions’ theory under no global

assumptions on the growth estimate of b. We refer the reader to [10] for a recent survey.

For the Vlasov–Poisson system when f is merely L1, the product Ef does not belong

to L1
loc. Therefore, higher integrability assumptions on f are needed to give a meaning

to the Vlasov–Poisson equation in the sense of distributions. For example, when d = 3,

for the term Ef to belong to L1
loc one needs to have f ∈ Lp with p = (12 + 3

√
5)/11

(see for instance [34,35]). To drop out this higher integrability hypotheses, in [34,35] the

authors considered the concept of renormalized solutions and obtained global existence

provided that the total energy is finite and f0 log(1 + f0) ∈ L1. In addition, under some

suitable integrability hypotheses on f , they can show that the concepts of weak and

renormalized solutions are equivalent. For bounded density f , renormalization property

holds because elliptic regularity of the Poisson equation leads to E ∈ W 1,p with p > 1

(see [34, 35]). For the Vlasov–Maxwell system the only available global existence result

is in [36], where the authors have constructed weak solutions for which it is not possible

to show the renormalization property. Indeed, the best electromagnetic field regularity,
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obtained so far for the DiPerna–Lions weak solutions, is in [22], where the authors show

that the electromagnetic field (E,B) belongs to Hs
loc(R

+
∗ ×R

3), with s = 6/(13+
√
142),

if the macroscopic kinetic energy is in L2.

Regularity of the rough vector field considered above, i.e., Sobolev or BV vector fields,

is somehow like the Lipschitz case because there is always a control (in Lebesgue spaces

or in the space of measures with finite total variation) on an entire derivative of the

vector field. By contrast, when b is not Lipschitz-like, the use of the chain rule is no

longer justified, and many counterexamples to renormalization have been obtained in

[2, 4–7, 29–31,33, 65].

Here, we show that the renormalization property holds for an electromagnetic field

with only a fractional derivative in some Lebesgue spaces, i.e., E,B ∈ L∞
t W β,q

x with

0 < β < 1 and 1 ≤ q ≤ ∞. To compensate for this loss of derivative for the electro-

magnetic field, the density f requires additional smoothness, typically fractional Sobolev

differentiability in phase-space, i.e., f ∈ L1
tW

α,p
x,ξ with 0 < α < 1 and 1 ≤ p ≤ ∞. We de-

termine Onsager-type exponents [44] α and β, which ensure conservation of all entropies

and guarantee that the renormalization property holds. As concerns the conservation of

total energy, if the macroscopic kinetic energy is in L2, we then show that total energy is

preserved. A comparable work has been done in [3] for the renormalization of an active

scalar transport equation.

A similar situation occurs with systems of conservation laws of continuum physics,

which are endowed with natural companion laws: the so-called entropy conditions (in-

equality versus equality) coming from the second law of thermodynamics. In [20,52] the

authors have determined the critical regularity of weak solutions to a general system

of conservation laws to satisfy an associated entropy conservation law as an equality.

They obtained the famous Onsager exponent 1/3 [58]. The first result of this kind was

obtained in [32] (see also [43]), where the authors have shown that weak solutions of the

incompressible Euler equations conserve energy provided they possess fractional Besov

differentiability of order greater than 1/3. Such a result has been extended in various

directions: In [27,41,47] the Besov criterium has been optimized; in [39,45,52,56,67] the

authors have considered compressible Euler, Navier-Stokes, and magnetohydrodynamic

equations; works [18, 19, 40, 60, 61] include boundary effects.

2. Basic properties. In this section, we recall the basic properties of the relativistic

Vlasov–Maxwell system, which are valid for any smooth solution (f, E,B), vanishing at

infinity. Theses formal properties, in particular, natural a priori estimates, are the key

cornerstones for proving the local-in-time well-posedness of this system [48]. Consider

the following set of equations:

∂tf + v · ∇xf + (E + v ×B) · ∇ξf = 0, (t, x, ξ) ∈ R
+ × R

3 × R
3, (11)

∂tE −∇×B = −j, ∂tB +∇× E = 0, (12)

ρ(t, x) =

∫

R3

f(t, x, ξ) dξ, j(t, x) =

∫

R3

vf(t, x, ξ) dξ, (13)

γ =
√

1 + |ξ|2, v = ∇ξγ =
ξ

√

1 + |ξ|2
. (14)
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Observe that once the current density j and initial data (E0, B0) are given, the Maxwell

equations (12) are well defined. Indeed the Maxwell operator M defined by,

X 	→ MX =

(

−∇×B

∇× E

)

with X =

(

E

B

)

, (15)

is the generator of a strongly continuous unitary group t 	→ S(t) := exp(−Mt) in L2(R3)

[14, 42, 66]. If (E(t = 0), B(t = 0)) = (E0, B0) ∈ L2(R3) and j ∈ L1(R+;L2(R3)), then,

using the properties of the group S(t) and the Duhamel formula, we can show that the

solution (E,B) to (12) belongs to C (R+;L2(R3)). Moreover for any s ≥ 0, the Hs

regularity is preserved, i.e., the previous statement remains valid if we replace L2(R3)

by Hs(R3). In the same way, once the smooth electromagnetic field (E,B) and initial

data f0(x, ξ) are given, the Vlasov equation is then well defined. Indeed, introducing the

characteristic curves t 	→ (X(t),Ξ(t)), which are the unique and smooth solution to the

ODEs,

dX

dt
(t) = v(Ξ(t)),

dΞ

dt
(t) = E(t,X(t)) + v(Ξ(t))×B(t,X(t)), (16)

X(0; 0, x, ξ) = x, Ξ(0; 0, x, ξ) = ξ, (17)

the Lagrangian solution to (11) is given by (e.g., see [24])

f(t, x, ξ) = f0(X(0; t, x, ξ),Ξ(0, t, x, ξ)). (18)

The relativistic Vlasov–Maxwell system (11)-(14) satisfies some formal conservation

laws, summarized in

Proposition 1. Let (f, E,B) be a smooth solution, vanishing at infinity, to the rela-

tivistic Vlasov–Maxwell system (11)-(14). Then the following a priori estimates hold:

1. (Maximum principle). 0 ≤ f0 ≤ M < ∞ implies 0 ≤ f(t) ≤ M for all t > 0.

2. (Lp-norm conservation). For all t ≥ 0, and 1 ≤ p ≤ ∞, one has ‖f(t)‖Lp(R6) =

‖f0‖Lp(R6).

3. (Entropies). For any function H ∈ C 1(R+;R+), one has for all t ≥ 0,

d

dt

∫

R3

∫

R3

H(f(t)) dξdx = 0.

4. (Energy conservation). For all t ≥ 0 one has

d

dt

(
∫

R3

∫

R3

(γ(ξ)− 1)f(t) dξdx+
1

2

∫

R3

(|E(t)|2 + |B(t)|2) dx
)

= 0.

5. (Momentum conservation). For all t ≥ 0 one has

d

dt

(
∫

R3

∫

R3

ξf(t) dξdx+

∫

R3

(E(t)×B(t)) dx

)

= 0.

Proof. The proof is standard and can be found, for instance, in [24]. �

Remark 1. Properties of Proposition 1 are key ingredients to obtain the global-in-time

existence of weak solutions [36, 48, 59] and the local-in-time existence, uniqueness, and

stability of classical solutions (e.g., see [48] and the references therein). Properties of

Proposition 1 are also independent of other a priori invariances described below. Indeed
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from the Maxwell–Faraday equation, ∂tB + ∇ × E = 0, we deduce that ∂t∇ · B = 0,

which leads to ∇ · B(t) = 0 for all t > 0, if initially ∇ · B0 = 0. In a similar way, from

the Maxwell–Ampère equation, ∂tE−∇×B = −j, we deduce that ∂t(∇·E)+∇· j = 0.

