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Abstract

In this paper, we consider a quantum Boltzmann equation, which describes

the interaction between excited atoms and a condensate. The collision integrals are

taken–over energy manifolds, having the full form of the Bogoliubov dispersion law

for particle energy. We prove that nonnegative radially symmetric solutions of the

quantum Boltzmann equation are bounded from below by a Gaussian distribution,

uniformly in time.

1. Introduction

The discovery of Bose–Einstein condensation (BEC) in trapped ultracold

atomic gases in 1995 [4,5] has led to an explosion of research on its properties.

A kinetic equation for BECs was first derived by Kirkpatrick and Dorfmann

[28,30], using a mean field theory and the Green’s function method. Following

the path of Kirkpatrick and Dorfmann, several authors have tried to derive kinetic

equations to describe the dynamics of BECs [7,9,22,23,25,30,31,40,48]. In the

series of papers [19,20,26], C.W. Gardiner, P. Zoller and coauthors formulated the

Quantum Kinetic Theory, which is both a genuine kinetic theory and a genuine

quantum theory, in terms of the Quantum Kinetic Master Equation (QKME) for

bosonic atoms. In the Quantum Kinetic Theory, the significant quantum aspects are

restricted to a few modes, the remaining modes being able to be described in the

classical way, as in the Boltzmann equation. Indeed, the kinetic aspect of the theory

arises from the decorrelation between different momentum bands. The Quantum

Kinetic Theory provides a fully quantum mechanical description of the kinetics of a

Bose gas, including the regime of a Bose condensation. In particular, the QKME is

capable of describing the formation of the Bose condensate. The QKME contains, as

limiting cases, the Boltzmann–Norheim (Uehling–Ulenbeck) equation [13,36,46],

the Gross–Pitaevskii equation, and the condensate growth term. The condensate
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growth term is the principal term which gives rise to growth of the condensate,

doing this by taking atoms out of the bath of warmer atoms.

Bosons of mass m at temperature T can be regarded as quantum-mechanical

wavepackets whose extent is proportional to a thermal de Broglie wavelength

λd B =
(

2π�
2

mkB T

)

1
2

,

describing the position uncertainty associated with the thermal momentum distri-

bution, in which kB is the Boltzmann constant and � is the Planck constant. When

the gas temperature T is high, the de Broglie wavelength λd B is very small and

the weakly interacting gas is similar to a system of “billiard balls”. The dynamics

of the density function of the gas f (t, r, p)—the probability of finding a particle

at time t , position r and momentum p—is described by the Boltzmann–Norheim

(Uehling–Ulenbeck) equation

∂t f (t, r, p) + p · ∇r f (t, r, p) = C22[ f ](t, r, p), f (0, r, p) = f0(r, p), (1.1)

for (t, r, p) ∈ R+ × R
3 × R

3, where the collision operator C22[ f ] reads

C22[ f ](t, r, p1) =
∫∫∫

R3×R3×R3
δ(p1 + p2− p3− p4)δ(Ep1 + Ep2 − Ep3 − Ep4 )

× [(1 + ϑ f1)(1 + ϑ f2) f3 f4 − f1 f2(1 + ϑ f3)(1 + ϑ f4)] d p2d p3d p4,

(1.2)

where ϑ is proportional to �
3, Ep is the energy of a particle with momentum p, and

we use the short-hand notation f j = f (t, r, p j ).

The quantum Boltzmann collision operator (1.2) becomes the classical one in

the semiclassical limit, as ϑ tends to 0. A consequence of this fact is that at high

temperature, the behavior of the Bose gas is, in some sense, quite similar to classical

gases. Note that, differenlyt from classical Boltzmann collision operators, where the

collision kernels are functions depending on the types of particles considered, the

derived collision kernel for the quantum Boltzmann collision operator for bosons

is 1.

When the temperature T becomes lower, λd B becomes smaller. At the BEC

transition temperature T ≈ TB EC , the de Broglie wavelength becomes comparable

to the distance between bosons. As a consequence, the atomic wavepackets “over-

lap” and the atoms become indistinguishable. At this temperature, bosons undergo a

quantum-mechanical phase transition and the Bose–Einstein condensate is formed.

The gas is said to be at finite temperature if TB EC > T > 0K. At this temperature

the trapped Bose gas is composed of two distinct components: the high-density

Bose–Einstein Condensate—localized at the center of the trapping potential- and

the low-density cloud of thermally excited atoms, spreading over a much wider

region. The system of the coupling between the BEC and the excited atoms con-

sists of equations of the wave function �(t, r) of the BEC, which is a function of

time and position (t, r) and the density function f (t, r, p), which is a function of

time, position, and momentum of the excited atoms (t, r, p). The coupled system

that describes the dynamics of BEC and excited atoms then consists of (cf. [22,43]):
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• the Gross–Pitaevskii equation that governs the dynamics of the wave function

�(t, r) of BEC;

• the Boltzmann equation that models the dynamics of the density distribution

f (t, r, p) of excited atoms, which consists of two collision operators:

• C12[ f ] describes the collision of BEC and excited atoms;

• C22[ f ] describes the collision between excited atoms.

For further discussions and a study on such a coupled system, see [22,27,41–43]

and the references therein.

1.1. The Model

In this paper, we are interested in the interaction C12[ f ] between excited bosons

and a condensate; precisely, we study the spatially homogenous quantum Boltz-

mann equation

∂ f

∂t
= nc(t)C12[ f ] (1.3)

posed on R+ × R
3, for the density distribution function f (t, p) of excited atoms,

coupled with the differential equation

dnc

dt
= −nc(t)

∫

R3
C12[ f ](t, p)d p, (1.4)

posed on R+, for the density function nc(t) of the condensate. Here, C12[ f ] denotes

the collision integral operator that describes the bosons-condensate interaction ([1,

2,7,9,12,25,29,30]), given by

C12[ f ](t, p) =
∫∫

R3×R3

(

Rp,p1,p2 [ f ] − Rp1,p,p2 [ f ] − Rp2,p,p1 [ f ]
)

d p1d p2

(1.5)

with

Rp,p1,p2 [ f ] = K(p, p1, p2)
(

f1 f2(1 + f ) − (1 + f1)(1 + f2) f
)

K(p, p1, p2) = K (p, p1, p2)δ(p − p1 − p2)δ(E(p) − E(p1) − E(p2)),
(1.6)

using the short-hand notation f = f (t, p) and f j = f (t, p j ). Such a simplified

model is used, for instance, when the temperature is very low and thus the interaction

C22[ f ] between bosons themselves is weak and negligible as compared to the

interaction C12[ f ] (see, for instance, [6–9,12,16]).

In (1.6), δ(·) denotes the Dirac delta function, and E(p) denotes the particle

energy, which is of the form of the Bogoliubov dispersion relation

E(p) = |p|
√

κ1 + κ2|p|2, κ1 =
gNo

m
> 0, κ2 =

1

4m2
> 0, (1.7)

for m being the mass of the particles, g the interaction coupling constant, and No

assumed to be a constant. In addition, the kernel K (p, p1, p2) in (1.6) is often
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Fig. 1. Illustrated is the oval surface Sp , centered at
p
2 and having 0 and p as its south and

north poles, respectively

referred to as the transition probability kernel ([12,23,24,28,30,40]). In this paper,

we shall consider the form

K (p, p1, p2) = κ0|p|ρ |p1|ρ |p2|ρ, (1.8)

for any fixed constant ρ ∈ [1, 5
2
] and for some positive constant κ0. Such a kernel

is used, for instance in [12,16,25], when Bose gases are at a sufficiently low tem-

perature. For the sake of presentation, we shall take constants κ0, κ1, κ2 to be one.

