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Abstract

In this paper, we consider a quantum Boltzmann equation, which describes
the interaction between excited atoms and a condensate. The collision integrals are
taken—over energy manifolds, having the full form of the Bogoliubov dispersion law
for particle energy. We prove that nonnegative radially symmetric solutions of the
quantum Boltzmann equation are bounded from below by a Gaussian distribution,
uniformly in time.

1. Introduction

The discovery of Bose—FEinstein condensation (BEC) in trapped ultracold
atomic gases in 1995 [4,5] has led to an explosion of research on its properties.
A kinetic equation for BECs was first derived by KIRKPATRICK and DORFMANN
[28,30], using a mean field theory and the Green’s function method. Following
the path of Kirkpatrick and Dorfmann, several authors have tried to derive kinetic
equations to describe the dynamics of BECs [7,9,22,23,25,30,31,40,48]. In the
series of papers [19,20,26], C.W. Gardiner, P. Zoller and coauthors formulated the
Quantum Kinetic Theory, which is both a genuine kinetic theory and a genuine
quantum theory, in terms of the Quantum Kinetic Master Equation (QKME) for
bosonic atoms. In the Quantum Kinetic Theory, the significant quantum aspects are
restricted to a few modes, the remaining modes being able to be described in the
classical way, as in the Boltzmann equation. Indeed, the kinetic aspect of the theory
arises from the decorrelation between different momentum bands. The Quantum
Kinetic Theory provides a fully quantum mechanical description of the kinetics of a
Bose gas, including the regime of a Bose condensation. In particular, the QKME is
capable of describing the formation of the Bose condensate. The QKME contains, as
limiting cases, the Boltzmann—Norheim (Uehling—Ulenbeck) equation [13,36,46],
the Gross—Pitaevskii equation, and the condensate growth term. The condensate
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growth term is the principal term which gives rise to growth of the condensate,
doing this by taking atoms out of the bath of warmer atoms.

Bosons of mass m at temperature 7 can be regarded as quantum-mechanical
wavepackets whose extent is proportional to a thermal de Broglie wavelength

N 2 h? :

= (o)

describing the position uncertainty associated with the thermal momentum distri-
bution, in which kp is the Boltzmann constant and 7 is the Planck constant. When
the gas temperature 7 is high, the de Broglie wavelength A,4p is very small and
the weakly interacting gas is similar to a system of “billiard balls”. The dynamics
of the density function of the gas f (¢, r, p)—the probability of finding a particle
at time ¢, position r and momentum p—is described by the Boltzmann—Norheim
(Uehling—Ulenbeck) equation

W ft,r,p)+p-Virflt,r,p)=ClfIt.r,p), fQO,r,p)= folr,p), (1.1)

for (t,r, p) € Ry x R3 x R3, where the collision operator Cy;[ f] reads

Colf1, r, p1) = /f/ 3(p1+ p2—p3—pa)8(Ep, +Epy — Epy — Epy)
R3 xR3xR3

x [A+ /DA +2/2) f3fa = fifo(l+93)A + D f9)]dpadpsdpa,
(1.2)

where 1 is proportional to /3, £ p is the energy of a particle with momentum p, and
we use the short-hand notation f; = f(z,r, p;).

The quantum Boltzmann collision operator (1.2) becomes the classical one in
the semiclassical limit, as ¥ tends to 0. A consequence of this fact is that at high
temperature, the behavior of the Bose gas is, in some sense, quite similar to classical
gases. Note that, differenlyt from classical Boltzmann collision operators, where the
collision kernels are functions depending on the types of particles considered, the
derived collision kernel for the quantum Boltzmann collision operator for bosons
is 1.

When the temperature 7' becomes lower, ;5 becomes smaller. At the BEC
transition temperature T &~ T, the de Broglie wavelength becomes comparable
to the distance between bosons. As a consequence, the atomic wavepackets “over-
lap” and the atoms become indistinguishable. At this temperature, bosons undergo a
quantum-mechanical phase transition and the Bose—Einstein condensate is formed.
The gas is said to be at finite temperature if Tpgc > T > OK. At this temperature
the trapped Bose gas is composed of two distinct components: the high-density
Bose—FEinstein Condensate—localized at the center of the trapping potential- and
the low-density cloud of thermally excited atoms, spreading over a much wider
region. The system of the coupling between the BEC and the excited atoms con-
sists of equations of the wave function W(¢, r) of the BEC, which is a function of
time and position (¢, r) and the density function f (¢, r, p), which is a function of
time, position, and momentum of the excited atoms (¢, 7, p). The coupled system
that describes the dynamics of BEC and excited atoms then consists of (cf. [22,43]):
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e the Gross—Pitaevskii equation that governs the dynamics of the wave function
W(t, r) of BEC;

e the Boltzmann equation that models the dynamics of the density distribution
f(t,r, p) of excited atoms, which consists of two collision operators:
e Ci2[ f] describes the collision of BEC and excited atoms;
e ([ f] describes the collision between excited atoms.

For further discussions and a study on such a coupled system, see [22,27,41-43]
and the references therein.

1.1. The Model

In this paper, we are interested in the interaction Cy»[ f] between excited bosons
and a condensate; precisely, we study the spatially homogenous quantum Boltz-
mann equation

af
— =nc)Ci2lf] (1.3)
at
posed on R, x R?, for the density distribution function f(z, p) of excited atoms,
coupled with the differential equation

dn.
dr

= —nc(t)f Cl f1, p)dp, (1.4)
R3

posed on R, for the density function n.(¢) of the condensate. Here, Ci2[ f] denotes
the collision integral operator that describes the bosons-condensate interaction ([1,
2,7,9,12,25,29,30]), given by

ol = [ (Ropnlf 1= Ryl f 1= Rpn 1) dirdp

(1.5)
with

Ryl 1= Kp. pr ) (ifo(L+ ) = (4 )L+ fo)f )
K(p, p1, p2) = K(p, p1, p2)8(p — p1 — p2)8(E(p) = E(p1) = E(p2)),

using the short-hand notation f = f (¢, p) and f; = f(¢, p;). Such a simplified
model is used, for instance, when the temperature is very low and thus the interaction
Ca[ f] between bosons themselves is weak and negligible as compared to the
interaction Ci2[ f] (see, for instance, [6-9,12,16]).