Using the charge conservation law (7) (obtained by integration of the Vlasov equation

(11) with respect to ξ) we then obtain ∂t(ρ−∇ · E) = 0, which leads to ∇ · E(t) = ρ(t)

for all t > 0, if initially ∇ · E0 = ρ0.

3. Renormalization property and entropies conservation.

3.1. Notation. We denote by R
+ the nonnegative real numbers, by D(Rd) the space of

indefinitely differentiable with compact support, and byD′(Rd) the space of distributions.

We also denote by S(Rd) the space of indefinitely differentiable and rapidly decreasing

functions, and by S ′(Rd) the dual of S(Rd), i.e., the space of tempered distributions. We

use the notation Bα
p,q ( 0 < α < 1, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞) for Besov spaces, the definition

of which can be found, e.g., in [1,21,63,64]. The notation Wα,p (0 < α < 1, 1 ≤ p ≤ ∞)

stands for the generalized Sobolev spaces of fractional order, whose precise definition can

also be found, e.g., in [1, 21, 63, 64]. Let us simply recall first Wα,p(Rd) = Bα
p,p(R

d) for

α positive but not an integer and 1 ≤ p ≤ ∞, and second the continuous embeddings:

Bα
p,1(R

d) ⊂ Wα,p(Rd) ⊂ Bα
p,∞(Rd) with 1 ≤ p ≤ ∞. We also define the functional space

L1
γ such that

L1
γ =

{

f ≥ 0 a.e. | ‖f‖L1
γ(R

6) :=

∫

R6

γf dxdξ < +∞
}

. (19)

Moreover we define the function space E such that

E =

{

H : R+ 	→ R
+; H is nondecreasing, H ∈ C

1(R+;R+), lim
σ→+∞

H(σ)

σ
= +∞

}

.

(20)

3.2. Main theorems. In this section we present our main results. For this, we need

to recall the DiPerna–Lions theorem, which is the only existing result concerning the

existence of global-in-time (weak) solutions to the Vlasov–Maxwell system in R
6.

Theorem 1 (DiPerna–Lions [36]). Let f0 ∈ L1
γ ∩ L∞(R6), and E0, B0 ∈ L2(R3), be

initial conditions which satisfy the constraints,

∇ ·B0 = 0, ∇ · E0 = ρ0 =

∫

R3

f0 dξ in D′(R3).

Then, there exists a global-in-time weak solution of the relativistic Vlasov–Maxwell sys-

tem, i.e., there are

f ∈ L∞
(

R
+;L1

γ ∩ L∞(R6)
)

, E, B ∈ L∞
(

R
+;L2(R3)

)

, ρ, j ∈ L∞
(

R
+;L4/3(R3)

)

,

(21)

such that (f, E,B) satisfy (11)-(12) in the sense of distributions, with ρ, j defined in

terms of (13). Constraint equation (3) and the charge conservation law (7) are satisfied

in the sense of distributions.

In addition, the mapping t 	→ f(t) (resp., t 	→ (E(t), B(t))) is continuous with respect

to the following topologies: the standard topology in the space of distributions D′(R6)
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(resp., D′(R3)), the weak topology of L2(R6) (resp., L2(R3)), and the strong topology of

H−s(Ω) for any s > 0 and any bounded subset Ω of R6 (resp., R3).

Futhermore, the total mass,
∫

R3

∫

R3

f(t)dxdξ,

is independent of time, and one has,

‖f(t)‖Lp(R6)=‖f0‖Lp(R6) a.e. t ≥ 0 for 1 ≤ p ≤ +∞, and E(t) ≤ E0 < ∞ a.e. t ≥ 0,

with the definition,

E(t) :=
∫

R6

γf(t) dξdx+
1

2

∫

R3

(|E(t)|2 + |B(t)|2) dx. (22)

Remark 2. 1. The conservation of mass and all the Lp norms was in fact proved

in [59].

2. Using lower semi-continuity, weak solutions of Theorem 1 satisfy, for all H ∈
C 1(R+;R+),

∫

R6

H(f(t)) dξdx ≤
∫

R6

H(f0) dξdx for t ≥ 0.

Now we intend to produce supplementary sufficient regularity conditions, which will

imply the validity of supplementary conservation laws. As the first step this is the aim of

Theorem 2 below: indeed, we first give sufficient regularity hypotheses which couple the

regularity of the distribution function f with the regularity of the electromagnetic field

(E,B). In the second step, we use Theorem 2 and the results of [22] on the regularity of

DiPerna–Lions weak solutions, to obtain Corollary 1 below, which involves only a suffi-

cient regularity condition on the distribution function f . As concerns the renormalization

property and entropies conservation, we have

Theorem 2. Let (f, E,B) be a weak solution of the relativistic Vlasov–Maxwell system

(11)-(14), given by Theorem 1. Assume that with

α, β ∈ R, 0 < α, β < 1, and αβ + β + 3α− 1 > 0, (23)

this weak solution satisfies for some (p, q) ∈ N
2
∗ with

1

p
+

1

q
=

1

r
≤ 1 if 1 ≤ p, q < ∞,

1 ≤ r < ∞ is arbitrary if p = q = ∞,
(24)

the supplementary regularity hypotheses,

f ∈ L∞
(

0, T ;Wα,p(R6)
)

and E,B ∈ L∞
(

0, T ;W β,q(R3)
)

. (25)

Then for any entropy function H ∈ C 1(R+;R+), we have the renormalization property,

∂t(H(f)) +∇x · (vH(f)) +∇ξ · (FLH(f)) = 0 in D′((0, T )× R
6). (26)

Moreover, if H ∈ E and the map,

t 	→ f(t, ·, ·) is uniformly integrable in R
6 for a.e. t ∈ [0;T ], (27)
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then we have the local entropy conservation laws,

∂t

(
∫

R3

dξH(f)

)

+∇x ·
(
∫

R3

dξ vH(f)

)

= 0 in D′((0, T )× R
3), (28)

∂t

(
∫

R3

dxH(f)

)

+∇ξ ·
(
∫

R3

dxFLH(f)

)

= 0 in D′((0, T )× R
3), (29)

and the global entropy conservation law,
∫

R6

H(f(t, x, ξ)) dξdx =

∫

R6

H(f(s, x, ξ)) dξdx for 0 < s ≤ t < T. (30)

The proof of Theorem 2 is postponed to Section 3.3. A few remarks are now in order.

Remark 3. In fact, Theorem 2 is also true for the Vlasov–Poisson and the nonrelativistic

Vlasov–Maxwell systems, under the same regularity assumptions.

Remark 4. 1. In fact, Theorem 2 still holds when we replace Sobolev spaces Wα,p

(resp., W β,q) by Besov spaces Bα+ε
p,∞ (resp., Bβ

q,∞) with ε > 0. Indeed, even

if Besov spaces Bα
p,∞ do not share the restriction property (needed for proving

commutator estimates of Lemma 2), we still have the following result (see [15,

26, 54]): let N ≥ 2, 1 ≤ d < N , 0 < p < q ≤ ∞, α′ > N(1/p − 1)+, and

f ∈ Bα′

p,q(R
N ). Then,

f(·, y) ∈
⋂

α<α′

Bα
p,q(R

d) for a.e. y ∈ R
N−d.

