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Abstract

In their classical work, SAMMARTINO AND CAFLISCH (Commun Math Phys
192(2):433-461, 1998a; Commun Math Phys 192(2):463-491, 1998b) proved the
inviscid limit of the incompressible Navier—Stokes equations for well-prepared
data with analytic regularity in the half-space. Their proof is based on the detailed
construction of Prandtl’s boundary layer asymptotic expansions. In this paper, we
give a direct proof of the inviscid limit for general analytic data without having
to construct Prandtl’s boundary layer correctors. Our analysis makes use of the
boundary vorticity formulation and the abstract Cauchy—Kovalevskaya theorem on
analytic boundary layer function spaces that capture unbounded vorticity.

1. Introduction

In this paper, we are interested in the inviscid limit of the Navier—Stokes equa-
tions for incompressible fluids

oou+u-Vu+Vp =vAu

V.u—0 (1.1)

posed on the half space T x R, with the classical no-slip boundary condition
u,_y =0. (1.2)

In the inviscid limit: v — 0, one would expect that solutions u"” converge to
solutions of the corresponding Euler equations for incompressible fluids, however,
the inviscid limit problem for the no-slip boundary condition (1.2) is open due to
the appearance of boundary layers and the creation of unbounded vorticity near the
boundary. On the one hand, the friction causes the fluid to stick to the boundary,
the no-slip condition (1.2). On the other hand, the inviscid flow allows the fluid
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to slip along the boundary. The rapid change of the tangential velocity on the
boundary gives rise to transition or boundary layers in the small viscosity limit. As
a consequence, the vorticity is of order §, ! on the boundary, in which 8, denotes
the thickness of boundary layers, within which the velocity changes rapidly. This
leads to possible large energy production, due to the large convection u - Vi within
the boundary layers.

In his seminal paper, PRANDTL [33] postulated a boundary layer ansatz that
balances the inertial and viscous forces in the dynamics of (1.1), leading to the
well-known Prandtl’s boundary layer equation, a simplification of complicated
Navier—Stokes equations in a thin layer of thickness 8, = 1/v. In the half space,
the Prandtl’s ansatz reads

Z

ﬁ) +0(1)Loo, (13)

u(t,x,z) =up(,x,z)+ up(hx,

where u g solves the corresponding Euler equations, and u p is introduced to correct
the no-slip boundary condition of the Navier—Stokes equations which does not
satisfy by Euler solutions u g. Here, the velocity field ug (¢, x,0) + up(t, x, Z)
solves the well-known Prandtl’s boundary layer equation, and the remainder o(1) ;.
is expected to converge to zeroin L as v — 0. Formally, it is even possible to write
ahigher order asymptotic expansion for u” in terms of powers of ,/v. Since then, the
Prandtl boundary layers have been intensively studied in the mathematical literature.
Notably, solutions to the Prandtl equations have been constructed for monotonic
data [1,29,31,32] or data with Gevrey or analytic regularity ([11,22,35], among
others). In the case of non-monotonic data with Sobolev regularity, the Prandtl
boundary layer equations are ill-posed [8, 12,20].

The validity of Prandtl’s Ansatz (1.3), and hence the inviscid limit, were estab-
lished in [35,36] for well-prepared data with analytic regularity (precisely, analytic
data that initially satisfy the boundary layer expansion (1.3) with remainder of
order /v). A similar result is also obtained in [26,37]. The Ansatz (1.3), with
a specific boundary layer shear profile, has been recently justified for data with
Gevrey regularity [10]. When only data with Sobolev regularity are assumed, ex-
cept for data with special symmetry data with special symmetry ([13,30] and the
references therein), the asymptotic expansions (1.3) are false due to the strong in-
stability of boundary layers [14—17,19], including those boundary layers that are
spectrally stable to the Euler equations. Finally, we mention that the inviscid limit
holds for other types of boundary conditions other than the no-slip one (1.2); see,
for instance, [9,21,28], and also the review papers [3,27]. In particular, [28] proves
the inviscid limit for Navier-type boundary conditions via energy estimates without
dealing directly with the boundary layer asymptotic expansions.

On the other hand, turning back to the no-slip case (1.2), Kato [23] constructed
a much thinner boundary layer of thickness 6, = v, as compared to the Prandtl’s
thickness 8, = ./v, aiming precisely to control the large convection near the
boundary. This leads to his well-known criteriom, which asserts that the inviscid
limit holds in the energy norm if and only if the energy dissipation near the boundary
vanishes in the inviscid limit: precisely,
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T
v/ // |Vu|2 dxdzdr — O, as v — 0. (1.4)
0 {z<v}

(See also its many variants, for instance, [3,5-7,24], among others.)

In this paper, we give a direct proof of the inviscid limit for data with analytic
regularity without having to construct Prandtl’s boundary layer correctors. The
proof relies on the boundary vorticity formulation, the pointwise bounds on the
Green function, and the abstract Cauchy—Kovalevskaya theorem on boundary layer
function spaces.

1.1. Boundary Vorticity Formulation

We shall work with the boundary vorticity formulation and the solution repre-
sentation as in the recent work by MAEKAWA [25,26]; see also [2]. Precisely, let
w = d;u1 — dxuo be the corresponding vorticity in T x Ry. Then, the vorticity
equation reads

0w —VvAw = —u-Vo (1.5)

with u = V- A~!w. Here and throughout the paper, A~! denotes the inverse of the
Laplacian operator with the Dirichlet boundary condition: precisely, ¢ = A~ 'w
solves A¢ = w on the half-space T x R, with ¢,_, = 0.

To ensure the no-slip boundary condition, we impose ;11 = 0 on the boundary.
This leads to

0=20u =0.A" 90 =0A""WVAw —u - Vo)

on the boundary. Introduce w, so that Aw, = 0 with w, = w on the boundary.
This yields 3. A "Aw = 3. (w — wy) = (8, + |0x])w, in which |d;| denotes the
Dirichlet-to-Neumann operator on the half space. Thus, the boundary condition on
vorticity reads

V@, + [0y = [ A7 (- V)., (1.6)

Throughout this paper, we shall deal with the Navier—Stokes solutions that solve
(1.5)-(1.6), together with the Biot—Savart law u = VXA ~!w. Such a solution will
be constructed via the Duhamel’s integral representation, treating the nonlinearity
as a source term.