In (1.6), 8(-) denotes the Dirac delta function, and £(p) denotes the particle
energy, which is of the form of the Bogoliubov dispersion relation

N, 1
Ep) = Iplri +ralpl. (1 =250, ko=—5>0, (17
m 4m

for m being the mass of the particles, g the interaction coupling constant, and N,
assumed to be a constant. In addition, the kernel K (p, p1, p2) in (1.6) is often

(1.6)
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0

Fig. 1. Tlustrated is the oval surface S, centered at % and having 0 and p as its south and
north poles, respectively

referred to as the transition probability kernel ([12,23,24,28,30,40]). In this paper,
we shall consider the form

K(p, p1, p2) = kolpl?|p1l°|p2l”, (1.8)

for any fixed constant p € [1, %] and for some positive constant k. Such a kernel
is used, for instance in [12,16,25], when Bose gases are at a sufficiently low tem-
perature. For the sake of presentation, we shall take constants «q, k1, k2 to be one.
The results in this paper apply to the general case when the constants are positive.

We emphasize that in this paper the full form of energy functions (1.7) is
considered, which complicates the analysis in treating the collision integral operator
C12[ f]. Indeed, the presence of the Dirac delta function in (1.6) reduces the collision
integrals over R3 x R3 to the surface integrals on the so-called energy manifolds,
dictated by the conservation laws

p=pi+pn Ep)=Ep)+EP2) (1.9)

for each p € R3: see Figures 1 and 2 for an illustration of these surfaces. In
addition to the complication of dealing with the surface integrals, it is certainly not
clear whether the second moment of f on these surfaces is bounded, even if the
second moment of f in R3 is bounded. As a matter of fact, for this very reason, the
simplified energy functions £(p) = ¢|p| or £(p) = c|p|* have been used in the
literature; see, for instance, [1,2,8,13,15] and the references therein. The former
energy law leads to line integrals, whereas the latter reduces to integrals on a sphere,
as it is the case for the classical Boltzmann equations (e.g., [16,34,47]). To the best
of to our knowledge, the current paper is the first time where such a full energy of
the form (1.7) is studied.
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Fig. 2. Sketched is the trace of S;, on any two dimensional plane containing p

Let us mention that the model (1.3) has also been studied in [6-9], with trun-
cated transition probability kernel near zero or infinity. The propagation of expo-
nential and polynomial energy moments is also studied recently in [3], and the
well-posedness theory is developed in [43] for a more general model that in fact
contains both Cj; and C»;. On the other hand, the convergence to equilibrium of a
linearized or discrete version of (1.3) is obtained in [11,17]. In this paper, we prove
that positive radial solutions to (1.3)—(1.8), if exist, are uniformly bounded below
by a Gaussian distribution.

1.2. Related Contexts

Let us also point out that the model (1.3) is also referred to as the phonon
Boltzmann equation, proposed by PEIERLS in 1929 [37,38] to study the interaction
of phonon gases. See also [3,11,44] for recent studies. In addition, it also shares a
great similarity with three-wave kinetic models used in the weak turbulence theory
[14,18,21,32,35,45,49].

1.3. Main Result

Let us now present the main result of this paper. For m > 1, introduce the
function space ]L,111 (R3), defined by its finite norm

1 £l = /R (+E@M £ (P1dp. (1.10)

with E(p) = |ply/1 + |pl*.

Theorem 1.1. Let fo(p) = fo(|p|) be a positive radial initial datum in L}, (R*) N
C(R3)f0r some m > 1, and let n.(0) = ng be a positive initial density constant, so
that the Cauchy problem (1.3)—(1.8) has a unique classical positive radial solution
f(t, p) = f(t,1pl)inC([0, 0), L}, (R)NCR))NC([0, 00), L, (RHNC(R?))
and a unique density function n.(t) € CL(0, 00)) satisfying n1 < n.(t) < n for
some positive constants ni, ny.
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Assume that fo(p) > 6p on Br, = {Ip| < Ro} for some positive constants
0o, Ro. Then, for any time T > 0, there exist positive constants 0, 6> such that

ft.p) = 61exp(~6alpl®), VYi>T, VpeR. (1.11)

We stress that the existence of positive radial solutions is not studied in this
paper. However, such a solution is constructed in [3,43]. The lower bound assump-
tion on n.(f) means that the condensate is stable and remains present as time
evolves, while the upper bound follows from the conservation of mass; see Lemma
2.2. Physically speaking, Theorem 1.1 asserts that the collision operator Ci2[ f]
prevents the excited atoms from falling completely into the condensate. In other
words, given a condensate and its thermal cloud, we show that there is some portion
of excited atoms which remains outside of the condensate and the density of such
atoms remains greater than a Gaussian distribution, uniformly in time ¢ > T, for
any time 7 > 0.

The condition that initial data fy(p) has positive mass near {p = 0} is necessary
for such a lower bound by a Gaussian to hold, since otherwise if fo(0) = 0, then
f(t, 0) would remain zero for all positive time, as a consequence of C13[ f1(0) = 0,
or

o f(t,0) =0, Vi>0. (1.12)

Obtaining lower bounds on solutions to the Boltzmann equation is a classical
question, which was first studied by Carleman in his pioneering paper [10]. There,
he proved that solutions are bounded from below by

61 exp(—62| p|*+)

for € > 0, using a “spreading property” of the collision operator. This result was
later improved by PULVIRENTI AND WENNBERG [39], providing the Gaussian lower
bound in the case of hard potentials with cutoff in dimension 3. In [33], Mouhot
proved an explicit lower bound on solutions to the full Boltzmann equation on the
torus, under the assumption of uniform bounds on certain hydrodynamic quan-
tities, for a broad family of collision kernels including in particular long-range
interaction models. The study of lower bounds is an important subject, not only to
understand the qualitative behaviour of solutions to the Boltzmann equation, but
also to study the convergence to equilibrium using the so-called “entropy-entropy
production”method [33,47].