Therefore, in the Besov spaces framework, replacing α by α+ε with ε > 0 in (23),

we observe that the condition αβ + β + 3α− 1 > 0 keeps the same, whereas the

phase-space regularity of f is slightly better than Bα
p,∞. Since the interpolation

between Bα+ε
p,∞ and Bα

p,p is Bα′

p,r, with α < α′ < α + ε, and 1 ≤ r ≤ ∞, (e.g.,

Theorem 6.4.5 in [21]), we then have Bα+ε
p,∞ ⊂ Wα,p.

2. Theorem 2 also includes the Hölder spaces where

f ∈ L∞
(

0, T ;C 0,α(R6)
)

and E,B ∈ L∞
(

0, T ;C 0,β(R3)
)

.

It corresponds to the case where p = q = ∞ (24)–(25) C 0,α = Wα,∞.

Remark 5. Our result is almost in agreement with the structure-function scaling expo-

nents derived in the study of dissipative anomalies in nearly collisionless plasma turbu-

lence [44].

1. Here, the rigorous analysis is purely deterministic and regularity conditions (23)–

(25) give a sufficient condition for the conservation of entropies for any individual

solution as in [44]. In other words, by contraposition, a necessary condition for

anomalous dissipation/nonconservation of entropies is, αβ + β + 3α − 1 < 0

with 0 < α, β < 1. Nevertheless, this condition is not sufficient. Indeed, as in

fluid mechanics with the Onsager critical regularity exponent 1/3 [16,17,62], this

necessary condition does not rule out the existence of some solutions that are less

regular than the critical regularity (exponent) and that also satisfy the absence

of anomalous entropy dissipation.
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2. In [44] the author obtains, in a particular case, the critical exponent value

α =
√
5 − 2, assuming that f ∈ L∞(0, T ;Bα

p,∞(R3
x;B

α
p,∞(R3

ξ))) and E,B ∈
L∞(0, T ;Bα

p,∞(R3)) with p ≥ 3. From Remark 4 on the restriction property of

Besov spaces, in order to obtain f ∈ L∞(0, T ;Bα
p,∞(R3

x;B
α
p,∞(R3

ξ))), we must re-

quire the distribution function f to belong to the functional space

L∞(0, T ;Bα+ε
p,∞ (R6)) with ε > 0. Now, taking α = β, the condition αβ +

β + 3α − 1 > 0 in (23) becomes α2 + 4α − 1 > 0, which is satisfied for

α >
√
5− 2. We then recover the same critical exponent value α =

√
5− 2, but

for f ∈ L(0, T ;W p,α(R6)) and E,B ∈ L∞(0, T ;W q,α(R3)) with 1/p + 1/q ≤ 1.

Therefore, our regularity conditions (23)-(25) are weaker, but less restrictive

than those of [44]. Indeed, we have Bα+ε
p,∞ ⊂ Wα,p, ∀ε > 0, and the condition

1/p+ 1/q ≤ 1 is less restrictive than the condition p = q ≥ 3.

3. In [44] the author obtains a refined version of the condition (23), by consider-

ing anisotropic regularity for the distribution function f between the space of

velocities and the physical space, namely, f ∈ L∞(0, T ;Bκ
p,∞(R3

x;B
σ
p,∞(R3

ξ))).

From Remark 4 on the restriction property of Besov spaces, this anisotropic reg-

ularity implies that f ∈ L∞(0, T ;Bα+ε
p,∞ (R6)) with α := max{κ, σ} and ε > 0.

This regularity condition is still more restrictive than our regularity condition,

namely, f ∈ L∞(0, T ;Wα,p(R6)) with the same index α. In addition, anisotropic

regularity in phase space is questionable because of the following physical ar-

gument. Phase-space turbulence involves typical structures known as vortices

that are the result of the filamentation and the trapping (or wave-particle syn-

chronization) phenomena. The fact that characteristic curves roll up in phase

space seems to contradict that phase-space regularity is anisotropic between the

space of velocities and the physical space. On the contrary, this mixing motion

must propagate regularity versus singularities from one direction to another. By

constrast, anisotropic regularity between the electromagnetic field (E,B) and

the distribution f is justified and crucial, because the velocity integration of f

can lead to additional regularity in the physical space for the moments such as

charge and current densities, and hence for the electromagnetic field (through

Maxwell’s equations). This is the essence of averaging lemma [36] and the spirit

of regularity results obtained for the Diperna–Lions weak solutions [22,25]. This

anisotropy of regularity is handled both here and in [44].

Remark 6. In the nonself-consistent case, i.e., when the Lorentz force FL is a given

external force, renormalization property (26) implies straightforwardly the uniqueness

of weak solutions of Theorem 2, if such solutions exist. Indeed, let f i, i = 1, 2, be two

solutions of the Vlasov equation (11), with initial conditions f i
0, i = 1, 2, and where the

electromagnetic field (E,B) is prescribed. Such solutions satisfy the regularity properties

of Theorem 2, in particular (25). Setting f = f1 − f2, and taking H(·) = (·)2 (H ∈ E ),

we obtain from Theorem 2,

∂t(H(f)) +∇x · (vH(f)) +∇ξ · (FLH(f)) = 0 in D′((0, T )× R
6),
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and

∫

R6

H(f(t)) dξdx =

∫

R6

H(f0) dξdx.

Therefore, taking f1
0 = f2

0 , i.e., f0 = f1 − f2 = 0, we obtain f = 0 a.e., i.e., f1 = f2
a.e. In a similar way we can show the following comparison principle: f1

0 ≤ f2
0 a.e.

implies f1 ≤ f2 a.e. Two open issues remain. The first one is the uniqueness of solutions

of Theorem 2, which corresponds to the self-consistent case. Of course the existence

of solutions of Theorem 2 is also an open big problem. Following the program of [36],

the second one is the existence and uniqueness of corresponding Lagrangian solutions,

i.e., solutions constructed from almost-everywhere-well-defined characteristic curves, as

in the smooth framework (16)-(18).

Remark 7. Another open issue is the case of bounded domains in space, with specular

reflection and/or absorbing conditions [49]. This is not an easy task since, for such natural

boundary conditions, some singularities could occur at the boundary and propagate inside

the domain [50, 51].

From Theorem 2 and the result of [22] on the regularity of the DiPerna–Lions weak

solutions, we deduce the following corollary, which involves hypotheses concerning only

the distribution function f .

Corollary 1. Let β = 6/(13 +
√
142), and let α ∈ R be the solution to

αβ + β + 3α− 1 > 0 and 0 < α < 1. (31)

Let (f, E,B) be a weak solution to the relativistic Vlasov–Maxwell system (11)-(14),

given by Theorem 1. Assume the additional hypotheses: initial conditions (E0, B0)

belong to H1(R3), the distribution function f satisfies the supplementary integrability

condition,
∫

R3

γf dξ ∈ L∞
(

0, T ;L2(R3)
)

, (32)

and the regularity assumption,

f ∈ L∞
(

0, T ;Hα(R6)
)

. (33)

Then for any entropy function H ∈ C 1(R+;R+), renormalization property (26) holds.

Moreover, ifH ∈ E and the map t 	→ f(t, ·, ·) is uniformly integrable in R
6 for a.e. t ∈ R

+,

then local entropy conservation laws (28)-(29), as well as global entropy conservation law

(30), hold.