1.2. Analytic Boundary Layer Function Spaces

In this paper, we shall deal with analytic boundary layer spaces introduced in
[17,18]. Precisely, we consider holomorphic functions on the pencil-like complex
domain

Q, = {z cC: |37 < min{amz,a}} (1.7)

foro > 0.Letd = /v be the classical boundary layer thickness. We introduce the
analytic boundary layer function spaces 8% that consists of holomorphic functions
on 2, with a finite norm

-1
1 £llos = sup 1@ (14+67'9p07'2) (1.8)

7€Qy
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for some small 8 > 0, and for boundary layer weight function

op(z) = W

for some fixed constant P > 1. Here, we suppress the dependence on 8, P as they
are fixed throughout the paper. We expect that the vorticity function w(t, x, z), for
each fixed ¢, x, will be in B, precisely describing the behavior near the boundary
and near infinity. In fact, there is an additional initial layer of thickness 8, = /vt

that appears near the boundary. To capture this, we introduce the time-dependent
boundary layer norm

| -1
1 £los = sup l0@Ie?™ (145719, +67'9p(6710) . (19)

72€Qy

with 8; = /vt,8 = /v, and with the same boundary layer weight function ¢p (-).
By convention, the norm || - ||, s(0) at time ¢ = O isreplaced by || - ||,5, the boundary
layer norm with precisely one boundary layer behavior of thickness §, and || - 5.0
denotes the norm without the boundary layer behavior.

For functions depending on two variables f(x, z), we introduce the partial
Fourier transform in variable x:

[, =) ful)e™

ael

and introduce the following analytic norm:

1 lp.osey = Y e fullosw)-

o€’
for p, ¢ > 0. We denote by B”-°3() the corresponding spaces. In Section 2, we

shall recall some basic properties of such analytic function spaces.

1.3. Main Results

Our main results are

Theorem 1.1. Let My > 0 and let wy be in B3 for p, o > 0 and for § = /v,
with llwoll py,00,5 < Mo. Then, there is a positive time T so that the solution w(t)
to the Navier—Stokes equations (1.5)—(1.6), with the initial data w(0) = wy, exists
in C1([0, T1; B0 for 0 < p < po and 0 < o < oy. In particular, there is a
Cy so that the vorticity w(t) satisfies

lo(t. x,2)| < coe—ﬁZ(l F 5 op(57 1) + 3—1¢P(5—1z)) (1.10)

for (t,x,2) € [0, T] x T x Ry, with §, = /vt and § = \/v.
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Theorem 1.2. Let My > 0 and let ug be divergence-free analytic initial data so
that uy = 0 on the boundary and wy =V X uy is in BP0-90:8 for p, o > 0 and for
8 = /v, with llwgll pg.00.8 = Mo. Then, the inviscid limit holds for Navier-Stokes
solutions with the initial data uq. Precisely, there are unique local solutions u”(t)
to the Navier—Stokes equations (1.1)—(1.2), for small v > 0, and a unique solution
uo(t) to the corresponding Euler equations, with initial data MO(O) = lim,_, ug,
so that

sup [lu”(t) — u’@)llLr — 0
t€l0,T]

for2 < p < oo, asv— 0.

As mentioned, the proof of the main theorems is direct, using the vorticity
formulation (1.5)—(1.6). In fact, the existence of analytic solutions is proved, without
having to derive the pointwise bounds on the Green function for the Stokes problem;
see Sections 3.4 and 4.1. However, in order to prove the propagation of boundary
layer behaviors as described in (1.10), the detailed estimates on the Green function
are crucial. The main results apply in particular for well-prepared analytic data that
satisfy the Prandtl’s ansatz (1.3). For general analytic data, beside the Prandtl’s
layers, the initial layers whose thickness is of order /vt appear as captured in
(1.10).

Finally, we mention that the analysis avoids dealing directly with the Prandtl’s
layers and Prandtl’s asymptotic expansions, and hence appears robust to resolve
the inviscid limit problem (for analytic data) in domains with curved boundaries.

The paper proceeds with some basic properties of the analytic boundary layer
norms and elliptic estimates in Section 2. The main analysis of the paper is presented
in Section 3 where we study in details the Stokes problem with boundary data and
sources in the boundary layer function spaces. The nonlinear iteration and the proof
of the main theorems are given in Section 4.

2. Analytic Function Spaces

In this section, we shall prove some basic properties of the analytic norms as
well as the elliptic estimates that yield bounds on velocity in term of vorticity. These
norms and estimates can be found in [18]. See also [35,36].

2.1. Analytic Spaces

Let f(x, z) be holomorphic functions on T x 2, with 2, being the pencil-like
complex domain defined as in (1.7). For p,o > 0 and p = 1, we introduce the
analytic function spaces denoted by Ef;’ . with the finite norm

1/p
1Flgr, =Y e falles N fallpy == sup (/m | fa (@)1 |dz|) :
0

aeZ 0<6<o
@.1)
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in which f, = f,(z) denotes the Fourier transform of f(x, z). In the case when
p = 00, we replace the L” norm by the sup norm over 2. Recalling the analytic
boundary layer space B”*%%®) introduced in Section 1.2, we have

Lemma 2.1. There holds the embedding B°*%®") ¢ Ly,

Proof. For the holomorphic functions f, (z) satisfying
| fa D1 £ Wallosie™™ (14 87" 0p (5720 + 671626712,

it is clear that || f, ”Lrlr < |l fallo.sq)- By taking the summation over o« € Z, the
lemma follows. O

Lemma 2.2. Forany0 <o’ < 0,0 < p’ < p, and ¥ (z) = %=, there hold

I+z
If8lley, < 1Flez, Igley , and (22)
< ¢ < ¢
19SS o=y, W@l <~ f ey,
2.3)
The same estimates hold for boundary layer norms || - |5 .5 replacing || - || c, in
the above three inequalities.
Proof. By definition, we write
fe,2) =Y €Y fu p(2)gp(2),
o€l BeZ
and hence, we estimate
Ifgley, =D e famp(esOllry
a€eZ BeZ
S el PPl gl ligpll -
a€Z BeZ

which proves the first inequality. As for the second, we compute

19 Ul =) M furllplerle? .
po
o

Using the fact that (o — p’) |oz|e("’/_")|°‘| is bounded, the second inequality follows.
Finally, we check the third inequality. By the Cauchy integral formula, we have

1 fu(¥)
0. fa(2) = 5= ——dy,
o 27 Je.ry (v — 2)?
where C(z, R;) is the circle, centered at z and of radius R; so that C(z, R;) € Q.
Let us take
Nk if NE@) <1

RZ = CO(O' — U,) : 1 if m(z) 2 1
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for some small and positive co. Thus, using the parametrization y = z + ¢/“R,
with 0 £ w < 27, we get

2
3 fulz) = —/ falz + Ree )(Rzieiw)dw

R2 2iw

anZ fa (z+ R.e™)e dw.