The results in this paper apply to the general case when the constants are positive.

We emphasize that in this paper the full form of energy functions (1.7) is

considered, which complicates the analysis in treating the collision integral operator

C12[ f ]. Indeed, the presence of the Dirac delta function in (1.6) reduces the collision

integrals over R
3 × R

3 to the surface integrals on the so-called energy manifolds,

dictated by the conservation laws

p = p1 + p2, E(p) = E(p1) + E(p2) (1.9)

for each p ∈ R
3; see Figures 1 and 2 for an illustration of these surfaces. In

addition to the complication of dealing with the surface integrals, it is certainly not

clear whether the second moment of f on these surfaces is bounded, even if the

second moment of f in R
3 is bounded. As a matter of fact, for this very reason, the

simplified energy functions E(p) = c|p| or E(p) = c|p|2 have been used in the

literature; see, for instance, [1,2,8,13,15] and the references therein. The former

energy law leads to line integrals, whereas the latter reduces to integrals on a sphere,

as it is the case for the classical Boltzmann equations (e.g., [16,34,47]). To the best

of to our knowledge, the current paper is the first time where such a full energy of

the form (1.7) is studied.
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Fig. 2. Sketched is the trace of S′
p on any two dimensional plane containing p

Let us mention that the model (1.3) has also been studied in [6–9], with trun-

cated transition probability kernel near zero or infinity. The propagation of expo-

nential and polynomial energy moments is also studied recently in [3], and the

well-posedness theory is developed in [43] for a more general model that in fact

contains both C12 and C22. On the other hand, the convergence to equilibrium of a

linearized or discrete version of (1.3) is obtained in [11,17]. In this paper, we prove

that positive radial solutions to (1.3)–(1.8), if exist, are uniformly bounded below

by a Gaussian distribution.

1.2. Related Contexts

Let us also point out that the model (1.3) is also referred to as the phonon

Boltzmann equation, proposed by Peierls in 1929 [37,38] to study the interaction

of phonon gases. See also [3,11,44] for recent studies. In addition, it also shares a

great similarity with three-wave kinetic models used in the weak turbulence theory

[14,18,21,32,35,45,49].

1.3. Main Result

Let us now present the main result of this paper. For m ≥ 1, introduce the

function space L
1
m(R3), defined by its finite norm

‖ f ‖L1
m

:=
∫

R3

(

1 + E(p)m
)

| f (p)|d p, (1.10)

with E(p) = |p|
√

1 + |p|2.

Theorem 1.1. Let f0(p) = f0(|p|) be a positive radial initial datum in L
1
m(R3) ∩

C(R3) for some m ≥ 1, and let nc(0) = n0 be a positive initial density constant, so

that the Cauchy problem (1.3)–(1.8) has a unique classical positive radial solution

f (t, p) = f (t, |p|) in C([0,∞), L
1
m(R3)∩C(R3))∩C1([0,∞), L

1
m(R3)∩C(R3))

and a unique density function nc(t) ∈ C1([0,∞)) satisfying n1 ≤ nc(t) ≤ n2 for

some positive constants n1, n2.
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Assume that f0(p) ≥ θ0 on BR0 = {|p| ≤ R0} for some positive constants

θ0, R0. Then, for any time T > 0, there exist positive constants θ1, θ2 such that

f (t, p) ≥ θ1 exp(−θ2|p|2), ∀ t ≥ T, ∀ p ∈ R
3. (1.11)

We stress that the existence of positive radial solutions is not studied in this

paper. However, such a solution is constructed in [3,43]. The lower bound assump-

tion on nc(t) means that the condensate is stable and remains present as time

evolves, while the upper bound follows from the conservation of mass; see Lemma

2.2. Physically speaking, Theorem 1.1 asserts that the collision operator C12[ f ]
prevents the excited atoms from falling completely into the condensate. In other

words, given a condensate and its thermal cloud, we show that there is some portion

of excited atoms which remains outside of the condensate and the density of such

atoms remains greater than a Gaussian distribution, uniformly in time t ≥ T , for

any time T > 0.

The condition that initial data f0(p) has positive mass near {p = 0} is necessary

for such a lower bound by a Gaussian to hold, since otherwise if f0(0) = 0, then

f (t, 0) would remain zero for all positive time, as a consequence of C12[ f ](0) = 0,

or

∂t f (t, 0) = 0, ∀ t ≥ 0. (1.12)

Obtaining lower bounds on solutions to the Boltzmann equation is a classical

question, which was first studied by Carleman in his pioneering paper [10]. There,

he proved that solutions are bounded from below by

θ1 exp(−θ2|p|2+ε)

for ε > 0, using a “spreading property” of the collision operator. This result was

later improved by Pulvirenti and Wennberg [39], providing the Gaussian lower

bound in the case of hard potentials with cutoff in dimension 3. In [33], Mouhot

proved an explicit lower bound on solutions to the full Boltzmann equation on the

torus, under the assumption of uniform bounds on certain hydrodynamic quan-

tities, for a broad family of collision kernels including in particular long-range

interaction models. The study of lower bounds is an important subject, not only to

understand the qualitative behaviour of solutions to the Boltzmann equation, but

also to study the convergence to equilibrium using the so-called “entropy-entropy

production”method [33,47].

The structure of the paper is as follows. Section 2 is to give the conservation

of momentum, energy and the H-theorem of (1.3), while Section 3 provides the

technical estimates on the energy surfaces, which are the basic tools of the paper.

We derive uniform second-order energy moments in Section 4, and give the proof

of the main theorem in Section 5.

2. Conservation Laws and the H-Theorem

In this section, we present a few basic properties of smooth solutions of (1.3).



Uniform in Time Lower Bound for Solutions 69

Lemma 2.1. For any smooth function f (p), there holds

∫

R3
C12[ f ](p)ϕ(p)dp =

∫∫∫

R3×R3×R3
Rp,p1,p2 [ f ]

(

ϕ(p) − ϕ(p1)

−ϕ(p2)
)

d pd p1d p2

for any smooth test function ϕ.

Proof. By the definition (1.5) of C12[ f ], we have

∫

R3
C12[ f ](p)ϕ(p)dp =

∫∫∫

R3×R3×R3

(

Rp,p1,p2 [ f ]

−Rp1,p,p2 [ f ] − Rp2,p,p1 [ f ]
)

ϕ(p) d pd p1d p2.

By switching the variables p ↔ p1 and p ↔ p2 in the second and third integral,

respectively, the lemma follows. 
�

As a consequence, we obtain two important corollaries.

Corollary 2.1 (Conservation of momentum and energy). Smooth solutions

f (t, p) of (1.3), with initial data f (0, p) = f0(p) satisfy

∫

R3
f (t, p)pd p =

∫

R3
f0(p)pd p (2.1)

∫

R3
f (t, p)E(p)d p =

∫

R3
f0(p)E(p)d p (2.2)

for all t ≥ 0.