Proof of Corollary 1. Using assumptions E0, B0 ∈ H1(R3), and (32) from Theorem

1.1 of [22], we obtain that the electromagnetic field (E,B) belongs to Hβ
loc(R

+ × R
3)

with β = 6/(13 +
√
142). Setting p = q = 2 and β = 6/(13 +

√
142) in the hypotheses of

Theorem 2, and using assumption (33) under constraints (31), we obtain from Theorem 2

the desired result. �
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Remark 8. From Corollary 1, we deduce that for α such that

1 > α >
1− β

3 + β
=

7 +
√
142

45 + 3
√
142

� 0.234, (34)

the Vlasov equation (11), which is a first-order conservation law in the phase-space R
6,

has an infinite number of conserved entropies. A similar situation occurs with general

systems of conservation laws, which are studied in [20] within the regularity framework

of Hölder spaces C 0,α. Nevertheless, in [20], the authors show conservation of entropies

under the sufficient condition α > 1/3 (the famous Onsager exponent [58]), which is

more restrictive than the present result, from two points of view. First, Sobolev spaces

Hα are less regular than Hölder spaces C 0,α for the same α. Secondly, our index α

is smaller than 1/3. An explanation of such a discrepancy comes from our commutator

estimates which exploit the anisotropy between the velocity and physical spaces, whereas

commutator estimates in [20,52] use some Taylor expansions, which does not advantage

a particular direction of space. Finally, we observe that the critical exponent α = (7 +√
142)/(45+3

√
142), which is smaller that

√
5− 2, cannot be retrieved with the method

of [44], since the latter is obtained under the condition p = q ≥ 3 and hence cannot deal

with the case p = q = 2.

3.3. Proof of Theorem 2. Before giving the proof of Theorem 2, we first introduce

some standard regularization operators and we recall their main properties. Using a

smooth nonnegative function � such that

τ 	→ �(τ ) ≥ 0, � ∈ D(R), supp(�) ⊂]− 1, 1[,

∫

R

�(τ )dτ = 1, (35)

one defines the radially-symmetric compactly-supported Friedrichs mollifier z 	→ �ε(z),

given by

R
d −→ R

+

z 	−→ �ε(z) =
1

εd
�

( |z|
ε

)

, ε > 0. (36)

For any distribution f ∈ D′(R+ × R
6), we define its C∞-regularization by

fη,ε,δ(t, x, ξ) = �η(t) ∗
t
�ε(x) ∗

x
�δ(ξ) ∗

ξ
f(t, x, ξ), (37)

where the operator ∗ denotes the standard convolution product. We denote by 〈·, ·〉
the dual bracket between spaces D′ and D. Using previous definitions, we have for the

regularization operator (·)ε the following standard properties (see, e.g., [8]), which are

summarized in the following.

Lemma 1. 1. For any distribution f ∈ D′(Rd), we have

〈f ε, g〉 = 〈f, gε〉, g ∈ D(Rd).

Licensed to Penn St Univ, University Park. Prepared on Tue Apr 27 18:03:11 EDT 2021 for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



204 CLAUDE BARDOS, NICOLAS BESSE, AND TOAN T. NGUYEN

2. For any function f ∈ L1∩L∞∩Wα,p(Rd), with 0 < α < 1 and 1 ≤ p ≤ ∞, there

exists a constant C such that

‖f ε‖Lq(Rd) ≤ ‖f‖Lq(Rd), 1 ≤ q ≤ ∞,

‖f ε‖Wα,p(Rd) ≤ ‖f‖Wα,p(Rd),

‖f ε − f‖Lp(Rd) ≤ Cεα‖f‖Wα,p(Rd),

‖∇f ε‖Lp(Rd) ≤ Cεα−1‖f‖Wα,p(Rd).

3. For any function f ∈ Bα
p,∞(Rd), with 0 < α < 1 and 1 ≤ p ≤ ∞, there exists a

constant C such that

‖f(· − z)− f(·)‖Lp(Rd) ≤ C|z|α‖f‖Bα
p,∞(Rd).

Proof. Since the proof is elementary, it is left to the reader. �

In order to prove Theorem 2, we use some commutator estimates which are given by

Lemma 2. Let (f, E,B) be a weak solution of the relativistic Vlasov–Maxwell system

(11)-(14), given by Theorem 1, satisfying the regularity assumptions (23)-(25) of The-

orem 2. Let us recall that FL := E + v × B is the Lorentz force field. Then there

exist a constant Cfs depending on ‖f‖L∞(0,T ;Wα,p(R6)) and a constant Cfl depending on

‖f‖L∞(0,T ;Wα,p(R6)), ‖E‖L∞(0,T ;Wβ,q(R3)), and ‖B‖L∞(0,T ;Wβ,q(R3)) such that

∥

∥∇x ·
(

(vf)η,ε,δ − vδfη,ε,δ
)
∥

∥

L1(0,T ;Lp(R6))
≤ Cfsδ

α+1εα−1 (38)

and

∥

∥∇ξ ·
(

(FLf)
η,ε,δ − F η,ε,δ

L fη,ε,δ
)∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))
≤ Cfl(ε

β+αδα−1 + δα), (39)

where α, β, p, q, and r satisfy relations (23)-(24).

Remark 9. The precise estimates obtained in Lemma 2 seem to be compulsory to

obtain the precise Onsager exponents α, β in the main theorem, Theorem 2, instead of

the general exponent 1/3 established for fluid models.

Proof. We start with two basic estimates, which will be used often throughout the

proof. Using the fundamental theorem of calculus and

|∇ξv| =
∣

∣

∣

I3
(1 + |ξ|2)1/2 − ξ ⊗ ξ

(1 + |ξ|2)3/2
∣

∣

∣
≤ 2

√

1 + |ξ|2
≤ 2, (40)

we obtain the first basic estimate,

|v(ξ − w)− v(ξ)| ≤ |w|
∫ 1

0

|∇v(ξ − τw)| dτ ≤ 2|w|. (41)

Licensed to Penn St Univ, University Park. Prepared on Tue Apr 27 18:03:11 EDT 2021 for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ONSAGER-TYPE CONJECTURE FOR THE RELATIVISTIC VLASOV–MAXWELL SYSTEM 205

Using the fundamental theorem of calculus twice, we obtain componentwise,

vi − vδi =

∫

R3

dw �δ(w)(vi(ξ)− vi(ξ − w))

=
∑

j

∫

R3

dw �δ(w)wj

∫ 1

0

dτ ∂jvi(ξ − τw)

=
∑

j

∂jvi(ξ)

∫

R3

dw �δ(w)wj

+
∑

j,k

∫

R3

dw �δ(w)wjwk

∫ 1

0

dτ

∫ 1

0

ds ∂2
jkvi(ξ − sτw). (42)

Since the smooth function � is radially symmetric and compactly supported, we have,

∫

R3

dw �(w)wi = 0 and

∫

R3

dw �(w)|wi||wj | ≤ C� < +∞ ∀i, j,∈ {1, 2, 3}, (43)

where C� is a numerical constant depending only on the function �. Using the first

equality in (43), the first term of the right-hand side of (42) vanishes. Using the second

inequality of (43), and

|∇2
jkvi(ξ)| =

∣

∣

∣

δijξk
(1 + |ξ|2)3/2 +

δjkξi
(1 + |ξ|2)3/2 +

δikξj
(1 + |ξ|2)3/2 − 3ξiξjξk

(1 + |ξ|2)3/2
∣

∣

∣
≤ 6

1 + |ξ|2 ≤ 6,

we obtain from (42) the second basic estimate,

|v − vδ| ≤ 6C�δ
2. (44)

We now deal with commutator estimate (38) for the free-streaming term. We define

rη,ε,δ(f, g)(t, x, ξ) =

∫

R

dτ

∫

R3

dy

∫

R3

dw �η(τ )�ε(y)�δ(w)

(f(t− τ, x− y, ξ − w)− f(t, x, ξ))(g(t− τ, x− y, ξ − w)− g(t, x, ξ)). (45)