The structure of the paper is as follows. Section 2 is to give the conservation
of momentum, energy and the H-theorem of (1.3), while Section 3 provides the
technical estimates on the energy surfaces, which are the basic tools of the paper.
We derive uniform second-order energy moments in Section 4, and give the proof
of the main theorem in Section 5.

2. Conservation Laws and the H-Theorem

In this section, we present a few basic properties of smooth solutions of (1.3).
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Lemma 2.1. For any smooth function f(p), there holds

[ catnwemar = [[[ Ryl £1(0p) = 9(p1)
R3 RIXR3xR3
- <P(P2)) dpdpidps

for any smooth test function ¢.

Proof. By the definition (1.5) of C»[ f1], we have

[ catrimemar = [[[ (Rp.propalf]
R3 R3xR3xR3
“Rpt.p.pal F1 = R [£1)2(p) dpdprdpa.

By switching the variables p <> p; and p <> p» in the second and third integral,
respectively, the lemma follows. O

As a consequence, we obtain two important corollaries.

Corollary 2.1 (Conservation of momentum and energy). Smooth solutions
f (&, p) of (1.3), with initial data f (0, p) = fo(p) satisfy

fR3 f@, p)pdp = fR} So(p)pdp (2.1

/ [, p)E(p)dp = / fo(p)E(p)dp (2.2)
R3 R3

forallt > 0.

Proof. This follows from Lemma 2.1 by taking ¢(p) = por E(p). O

We note that, unlike the classical Boltzmann equation, Equation (1.3) alone
does not conserve the mass. However, the coupled system (1.3)—(1.4) does.

Lemma 2.2 (Conservation of mass). Smooth solutions f(t, p) and n.(t) of (1.3)
and (1.4), with initial data f (0, p) = fo(p) and n.(0) = ng, satisfy

ne(t) + / . p)dp = o + / fo(p)dp 23)
]R3 R3

forallt > 0. In particular, the total mass and n.(t) are uniformly bounded.

Proof. It follows directly from (1.3) and (1.4) that

dn“+d[f(r ydp =0
dr  dr Jps3 » PIEP =T

which gives the lemma. 0O
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Lemma 2.3 (H-Theorem). Smooth solutions f(t, p) of (1.3) satisfy

d
ar Jes [flogf —(1+ f)logl + f)]dp <.

In addition, radially symmetric equilibria of (1.3) must have the following form:

f(p) = (2.4)

ecg([’) — 1’
for some positive constant c.

Proof. First notice that

dr R3

d B f
da [flogf—(1+f)10g(1+f)]dp_/R38’f10g<_f+1>dp'

On the other hand, we write

/ Culflp)e(p)dp = /// K(p. p1, p)(A+ HA+ fOA+ f2)
R3 R3 xR3 xR3

X( n L f
I+A1+fH 1+f

— @(p2)ldpdpidps.

) [e(p) —@(p1)

Using Lemma 2.1 with ¢(p) = log ( f{p(fll) and the fact that (a — b) log(%) > 0,
with equality if and only if a = b, we obtain

f(p)
/112{3 Ci2[f1(p)log (m) dp <0.

This yields the claimed inequality in the H-theorem. In the case of equality, we
have
fey  flp)  fp)
fp+1f(p2)+1  f(p)+1

’

or equivalently, setting 2 (p) = log (%), where £ is radially symmetric,
h(py) + h(p2) = h(p), (2.5)

for all (p, p1, p2) so that K(p, p1, p2) # 0. In particular, by view of the conser-
vation laws (1.9), the function h(p) satisfies h(p1 + p2) = h(p1) + h(py), for all
pairs (p1, p2) € RR® so that

E(p1+ p2) =E(PD) +E(p2).

Define £7!(a) to be the positive number £ such that \/£2 + &4 = 4. We then
have that

hoE Y a+b)=ho&E Y a)+ho& ' (b)
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for all p; and p> such that |p;| = £ (a) and |p2| = £7'(b), with the notice
that % is radially symmetric. Since a, b may take arbitrary values in R, this yields
h o £~ 1(a) = —ca for some positive constant ¢ and for all a > 0, or equivalently,

h(p) = —c&(p)
for all p € R3. This yields (2.4) and hence the H-theorem. O

3. Energy Surfaces

In this section, we study the surface integrals that arise in the collision operator,
due to the conservation laws (1.9). Recall the collision kernel

K(p. p1. p2) = |pI’Ip11°|p21P8(p — p1 — p2)8(E(p) — E(p1) — E(p2)),

with § (+) being the Dirac delta function. Thus, the volume element IC(p, p1, p2)dpi1dp2
or K(p1, p, p2)dpidps in R® is in fact a two-dimensional surface element. Intro-
duce the functions

Hp(w) :=Ew —p) +Ew) —E(p), Gpw):=E(p+w)—Ew)—E(p),
(3.1)
with £(w) = |w|y/1 + |w|?, and the corresponding energy surfaces, dictated by
the conservation laws (1.9),

Spi={wer! : Hyw =0}, s, ={wer!: G, =0} 32

It follows that the collision operators satisfy

f/ Rp.pipalf] dmdm:f R L do @)

R3xR3 PP1,P2 5, pP.P—Dp2,02 |VHp(p2)|
(3.3)

// Rpip.plf] dPldP2=/ Roemn oo [f1-30P2)

R3xR3 P1,P,P2 S}, p+p2,p,p2 |VGp(p2)|

The next two lemmas provide estimates on these surface integrals.