Proof. This follows from Lemma 2.1 by taking ϕ(p) = p or E(p). 
�

We note that, unlike the classical Boltzmann equation, Equation (1.3) alone

does not conserve the mass. However, the coupled system (1.3)–(1.4) does.

Lemma 2.2 (Conservation of mass). Smooth solutions f (t, p) and nc(t) of (1.3)

and (1.4), with initial data f (0, p) = f0(p) and nc(0) = n0, satisfy

nc(t) +
∫

R3
f (t, p)d p = n0 +

∫

R3
f0(p)d p (2.3)

for all t ≥ 0. In particular, the total mass and nc(t) are uniformly bounded.

Proof. It follows directly from (1.3) and (1.4) that

dnc

dt
+

d

dt

∫

R3
f (t, p)d p = 0,

which gives the lemma. 
�
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Lemma 2.3 (H-Theorem). Smooth solutions f (t, p) of (1.3) satisfy

d

dt

∫

R3

[

f log f − (1 + f ) log(1 + f )
]

d p ≤ 0.

In addition, radially symmetric equilibria of (1.3) must have the following form:

f (p) =
1

ecE(p) − 1
, (2.4)

for some positive constant c.

Proof. First notice that

d

dt

∫

R3

[

f log f − (1 + f ) log(1 + f )
]

d p =
∫

R3
∂t f log

(

f

f + 1

)

d p.

On the other hand, we write
∫

R3
C12[ f ](p)ϕ(p)d p =

∫∫∫

R3×R3×R3
K(p, p1, p2)(1 + f )(1 + f1)(1 + f2)

×
(

f1

1 + f1

f2

1 + f2
−

f

1 + f

)

[ϕ(p) − ϕ(p1)

− ϕ(p2)] d pd p1d p2.

Using Lemma 2.1 with ϕ(p) = log
(

f (p)
f (p)+1

)

and the fact that (a − b) log( a
b
) ≥ 0,

with equality if and only if a = b, we obtain

∫

R3
C12[ f ](p) log

(

f (p)

f (p) + 1

)

d p ≤ 0.

This yields the claimed inequality in the H-theorem. In the case of equality, we

have

f (p1)

f (p1) + 1

f (p2)

f (p2) + 1
−

f (p)

f (p) + 1
= 0,

or equivalently, setting h(p) = log
(

f (p)
f (p)+1

)

, where h is radially symmetric,

h(p1) + h(p2) = h(p), (2.5)

for all (p, p1, p2) so that K(p, p1, p2) �= 0. In particular, by view of the conser-

vation laws (1.9), the function h(p) satisfies h(p1 + p2) = h(p1) + h(p2), for all

pairs (p1, p2) ∈ R
6 so that

E(p1 + p2) = E(p1) + E(p2).

Define E−1(a) to be the positive number ξ such that
√

ξ2 + ξ4 = a. We then

have that

h ◦ E
−1(a + b) = h ◦ E

−1(a) + h ◦ E
−1(b)
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for all p1 and p2 such that |p1| = E−1(a) and |p2| = E−1(b), with the notice

that h is radially symmetric. Since a, b may take arbitrary values in R, this yields

h ◦ E−1(a) = −ca for some positive constant c and for all a ≥ 0, or equivalently,

h(p) = −cE(p)

for all p ∈ R
3. This yields (2.4) and hence the H-theorem. 
�

3. Energy Surfaces

In this section, we study the surface integrals that arise in the collision operator,

due to the conservation laws (1.9). Recall the collision kernel

K(p, p1, p2) = |p|ρ |p1|ρ |p2|ρδ(p − p1 − p2)δ(E(p) − E(p1) − E(p2)),

with δ(·)being the Dirac delta function. Thus, the volume elementK(p, p1, p2)dp1dp2

or K(p1, p, p2)dp1dp2 in R
6 is in fact a two-dimensional surface element. Intro-

duce the functions

Hp(w) := E(w − p) + E(w) − E(p), G p(w) := E(p + w) − E(w) − E(p),

(3.1)

with E(w) = |w|
√

1 + |w|2, and the corresponding energy surfaces, dictated by

the conservation laws (1.9),

Sp :=
{

w ∈ R
d : Hp(w) = 0

}

, S′
p :=

{

w ∈ R
d : G p(w) = 0

}

. (3.2)

It follows that the collision operators satisfy

∫∫

R3×R3
Rp,p1,p2 [ f ] d p1d p2 =

∫

Sp

Rp,p−p2,p2 [ f ]
dσ(p2)

|∇Hp(p2)|
∫∫

R3×R3
Rp1,p,p2 [ f ] d p1d p2 =

∫

S′
p

Rp+p2,p,p2 [ f ]
dσ(p2)

|∇G p(p2)|
.

(3.3)

The next two lemmas provide estimates on these surface integrals.

Lemma 3.1. Let Sp be defined as in (3.2). There are positive constants c0, C0 so

that

c0|p| min{1, |p|} ≤
∫

Sp

dσ(w)

|∇Hp(w)|
≤ C0|p| min{1, |p|}, (3.4)

and for γ ≥ 0,

∫

Sp∩B(0, 1
2 |p|)

|w − p|γ |w|γ
dσ(w)

|∇Hp(w)|
≥ c0|p|2γ+1 min{1, |p|} (3.5)

uniformly in p ∈ R
3. In addition, for any function F(·), we have

∫

Sp

F(|w|)
dσ(w)

|∇Hp(w)|
≤ C0

∫ |p|

0

min{1, u}F(u) du. (3.6)
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Proof. Recall that Sp is the surface consisting of w so that Hp(w) = 0 or

E(w − p) + E(w) = E(p)

with E(w) = |w|
√

1 + |w|2. It is clear that Sp is symmetric about
p
2

. We will

prove that the surface Sp is of the form as illustrated in Figure 1. First, we note

that {0, p} ⊂ Sp, and |w| ≤ |p| and |w − p| ≤ |p|, for all w ∈ Sp, since

E(w − p) ≤ E(p), E(w) ≤ E(p), and E(p) is a nonnegative increasing function.

For w ∈ Sp, we write w = αp + q, with p · q = 0. Since |w| ≤ |p| and

|w − p| ≤ |p|, α ∈ [0, 1]. In addition, recalling (3.1), we compute

∇w Hp = (1 + 2|w − p|2)
w − p

E(w − p)
+ (1 + 2|w|2)

w

E(w)
. (3.7)

Thus, q · ∇w Hp > 0. That is, Hp(w) is strictly increasing in any direction that is

orthogonal to p. This, together with the fact that Hp(αp) < 0 for α ∈ (0, 1) and

Sp ⊂ B(0, |p|) ∩ B(p, |p|), proves that the surface Sp and the plane

Pα =
{

αp + q, p · q = 0
}

intersect for each α ∈ [0, 1]. In addition, Hp(αp + q) is a radial function in |q|,
with q · p = 0. This asserts that the intersection of Sp and Pα is precisely the circle

centered at αp and of a finite radius |qα|, for each α ∈ [0, 1]; see Figure 1.