Using (45), it is easy to check that

(vf)η,ε,δ = vδfη,ε,δ + rη,ε,δ(v, f)− (f − fη,ε,δ)(v − vδ). (46)

Observing that

rη,ε,δ(v, f) = rδ(v, f
η,ε) + (f − fη,ε)(v − vδ),

equation (46) becomes

(vf)η,ε,δ − vδfη,ε,δ = rδ(v, f
η,ε)− ((fη,ε)δ − fη,ε)(v − vδ). (47)

Using estimate (41), Lemma 1, continuous embedding Wα,p(Rd) ⊂ Bα
p,∞(Rd) with

1 ≤ p ≤ ∞, the restriction property for Sobolev spaces Wα,p(Rd) (see Remark 4),
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and regularity assumptions (23)-(25), we obtain,

∥

∥∇x · rδ(v, fη,ε)
∥

∥

L1(0,T ;Lp(R6))

≤
∫ T

0

dt

∫

R3

dw �δ(w) ‖(v(ξ − w)− v(ξ))

· (∇xf
η,ε(t, x, ξ − w)−∇xf

η,ε(t, x, ξ))‖Lp(R6

xξ)

≤ C

∫ T

0

dt

∫

R3

dw �δ(w)|w|α+1‖∇xf
η,ε(t)‖Lp(R3

x;B
α
p,∞(R3

ξ))

≤ Cδα+1

∫ T

0

dt ‖∇xf
η,ε(t)‖Lp(R3

x;W
α,p(R3

ξ))

≤ Cεα−1δα+1

∫ T

0

dt ‖fη(t)‖Wα,p(R3
x;W

α,p(R3

ξ))

≤ Cεα−1δα+1

∫ T

0

dt �η(t) ∗ ‖f(t)‖Wα,p(R6)

≤ Cεα−1δα+1‖f‖L1(0,T ;Wα,p(R6)). (48)

Using estimate (44), Lemma 1, the restriction property for Sobolev spaces Wα,p(Rd),

and regularity assumptions (23)-(25), we obtain,

∥

∥∇x · ((fη,ε)δ − fη,ε)(v − vδ))
∥

∥

L1(0,T ;Lp(R6))

≤ ‖v − vδ‖L∞(R3)

∥

∥(∇xf
η,ε)δ −∇xf

η,ε
∥

∥

L1(0,T ;Lp(R6))

≤ Cδα+1‖∇xf
η,ε‖L1(0,T ;Lp(R3

x;W
α,p(R3

ξ)))

≤ Cεα−1δα+1‖fη‖L1(0,T ;Wα,p(R3
x;W

α,p(R3

ξ)))

≤ Cεα−1δα+1‖f‖L1(0,T ;Wα,p(R6)). (49)

Using (48)-(49), we obtain from (47), commutator estimate (38). We continue with

commutator estimate (39) for the Lorentz force term. Using definition (45), we first

make the following decomposition:

(FLf)
η,ε,δ − F η,ε,δ

L fη,ε,δ = TE + TB, (50)

where

TE = (Efδ)η,ε − Eη,ε(fδ)η,ε = rη,ε(E, fδ)− (E − Eη,ε)(fδ − (fδ)η,ε) (51)

and

TB = (v ×Bf)ε,δ − vδ ×Bεfε,δ. (52)

Let us first deal with the term TE . Passing to the limit η → 0 in rη,ε(E, fδ), which can

be justified by the Lebesgue dominated convergence theorem and regularity assumptions
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(23)-(25), we obtain,

∥

∥∇ξ · rη,ε(E, fδ)
∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))
≤

∥

∥∇ξ · rε(E, fδ)
∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))

≤
∫

R3

dy �ε(y)‖(E(t, x− y)− E(t, x))

· (∇ξf
δ(t, x− y, ξ)−∇ξf

δ(t, x, ξ))‖L1(0,T ;Lp(R3

ξ;L
r(R3

x)))
. (53)

Using Hölder inequality, Lemma 1, continuous embedding Wα,p(Rd) ⊂ Bα
p,∞(Rd) with

1 ≤ p ≤ ∞, the restriction property for Sobolev spaces Wα,p(Rd), and regularity as-

sumptions (23)-(25), we obtain from (53),
∥

∥∇ξ · rη,ε(E, fδ)
∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))

≤
∫

R3

dy �ε(y)‖E(t, x− y)− E(t, x)‖L∞(0,T ;Lq(R3
x))

‖∇ξf
δ(t, x− y, ξ)−∇ξf

δ(t, x, ξ)‖L1(0,T ;Lp(R6

xξ))

≤ C

∫

R3

dy �ε(y)|y|α+β

‖E‖L∞(0,T ;Bβ
q,∞(R3))‖∇ξf

δ‖L1(0,T ;Lp(R3

ξ;B
α
p,∞(R3

x)))

≤ Cεα+β‖E‖L∞(0,T ;Wβ,q(R3))‖∇ξf
δ‖L1(0,T ;Lp(R3

ξ;W
α,p(R3

x)))

≤ Cεα+βδα−1‖E‖L∞(0,T ;Wβ,q(R3))‖f‖L1(0,T ;Wα,p(R3

ξ;W
α,p(R3

x)))

≤ Cεα+βδα−1‖E‖L∞(0,T ;Wβ,q(R3))‖f‖L1(0,T ;Wα,p(R6)). (54)

Using the Lebesgue dominated convergence theorem and regularity assumptions (23)-

(25), we can pass to the limit η → 0 in the term, (E − Eη,ε)(fδ − (fδ)η,ε), to obtain

∥

∥∇ξ ·
(

(E − Eη,ε)(fδ − (fδ)η,ε)
)
∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))

≤
∥

∥∇ξ ·
(

(E − Eε)(fδ − (fδ)ε)
)∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))
. (55)

Using Hölder inequality, Lemma 1, continuous embedding Wα,p(Rd) ⊂ Bα
p,∞(Rd) with

1 ≤ p ≤ ∞, the restriction property for Sobolev spaces Wα,p(Rd), and regularity as-

sumptions (23)-(25), we obtain from (55),

∥

∥∇ξ ·
(

(E − Eη,ε)(fδ − (fδ)η,ε)
)
∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))

≤ ‖E − Eε‖L∞(0,T ;Lq(R3))‖∇ξf
δ − (∇ξf

δ)ε‖L1(0,T ;Lp(R6))

≤ Cεα+β‖E‖L∞(0,T ;Bβ
q,∞(R3))‖∇ξf

δ‖L1(0,T ;Lp(R3

ξ;B
α
p,∞(R3

x)))

≤ Cεα+βδα−1‖E‖L∞(0,T ;Wβ,q(R3))‖f‖L1(0,T ;Wα,p(R3

ξ;W
α,p(R3

x)))

≤ Cεα+βδα−1‖E‖L∞(0,T ;Wβ,q(R3))‖f‖L1(0,T ;Wα,p(R6)). (56)

From (53) and (56), we obtain,
∥

∥∇ξ · TE

∥

∥

L1(0,T ;Lp(R3
x;L

r(R3
x)))

≤ Cεα+βδα−1‖E‖L∞(0,T ;Wβ,q(R3))‖f‖L1(0,T ;Wα,p(R6)).