Lemma 3.1. Let S, be defined as in (3.2). There are positive constants cq, Co 50

that
do(w)

colp| min{L, |pl) s/ Q0 copimin{L 1pl, (34)
s, VH, )]

and fory > 0,

do (w) .
f lw — p|? [w]! ———— > co|p/>’ T min{l, |p|} 3.5)
SpNBO, L1pD) IVH,(w)|

uniformly in p € R3. In addition, for any function F(-), we have

f Fup-22®_ _ ¢ v min{1, u} F(u) du (3.6)
5, IVH,w)| = J ’ ' ‘
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Proof. Recall that S, is the surface consisting of w so that H,(w) = 0 or
Ew —p)+Ew) =E(p)

with E(w) = |wly/1+ |w|?. It is clear that S, is symmetric about 5. We will
prove that the surface S, is of the form as illustrated in Figure 1. First, we note
that {0, p} C Sp, and |w| < |p| and |w — p| < |p|, for all w € §,, since
E(w — p) <E(p), E(w) < E(p), and E(p) is a nonnegative increasing function.

For w € §,, we write w = ap + ¢, with p - g = 0. Since |w| < |p| and
lw — p| < |pl, @ € [0, 1]. In addition, recalling (3.1), we compute

Vo H,y = (1 + 2w — p|2)5w P 2w —— 3.7)

(w —p) E(w)’
Thus, g - Vy,Hp, > 0. That is, H, (w) is strictly increasing in any direction that is
orthogonal to p. This, together with the fact that H,(ap) < 0 for o € (0, 1) and
Sp C B0, |p|) N B(p, | pl), proves that the surface S), and the plane

Pa=lap+q, p-q=0}

intersect for each o € [0, 1]. In addition, H,(ap + ¢) is a radial function in |g]|,
with ¢ - p = 0. This asserts that the intersection of S, and P, is precisely the circle
centered at ap and of a finite radius |q,|, for each « € [0, 1]; see Figure 1.

Surface parametrization. Let p- be in Py = {p - ¢ = 0} and let ¢y be the unit
vector in P so that the angle between p and ey is #. We parametrize S » by

S, = [w(a, 0) = ap + |qales : 6 € 10,271, « € [0, 1]}. (3.8)

Since dyey is orthogonal to both p and ey, we compute the surface area

do(w) = [dew x Jgw|dadd = [(p + dulqgales) X |gqldpeqs|dadt
= 19a|l(p + 9«lquleg) x dgeg|dadd (3.9)

= |galy/|P1? + |0|qa||>dads.

To compute 9y |gy|, we differentiate the equation Hj,(w,) = 0, yielding

0= dgwy - VwHp(we) = |plep - ViyHp(we) + 0ulqales - Vi Hp(wy).
(3.10)

This implies that
e, VyH,(wy)
Oalqa| = —|p| ==

0 Vo H, () G-

Therefore, we compute

|2|ep : Vpr|2 + leg - Vpr|2 _ |p|2 |Vpr|2
|€9~Vpr|2 |69'vap|2

2
I =

1P + 194190 Ip
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and hence
do(w)  |pllgeldads

= . (3.12)
|Vpr| |69'vap|
Surface area. A direct computation yields
142w —p? 1+2w?
-VwH, = 3.13
0 Vully = \da] [ Ew-p) | Ew) G

Recalling that |w| < |p| and £(w) = |w|y/1 + |w|?, and using the fact that (1 +
2|p|2)/5(p) is decreasing in | p|, we compute

142w — pl? 1+mwF>1+mm2
E(w — p) Ew) — &)

This, (3.12), and (3.13) prove the upper bound on the surface area (3.4). As for
the lower bound, it suffices to give an estimate for o € [0, 1/2], on which «|p| <
|w| < |w — p|. Thus, in this case, we have

> min{1, [p|}~".

1+ 2w — pl? 1+me< 1+ 2lap|?

. -1
Sw—p) T Ew 0 @y - commtbalrl

The lower bound on the surface area (3.4) follows.

Surface area in B(0, %|p|). In view of (3.11), (3.13), and the identity

+2|lw — p|? 1+mmj

1
ep VuHy=Ipl[@=1 S T )

(3.14)

we have |9y |qq || < |p|2|qa|_1, which implies

19 |qe|*| < 2| pI%.
Since
lwel* = &?|p* + Igal?

)

we then have that
do|wal* = 20| pI* + Bulqu |-

Upon recalling that o € [0, 1], we have that |3, |we|?| < 4|p|* and
o
|wa|* = / Oowe|* do’ < 4a|p|?,
0

which proves that w, € B(0, %| pl) for all « € [0, %]. The lower bound (3.5)
follows.

Surface integral. Letus introduce the radial variable u = |wy | = Vo[ p|*> + |ga|*.

We compute 2udu = 8a|wa|2doz. Hence, (3.12) yields
do(w) _ |pllgel 2ududd
IVwHp|  leo - Vi Hp| dalwal?

(3.15)
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In view of (3.11), we compute

alpleg - VyH)p — |qalep - Vi Hp
eqg - Vpr

dolwe |* = 2a| pI* + 21qedxlqal = 21pl

)

in which, using (3.13) and (3.14), we compute

alpleg - VHy — |quley - Vo Hy = |pl] |M
plég wilp dal€p wilp = |Pllqu 5(w—p) .

Combining, we obtain

d E(w — p)ududs
ow) _ & — pudu —~ < Comin(1, u)duds, (3.16)
[VwHp|  |pl(1+2|w — pl%)

uponrecalling that [w| < |p|, [w—p| < |p|forw € S, and E(w) = |w|y/1 + |w]|2.
This proves (3.6). O

Lemma 3.2. Let S;, be defined as in (3.2). There are positive constants co, Co so
that for any F (-),

/ F(IwI)M < Colpl™! /00 F(u) udu (3.17)
s, IVGp(w)| — 0 7 '
and do ) ~

o(w . —1

forall p € R3.