Surface parametrization. Let p⊥ be in P0 = {p · q = 0} and let eθ be the unit

vector in P0 so that the angle between p⊥ and eθ is θ . We parametrize Sp by

Sp =
{

w(α, θ) = αp + |qα|eθ : θ ∈ [0, 2π ], α ∈ [0, 1]
}

. (3.8)

Since ∂θeθ is orthogonal to both p and eθ , we compute the surface area

dσ(w) = |∂αw × ∂θw|dαdθ = |(p + ∂α|qα|eθ ) × |qα|∂θeθ |dαdθ

= |qα||(p + ∂α|qα|eθ ) × ∂θeθ |dαdθ

= |qα|
√

|p|2 + |∂α|qα||2dαdθ.

(3.9)

To compute ∂α|qα|, we differentiate the equation Hp(wα) = 0, yielding

0 = ∂αwα · ∇w Hp(wα) = |p|ep · ∇w Hp(wα) + ∂α|qα|eθ · ∇w Hp(wα).

(3.10)

This implies that

∂α|qα| = −|p|
ep · ∇w Hp(wα)

eθ · ∇w Hp(wα)
. (3.11)

Therefore, we compute

|p|2 + |∂α|qα||2 = |p|2
|ep · ∇w Hp|2 + |eθ · ∇w Hp|2

|eθ · ∇w Hp|2
= |p|2

|∇w Hp|2

|eθ · ∇w Hp|2
,



Uniform in Time Lower Bound for Solutions 73

and hence
dσ(w)

|∇w Hp|
=

|p||qα|dαdθ

|eθ · ∇w Hp|
. (3.12)

Surface area. A direct computation yields

eθ · ∇w Hp = |qα|
[

1 + 2|w − p|2

E(w − p)
+

1 + 2|w|2

E(w)

]

. (3.13)

Recalling that |w| ≤ |p| and E(w) = |w|
√

1 + |w|2, and using the fact that (1 +
2|p|2)/E(p) is decreasing in |p|, we compute

1 + 2|w − p|2

E(w − p)
+

1 + 2|w|2

E(w)
≥

1 + 2|p|2

E(p)
≥ min{1, |p|}−1.

This, (3.12), and (3.13) prove the upper bound on the surface area (3.4). As for

the lower bound, it suffices to give an estimate for α ∈ [0, 1/2], on which α|p| ≤
|w| ≤ |w − p|. Thus, in this case, we have

1 + 2|w − p|2

E(w − p)
+

1 + 2|w|2

E(w)
≤ 2

1 + 2|αp|2

E(αp)
≤ C0 min{1, α|p|}−1.

The lower bound on the surface area (3.4) follows.

Surface area in B(0, 1
2
|p|). In view of (3.11), (3.13), and the identity

ep · ∇w Hp = |p|
[

(α − 1)
1 + 2|w − p|2

E(w − p)
+ α

1 + 2|w|2

E(w)

]

, (3.14)

we have |∂α|qα|| ≤ |p|2|qα|−1, which implies

|∂α|qα|2| ≤ 2|p|2.

Since

|wα|2 = α2|p|2 + |qα|2,

we then have that

∂α|wα|2 = 2α|p|2 + ∂α|qα|2.

Upon recalling that α ∈ [0, 1], we have that |∂α|wα|2| ≤ 4|p|2 and

|wα|2 =
∫ α

0

∂α|wα|2 dα′ ≤ 4α|p|2,

which proves that wα ∈ B(0, 1
2
|p|) for all α ∈ [0, 1

16
]. The lower bound (3.5)

follows.

Surface integral. Let us introduce the radial variable u = |wα| =
√

α2|p|2 + |qα|2.

We compute 2udu = ∂α|wα|2dα. Hence, (3.12) yields

dσ(w)

|∇w Hp|
=

|p||qα|
|eθ · ∇w Hp|

2ududθ

∂α|wα|2
. (3.15)
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In view of (3.11), we compute

∂α|wα|2 = 2α|p|2 + 2|qα|∂α|qα| = 2|p|
α|p|eθ · ∇w Hp − |qα|ep · ∇w Hp

eθ · ∇w Hp

,

in which, using (3.13) and (3.14), we compute

α|p|eθ · ∇w Hp − |qα|ep · ∇w Hp = |p||qα|
1 + 2|w − p|2

E(w − p)
.

Combining, we obtain

dσ(w)

|∇w Hp|
=

E(w − p)ududθ

|p|(1 + 2|w − p|2)
≤ C0 min{1, u}dudθ, (3.16)

upon recalling that |w| ≤ |p|, |w−p| ≤ |p| forw ∈ Sp andE(w) = |w|
√

1 + |w|2.

This proves (3.6). 
�

Lemma 3.2. Let S′
p be defined as in (3.2). There are positive constants c0, C0 so

that for any F(·),
∫

S′
p

F(|w|)
dσ(w)

|∇G p(w)|
≤ C0|p|−1

∫ ∞

0

F(u) udu, (3.17)

and
∫

S′
p

F(|w|)
dσ(w)

|∇G p(w)|
≥ c0 min

{

1, |p|−1
}

∫ ∞

0

F(u) udu (3.18)

for all p ∈ R
3.

Proof. Recall that S′
p is the surface that consists of w satisfying E(p + w) =

E(w) + E(p). First, we compute

0 = E(p + w)2 −
(

E(p) + E(w)
)2

= |p + w|2 + |p + w|4 − (|p|2 + |w|2) − (|p|4 + |w|4) − 2E(p)E(w)

= 2w · p + 2w · p(|p|2 + |w|2 + |p + w|2) + 2|p|2|w|2 − 2E(p)E(w).

(3.19)

It is clear that |p|2|w|2 < E(p)E(w). This proves that if w ∈ S′
p\{0}, then w·p > 0.

Next, recall G p(w) := E(p + w) − E(w) − E(p), with E(p) = |p|
√

1 + |p|2.

It follows that G p(αp) > 0 for α > 0. In addition, we compute

∇wG p =
w + p

|w + p|
E

′(w + p) −
w

|w|
E

′(w),

and thus the directional derivative of G p at wα = αp + q, with p · q = 0, in the

direction of q �= 0 satisfies

q · ∇wG p = |q|2
[

E ′(p + wα)

|p + wα|
−

E ′(wα)

|wα|

]

< 0,
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in which we used the fact that E ′(p)/|p| is strictly decreasing in |p|. By a view of

(3.19), the sign of G p(w), with wα = αp + q, is the same as that of

α|p|2
(

1 + (|p|2 + |wα|2 + |p + wα|2)
)

+ |p|2|wα|2 − E(p)E(w)

= α|p|2
(

1 + 2(|p|2 + α|p|2 + |wα|2)
)

−
(|p|2 + |p|4)(|wα|2 + |wα|4) − |p|4|wα|4
√

|p|2 + |p|4
√

|wα|2 + |wα|4 + |p|2|wα|2

= α|p|2
(

1 + 2(|p|2 + α|p|2 + |wα|2)
)

−
|wα|2|p|2 + |wα|2|p|4 + |p|2|wα|4

√

|p|2 + |p|4
√

|wα|2 + |wα|4 + |p|2|wα|2
.

This yields that G p(αp + q) < 0, as long as

α <
(1 + |p|2) + |wα|2

√

|p|2 + |p|4
√

1
|wα |2 + 1 + |p|2

1
(

1 + 2(|p|2 + α|p|2 + |wα|2)
) .