(57)
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We now deal with the term TB , given by (52), and which can be recast as,

TB =

∫ T

0

dτ

∫

R3

dy

∫

R3

dw �η(τ )�ε(y)�δ(w)[v(ξ − w)− v(ξ)]

×B(t− τ, x− y)f(t− τ, x− y, ξ − w)

+ v × [(Bfδ)η,ε −Bη,ε(fδ)η,ε] + (v − vδ)×Bη,ε(fδ)η,ε

= TB1 + TB2 + TB3. (58)

The term ∇ξ · TB1 can be decomposed as

∇ξ · TB1 =

∫ T

0

dτ

∫

R3

dy

∫

R3

dw �η(τ )�ε(y)∇w�δ(w)

· ([v(ξ − w)− v(ξ)]×B(t− τ, x− y))f(t− τ, x− y, ξ)

+

∫ T

0

dτ

∫

R3

dy

∫

R3

dw �η(τ )�ε(y)∇w�δ(w)

· ([v(ξ − w)− v(ξ)]×B(t− τ, x− y))

(f(t− τ, x− y, ξ − w)− f(t− τ, x− y, ξ))

= TB11 + TB12. (59)

Using integration by parts, we observe that

TB11 =

∫ T

0

dτ

∫

R3

dy

∫

R3

dw �η(τ )�ε(y)�δ(w)

∇w · ([v(ξ − w)− v(ξ)]×B(t− τ, x− y))f(t− τ, x− y, ξ) = 0, (60)

because ∇w · ([v(ξ−w)−v(ξ)]×B(t, x−y)) = 0. Using Hölder inequality, estimate (41),

Lemma 1, continuous embedding Wα,p(Rd) ⊂ Bα
p,∞(Rd) with 1 ≤ p ≤ ∞, the restriction

property for Sobolev spaces Wα,p(Rd), and regularity assumptions (23)-(25), we obtain

∥

∥TB12

∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))
≤ 2

∫ T

0

dτ

∫

R3

dy

∫

R3

dw �η(τ )�ε(y)|∇w�δ(w)||w|

‖B(t− τ, x− y)(f(t− τ, x− y, ξ − w)− f(t− τ, x− y, ξ))‖L1(0,T ;Lp(R3

ξ;L
r(R3

x)))

≤ 2

∫ T

0

dτ

∫

R3

dy

∫

R3

dw �η(τ )�ε(y)|∇w�δ(w)||w|

‖B(t− τ, x− y)‖L∞(0,T ;Lq(R3
x))

‖f(t− τ, x− y, ξ − w)− f(t− τ, x− y, ξ)‖L1(0,T ;Lp(R6

xξ))

≤ C

∫

R3

dw |∇w�δ(w)||w|α+1‖B‖L∞(0,T ;Lq(R3
x))

‖f‖L1(0,T ;Lp(R3
x;B

α
p,∞(R3

ξ)))

≤ Cδα‖B‖L∞(0,T ;Wβ,q(R3))‖f‖L1(0,T ;Wα,p(R6)). (61)

In a way similar to how we have obtained estimate (57) for ∇ξ · TE , we also obtain for

∇ξ · TB2,
∥

∥∇ξ · TB2

∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))
≤ Cεα+βδα−1‖B‖L∞(0,T ;Wβ,q(R3))‖f‖L1(0,T ;Wα,p(R6)).

(62)
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Using estimate (44), Hölder inequality, and Lemma 1, we obtain for ∇ξ · TB3,
∥

∥∇ξ · TB3

∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))
≤

∥

∥(v − vδ)×Bη,ε(∇ξf
δ)η,ε

∥

∥

L1(0,T ;Lp(R3

ξ;L
r(R3

x)))

≤ Cδ2‖Bη,ε‖L∞(0,T ;Lq(R3
x))

‖∇ξf
η,δ,ε‖L1(0,T ;Lp(R6))

≤ Cδα+1‖B‖L∞(0,T ;Lq(R3
x))

‖f‖L1(0,T ;Wα,p(R6)). (63)

Gathering estimates (60)-(63), we obtain from decompositions (58)-(59),
∥

∥∇ξ ·TB

∥

∥

L1(0,T ;Lp(R3
x;L

r(R3
x)))

≤ C(εα+βδα−1+δα)‖B‖L∞(0,T ;Wβ,q(R3))‖f‖L1(0,T ;Wα,p(R6)).

(64)

Eventually, from (57) and (64), we obtain commutator estimate (39), which ends the

proof of Lemma 2 �

Proof of Theorem 2. Let us now give the proof of the main theorem. The weak for-

mulation for the Vlasov equation reads,
∫ T

0

dt

∫

R3

dx

∫

R3

dξ f(∂tΨ+ v · ∇xΨ+ FL · ∇ξΨ) = 0, ∀Ψ ∈ D((0, T )× R
6) (65)

with FL := E+v×B. Let us note that all integrals in (65) have a sense since for DiPerna–

Lions weak solutions [36] we have f ∈ L∞(0, T ;L2(R6)), and E, B ∈ L∞(0, T ;L2(R3)).

We choose in (65) the test function,

Ψ = Ψε,δ = (H′(fη,ε,δ)Φ)η,ε,δ ∈ D((0, T )× R
6) (66)

with Φ ∈ D((0, T )×R
6) and H ∈ C 1(R+;R+). Using the first property of Lemma 1 and

successive integrations by parts, we obtain from (65)-(66),

∫ T

0

dt

∫

R3

dx

∫

R3

dξ
{

H(fη,ε,δ)(∂tΦ+ vδ · ∇xΦ+ F η,ε,δ
L · ∇ξΦ)

+ ΦH′(fη,ε,δ)
[

∇x ·
(

(vf)η,ε,δ − vδfη,ε,δ
)

+∇ξ ·
(

(FLf)
η,ε,δ − F η,ε,δ

L fη,ε,δ
)

]}

= 0 (67)

for all Φ ∈ D((0, T ) × R
6). We now establish the renormalized Vlasov equation (26).

Using regularity assumptions (23)-(25), (66), and Lemmas 1 and 2, we obtain from (67),
∣

∣

∣

∣

∣

∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)(∂tΦ+ vδ · ∇xΦ+ F η,ε,δ
L · ∇ξΦ)

∣

∣

∣

∣

∣

≤ C∗

(

δα+1εα−1 + εα+βδα−1 + δα
)

, (68)

where C∗ depends on ‖f‖L∞(0,T ;L∞(R6)), Cfs, Cfl, H, and Φ. Balancing contributions

coming from the free-streaming and Lorentz force terms in the right-hand side of (68),

we obtain

εα−1δ2 − δ − εα+β = 0, (69)

and estimate (68) becomes
∣

∣

∣

∣

∣

∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)(∂tΦ+ vδ · ∇xΦ+ F η,ε,δ
L · ∇ξΦ)

∣

∣

∣

∣

∣

≤ C∗η (70)

with the definition

η := εα−1δα+1.
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Solving quadratic equation (69) in δ, the only positive solution is given by

δ =
1 +

√
1 + 4ε2α+β−1

2εα−1
.

Two cases are to be considered according to the value of α and β:

i) 2α + β − 1 < 0. We then have δ � ε(β+1)/2, and η � ε(αβ+β+3α−1)/2 → 0 as

ε → 0 if αβ + β + 3α− 1 > 0.

ii) 2α + β − 1 ≥ 0. We then have δ � ε1−α, and η � εα(1−α) → 0 as ε → 0 if

0 < α < 1.

Assuming that the free-streaming contribution dominates the Lorentz force contribution,

this implies εα−1δ2 − δ − εα+β � 0, which leads to a contradiction as δ → 0. On the

contrary, assuming that the Lorentz force contribution dominates the free-streaming

contribution, this implies εα−1δ2 − δ − εα+β � 0, which leads also to a contradiction as

first δ → 0 and next ε → 0. In conclusion, if αβ + β + 3α − 1 > 0, then the right-hand

side of (70) vanishes as (ε, δ) → 0, and we obtain the renormalized Vlasov equation (26).