Now, for any 0 < 6’ < o’/, we compute

2 R )
/ 1Y (N2)0; fu(2)]|dz] §/ v Z)Ifa(z+Rze’w)||deIdz|
32y 399/ 0 27mR;

2
/ / | fu(z + Re™)||dw]||dz]|
o —0o' Jaq,

2TL’C0 .
sup / | fa(z + Rze'™)]|dz].
o—o' 0<w<2r 3y

[IA

A

It remains to show that the above integral is bounded by 2|| f|| c ., To this end,

it suffices to show that for each fixed w € [0, 2], there is a positive constant 6 < o
so that

z+ R €0Q9, VzedQ. (2.4)

Case 1: (z) £ 1. Recalling R, = cp(o — o’)N(z) and I(z) = 0'R(z) on 9y,
we compute

Nz + Rzeiw) = N(z) + R, cos(w) = R(z)(1 + co(oc — o’) cosw)

Sz + R.€™) = I(2) + R. sin(w) = R(2) (O + co(o — o') sinw).

Hence, z + R.e'" € 9Qg for 6 = % We now check 6 < o. Indeed,
we need

0"+ co(c —o')sinw < o (1 + co(o — o) cosw),
which is equivalent to
o0 —0 > co(c —o')(sinw — o cosw).

Since 8" < o’ and ¢p can be taken arbitrarily small (independent of o, ¢”), the
above inequality follows.

Case 2: M(z) = 1. Similarly, using R, = co(oc — ') and J(z) = 0’ on 9y, we
compute

Nz + R.e™") = I(z) + R.sinw = 0’ + oo — o) sinw =0,

where 6 < o for sufficiently small ¢g and for 8’ < o’ < o. This proves (2.4). O
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2.2. Elliptic Estimates

Next, we recall the elliptic estimates, which are adapted from [17,18].

Proposition 2.3. Let ¢ be the solution of —A¢ = w with the zero Dirichlet bound-
ary condition, and set u = V+¢. Then, there holds

lurllcgs, +llualicg, < Cllelg (2.5)

19l coe, + IVuallgze, + 19~ uallge, < Clllgy  +Cllox@llzy
(2.6)
IVuillgs |+ 1Vuallgy = Cllolgy s 2.7

with ¥ (2) = z/(1 + z), for some constant C.

Proof. Taking the Fourier transform, it suffices to study the classical one-dimensional
Laplace equation

02 — &Py = wa (2.8)
on 2,, with the Dirichlet boundary condition ¢,(0) = 0, and « > 0. For real
values z, the solution ¢, of (2.8) is explicitly given by

[e¢]

Z
a(2) =/0 Gf(y,z)wa(y)der/ G (¥, Dwe (y)dy

Z

with
1 ]
G+(y,2) = —5— (ei“(ﬂ) - efa(y+z>)‘
20

This expression may be extended to complex values of z. Indeed, for z € Q,, there
is a positive 6 so that z € 9€2. We then write 929 = y_(z) U y4(z), consisting
of complex numbers y € €2y so that Ny < Rz and Ry > Nz, respectively. Then,
we write

¢a(Z)=f ()G—(y,Z)wa(y)dy+f G1(y, Dwe(y)dy. (2.9)
y-(z

Y+
We note in particular that for y € y4(z), there holds

1G(y, )| £ a e =2l

This proves that

|pa(2)] < [ a e Hlwy ()] 1dy| £ ! f loa(MI dyl,  (2.10)
Q2 02
which by definition yields supg  [a¢q @) £ lwell Ll The same proof holds for
0;¢«(z). This completes the proof of (2.5). The estimate (2.6) follows by treating
d, as multiplication by « in the Fourier space.

Finally, taking L' norm of the estimate (2.10) and upon noting that the kernel
ae =2l is bounded in L! norm, we obtain the estimate (2.7) for a2¢y. The
second derivative in z, we use 8Z2¢a = a2¢a + wy. This completes the proof of the
lemma. 0O
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2.3. Bilinear Estimates
Lemma 2.4. For any w and &, denoting by v the velocity related to w, we have

lv-Valz, < Cllollgy laxle, +Cllolz, + losles v @bl
flv - V5)||p,0,6 é C”””p,a,é”‘;}x”p,a,ﬁ + C(”U)”p,a,S + ”a)x”p,o,é)”lp(z)azd)”p,aﬁ

Proof. We write
- V)& = v10,® + 120, 0.

Using (2.2) and (2.5), the first term is clear. On the other hand, the second term is
due to (2.2) and (2.6). Finally, for the boundary layer norms, we note that

1fgllo.os = Ifllzee, Iglo.08-

The lemma thus follows, upon using Proposition 2.3 and noting that || f| ch, <
I fllpos- O ’

3. The Stokes Problem

In this section, we study the inhomogenous Stokes problem

w;r —VvAw = f(t,x,2), in T x Q,,

(3.1)
v(3; + [0xDw = g(z, x), on z=0,

together with the initial data w|,_, = . Let "' denote the semigroup of the

corresponding Stokes problem: namely, the heatequation 9;w—vAw = 0on T x Q2
with the homogenous boundary condition v(d; + |9x|)w|._, = 0. Solutions to the
linear Stokes problem are then constructed via Duhamel’s integral representation,
which will be proved in the next subsection, and we have

t t
o) =e""Buy +/ "B £(s) ds +/ T (vt —s))g(s) ds (3.2)
0 0

inwhich ' (vt) = e"'B (g’)'lqlT>< ( y=0})’ where qurx _oy 1s the one-dimensional Haus-
dorff measure restricted on the boundary; precisely, see (3.22)-(3.23) for the explicit
construction of ¢”’8 and I" (vt) in term of the Green function for the Stokes problem.