Taking |q| → ∞ (and so |wα| → ∞), we obtain that limq→∞ G p(αp + q) < 0 if

and only if

α < αp :=
1

2

1

|p|2 +
√

|p|2 + |p|4
. (3.20)

In particular, we note that

αp|p|(1 + |p|) ≤ C0, ∀ p ∈ R
3 (3.21)

for some positive constant C0. Hence, for positive values of α satisfying (3.20),

by monotonicity, G p(αp) > 0, and the fact that G p(αp + q) is radial in |q|,
there is a unique |qα| so that G p(αp + q) = 0, for all |q| = |qα|. For α > αp,

G p(αp + q) > 0, for all q, with q · p = 0.

Surface parametrization. To summarize, the surface S′
p can be described as fol-

lows (see Figure 2):

S′
p =

{

w(α, θ) = αp + |qα|eθ : α ∈ [0, αp), θ ∈ [0, 2π ]
}

, (3.22)

in which αp and |qα| are defined as above and eθ denotes the unit vector rotating

around p and on the orthogonal plane to p.

Surface integral. Recalling (3.15), the surface integral is computed by

dσ(w)

|∇wG p|
=

|p||qα|
|eθ · ∇wG p|

2ududθ

∂α|wα|2
, (3.23)

with u = |wα|, where, as done in the previous case, we compute

1

2|p|
eθ · ∇wG p∂α|wα|2 = α|p|eθ · ∇wG p − |qα|ep · ∇wG p

= −|p||qα|
1 + 2|w + p|2

E(w + p)
.
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Combining, we obtain

dσ(w)

|∇wG p|
=

E(w + p)ududθ

|p|(1 + 2|w + p|2)
. (3.24)

Recalling E(w) = |w|
√

1 + |w|2, we have

E(w + p)|w|
|p|(1 + 2|w + p|2)

≤ |w||p|−1.

On the other hand, by considering |p| ≤ 1 and |p| ≥ 1 and using the fact that

|w| + |p| ≤ 2|w + p| (on S′
p), we have

E(w + p)|w|
|p|(1 + 2|w + p|2)

≥ c0|w| min{1, |p|−1}.

This yields the upper and lower bounds on the surface integral. 
�

4. Moment Estimates

In this section, we shall derive estimates on the energy moment of nonnegative

solutions of (1.3). In what follows, we take initial data f0(p) = f0(|p|) with finite

mass and energy. Thus, thanks to the conservation of mass (2.3) and energy (2.2),

mass and energy remain finite for all times. In addition, we recall that nc(t) remains

bounded above and below away from zero.

Proposition 4.1. Let f0(p) = f0(|p|) ≥ 0 have finite mass and energy. Then, for

any τ > 0, nonnegative radial solutions f (t, p) = f (t, |p|) of (1.3) with initial

data f0(p) satisfy

sup
t∈[τ,∞)

∫

R3
f (t, p)E2(p)d p < +∞. (4.1)

Proof. Take ϕ = E2(p) to be the test function in Lemma 2.1. We obtain

d

dt

∫

R3
f E

2d p = nc(t)

∫∫∫

R9
Rp,p1,p2 [ f ]

(

E
2(p)

− E
2(p1) − E

2(p2)
)

d pd p1d p2.

In view of the Dirac delta functions in the collision kernel (1.6), the integral is on

the surface dictated by the conditions p = p1 + p2 and E(p) = E(p1) + E(p2). In

particular, on the surface, E2(p) − E2(p1) − E2(p2) = 2E(p1)E(p2). Thus, upon

recalling that f ≥ 0, we have

d

dt

∫

R3
f E(p)2d p = 2nc(t)

∫∫∫

R9
Rp,p1,p2 [ f ]E(p1)E(p2)d pd p1d p2

= 2nc(t)

∫∫∫

R9
K(p, p1, p2)

(

f1 f2 − (1+ f1+ f2) f
)

E(p1)E(p2)d pd p1d p2

≤ 2nc(t)

∫∫∫

R9
K(p, p1, p2)

(

f1 f2 − f
)

E(p1)E(p2)d pd p1d p2.
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Let us set

J1 : = 2nc(t)

∫∫∫

R9
K(p, p1, p2) f1 f2E(p1)E(p2)d pd p1d p2

J2 : = −2nc(t)

∫∫∫

R9
K(p, p1, p2) f E(p1)E(p2)d pd p1d p2.

(4.2)

We first write J1, J2 in term of surface integrals. Recalling

K(p, p1, p2) = |p|ρ |p1|ρ |p2|ρδ(p − p1 − p2)δ(E(p) − E(p1) − E(p2))

for ρ ≥ 1, and following (3.3), we estimate

J2 = −2nc(t)

∫∫

R6
K(p, p1, p − p1) f E(p1)E(p − p1)d pd p1

= −2nc(t)

∫

R3

(

∫

Sp

|p1|ρ |p − p1|ρE(p1)E(p − p1)
dσ(p1)

|∇Hp(p1)|

)

|p|ρ f d p.

Recalling E(p) ≥ 1
2
(|p| + |p|2) and using (3.5) in Lemma 3.1, we estimate

|p|ρ
∫

Sp

|p1|ρ |p − p1|ρE(p1)E(p − p1)
dσ(p1)

|∇Hp(p1)|

� (|p|3ρ+3 + |p|3ρ+5) min{1, |p|} � |p|3ρ+5.

(4.3)

This proves

J2 ≤ −θ0

∫

R3
|p|3ρ+5 f d p (4.4)

for some positive constant θ0.

Next, we estimate the integral J1 in (4.2). Again following (3.3), we write

J1 = 2nc(t)

∫∫

R6
K(p1 + p2, p1, p2) f1 f2E(p1)E(p2)d p1d p2

�

∫

R3

∫

S′
p1

|p1 + p2|ρ |p1|ρ |p2|ρ f1 f2E(p1)E(p2)
dσ(p2)d p1

|∇G p1(p2)|

�

∫

R3
|p1|ρ f1E(p1)

(

∫

S′
p1

(|p1|ρ + |p2|ρ)|p2|ρ f2E(p2)
dσ(p2)

|∇G p1(p2)|

)

d p1.

By Lemma 3.2, and the fact that f is radial, the surface integral is estimated by

∫

S′
p1

(|p1|ρ + |p2|ρ)|p2|ρ f2E(p2)
dσ(p2)

|∇G p1(p2)|

� C |p1|−1

∫

R+
(|p1|ρ + |p2|ρ)|p2|ρ+1 f2E(p2)d(|p2|)

� C |p1|−1

∫

R3
(|p1|ρ + |p2|ρ)|p2|ρ−1 f2E(p2)d p2.
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Thus, upon recalling E(p) = |p|
√

1 + |p|2, we obtain

J1 �

∫∫

R6
(|p1|ρ + |p2|ρ)|p1|ρ−1|p2|ρ−1 f1E(p1) f2E(p2)dp1dp2

�
(

∫

R3
|p1|2ρ−1

E(p1) f1 d p1

)(

∫

R3
|p2|ρ−1

E(p2) f2 d p2

)

�
(

∫

R3
|p|2ρ(1 + |p|) f d p

)(

∫

R3
|p|ρ(1 + |p|) f d p

)

.