We continue with the local-in-space entropy conservation law (28). For this purpose,

we first restrict entropy functions H to the set E , defined by (20), and secondly we take

in (70) a test function Φ such that

Φ(t, x, ξ) = Λ(t, x)Θ(ξ) with Λ ∈ D((0, T )× R
3) and Θ ∈ D(R3).

We then choose the test function Θ such that

Θ(ξ) = ΘR(ξ) := θ(ξ/R) with R > 0.

Here the function θ ∈ D(R3) is such that supp(θ) ⊂ BR3(0, 2), θ ≡ 1 on BR3(0, 1) and

0 ≤ θ ≤ 1 on BR3(0, 2) \BR3(0, 1). We then have

ΘR −→ 1, a.e. as R → +∞ and ∇ξΘR −→ 0, a.e. as R → +∞. (71)

From the uniform integrability assumption (27), and the de La Vallée Poussin theorem,

there exists a constant CH > 0, independent of (ε, δ), but depending on H such that
∫

R3

dx

∫

R3

dξH(fη,ε,δ) ≤ CH < +∞ ∀H ∈ E . (72)

Using estimate (72), regularity assumptions (23)-(25), and property (71), we obtain from

the Lebesgue dominated convergence theorem that
∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)∂tΛΘR −→
∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)∂tΛ, as R → +∞,

(73)

∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)vδ · ∇xΛΘR

−→
∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)vδ · ∇xΛ, as R → +∞, (74)

and

R1 :=

∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)F η,ε,δ
L fη,ε,δ · ∇ξΘRΛ −→ 0 as R → +∞. (75)

Licensed to Penn St Univ, University Park. Prepared on Tue Apr 27 18:03:11 EDT 2021 for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ONSAGER-TYPE CONJECTURE FOR THE RELATIVISTIC VLASOV–MAXWELL SYSTEM 211

Limits (73)-(75) are uniform in (η, ε, δ), and in addition there exists a constant κ1 >

0, independent of (η, ε, δ), but depending on ‖f‖L∞(0,T ;L2∩L∞(R6)), ‖B‖L∞(0,T ;L2(R3)),

‖E‖L∞(0,T ;L2(R3)), Λ and θ such that

|R1| ≤ κ1R
−1. (76)

Using (73)-(76), we obtain from (70),
∣

∣

∣

∣

∣

∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)(∂tΛ + vδ · ∇xΛ)

∣

∣

∣

∣

∣

≤ C∗η + κ1R
−1. (77)

Under the condition, αβ + β + 3α − 1 > 0, the right-hand side of (77) vanishes as

(η, ε, δ) → 0 and R → +∞, and we obtain from (77) the local-in-space conservation law

(28). In a similar way, by interchanging the role of the test functions Λ and Θ, we obtain

local-in-momentun conservation law (29).

We pursue with global entropy conservation law (30). For this aim, we first take in

(77) a test function Λ such that

Λ(t, x) = ϕ(t)Λ(x) with ϕ ∈ D((0, T )) and Λ ∈ D(R3).

We then choose the test function Λ such that

Λ(x) = ΛR(x) := λ(x/R) with R > 0.

Here the function λ ∈ D(R3) is such that supp(λ) ⊂ BR3(0, 2), λ ≡ 1 on BR3(0, 1), and

0 ≤ λ ≤ 1 on (BR3(0, 2) \BR3(0, 1)). We then have

ΛR −→ 1, a.e. as R → +∞ and ∇xΛR −→ 0, a.e. as R → +∞. (78)

Using estimate (72), regularity assumptions (23)-(25), and property (78), we obtain from

the Lebesgue dominated convergence theorem that
∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)∂tϕΛR −→
∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)∂tϕ as R → +∞,

(79)

R2 :=

∫ T

0

dt

∫

R3

dx

∫

R3

dξH(fη,ε,δ)vδ · ∇xΛRϕ −→ 0 as R → +∞. (80)

Limits (79)-(80) are uniform in (η, ε, δ), and in addition there exists a constant κ2 > 0,

independent of (η, ε, δ), but depending on CH, ϕ, and λ such that

|R2| ≤ κ2R
−1. (81)

Using (79)-(81), we obtain from (77),
∣

∣

∣

∣

∣

∫ T

0

dt ∂tϕ

∫

R3

dx

∫

R3

dξH(fη,ε,δ)

∣

∣

∣

∣

∣

≤ C∗η + κ1R
−1 + κ2R

−1. (82)

Under the condition, αβ + β + 3α − 1 > 0, the right-hand side of (82) vanishes as

(η, ε, δ) → 0 and R → +∞, and we obtain from (82) the global entropy conservation law

(30). This ends the proof of Theorem 2. �
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4. Energy conservation. As concerns conservation of total energy we have

Theorem 3. Let (f, E,B) be a weak solution to the relativistic Vlasov–Maxwell system

(11)-(14), given by Theorem 1. If the macroscopic kinetic energy density satisfies the

supplementary integrability condition,
∫

R3

γf dξ ∈ L∞
(

0, T ;L2(R3)
)

, (83)

then, using definition (22), we have the local conservation law of total energy,

∂tE +∇ ·
(
∫

R3

γfv dξ + E ×B

)

= 0 the following in D′((0, T )× R
3), (84)

and the global conservation law of total energy,

E(t) = E(s) for 0 < s ≤ t < T. (85)

Remark 10. Under assumption (83), it has been proved in [22] that the electromagnetic

field (E,B) belongs to Hs
loc(R

+
∗ × R

3) with s = 6/(13 +
√
142). Then, such solutions

satisfy the conservation laws (84)-(85).

Proof. Choosing in the weak formulation (65) the test function,

Ψ(t, x, ξ) = Λ(t, x)Θ(ξ)γ(ξ)∈D((0, T )× R
6) with Λ∈D((0, T )× R

3) and Θ∈D(R3),

(86)

and using ∇ξγ = v, we obtain

∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ γfΘ

)

∂tΛ +

∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ γfvΘ

)

· ∇xΛ

+

∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ fv · EΘ

)

Λ +

∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ γfFL · ∇ξΘ

)

Λ = 0. (87)

We now establish the local conservation law of total energy. For this we take in (87) a

test function Θ such that

Θ(ξ) = ΘR(ξ) := θ(ξ/R) with R > 0.

Here the function θ ∈ D(R3) is such that supp(θ) ⊂ BR3(0, 2), θ ≡ 1 on BR3(0, 1), and

0 ≤ θ ≤ 1 on BR3(0, 2) \BR3(0, 1). We then have

ΘR −→ 1, a.e. as R → +∞ and ∇ξΘR −→ 0, a.e. as R → +∞. (88)

Using (88) and regularity properties (21), we obtain from the Lebesgue dominated con-

vergence theorem,
∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ γfΘR

)

∂tΛ −→
∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ γf

)

∂tΛ as R → ∞ (89)

and
∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ γfvΘR

)

· ∇xΛ −→
∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ γfv

)

· ∇xΛ as R → ∞.