Proof. Recall that S; is the surface that consists of w satisfying E(p + w) =
E(w) + £(p). First, we compute

2
0=E(p+uw)? — (E(p) +Ew))
=Ip+w+Ip+wl*—Up+ 1w —Upl* + [wl*) — 2E(P)Ew)

=2w-p+2w- p(lpl* + [wl* + [p + wl?) + 2 pP|w|* — 2E(p)E (w).
(3.19)
Itis clear that | p|*|w|* < £(p)E(w). This proves thatif w € §,\{0}, thenw-p > 0.
Next, recall G, (w) := E(p +w) — E(w) — E(p), with E(p) = |ply/1 + |p|2.
It follows that G ,(ap) > 0 for & > 0. In addition, we compute

WEP w4 py— L (w),

VoG, =
YEP T w o+ pl lw]

and thus the directional derivative of G, at wy = ap + g, with p - g = 0, in the
direction of ¢ # 0 satisfies

5/(17 + wg) _ g/(w(x)j| <0

q-VuG =|q|2[
ver [P+ wel [we |
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in which we used the fact that £'(p)/|p| is strictly decreasing in | p|. By a view of
(3.19), the sign of G, (w), with wy = ap + ¢, is the same as that of

alpP (14 Upl + [wal + 1p + wal)) + IpPlwel* = E(PEW)

= alpP(1+20pP +alpP + lwal))
PP+ 1 (wal® + [wal®) = |pl*|wal*
VPP +1p Y wa? + [wel* + [ pl?we 2
= alpl(1+20pP +alpP + lwal))
lwa |?[p? + lwa [ pl* + | p|* lwal*

VPP + 1PV Twal? + [wal* + 1 p[|wel?
This yields that G ,(ap + g) < 0, as long as

_ (A +1p1*) + [wal® !
PP TP [k + 1+1pP (1+201pP + alpP + wa )

Taking |g| — oo (and so |wy| — ©0), we obtain that lim; o G (ap +g) < 0if
and only if

o

1 1

a<aapi== . (3.20)
21pP+Ipl?+Ipl*
In particular, we note that
a,lpl(1+1p) < Co, VpeR? (3.21)

for some positive constant Cy. Hence, for positive values of « satisfying (3.20),
by monotonicity, G ,(ap) > 0, and the fact that G,(ap + ¢) is radial in |g],
there is a unique |gq| so that G,(ap + q) = 0, for all |g| = |g«|. For o > o),
Gplap +¢q) > 0,forall g, withg - p = 0.

Surface parametrization. To summarize, the surface S;, can be described as fol-
lows (see Figure 2):

S, = {u(a,@)zzap-+|qakm Caef0,ap), 0 e[O,Zn]}, (3.22)
in which o), and |gy| are defined as above and ey denotes the unit vector rotating
around p and on the orthogonal plane to p.

Surface integral. Recalling (3.15), the surface integral is computed by

do(w)  |pllgel 2ududd
|vap| leg - VwGp| 8ot|wa|2’

(3.23)
with u = |wy|, where, as done in the previous case, we compute

1
TpleG : VwGpaa|wa|2 = alpleg - VwGp - |CIot|ep : VwGp

142w+ p)?

= —|pllgal Zw+ p)
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Combining, we obtain

do(w)  E(w+ pududd
IVwGpl — Ipl(1 42w+ p?)’

Recalling £(w) = |w|y/1 + |w|?, we have
E(w + p)|w
[pI(1+2|w + p|

On the other hand, by considering |p| < 1 and |p| > 1 and using the fact that
lw| + |p| < 2|w + p| (on §},), we have

(3.24)

—1
5 < lwllpl™.

Ew+ p)lw]
IpI(1+ 2w + p|?)

This yields the upper and lower bounds on the surface integral. O

> colw| min(1, |p|™'}.

4. Moment Estimates

In this section, we shall derive estimates on the energy moment of nonnegative
solutions of (1.3). In what follows, we take initial data fo(p) = fo(|p|) with finite
mass and energy. Thus, thanks to the conservation of mass (2.3) and energy (2.2),
mass and energy remain finite for all times. In addition, we recall that n.(¢) remains
bounded above and below away from zero.

Proposition 4.1. Letr fo(p) = fo(|pl) = 0 have finite mass and energy. Then, for
any t > 0, nonnegative radial solutions f(t, p) = f(¢t, |pl) of (1.3) with initial

data fo(p) satisfy
sup ng £, pEX(p)dp < +o0. 4.1)

tel[r,00)

Proof. Take ¢ = £2(p) to be the test function in Lemma 2.1. We obtain

d
E/I‘RB f82dp = n.(t) -/://Rg Rp,m,pz[f](gz(p)
—&X(p1) — 82(p2))dpdp1dp2,

In view of the Dirac delta functions in the collision kernel (1.6), the integral is on
the surface dictated by the conditions p = p; + p2 and E(p) = E(p1) +E(p2). In
particular, on the surface, £2(p) — E2(p1) — £2(p2) = 2E(p1)E(p2). Thus, upon
recalling that f > 0, we have

d
o |rewrap =200 [[[ Ry minie@nE@aapamans
t JR3 R
=21.) [[ [ Ktwpro 2 (5= 0 i 207 )0 o)papiany

<2ne) [[[ .m0 (5= £)EDEGRAPIPIp2



Uniform in Time Lower Bound for Solutions 77

Let us set

Ji 1 =2n.(t) /// K(p, p1, p2) f1 2E(p1)E(p2)dpdp1dp2
R (4.2)

ri==2m0) [[[ K0 pr oo rEGoEGpIpiape
R
We first write Ji, J; in term of surface integrals. Recalling

K(p. p1. p2) = 1p|?Ip11°|p2?8(p — p1 — p2)8(E(p) — E(p1) — E(p2))

for p > 1, and following (3.3), we estimate

Jr = —2n.(t) //u@ K(p, p1, p — p1) fE(PDE(P — p1)dpdpi

do(p1)

= —2n, Plp = pilPEPDE(D — pr)—PL
”(”/Rz</sp'pl' P = PIPEEDED = PG

)Ipl” fdp.