Since ρ ≥ 1, we note that |p|2ρ ≤ |p|2ρ+1 + |p|2 and |p|ρ ≤ |p|ρ+1 + |p|. The

above yields

J1 �
(

∫

R3
(|p|2 + |p|2ρ+1) f d p

)(

∫

R3
(|p| + |p|ρ+1) f d p

)

�

∫

R3
E

2(p) f d p +
∫

R3
|p|2ρ+1 f d p

+
(

∫

R3
|p|2ρ+1 f dp

)(

∫

R3
|p|ρ+1 f d p

)

upon using |p| ≤ E(p) and the conservation of momentum and energy.

To bound J1 in term of J2, we note the following interpolation inequality:

∫

R3
|p|r f d p ≤ C0

(∫

R3
|p|3ρ+5 f d p

)
r−2

3ρ+3
(∫

R3
|p|2 f d p

)
3ρ+5−r

3ρ+3
, (4.5)

for any r such that 2 ≤ r ≤ 3ρ + 5. Applying this inequality into J1, we obtain

J1 �

∫

R3
E

2(p) f d p +
∫

R3
|p|2ρ+1 f d p

+
(∫

R3
|p|3ρ+5 f d p

)
3ρ−2
3ρ+3

(∫

R3
|p|2 f d p

)
3ρ+8
3ρ+3

.

Now, using the Young’s inequality ab ≤ εar +Cεbr ′
, with 1/r +1/r ′ = 1, and the

fact that
∫

R3 |p|2 f dp is bounded by a constant and by the second energy moment,

we obtain

J1 ≤ ε

∫

R3
|p|3ρ+5 f d p + Cε

∫

R3
E

2(p) f d p (4.6)

for any positive ε.

Combining (4.4) and (4.6), we have obtained

d

dt

∫

R3
f E

2d p ≤ −θ1

∫

R3
|p|3ρ+5 f d p + C1

∫

R3
f E

2d p. (4.7)
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Let us next expand the first term on the right. Precisely, using (4.5) and the fact that
∫

R3 |p|2 f d p is bounded, we estimate

∫

R3
E

2(p) f d p ≤
∫

R3
|p|2 f d p +

∫

R3
|p|4 f d p

�
(

∫

R3
|p|2 f d p

)
2

3ρ+3 +
(∫

R3
|p|3ρ+5 f d p

)
2

3ρ+3

�
(

∫

R3
E

2(p) f d p
)

2
3ρ+3 +

(∫

R3
|p|3ρ+5 f d p

)
2

3ρ+3

.

This yields

−
∫

R3
|p|3ρ+5 f d p ≤ −θ2

(

∫

R3
E

2(p) f d p
)

3ρ+3
2 + C2

∫

R3
E

2(p) f d p. (4.8)

Hence, (4.7) gives

d

dt

∫

R3
f E

2dp ≤ C3

∫

R3
f E

2d p

[

1 − θ3

(

∫

R3
f E

2d p
)

3ρ+1
2

]

(4.9)

for some positive constants C3, θ3. Thus, since f ≥ 0, the standard ODE argu-

ment applying to the differential inequality (4.9) yields at once the boundedness of
∫

R3 f E2dp; for instance, there holds

∫

R3
f (t, p)E2d p � max

{

1

θ3

2
3ρ+1

,

∫

R3
f (τ, p)E2d p

}

for all t ≥ τ . The proposition follows. 
�

Remark 4.1. Following lines similar to the above proof, we can in fact show

that energy moments at any order are created and propagated in positive times

as obtained in Proposition 4.1 for the second-order energy moment. As a result, we

could then drop the restriction ρ ≤ 5
2

in the transition probability kernel (1.8), used

in (5.10). However, we skip the details as the result will not be used in this paper.

5. Uniform Lower Bound

In this section, we shall prove our main theorem, Theorem 1.1. We recall that

there are positive constants n1, n2 so that the density function nc(t) satisfies n1 ≤
nc(t) ≤ n2 for all t ≥ 0. Let us write the collision operator as follows:

C12[ f ] = Qgain[ f ] − Qloss[ f ], (5.1)

where the Gain and Loss operators are defined by
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Qgain[ f ] :=
∫∫

R3×R3
K(p, p1, p2) f1 f2d p1d p2

+ 2

∫∫

R3×R3
K(p1, p, p2)(1 + f + f2) f1 d p1d p2

Qloss[ f ] := f

∫∫

R3×R3
K(p, p1, p2)(1 + 2 f2)d p1d p2

+ 2 f

∫∫

R3×R3
K(p1, p, p2) f2 d p1d p2.

For convenience, we also write

Qloss[ f ] = f L[ f ], (5.2)

nothing that L[ f ] is usually called the collision frequency.

Lemma 5.1. Suppose that F(p) ≤ G(|p|), for some radially symmetric function

G with

M =
∫

R+
G(u) (u1+ρ + u1+2ρ)du < ∞.

Then, there holds

L[F](p) ≤ C0M(1 + |p|2ρ) + C0|p|3ρ+1 (5.3)

for some positive universal constant C0.

Proof. We first write the collision integrals in term of surface integrals. Following

(3.3), we have

L[F] =
∫

Sp

|p|ρ |p − p2|ρ |p2|ρ(1 + 2F2)
dσ(p2)

|∇Hp(p2)|

+ 2

∫

S′
p

|p + p2|ρ |p|ρ |p2|ρ F2
dσ(p2)

|∇G p(p2)|
.

Consider the surface integral over Sp. Recall that that |p2| ≤ |p| and |p− p2| ≤ |p|
on Sp. Hence, using Lemma 3.1, we estimate

∫

Sp

|p|ρ |p − p2|ρ |p2|ρ(1 + 2F2)
dσ(p2)

|∇Hp(p2)|

� |p|2ρ

∫

Sp

(1 + 2G(|p2|))|p2|ρ
dσ(p2)

|∇Hp(p2)|

� |p|2ρ

∫ |p|

0

(1 + G(u)) min{1, u}uρdu

� |p|3ρ+1 + |p|2ρ

∫ |p|

0

G(u)uρ+1du,
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which is bounded by C0|p|3ρ+1 + C0M|p|2ρ . Next, we check the integral on S′
p.

Lemma 3.2 yields

∫

S′
p

|p + p2|ρ |p|ρ |p2|ρ F2
dσ(p2)

|∇G p(p2)|

�

∫

S′
p

(|p|ρ + |p2|ρ)|p|ρ |p2|ρG(|p2|)
dσ(p2)

|∇G p(p2)|

� |p|ρ−1

∫ ∞

0

(|p|ρ + uρ)G(u)uρ+1du,

which is bounded by C0M(|p|ρ−1 + |p|2ρ−1) ≤ C0M(1 + |p|2ρ). The lemma

follows. 
�

Lemma 5.2. Let δ, θ > 0, and F be any nonnegative smooth function so that

F(p) ≥ θ on Bδ := {|p| ≤ δ}. Then, there exists a universal constant c0 > 0 such

that

Qgain[F](p) ≥ c0|p|3ρ+1 min{1, |p|}θ2 (5.4)

for all p ∈ B√
2δ

.