(90)
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Using assumption (83), regularity properties (21), and Hölder inequality, we obtain

∣

∣

∣

∣

∣

∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ γfFL · ∇ξΘR

)

Λ

∣

∣

∣

∣

∣

≤ CR−1‖∇θ‖L∞‖Λ‖L∞

∥

∥

∥

∫

R3

dξ γf
∥

∥

∥

L∞(0,T ;Lr′ (R3))
(‖E‖L∞(0,T ;Lr(R3)) + ‖B‖L∞(0,T ;Lr(R3))) −→ 0 as R → ∞

(91)

with 1/r + 1/r′ = 1 and setting r = 2. We now claim that

|fv · EΛ| ≤ |Λ||E|f ∈ L∞(0, T ;L1(R6)) if

∫

R3

dξ γf ∈ L∞(0, T ;L3/2(R3)). (92)

Indeed using interpolation Lemma 2.3 in [22], we obtain

∥

∥

∥

∫

R3

dξ f
∥

∥

∥

L∞(0,T ;L2(R3))
≤ 9‖f‖1/4L∞

∥

∥

∥

∫

R3

dξ γf
∥

∥

∥

3/4

L∞(0,T ;L3/2(R3))
. (93)

Therefore, (92) results from (93) and Cauchy-Schwarz inequality. We notice that the

L3/2-integrability condition in (92) results from regularity properties (21), assumption

(83), and standard interpolation results between Lebesgue spaces. Using (88) we have

fv · EΘRΛ → fv · EΛ a.e. as R → +∞. Moreover, using (92), we obtain from the

Lebesgue dominated convergence theorem,
∫ T

0

dt

∫

R3

dx

(
∫

R3

dξ fv · EΘR

)

Λ −→
∫ T

0

dt

∫

R3

dx j · EΛ as R → ∞. (94)

Using the weak formulation of the Maxwell equation, we obtain
∫ T

0

dt

∫

R3

dx j · EΛ =

∫ T

0

dt

∫

R3

dx
|E|2 + |B|2

2
∂tΛ +

∫ T

0

dt

∫

R3

dxE ×B · ∇xΛ. (95)

Using (89)-(91) and (94)-(95), we obtain from (87),

∫ T

0

dt

∫

R3

dx

{(
∫

R3

dξ γf

)

+
|E|2 + |B|2

2

}

∂tΛ

+

∫ T

0

dt

∫

R3

dx

{(
∫

R3

dξ γfv

)

+ E ×B

}

· ∇xΛ = 0, (96)

which gives the local conservation law of total energy (84). We continue by deriving the

global conservation law of total energy. For this we take in (96) a test function Λ such

that

Λ(t, x) = ϕ(t)Λ(x) with ϕ ∈ D((0, T )) and Λ ∈ D(R3).

We then choose the test function Λ such that

Λ(x) = ΛR(x) := λ(x/R) with R > 0.

Here the function λ ∈ D(R3) is such that supp(λ) ⊂ BR3(0, 2), λ ≡ 1 on BR3(0, 1), and

0 ≤ λ ≤ 1 on (BR3(0, 2) \BR3(0, 1)). We then have

ΛR −→ 1, a.e. as R → +∞ and ∇xΛR −→ 0, a.e. as R → +∞. (97)
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Using (97) and regularity properties (21), especially f ∈ L∞(0, T ;L1
γ(R

6)) and E, B ∈
L∞(0, T ;L2(R3)), we obtain from the Lebesgue dominated convergence theorem,

∫ T

0

dt

∫

R3

dx

{(
∫

R3

dξ γf

)

+
|E|2 + |B|2

2

}

ΛR∂tϕ

−→
∫ T

0

dt

∫

R3

dx

{(
∫

R3

dξ γf

)

+
|E|2 + |B|2

2

}

∂tϕ as R → +∞ (98)

and
∫ T

0

dt

∫

R3

dx

{(
∫

R3

dξ γfv

)

+ E ×B

}

· ∇xΛRϕ −→ 0 as R → +∞. (99)

Using (98)-(99), and passing to the limit R → +∞ in (96), with Λ(t, x) = ϕ(t)λ(x/R),

we obtain
∫ T

0

dt ∂tϕ

∫

R3

dx

{(
∫

R3

dξ γf

)

+
|E|2 + |B|2

2

}

= 0, (100)

which gives the global conservation law of total energy (85). �

Remark 11. 1. If E, B ∈ L∞(0, T ;L∞(R6)), we observe that the proof of Theo-

rem 3 remains valid without condition (83), and then local and global conserva-

tion of total energy (84)-(85) are satisfied.

2. Using the continuous embedding W β,q(R3) ⊂ L3q/(3−βq)(R3), with βq < 3, we

observe that if E, B ∈ L∞(0, T ;L2 ∩W β,q(R3)), and
∫

R3

dξ γf ∈ L∞
(

0, T ;L3q/((3+β)q−3)(R3)
)

,

then estimates (91) and (94) still hold. Therefore, local and global conservation

of total energy (84)-(85) are satisfied.
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de la Côte d’Azur and the Laboratoire J.-L. Lagrange for their hospitality and financial

support. The third author’s research was supported by the NSF under grant DMS-

1764119 and by an AMS Centennial Fellowship. Part of this work was done while the

third author was visiting the Department of Mathematics and the Program in Applied

and Computational Mathematics at Princeton University.

References

[1] R. A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Pub-
lishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR0450957

[2] M. Aizenman, On vector fields as generators of flows: a counterexample to Nelson’s conjecture,
Ann. Math. (2) 107 (1978), no. 2, 287–296, DOI 10.2307/1971145. MR0482853

[3] I. Akramov and E. Wiedemann, Renormalization of active scalar equations, Nonlinear Anal. 179
(2019), 254–269, DOI 10.1016/j.na.2018.08.018. MR3886632

[4] G. Alberti, G. Crippa, and A. L. Mazzucato, Exponential self-similar mixing and loss of regularity
for continuity equations (English, with English and French summaries), C. R. Math. Acad. Sci.
Paris 352 (2014), no. 11, 901–906, DOI 10.1016/j.crma.2014.08.021. MR3268760

[5] G. Alberti, G. Crippa, and A. L. Mazzucato, Exponential self-similar mixing by incompressible
flows, J. Amer. Math. Soc. 32 (2019), no. 2, 445–490, DOI 10.1090/jams/913. MR3904158

Licensed to Penn St Univ, University Park. Prepared on Tue Apr 27 18:03:11 EDT 2021 for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ONSAGER-TYPE CONJECTURE FOR THE RELATIVISTIC VLASOV–MAXWELL SYSTEM 215

[6] G. Alberti, S. Bianchini, and G. Crippa, Structure of level sets and Sard-type properties of Lipschitz
maps, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 4, 863–902. MR3184572

[7] G. Alberti, S. Bianchini, and G. Crippa, A uniqueness result for the continuity equation in two
dimensions, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 2, 201–234, DOI 10.4171/JEMS/431.
MR3161282
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Basel, 2011. MR2798103

[15] J.-M. Aubry, D. Maman, and S. Seuret, Local behavior of traces of Besov functions: prevalent
results, J. Funct. Anal. 264 (2013), no. 3, 631–660, DOI 10.1016/j.jfa.2012.11.012. MR3003731

[16] C. Bardos and E. S. Titi, Loss of smoothness and energy conserving rough weak solutions
for the 3d Euler equations, Discrete Contin. Dyn. Syst. Ser. S 3 (2010), no. 2, 185–197, DOI
10.3934/dcdss.2010.3.185. MR2610558

[17] C. Bardos, E. S. Titi, and E. Wiedemann, The vanishing viscosity as a selection principle for
the Euler equations: the case of 3D shear flow (English, with English and French summaries),
C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 757–760, DOI 10.1016/j.crma.2012.09.005.
MR2981348

[18] C. Bardos and E. S. Titi, Onsager’s conjecture for the incompressible Euler equations in bounded
domains, Arch. Ration. Mech. Anal. 228 (2018), no. 1, 197–207, DOI 10.1007/s00205-017-1189-x.
MR3749259

[19] C. Bardos, E. S. Titi, and E. Wiedemann, Onsager’s conjecture with physical boundaries and an
application to the vanishing viscosity limit, Preprint, 2018, arXiv:1803.04939.
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