Recalling £(p) > %(|p| + |p|2) and using (3.5) in Lemma 3.1, we estimate

do(p1)
IVH,(p1)| (4.3)
> (IpPP3 4+ 1pIPP %) min{l, |pl} = |pIP*F.

|p|p/S p1P1p — piIPEPDED — p1)
P

This proves
s= o [ 1" ap (4.4)
R

for some positive constant 6.
Next, we estimate the integral Jj in (4.2). Again following (3.3), we write

J1 = 2n.(1) //RG K(p1+ p2, p1, p2) f1 2E(p)E(p2)dp1d p2

d d
s// b1+ 2l 1P P 2l o o€ (p1)E (o) S PAPL
S IVGp, (p2)l
do (p2)
< PfE / P 4 pl? P £ E(py) 2 .
s [ iml nigen( y, (Pl paIpar P56 o)

By Lemma 3.2, and the fact that f is radial, the surface integral is estimated by

do (p2)

(P11P + P21 pal? foE (pa) o P2
fs/m P+ PPl PE D e

scnmr‘/IR (p11? + 121?12l HEPA( P2l
+

< Clpl™! /quplv’ +1p2) 12l Fo€ (p2)dpa.
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Thus, upon recalling £(p) = |p|y/1 + | p|?, we obtain

I< f/Rﬁamp 1) P el FLEP) HE(pa)dprdps
< ( / P70 fidpn ) ( f P2l Ep2) f2 A2 )
R3 R3

S ([ iwPraipns ap)( [ 1pvaiphs dp).

Since p > 1, we note that |p|** < |p|***! + |p|?> and |p|” < |p|**' + |p|. The
above yields

ns (/R3<|p|2+ PP dp)(/R3<|p| 1plPh f dp)

5/ () f dp+/ PP f dp
R3 R3

+ (/]R PPty d”>(/Ra P71 f dp)

upon using | p| < £(p) and the conservation of momentum and energy.
To bound J; in term of J,, we note the following interpolation inequality:

3p+5—r

r—2

3p+3 3p+3
/IPI’fdPSCo</ |p|3"+5fdp> (f |p|2fdp> SR
R3 R3 R3

for any r such that 2 < r < 3p + 5. Applying this inequality into J;, we obtain

I §/ EXp)f dp+/ It fdp
R3 R3

w3 s

P+ P+

+(f |p|3”+5fdp> (/ |p|2fdp) .
R3 R3

Now, using the Young’s inequality ab < ea” + Ccb'', with 1/r+1/r" =1, and the
fact that fR3 |p|?f dp is bounded by a constant and by the second energy moment,
we obtain

N<e f P14 fdp + Ce / E2(p)f dp 4.6)
R3 ]R3

for any positive €.
Combining (4.4) and (4.6), we have obtained

d
o f FEdp <~y / P15 fdp + € / FEdp. @)
t Jr3 R3 R3
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Let us next expand the first term on the right. Precisely, using (4.5) and the fact that
Jz3 |pI* f dp is bounded, we estimate

/52(p)fdp§/ |p|2fdp+/ Ipl*f dp
R3 ]R3 R3

S([eran)™ ([ e a)
R3 R3
2 i 3p+5 e
S([eoran)™ + ([ wrsran)
R3 R3

This yields
a8
—f P13 fdp < —92<f Eprap)” + C2/ E(p)f dp. (438)
R3 R3 R3
Hence, (4.7) gives

3p+1

i/ fEdp < c3/ rEdp [1 —93(f f€2dp)2] (4.9)
dr R3 R3 R3

for some positive constants C3, 83. Thus, since f > 0, the standard ODE argu-
ment applying to the differential inequality (4.9) yields at once the boundedness of
ng f Ezdp; for instance, there holds

/ f(t,p)Szdp,Smaxi 12 / f(z, p)c‘:zdp}
R3 R3

93 3p+1

for all > 7. The proposition follows. O

Remark 4.1. Following lines similar to the above proof, we can in fact show
that energy moments at any order are created and propagated in positive times
as obtained in Proposition 4.1 for the second-order energy moment. As a result, we
could then drop the restriction p < % in the transition probability kernel (1.8), used
in (5.10). However, we skip the details as the result will not be used in this paper.

5. Uniform Lower Bound
In this section, we shall prove our main theorem, Theorem 1.1. We recall that

there are positive constants n1, n, so that the density function n.(¢) satisfies n1 <
n.(t) < np forall r > 0. Let us write the collision operator as follows:

ClZ[f] = anin[f] - Qloss[f]v (5.1

where the Gain and Loss operators are defined by
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OQgainl f1 := /-/W - K(p, p1, p2) f1 f2dp1dp2
+2//Rz . K(p1, p, p2)(A+ f+ f2) fi dpidpa
Ol f1 = f f / K(p. pr, p2)(1 + 2f2)dp1dp2
R3xR3

+2f // K(p1. p. p2) f> dp1dp.
R3xR3
For convenience, we also write
Qlosslf1= fﬁ[f]’ (5.2)
nothing that L[ /] is usually called the collision frequency.

Lemma 5.1. Suppose that F(p) < G(|pl), for some radially symmetric function
G with

M= Gw) W' + u'*?P)du < oco.
Ry

Then, there holds
LIF1(p) = CoM(1 + |pI*) + Colp***! (5.3)
for some positive universal constant Cy.

Proof. We first write the collision integrals in term of surface integrals. Following
(3.3), we have

do(p2)
CIF] =f PIP1p — palP 1 palP (1 +2Fy) —2(P2)_
S, VH, ()]
do(p2)
+2/ b+ p2l? 1P| palf Fy —2P2)
s, IVG,(p2)l

Consider the surface integral over S),. Recall that that | p2| < |p|and |p— p2| < |p|
on S,. Hence, using Lemma 3.1, we estimate

do (p2)

1p171p = pal? Ipal? (1 + 2Fy) —2P2)_
/sp PRAP = PP VH,(p)]
<1l [ (1 +260palpalr 2222
S, Y H,(p2)]

[Pl
< |p|2'0/0 (1 + G)) min{1, u}u”du

Ipl
S PP Ipl / G’ du,
0
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which is bounded by Co|p|3*+! + CoM | p|**. Next, we check the integral on S;.
Lemma 3.2 yields

do(p2)
lp + p2l?IplP P2l Fy ————
/s;, VG, (p)]
do (p2)
S| Apl? + 12D plP P2l G p2) =
/s;, VG, (p2)l

o0
< |p|f’—1/ (pl” +u”)Gw)ut'du,
0

which is bounded by CoM(|p|?~! + |p|?*~1) < CoM(1 + |p|*"). The lemma
follows. O

Lemma 5.2. Let 6,60 > 0, and F be any nonnegative smooth function so that
F(p) > 60 on Bs := {|p| < &}. Then, there exists a universal constant c¢o > 0 such
that