In this section, we shall derive uniform bounds for the Stokes semigroup in
analytic spaces, with the analytic norm

lolposm =Y e loallose.
a€Z
with the boundary layer norm defined by

N _ _ _ _ -1
l0allo.s = sup loa (@™ (1487 9p6 ) +576p(67'2) . (33)

7E€Qy
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in which the boundary thicknesses are §; = /vt and § = /v. As for the initial
data, the norm is measured by ||wy ||4,5(0), Which consists of precisely one boundary
layer behavior whose thickness is § = /v. We introduce

NoOlllp.esmr = Y. 1@ @) D@05

j+esk
and
Nolllye = Y 1@ @8 0Ol -
j+esk
We also denote |[|g]]|,x the corresponding analytic norm for g = g(x). We obtain

the following key proposition:

Proposition 3.1. Let "B be the semigroup for the linear Stokes problem, and
['(vt) be the operator e”’B(qulrx{y:O}), where Hﬂll‘x{y:O} is the one-dimensional

Hausdorff measure restricted on the boundary. Then, 9, commutes with both ¢"'B
and T (vt). In addition, for any k 2 0, and for any 0 < s <t < T, there hold

vtB

Me™” flllp,o.500.k S I p,0,50).k5

. t
1" flllp o5k S \/;|||f|||p,g,a<s>,k, and

t
NP0 = )glllposmn S/ T lgllpk

uniformly in the inviscid limit. Similarly, we also obtain
B
Ile" Pyt S e HTODgI e S 8ok

uniformly in the inviscid limit.

3.1. Duhamel Principle

We first treat the Stokes problem on T x R . By taking the Fourier transform
in x, the problem is reduced to
0wy — VAqwy = folt, X, 2), in R4

3.4
v(0; + |aDwy = gu(t), on z =0,

in which w,, denotes the Fourier transform of @ withrespecttox,and A, = 822 —a?.
Let G4 (¢, z; ¥) be the corresponding Green function of the linear Stokes problem
(3.4). That is, for each fixed y = 0, the function G (z, z; y) solves

(O —vA)Ga(t, ;) =0, in Ry

3.5)
v(0; + la])Gu(t, z;y) =0, on z=0,

together with the initial data G (0, z; y) = 8,(z). The Green function will be
constructed so that G4 (¢, -; y) € L! for each ¢, y. we then have



The Inviscid Limit of Navier—Stokes Equations for Analytic Data 1113

Lemma 3.2. (Duhamel’s principle). For any T > 0, and for any f, € L*°(0, T;
L'(R})) and go € L*>(0, T), the unique solution to the linear Stokes problem
(3.4), with the initial data wy (0, 7) = wp o (z) in LI(R+), satisfies

o0 t
U)a(tsz):'/ Go(t,y; Dwo,a(y) dy+/ Go(t —5,0;2)ga(s) ds
0 0 (3.6)

t o0
+ / / Gu(t —5,y;2) fou(s,y) dyds.
0 JO

Proof. Using (3.4), we compute
t o0
/0 /0 Go(t —5,y;2) ful(s, y) dyds
t o0
= / / Gyt —s,y;2)(0s + va? — vag)wa(s, y) dyds
0 JO :
t o0
- / / (3 + vo? —vd)) Gyt — 5. y: Dwals, y) dyds
0 JO
o0
+ f G0, y; De(t, y) dy
0
o0
- [ Galt, y: Dn.a(y) dy
0

t
+ v/ (Gatt =5, 2 Dyr = yGalt — 5. y: 9w ) ds.
0 y=0
The lemma follows, upon using the initial data and boundary conditions on
Gu(t,y;2). O

3.2. The Green Function for the Stokes Problem

In this section, we derive sufficient pointwise bounds on the temporal Green
function for the linear Stokes problem (3.4). Precisely, we prove the following:

Proposition 3.3. Let G, (¢, y; z) be the Green function of the Stokes problem (3.4).
There holds

Galt, y;2) = Ho(t, y;2) + Ra (1, y; 2, (3.7
inwhich Hy (¢, y; 2) is exactly the one-dimensional heat kernel with the homogenous

Neumann boundary condition and Ry(t,y; z) is the residual kernel due to the
boundary condition. Precisely, There hold

1 vz ly+212 2
Hy(t,y,2) = — (e_ Tvt +g—4w) e~V gnd

A/ vt
Iy+zI? 1

— kgl _ 1.2
|08 Ra (1, y; )| S plH e 0 Hel (o) =5 e~ e

fory,z 20,k 20, and for some 6y > 0 and for 5 = || + \/L;
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Remark 3.4. We note that the residual term Ry (¢, y; z) contains a term without
viscous dissipation et , and this is precisely due to the || term in the boundary
condition in the linear Stokes problem (3.5). Observe that w, = oe™*% is an exact
stationary solution to the linear homogenous Stokes problem (3.4).

Remark 3.5. By the reflection method (e.g., [26]), the residual Green kernel can
be explicitly defined by

Ra(t, vi2) = 26~V (&% + ad.) (= AT )G (v, y + 2), (3.8)

with G(t,z) = ﬁe’zz/ 4 The pointwise bounds as derived in Proposition 3.3

are in particular useful in propagating unbounded vorticity with boundary layer
behaviors.

We proceed the construction of the Green function via the resolvent equation.
Namely, for each fixed y = 0, let G, o (y, z) be the L! solution to the resolvent
problem

r - VAa)GA,a (y,2) = (Sy(z)

(3.9)
v(0; + |a)Gia(y, 0) =0.

We then obtain
Lemma 3.6. Let 1 = v~ '/2/A + «2v, having positive real part. There holds
Gra(y,2) = Hpa(y,2) + Raa(y, 2), (3.10)

in which Hy 4(y, z) denotes the resolvent kernel of the heat problem with homoge-
nous Neumann boundary condition; namely,

1
Ho(y,2) = i (e‘“'y_z| + e"”y“‘) . Ria(,2)= Me—u\yﬂl_

In particular, G «(y, 2) is meromorphic with respect to ) in C \ {(—a?v — R4}
with a pole at .. = 0.