Proof. By definition (5.1) and the assumption on the lower bound on F , we have

Qgain[F](p) =
∫

Sp

K (p, p − p2, p2)F(p − p2)F(p2) dσ(p2)

+ 2

∫

S′
p

K (p + p2, p, p2)F(p + p2)
(

F(p) + F(p2) + 1
)

dσ(p2)

�

∫

Sp

K(p, p − p2, p2)F(p − p2)F(p2) dσ(p2)

� |p|ρθ2

∫

Sp∩B(0,δ)∩B(p,δ)

|p − p2|ρ |p2|ρdσ(p2),

in which we note again that p2, p − p2 are both in Bδ , thanks to the monotonicity

of the energy function E(p).

To proceed, we consider three cases. First, take p ∈ B(0, δ) \ B(0, δ
2
). In this

case, B(
p
2
,

|p|
2

) ⊂ B(0, δ) ∩ B(p, δ), and so we can estimate

Qgain[F](p) � |p|ρθ2

∫

Sp∩B(
p
2 ,

|p|
2 )

|p − p2|ρ |p2|ρdσ(p2)

� |p|3ρ+1 min{1, |p|}θ2

for some positive constants c0, c1, thanks to the lower bound (3.5), with γ = 1.

Next, for p ∈ B(0, δ
2
), we note that B(0, δ

2
) ⊂ B(0, δ) ∩ B(p, δ). Hence, in

this case, we have, by the lower bound (3.5),
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Qgain[F](p)� |p|ρθ2

∫

Sp∩B(0, δ
2 )

|p − p2|ρ |p2|ρdσ(p2)� |p|3ρ+1 min{1, |p|}θ2.

The lemma is proved for |p| ≤ δ
2

.

Finally, we consider the case when p ∈ B(0,
√

2δ) \ B(0, δ). In this case, we

check that Sp ∩ B(0, δ) ∩ B(p, δ) has positive surface area. Indeed, let Dp be the

disk that is centered at
p
2

, of radius

√

δ2 − |p|2
4

, and is on the plane orthogonal to

p. Let x be a point on the boundary of Dp, then |x − p/2| =
√

δ2 − |p|2
4

and

x − p/2 is orthogonal to p. As a consequence, |x |2 = |x − p/2|2 + |p/2|2 = δ2

and |x − p|2 = |x − p/2|2 + |p/2|2. It is clear that Dp belongs to the intersection

B(0, δ)∩ B(p, δ) and, since

√

δ2 − |p|2
4

≥ |p|
2

, the surface Sp crosses the interior of

Dp. This proves that Sp ∩ B(0, δ)∩ B(p, δ) is non–empty. Since B(0, δ)∩ B(p, δ)

has positive Lebesgue measure, the surface area of Sp∩B(0, δ)∩B(p, δ) is bounded

below from zero by a constant times |p|, since any geodesic on the surface starting

from 0 to p has a greater length than |p|. We can then compute

Qgain[F](p) � |p|ρθ2

∫

Sp∩B(0,δ)∩B(p,δ)

|p − p2|ρ |p2|ρdσ(p2)

� |p|3ρ+1 min{1, |p|}θ2,

due to the lower bound (3.5). This completes the proof of the lemma. 
�

Lemma 5.3. Let δ, θ > 0. Suppose that initial data f0(p) ≥ θ on Bδ , where

Bδ = {|p| ≤ δ}. Let f (t, p) be a solution to (1.3) so that f (t, p) ≤ G(t, |p|) for

all t ≥ 0 and for some radially symmetric function G so that

M(t) = sup
0≤s≤t

∫

R+
G(s, u)(|u|ρ+1 + |u|2ρ+1)du < ∞. (5.5)

Then, there holds the following uniform lower bound:

f (t, p) ≥ C0te−tM(t)L∗(δ)|p|3ρ+1 min{1, |p|}θ2, ∀ t ≥ 0, (5.6)

for all p ∈ B√
2δ

,

L∗(δ) := c0(1 + δ3ρ+1).

Here, c0, C0 are some universal positive constants independent of M, δ, θ and p.

Proof. Using Lemma 5.1, with F = f (t, p), we obtain

∂t f (t, p) + L0(t, |p|) f (t, p) ≥ n1 Qgain[ f ](t, p), (5.7)

with L0(t, |p|) = C0M(t)(1 + |p|2ρ) + C0|p|3ρ+1. Note that M(t) and hence

L0(t, |p|) are increasing in t . Using the monotonicity and applying the Duhamel’s

representation to (5.7), we obtain

f (t, p) ≥ f0(p)e−
∫ t

0 L0(s,|p|)ds + n1

∫ t

0

e−
∫ t
τ L0(s,|p|)ds Qgain[ f ](τ, p)dτ (5.8)
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for all t ≥ 0. Since Qgain[ f ](p) ≥ 0 and L0(t, |p|) is an increasing function in t ,

it follows that for p ∈ Bδ , (5.8) yields

f (t, p) ≥ f0(p)e−t L0(t,|p|) ≥ θe−t L0(t,δ), t ≥ 0. (5.9)

Next, for each fixed time t ≥ 0, we now apply Lemma 5.2 for F = f (t, p), with

the new lower bound (5.9) on Bδ , yielding

Qgain[ f ](t, p) ≥ C0|p|3ρ+1 min{1, |p|}θ2e−2t L0(t,δ)

for all p ∈ B√
2δ

. Putting this into (5.8), we obtain

f (t, p) ≥
∫ t

0

e−
∫ t
τ L0(s,|p|)ds Qgain[ f ](τ, p)dτ

≥
∫ t

0

e−
∫ t
τ L0(t,|p|)ds Qgain[ f ](τ, p)dτ

≥
∫ t

0

e−(t−τ)L0(t,δ)Qgain[ f ](τ, p)dτ

� |p|3ρ+1 min{1, |p|}θ2

∫ t

0

e−(t−τ)L0(t,δ)e−2τ L0(t,δ)dτ

� |p|3ρ+1 min{1, |p|}θ2e−2t L0(t,δ)t

� |p|3ρ+1 min{1, |p|}θ2e−tC0M(t)L∗(δ)t.

This completes the proof of (5.6). 
�

5.1. Proof of Theorem 1.1

We are now ready to give the proof of Theorem 1.1. Let θ0, R0 > 0 as in the

assumption of Theorem 1.1 so that f0(p) ≥ 2θ0 on B2R0 = {|p| ≤ 2R0}. Let τ be

sufficiently small so that f (τ, p) ≥ θ0 on BR0 , thanks to the continuity in time of

the (classical) solution f (t, p).

In the proof, we shall apply Lemma 5.3 repeatedly to the solution f (t, p)

of (1.3), with G(t, |p|) = f (t, |p|). First, we note that since f (t, p) is radially

symmetric, E(p) ≥ |p|2 and ρ ∈ [1, 5
2
], we have

∫

R+
f (t, |p|)(|p|1+ρ + |p|1+2ρ)d|p| ≤ C0

∫

R3

f (t, p)(1 + E(p)2) d p ≤ Cτ

(5.10)

for all t ≥ τ , thanks to the conservation of mass and the boundedness of second-

order energy moment. This verifies the assumption (5.5) on G(t, |p|) = f (t, |p|),
made in Lemma 5.3, with M(t) = Cτ , which is time-independent.