Qeainl F1(p) = colp|**! min{1, |p|}6° (5:4)
forall p € B s55.
Proof. By definition (5.1) and the assumption on the lower bound on F', we have

Qgin Fl(p) = / K(p,p— p2, p2)F(p — p2)F(p2) do(p2)

Sp

+ Z/S/ K(p+ p2, p, p2)F(p + p2)<F(p) + F(p2) + 1) do(p2)
)4
2 /S K(p,p — p2, p2)F(p — p2) F(p2) do(p2)
P
> |p|902/ 1P — 2l 1palPdo (po).
S,NB(0,8)NB(p,5)

in which we note again that p>, p — p» are both in B, thanks to the monotonicity
of the energy function £(p).
To proceed, we consider three cases. First, take p € B(0, §) \ B(0, %). In this

case, B(%, %) C B(0,8) N B(p, d), and so we can estimate

Oeain F1(p) 2 |p|p92/ plp

SpynB(L. 1L
> |pI** ™ min{1, |p|}6*

P = 21?1 p2|Pdo (p2)
)

for some positive constants cg, c1, thanks to the lower bound (3.5), with y = 1.
Next, for p € B(0, 3), we note that B(0, ) C B(0,8) N B(p, §). Hence, in
this case, we have, by the lower bound (3.5),
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anin[F](P)ZIPI”@z/ o P = 2l |p21Pdo (p2) Z [pIPP* min(l, [ p|}6°.

S[,QB(O, 7)

The lemma is proved for |p| < %

Finally, we consider the case when p € B(0, \/55) \ B(0, ). In this case, we
check that §;, N B(0, §) N B(p, §) has positive surface area. Indeed, let D), be the

2
disk that is centered at %, of radius /8% — %, and is on the plane orthogonal to

p. Let x be a point on the boundary of D, then |x — p/2| = /8% — # and

x — p/2 is orthogonal to p. As a consequence, |x|*> = |x — p/2|* + |p/2|* = &2
and [x — p|® = |x — p/2|* + | p/2|%. It is clear that D, belongs to the intersection

B(0, )N B(p, 8) and, since /8% — % > %, the surface S, crosses the interior of
D, This proves that S, N B(0, §) N B(p, ) is non—empty. Since B(0, §) N B(p, 4)
has positive Lebesgue measure, the surface area of S, NB(0, )N B(p, §) isbounded
below from zero by a constant times | p|, since any geodesic on the surface starting
from O to p has a greater length than | p|. We can then compute

Quain F1(p) 2 |pIP0? / Ip — p2l?1pa2lPdo (p2)
SpNB(0,8)NB(p.8)

2 [pP* min{1, |p|}6?,
due to the lower bound (3.5). This completes the proof of the lemma. O

Lemma 5.3. Let §,0 > 0. Suppose that initial data fo(p) > 6 on Bs, where
Bs = {|p| < 8}. Let f(t, p) be a solution to (1.3) so that f(t, p) < G(t, |p]) for
all t > 0 and for some radially symmetric function G so that

Mmzsw/memwwH+MMﬂw<m. (5.5)
Ry

0<s<t
Then, there holds the following uniform lower bound:
f(t, p) = Cote” MO pPPo+ min(1, [p}6?,  Viz0,  (5.6)
forall p € B s,
L.(8) := co(1 + 83,1,
Here, co, Cqy are some universal positive constants independent of M, §, 0 and p.
Proof. Using Lemma 5.1, with F = f (¢, p), we obtain

O f(t, p) + Lo(t, |pD) f (&, p) = n1 Qeain 1, p), (5.7

with Lo(t, |p|) = CoM(t)(1 + |p|**) + Co|p|>**+!. Note that M(r) and hence
Lo(t, | p]) are increasing in 7. Using the monotonicity and applying the Duhamel’s
representation to (5.7), we obtain

1 4 1
F(t,p) = fo(p)e JoLol:1phds oy, /O e~ e Lo lphds g [ F1(x, p)dT (5.8)
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for all t > 0. Since Qgain[ f1(p) > 0 and Lo(t, |p|) is an increasing function in ¢,
it follows that for p € Bg, (5.8) yields

f,p) = fo(pe tbolrh > ge=rLod) =y > (5.9)

Next, for each fixed time ¢ > 0, we now apply Lemma 5.2 for F = f (¢, p), with
the new lower bound (5.9) on Bs, yielding

Quainl £1(, p) = Colp** ' min{1, | p[}g?e~ 2 L0(:0)

forall p € B 7Y Putting this into (5.8), we obtain

4 t
f(t, p)> f e e Lolphds o L[ F1(x, p)dt
0
1 t
> / T T
0
t
> / e =OLED o (e, p)de
0

t
Z |p|3p+l min{l, |p|}92/ e—(l‘—‘[)L()(t,(S)e—Z‘EL()(t,S)dT
0

> |pI** min{1, |p[}o2e 2 Lo

> | pPP+ min(1, |p|jo2e ! COMOLG)

This completes the proof of (5.6). O

5.1. Proof of Theorem 1.1

We are now ready to give the proof of Theorem 1.1. Let 6y, Rgp > O as in the
assumption of Theorem 1.1 so that fo(p) > 26y on Bog, = {Ip| < 2Ro}. Let T be
sufficiently small so that f(z, p) > 6y on Bp,, thanks to the continuity in time of
the (classical) solution f (¢, p).

In the proof, we shall apply Lemma 5.3 repeatedly to the solution f(z, p)
of (1.3), with G(¢, |p]) = f(¢, |pl). First, we note that since f(z, p) is radially
symmetric, £(p) > |p|2 and p € [1, %], we have

/R £ 1pDUpI™? +1pI"T20)d|p| < Co /R F&.p)A+E(p)*) dp < C

(5.10)
for all + > 7, thanks to the conservation of mass and the boundedness of second-
order energy moment. This verifies the assumption (5.5) on G (¢, |p|) = f(t, |p]),
made in Lemma 5.3, with M (¢) = C, which is time-independent.