Proof. The construction is standard, upon noting that G, (Y, z) is a linear com-
bination of e*#? and satisfies the following jump conditions across z = y:

[Gra(y, D], =0,  [v3:Gra(y, D], =1
The lemma follows. O

Proof of Proposition 3.3. The temporal Green function G(t, z; y) can then be
constructed via the inverse Laplace transform

1
Golt,y;2) = ~— / MGy oy, 2)dA, (3.11)
27i Jr

in which the contour of integration I" is taken such that it remains on the right of
the (say, L?) spectrum of the linear operator A — vA,, which is —a?v — R,.
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In view of (3.10), we set Hy(t, y; z) and R, (¢, y; z) to be the corresponding
temporal Green function of Hy ,(y, z) and R;, «(y, z), respectively. It follows that
H, (t,y; z) is the temporal Green function of the one-dimensional heat problem
with the homogenous Neumann boundary condition, yielding

2 2
=z ly+z| 2
(g_ i e At )e—va t.

Hy(t,y,2) =

4 vt

It remains to compute the residual Green function Ry (¢, y; z):

1
Re(t,y:2) = %/Fe“e*“'y“'“(“/\—j:“) da. (3.12)

Note that the z-derivative of Ry (¢, y; z) gains an extra p in the above integral.

Case 1: «>v < 1. By the Cauchy’s theory, we may decompose the contour of
integration as I’ = 'y U I, having

1
ry:— {x — v+ v(d® — )+ 2viab+iM, +be R+},
2
1 (3.13)
T, := {A = —5va’ +va’ + Me?, 0 € [-/2, n/z]}
for some positive number M and for a = |y2+f |, Since v < 1, we take M large
enough so that the pole A = 0 remains on the left of the contour I'. It is clear that
[\ 2 1onT.
On I';, we note that

. 1
Ry =v 1/2%\/ va? +va? + Meit > =12 51)012 +va? 2 a,

R = v 1290 \/—vaz +va? + Mei? > v 12 M

This implies that Ry = § + Oppuy for some positive constant 6y, recalling u r =
o+ 1/y/vand @ < v=12 In particular, || 2 s = . This proves that

/2
‘/ ekte_#|y+z|(¥((¥+ﬂ) d)\.‘ 5/ eMteazvte—%\y+z|e—00;,cf|y+z|u/fd9
r, A )

—bop ply+zl ja?vt — L y+zl
S ppe PRIV TR Y

< Mfe—QoquyﬂI,

in which we used e"2”’e’%|y“| = 1 by definition of a. As for derivatives, we
estimate
)/ At —u|v+z|“(°‘+“) dk‘ _ ‘/ At p—ply+zl dx
V(M —a)

/2

5 Uflv/ Mt a vt 7§|)+z\ Qouflerzld@
—/2

< ’u?e—eouflyﬂl’
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upon recalling up = a 4+ 1//v.
Meanwhile, on ', we note that

1
Ru = ﬂ%\/zoﬂ +@+ib)2+iv-IM 2R (a+ib)? =a,

upon noting that the sign of b and =M is the same on I'. Similarly, we note that
N > M/./v. By the definition of a, we have

2
|eM 7/L|y+Z‘|< -3 e Ly ,‘

and together with the fact that A = v(u? — «?), we compute

2 .
oo+ @) Qi — loz(a—l—lb)db
A pup — o)

Since a?v < 1, we have o < |u|. In addition, we have (a + ib)> £ iv™'/>?M =
w2 —a?onT 4 withb having the same sign as does =M. This implies that la+ib|? <

|2 — o2 <| wl?. Putting the above computations together, we obtain

/ ekte*ulyﬂ\a(a_i_“) <G 7§vazte—#/6ﬂ;bzt ala +ib| db
L8 A R ln(p — )l

2 y+z1?

<Coe_7”°‘ e~ A /e_Vbztdb
R

12, btal?
§C0(\;[) 1/2 2”“ Lo™ o .

As for the derivatives, we estimate

y 22
/ e)nle—lib"i‘z\a(a + /L) ‘ < ¢ _ﬂjazte_\ Zr;[\ / e—vb2t(a + |b))db
e A R

12
< Co(t)™! (1 + X+ yl) P T

1 12, vl
< Co(wr)le 2V e Tmu .

Case 2: o’y > 1. Take a = |y2+f| as in the previous case. Consider first the case

when |a — | = §°‘~ In this case, we move the contour of integration to
= {A = —va? + v(a2 — bz) + 2viab, =+b e R+},

which may pass the pole at A = O (precisely, it does when a = «). By Cauchy’s
theory, we have

Ryt yi2) = —— [ Mm% M 4 Res.

2mi Jr, Al
in which the residue at the pole A = 0 is given by

Resg = 2ae ¥+l (3.14)
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when a < «. We take Resy) = 0 when a > «. Note that the residue does not
decay in time. This accounts for the contribution of the inhomogenous Neumann
boundary condition. Since &?v = 1, we have j1f = @ + 1//v < 2a, and hence

Reso < 2u e
As for the integral term, we note that 4 = a + ib, and hence

oo+ w1 dh — 2iva(a + 'u)db.
Al A

Note that I' cuts the real axis at v(a2 — Dl2) and the imaginary axis at 2vabg (when
a > a), with by = ++/a? — 2. This, in particular, yields |A| > va(a + o) and
Il = v 12 |Wh 4+ a2v] < v 121012 Moreover,
‘M dx) < db.
A

‘We thus obtain

212
/ e)»le—ltly+z\ a(“ + /“L) d)\.’ g Coe—vazte— l'vz;l / e—l)bztdb
Iy )\'/’L R

(3.15)
< Co(vt)_l/ze—vazte_% .

It remains to consider the case when |a — a| < %a and v > 1. We note

in particular that %Ol <a < %a. In this case, we simply modify the contour of

integration by taking
1
T = {x = —gvaz +v(a® — b?) + 2viab, +be€ R+} .

Observe that the contour I'y leaves the origin on the left, with |A| > va?. The
integral is thus estimated exactly as done in (3.15). The derivative estimates follow
as in the previous case.