Fix a positive and sufficiently small δ < R0, and a positive time t0 so that

t0 <
1

4
. (5.11)
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Since f0(τ, p) ≥ θ0 on Bδ , applying Lemma 5.3 to the solution f (t, p) of (1.3)

with the initial data f (τ, p) yields

f (τ + t0, p) ≥ t0e−t0Cτ L∗(δ)C pθ
2
0 (5.12)

for all p ∈ B√
2δ

, in which L∗(δ) = c0(1 + δ3ρ+1) and

C p := C0|p|3ρ+1 min{1, |p|}. (5.13)

We stress that C p does not depend on δ and t0, and hence the estimate (5.12)

can be iterated. Applying again Lemma 5.3 to the solution f (t, p) of (1.3) with the

initial data f (τ + t0, p) satisfying (5.12), yielding

f (τ + t0 + t1, p) ≥ t1e−t1 L∗(
√

2δ)C p

[

t0e−t0 L∗(δ)C pθ
2
0

]2

≥ t1t2
0 e−t1 L∗(

√
2δ)e−2t0 L∗(δ)

(

C p

)1+2
θ22

0

for arbitrary positive time t1 < 1
4

and for all p ∈ B√
2

2
δ
. For each fixed integer

n ≥ 2, we iteratively apply Lemma 5.3, yielding

f (τ + t0 + · · · + tn, p)

≥ tn t2
n−1 · · · t2k

n−k · · · t2n

0 e−tn L∗(
√

2
n
δ) · · · e−2n t0 L∗(δ)

(

C p

)1+2+···+2n

θ2n+1

0

for all p ∈ B√
2

n+1
δ
. By using 1 + 2 +· · ·+ 2n = 2n+1 − 1, the above is reduced to

f (τ + t0 + · · · + tn, p) ≥ tn t2
n−1 · · · t2k

n−k · · · t2n

0 θ0

(

C pθ0

)2n+1−1
En

(5.14)

for all p ∈ B√
2

n+1
δ
, in which for convenience we have set

En := e−tn L∗(
√

2
n
δ) · · · e−2k tn−k L∗(

√
2

n−k
δ) · · · e−2n t0 L∗(δ). (5.15)

Case 1: |p| >
√

2δ. Recall that δ, t0 are fixed. For each p so that |p| >
√

2δ, we

take an integer n satisfying

√
2

n
δ < |p| ≤

√
2

n+1
δ. (5.16)

In particular, p ∈ B√
2

n+1
δ

and (5.14) holds for arbitrary positive time steps tk . We

now fix an arbitrary time t ∈ (τ, t∗), with t∗ = 1/4. We take tk = tk
0 and choose t0

so that t0 < 1
4

and

n
∑

k=0

tk = t.

Such a choice of t0 is possible by the definition of t∗. The lower bound (5.14) then

reads

f (τ + t, p) ≥ θ0tn t2
n−1 · · · t2k

n−k · · · t2n

0

(

C pθ0

)2n+1−1
En

(5.17)
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for all t ∈ (τ, t∗) and all |p| >
√

2δ, with n being defined by (5.16).

Note in particular that t0 ≥ Tτ for some positive time Tτ , since t ≥ τ . Using

this, we can estimate

tn t2
n−1 · · · t2k

n−k · · · t2n

0 ≥ T n+2(n−1)+···+2k (n−k)+···+2n

τ

≥ T
2n+

∑n
k=0 2k (n−k)

τ ≥ T
2n(1+

∑∞
k=0 k2−k )

τ = C
2n

0 ,

in which C0 = T
1+

∑∞
k=0 k2−k

τ , which is finite and nonzero.

Next, by the definition (5.13) of C p, we have C p ≥ Cδ for some positive

constant Cδ , since |p| >
√

2δ, and hence

θ0

(

C p θ0

)2n+1−1
≥ θ0

(

Cδθ0

)2n+1−1
≥ C1(C2)

2n

for some positive constants C1 and C2, independent of n, p and t .

Finally, we estimate the exponential term En defined as in (5.15). Recalling

that 4t0 < 1, tk = tk
0 and L∗(δ) = c0(1 + δ3ρ+1), we have

e−2k tn−k L∗(
√

2
n−k

δ) ≥ e−2k tn−k
0 c0(1+

√
2

4(n−k)
δ3ρ+1)

≥ e−2k c0[tn−k
0 +(4t0)

n−kδ3ρ+1] = e−2k c0[1+δ3ρ+1].

Hence, we obtain

En = exp

(

−
n

∑

k=0

2k tn−k L∗(
√

2
n−k

δ)

)

≥ exp

(

−c0[1 + δ3ρ+1]
n

∑

k=0

2k

)

≥ exp
(

− c0[1 + δ3ρ+1]2n
)

= C
2n

3

for some positive constant C3, which is independent of n, p, and t .

Putting the above bounds into (5.17), we have obtained

f (τ + t, p) ≥
1

2
C1(C0C2C3)

2n

= θ1e−θ22n

≥ θ1e−θ3|p|2 (5.18)

for all t ∈ [τ, t∗] and all p satisfying (5.16), with θ1 = C1, θ2 = log 1
C0C2C3

and

θ3 = θ2/(2δ2). Here, we stress that the constants θ j are independent of p and t .

Case 2: |p| ≤
√

2δ. In this case, using the differential inequalities (5.7) and

(5.3), we obtain

∂t f ≥ n1 Qgain[ f ](p) − [C0M(1 + |p|2ρ) + C0|p|3ρ+1] f,

which yields

f (t, p) ≥ e−[C0M(1+|p|2ρ )+C0|p|3ρ+1]t f0(p). (5.19)

Equation (5.19) implies that for a fixed p0 and for all |p| < |p0|, there holds

f (t, p) ≥ e−[C0M(1+|p0|2ρ )+C0|p0|3ρ+1]t f0(p). (5.20)
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Therefore, for each fixed t0, there exists c′ > 0: f (t0, p) > c′ for all |p| < |p0|.
For each p, by repeating the same argument as in Case 1, in which δ is replace by

|p|/
√

2, we can conclude that there exists Tp and b|p| such that for all t > Tp, we

have

f (t, p′) > b|p| > 0

for all
√

2δ ≥ |p′| > |p| .

Recall that f is continuous in p and f (t, 0) = f0(0) for all t ≥ 0, since

∂t f (t, 0) = 0. This proves that there exists a universal constant r∗ > 0 such that

f (t, p) is uniformly bounded from below for all t∗ ≥ t ≥ 0 and |p| ≤ r∗:

f (t, p) ≥ Cr∗ > 0, ∀t∗ ≥ t ≥ 0, ∀|p| ≤ r∗. (5.21)

This yields the lower bound of f (t, p) in the ball {|p| ≤
√

2δ}, for sufficiently

small δ.

Iteration. To conclude, we have obtained the Gaussian bound

f (t, p) ≥ θ3e−θ4|p|2 , p ∈ R
3, t ∈ [τ, τ + t∗] (5.22)

for some universal constants θ3, θ4 that are independent of p and t . Here, t∗ = 1/4.

By induction, for each integer k ≥ 1, we then repeat the above proof, starting

with initial data at t = kt∗. This yields the same Gaussian bound on the each time

interval [τ + kt∗, τ + (k + 1)t∗], upon noting that such a bound depends only on

the mass and second order energy-moment at t = kt∗, which is independent of kth

iteration. This proves the Gaussian lower bound for all time t ≥ τ , and hence the

main theorem.
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