Fix a positive and sufficiently small § < Ry, and a positive time #( so that

1
It —. 5.11
o<y (5.11)
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Since fo(t, p) = 6y on Bs, applying Lemma 5.3 to the solution f(z, p) of (1.3)
with the initial data f(z, p) yields

f(@ +10,p) = toe O C 07 (5.12)
forall p € B 55, in which L(8) = co(1 + 83P+1y and
Cp := Colpl*** ' min{1, |p|}. (5.13)

We stress that Cj, does not depend on § and 79, and hence the estimate (5.12)
can be iterated. Applying again Lemma 5.3 to the solution f (¢, p) of (1.3) with the
initial data f(t + fo, p) satisfying (5.12), yielding

2
f@ 41411, p) = ne 1HPc, [toe_mL*(‘”Cpeg]

142 .,
Ztltoze—nL*ma)e—sz*(a)(Cp) 62

for arbitrary positive time #; < }1 and for all p € B Ve For each fixed integer
n > 2, we iteratively apply Lemma 5.3, yielding

fa@+io+ 41 p)

k
> tnt,%_l Ce l‘2

I42442"
= Pl 6

—inLe(V2'8) | ,=2"10Ls(8) (Cp) 2

n

forall p € Bﬁn+16. By using 1 424 --- 42" = 2"+ _ 1, the above is reduced to

k n 2n+1_1
FE@ Attt p) > tat2 121 eo(c,,eo) E, (514
forall p e B Nl in which for convenience we have set
E, = el V20 2l V2 ) —20Le0) (5.15)

Case 1: |p| > V/28. Recall that 8, ;) are fixed. For each p so that |p| > V28, we
take an integer n satisfying

V2's < 1pl < V2. (5.16)

In particular, p € B Noaal and (5.14) holds for arbitrary positive time steps #;. We

now fix an arbitrary time ¢ € (t, ), with , = 1/4. We take t; = t(’)‘ and choose tg
so that 7y < 4_1‘ and

n
Ztk =1.
=0

Such a choice of 1y is possible by the definition of #,. The lower bound (5.14) then
reads
2n+l —1

fattp) = boni iy (Cobo) B (5.17)
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forall ¢ € (t,t,) and all |p| > V28, with n being defined by (5.16).
Note in particular that ty > T; for some positive time 77, since ¢t > t. Using
this, we can estimate

k n _ g2k — T, 1
tnt,ffl o ty%—k . t& > Trn+2(n D+-+2%(n—k)+--42
n n ki, n 00 —k
. th +30_ o 2K (n—k) . Tf2 (%0 k27) _ an,
. . 1+ k2~k L .
in which Cy = Ty 2o , which is finite and nonzero.

Next, by the definition (5.13) of C,, we have C,, > Cs for some positive
constant Cs, since |p| > \/58, and hence

2n+1_1 2n+l_1

o(Crt0)  zeo(Coe)  zaE”

for some positive constants C; and Cp, independent of n, p and 7.
Finally, we estimate the exponential term E, defined as in (5.15). Recalling
thatdtg < 1, t; =t} and L.(8) = co(1 + 83°F!), we have

e 2l WTT) o 2 (2 )

k —k —k §3p+1 k 3p+1
> ¢ 2ieolig ()" IS =2 eo[ 1487

Hence, we obtain

n n
—k
E, = exp <— § :Zkt,,_kL*(\/En 5)) > exp (—co[l + 8341 § 2")

k=0 k=0
< _ 3p+1qon) _ 2"
_eXp< coll +6 12 >_C3

for some positive constant C3, which is independent of n, p, and 7.
Putting the above bounds into (5.17), we have obtained

1 n n
F@+1.p) 2 SC1CCaC) = e > g~ 03IP” (5.18)

for all ¢ € [t, t,] and all p satisfying (5.16), with 6; = Cy, 6, = log W and
03 =6/ (282). Here, we stress that the constants 0 ; are independent of p and t.

Case 2: |p| < +/28. In this case, using the differential inequalities (5.7) and
(5.3), we obtain

O f = n1 Quinl F1(p) — [CoM(1 + |p|**) + ColpI>* 11,

which yields
(2, p) = e [COMUHPEO+CIPP 0 ) (5.19)
Equation (5.19) implies that for a fixed pg and for all |p| < |po|, there holds

£t p) 2 e LCOMAHPPDCOlpo e i (). (5.20)
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Therefore, for each fixed g, there exists ¢’ > 0: f(t9, p) > ¢ for all |p| < |pol.
For each p, by repeating the same argument as in Case 1, in which § is replace by
Ipl/ «/E we can conclude that there exists T, and b, such that for all > T),, we
have

f@, p)>bp >0

for all v/28 > [p'| > |p| .

Recall that f is continuous in p and f(z,0) = fy(0) for all r > 0, since
9; f(z,0) = 0. This proves that there exists a universal constant 7* > 0 such that
f(t, p) is uniformly bounded from below for all z, > ¢t > 0 and |p| < r*:

ft,p)=Cm >0, Vt,=1>0, V|p|<r*. (5.21)

This yields the lower bound of f(z, p) in the ball {|p| < ~/28}, for sufficiently
small 8.

Iteration. To conclude, we have obtained the Gaussian bound
F,p) =6 peRY refr T4 (5.22)

for some universal constants 63, 64 that are independent of p and 7. Here, t,, = 1/4.
By induction, for each integer k > 1, we then repeat the above proof, starting
with initial data at r = kt,. This yields the same Gaussian bound on the each time
interval [t + kt,, T + (k + 1)t.], upon noting that such a bound depends only on
the mass and second order energy-moment at f = kt,., which is independent of k'”
iteration. This proves the Gaussian lower bound for all time ¢t > 7, and hence the
main theorem.
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