The proof of Proposition 3.3 is complete. O

3.3. The Green Function on Qs

The Green function constructed in Proposition 3.3 can be easily extended to
the complex domain 2, defined by

Q, = {z cC: |3z] < min{o|9tz|,a}},

forsome smallo > 0.Indeed, in view of (3.8), the Green function involves precisely
the heat kernel G (¢, z) = \/4;?8—12/ 4 which is extended to the complex domain.
In addition, we note that for z € 'y, there holds 3z < oMz, which implies that

|e—z2/4t| < e M2 /AP /4 < = (1=0P) 92 /4t
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Similar estimates hold for the other terms in the Green function G4(t, y; z) =
Hﬂt(ta ya Z) + RO[(t’ y, Z)? yleldlng

1 Iy~ Ry +9tzl2
Hy(t,y;2) S \/—_(e_(l_gz)‘xT + e‘(l—g%#)e—%azut’
vt

—bo(1—0)p g [Ry+Nz|
b

(3.16)
Ro(t,y;2) Syre

for y, z € I'5, and for some 6y > 0 and for p r = || + \Lﬁ

The solution wy (¢, z) to the Stokes problem can now be constructed on 2, in a
manner similar to that which was done for (2.9). Precisely, for any z € Q,, let 6 be
the positive constant so that z € 9$2y. The Duhamel principle (3.6) then becomes

t
wa(t,z)=/ Gol(t, y; 2w, (y) dy+/ Go(t —5,0;2)84(s) ds
9% 0 (3.17)

t
+ f / Gl — 5. y: 2) fuls. y) dyds,
0 JoQy

which is well-defined for z € Q,; having the Green function G, (¢, y; z) satisfies
the pointwise estimates (3.16), similar to those on the real line. For this reason, it
suffices to derive convolution estimates for real values y, z.

3.4. Convolution Estimates

We now derive convolution estimates. We start with the analytic L' norms. For
k = 0, we introduce

k
eyt = D 1 ()3 el 1.

j=0
‘We prove the following:

Proposition 3.7. Let T > 0 and let G(t, y; z) be the Green function of the Stokes
problem (3.4), constructed in Proposition 3.3. Then, for any 0 <'s <t < T and
k = 0, there is a universal constant Ct so that

o0
”/O Gal(t, y; g (y) dyllwg_l S Crllwgllyppr,

o
| / Galt =,y J0u() a3y, S Crllonllyer.

uniformly in the inviscid limit.

Proof. We shall prove the convolution for real values y, z. For the complex exten-
sion, see Section 3.3. Recall from Proposition 3.3 that G (¢, y; z) = Hy(t, y; 2) +
Ru(t, y; 2), with

_ Iy ly-+

1 2
Ha(ty y,Z) = —(e 4vr +e_ Jvt )e—()l Vl"
A/ vt
k+1 ly+zl? 1.2

|3§Ra(t, il S ,lLl}e*eO”flerz‘ + (1) T e eV
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fork = 0.Inparticular, |Gy (2, y; -)||L(17 < 1,foreachfixed y, t. The L' convolution
estimate is thus straightforward. We now check the estimates for derivatives. We
estimate

W (2)0, Ra(t, y: 2) < |Z|M26700Mf|y+z‘ L |z] o0 \y+\ ol

l)t
| 1 tzl® 1
5 /,Lfe_feoufly-i_z‘ + —6_90 Vzv[ e 8% vt
vt

That is, ¥ (z)9; Ry (¢, y; 7) obeys essentially the same bound as does Ry (¢, y; 7).
The convolution estimates for derivatives of Ry (¢, y; z) follow.
Next, we treat the integral involving Hy (¢, y; z). Precisely, we set H (¢, y; z) =
ly—zl?
%e‘ “mr . Note that 0. H(t,y;z) = —0dy,H(t, y; z). Hence, we compute

vt

/O Y ()0 H(t — s, y; g (y) dy

z/2
= fo V()0 H(t —5,y; Jwe(y) dy — Y (2)H (t — 5, 2/2; Dwe(z/2)

+ V(@H@E —s,y; )oywa(y) dy.
z/2
We now estimate each term on the right. Since ¥ (z) < 2y (y) for y = z/2, the last
integral on the right is already estimated in the previous case with wy (y) replaced
by ¥ (y)dywq (¥). As for the first integral, since y < z/2, we compute

VUG —5.yi0) S T —s)le -5

b=z
Sy =zl —s)) e BT

<t —s)~ 1/2 = 161)(1“3)

Thus, the integral over [0, z/2] is again already estimated in the previous case.
Finally, we compute

ZZ
W QH — 5,2/ Dwa@/2)] S 20t — )~/ 2e 0 [y (2/2)]
< lwa(z/2)1,

whose L(], norm is clearly bounded by ||wy ||L(17. |

3.5. Convolution Estimates with Boundary Layer Behaviors

In this section, we provide the convolution estimates of the Green function
against functions in the boundary layer spaces, whose norm is defined by

N -1
l@allos = sup loa (@)™ (1467 0p@ ') +57'¢p6710))  (B18)

7€Qy
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fort > 0 and B > 0, in which the boundary thicknesses are §; = /vt and § = /v
and for boundary layer weight ¢p(z) = P > 1. We also introduce the
boundary norm for derivatives:

1
1+|%z| P

k
loalloswk = Y 1 (@)0:) 0allose)

j=0

for k 2 0. In the case 1 = 0, the norm || - ||¢5(0) is defined to consist of precisely
one boundary layer with thickness § = /v.
We prove the following:

Proposition 3.8. Let T > 0 and let Gy (t, y; z) be the Green function of the Stokes
problem (3.4), constructed in Proposition 3.3. Then, for any 0 < s <t < T and
k = 0, there is a universal constant Ct so that

| [ Gutt.iroun 0],

< Crle ,
Sk = T llwgllo,500),k

=C \/?II ll
>~ — || W,
oSOk = T s o llo,8(s),k

We shall prove the convolution estimates for real values y, z. The complex
extension follows from the similar estimates on the Green function obtained in
(3.16). As a consequence, Proposition 3.8 is a direct combination of the following
two lemmas:

H /Ooo Gl — 5. y: Jwu(y) dy

uniformly in the inviscid limit.

Lemma 3.9. Let R(¢, y; 2) = poe’“f‘y“', with iy = o + \Lﬁ Then, for any

s, t, and k = 0, there is a universal constant Cy so that

< Collw, .
SOk 0” ot||<7,8(s)

H /Ooo R(t — s, y: D)wa(y) dyHa

Proof. The estimate for k = 0 follows directly from the fact that w, belongs to
L' lwell 11 S Collwyllo,s(s)- The convolution in fact belongs to the boundary layer
space with finite norm ||-||5.50). As for derivatives, we note that [y ()9, R (¢, y; 2)| <

1 . . . .
Zu?e‘”f bzl < o e~ 2#/% The derivative estimates thus follow identically.
O

lyzl?
Lemma 3.10. Ler H(t, y; z) := ()12~ Wt , for some positive M, and let

T > 0. Then, forany0 < s <t < T, g9 > 0, and k = 0, there is a universal
constant Ct so that

oo
| [~ ey @] | < Criouaso..
0 0.8(t).k

oo
t
H(t—s,y;- d ” <cC \/i
|[“#a=—sysmma] | <crf oo

uniformly in the inviscid limit.
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y=2?

. _ly=2
Proof. It suffices to prove the convolution for H (z, y; z) = (vt)~1/2e™ v . We
start with the case k = 0. Let 0 < s < t. For |y — z| =2 MBv(t — s), it is clear that

e *Iy*zl(iM‘i"z' *ﬁ)
T Mvl—s) p— —pPlz (1—=s5) —plz
e Mvia—s) g~ By <e Blzl, s <e ﬂlZ\’

whereas, for |y — z| < MBv(t — 5), we note that
2 ; _Bly—z| — _
e MBWU=9) g =BVl < o=Bly=2l =Byl < p=Bll

That is, the exponential decay e 7 is recovered at an expense of a slowly growing

term in time ¢#"(=%) which is bounded in finite time. Precisely, this proves

ly—z[2

e v e Py < MBP(=$) =Blzl. Vy,z e R. (3.19)

It remains to study the integral

f 0 — s e Wi (1457 0p 67y +579p 671 W) dy. (3.20)
0

First, without the boundary layer behavior, the integral is clearly bounded. We now
treat the boundary layer terms. Using the fact that ¢ p () is decreasing, we have

*© ly—z?
Wt =)~ e w57 gp (67 y) dy
z/2
o ly—zI2
= C08_1¢P(5_lz)/ v(t — s))—l/%*m dy
z/2
< Codgp (87 '2),

and, upon noting that y/8; = z/28,, we obtain

* Y o L ~1
Wt —s)) e ME=5"pp(s; y) dy
z/2

-1 [T 12— s
< Cody 9p (3, 2) /2 (v(r —s)) /e M= dy
Z

< Cov/i/s8; ' dp (8" 2).

By contraston y € (0, §), we have |y — z| = £ and ¢p = 1. Hence, we have

2/2 Ly ey i
/0 (i — )" e 75 gp(57 1 y) dy
Iz

= z/2 _1/2 _ﬂ —1 —1
<e sm(m)/ w(t —5)) 12 =5 pp (8, y) dy
0

I SO R
< Coe™ 8mvi min {8‘Y L 8l_ls}.
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Note that min{5 1 Sf_ls} <257 I Hence, the above integral is bounded in || - ||, 5(r)
norm. Similarly, we estimate

JI?

z/2 ly—z[?
/ W(r —5) Ve 5 1pp (a”y) dy < Coe” TG 5L
0
To estimate this, we will prove that
—ﬁ eot —1
e~ it < Coe' p (5 Z) 3.21)

for arbitrarily small &g (and hence, Cy depends on &g). Indeed, when |z| = £04/Vt,
2

it is clear that e_% < ¢p(8_1z). On the other hand, when |z| < eo/vt, we
note that %/ < ¢’ which implies that 1 < ¢%07¢=%/% < Cpe¢pp (8~ 'z). The
estimate (3.21) follows, and hence the claimed estimate for k = 0.

Next, we consider the derivative estimate. Note that 0, H (¢, y; z) = —0d,H (¢, y; 2).
Hence, we compute

/0 V@OH( — 5. y: Jou(y) dy

z/2
_ fo V@H(E — s, y: You(y) dy — YQH(E — 5.2/2: Doa(2/2)

+ /2 Y(H( —5,y; )0ywe (y) dy.

We now estimate each term on the right. Since ¥ (z) < 2¢/(y) for y = z/2, the last
integral on the right is already estimated in the previous case with w, (y) replaced
by ¥ (y)dywq (y). As for the first integral, since y < z/2, we compute

ly—z/?
< (w(t — )" Le DG

20 H(t —5,y;,2) S
Y (2)0; H( y; 2) e

ly—z[?
v(t—s)

Sly =zl — ) le™ 27

byl
< (vt — )" V2e” By

Thus, the integral over [0, z/2] is again already estimated in the previous case.
Finally, we compute

W (D) H( —s,2/2; 2)we(z/2)]
22

S 20 — )7 e (14571905712 +67'9p (57 12))
S1+67"'9p07 ') +5719p(67'2)
ST+ i/s87 ¢p 57 2) + 87 9p(07 '),

in which the last inequality is again due to the decreasing property of ¢p and the
fact that §; < ;. This completes the proof of the lemma. 0O
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3.6. Semigroup Bounds in Analytic Spaces

In this section, we shall prove Proposition 3.1 on deriving uniform bounds for
the Stokes semigroup in analytic spaces, with the analytic norm

lollp.os0) =Y e llollos-
a€”Z
We first write the Stokes semigroup ¢’2 and the operator I'(¢) in the Fourier series:
Bo =Y """ Pw)y, Tng=)» ([T W)g), (3.22)
a€”Z a€Z

in which
o0
" Bw)y =/ Gul(t, y; D)we(y) dy, TwHg)a = Gu(t,0;2)ga, (3.23)
0

with the Green kernel G, (¢, y; z) constructed in Proposition 3.3. The convolution
estimates obtained in Proposition 3.8 yield

_ t
1" W)y llos0yx < co\/; e llo.s0s) k-

These prove the claimed estimates on "2 . As for the trace operator, using Propo-
sition 3.3, we have

2
Go(t —5,0:2) S (vt —5)) V2 B0 4 ppeHr7 (3.24)

2
St — ) V2em w4 e

By definition of the boundary layer norm, |Gy (t — s, 0; 2)llo.5¢) S /#. The
proof of Proposition 3.1 is complete.

4. Proof of the Main Theorems

As mentioned in the introduction, we construct the solutions to the Navier—
Stokes equation via the vorticity formulation
0w —VAw = —u-Vo

o @.1)
v(@; + 13xDw)_y = [0:A7 - Vo)l .

in whichu = VX A~!w, with A~! being the inverse of Laplacian with the Dirichlet
boundary condition. For convenience, we set N = u - Vw. The solution to (4.1) is
then constructed via Duhamel’s principle as follows:

t t
o) =" Bay —/ "B N () ds +/ T(w(t — )@, A7'N(s))|._, ds,
0 0

(4.2)
with wy € BP0-90-% for some pg, o9 > 0.
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4.1. Nonlinear Iteration

Let us fix positive numbers y, ¢, and pp, and introduce the following nonlinear
iterative norm for vorticity:

Aly)=sup  sup {|||w<t)|||wl<1 +|||w<t)|||wz‘1<po—p—yt)f},
O<yt<po p<po—yt PP PP
(4.3)

recalling

oyt = D7 180 @) 00l -

Jj+He<k

Here, for the sake of presentation, we take the same analyticity radius in x and z;
namely, 0 = p < pg. Thanks to Lemma 2.1, wg € WI/;Z:)’ for any k = 0.

We shall show that the vorticity norm remains finite for sufficiently large y . The
weight (pp — p — y1)¢, with a small ¢ > 0, is standard to avoid time singularity
when recovering the loss of derivatives [4,34]. Let p < pp — yt. Thanks to Lemma

2.4, we have

< 2 < 2
N Oy < |||w(t)|||W/£1}) S A(y)

4.4
< < 2000 — 0 — vi)~¢
Nyt S MOl oIl €A@Y (00 = p =y,
In addition, using the elliptic estimates, we have
-1
M@ AT N @)ook S N Oy - (4.5

Now, using the Duhamel integral formula (4.2), we estimate
B ! (t—s)B
t S vt - v(t—s N i d
o llye1 = 1Hle"Paollly + /0 lle lllyysr ds

t
+ /0 PG = )B:A7 NIl ds.

In view of Proposition 3.1, the term from the initial data is already estimated, giving
e By k1 < lwo llyp.1. As for the integral terms, we estimate
p.p 0.

t t
v(t—s)B
/O e IEN )1 ds gcofo NIy ds

t
< CoA(y)? /0 (po—p—ys) ¢ ds
< Coy A

Similarly,

t t
_ -1 <
/0 T =)@ A7 N )1t ds = Co/o N Sy ds,
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which is again bounded by Coy ~! A(y)?. Next, we give estimates for k = 2. Noting
that p < pg — vyt < pg — y's, we take p/ = W and compute

t t
v(t—s)B
/0 e PN )1y ds §Co/0 NGl ds

t
< co/O > . NGy ds
< coatr? [[(m—p -y ' a5
< Coy AW (o —p —yD~E.
The same computation holds for the trace operator I"(vt), yielding
AW) < Collwollyyz1 + Coy ™ A(y)?.

By taking y sufficiently large, the above yields the uniform bound on the iterative
norm in term of initial data. This yields the local solution in L})‘ p fort € [0,T],

with T =y~ po.

4.2. Propagation of Boundary Layers

It remains to prove that the constructed solution has the boundary layer behavior
as expected, having already constructed solutions in L })’ o spaces. Indeed, we now
introduce the following nonlinear iterative norm for vorticity:

B(y)=  sup sup {Illw(l)lllp,sm,l + Mo Olp,50),2(p0 — p — J/l)g},
O<yt<pg p<po—yt
4.6)

with the boundary layer norm

NeoOlllpsox = Y 187 W @8 0@llp.ps0)-

JHZk
Thanks to Lemma 2.4, we estimate

HINOps500.0 S oI 501 = BK)?

NN o501 S No®lllp.so1llle®lllps0.2 S By (po—p—y)~F.
(4.7)

Now, using the Duhamel integral formula (4.2), we estimate

t
Nollp.s0x = lle” Bawolllp.sex + f 1" DEN )11 p.o0).k ds
0

t
+ /0 NP = )@ AT 'N$))j.Zolllp.50).k ds.
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In view of Proposition 3.1, the term from the initial data is already estimated, giving
"B aolll o500k < llwollp.50).5- In addition,

t
/O T =)@, AN ()l p.50) kds
t
5/ Vit =)@, AT N ()L llp.k ds
0
t
S [ Vi =9 PIN Gl ds
0 PP

t
< sup |||N(s>|||wk.1/ i — 572 ds,
0<s<s ~rJo

in which [[N(s)|l),1 is bounded, thanks to the iteration obtained in the previous
p.p
subsection. It remains to estimate

t
fo 1e" BN (@) [].5001 ds

ot roft _
§C0/0 \/;HIN(S)IHp,(S(s),ldS<CoB(V)2/(; \/g(,Oo—,O—J/S) £ ds
5 t/2 t ¢
< CoB(y) (/ +/ >\/i(/00—/>—)/s)_z ds
0 i2) Vs

1 _ 1 1 _
< CoB(y)? <t(po —p =50 f 4 ;(,00 —p— Ew)l C)
< Coy 'B(y)* (o — p) %,

in which we used yt < pg and yt < pp — p. Next, noting that p < pg — yt <
po — ys, we take p’ = LFZ=Y* and compute

t
fo 1e" BN ()][].50.2 ds

<c ft\/7|||N<>||| ds < C /f LNy s d

>~ - S > - /

= 0o o Vs S)p,s(s),2ds = Co o Vso —p S ,8(s),1 dS
) (1]t 1

< CoB(y) /0 \/E(po—,O—VS)_ gy

t/2 t
< CoB() (/ +/ ) \/z(po s ds
0 t/2 s

1 i 1 _
< CoB(y)? <t(po —p =50 =4 ;(po —p—yt) §>

< Coy 'B() (oo —p —yD)E.

This proves the boundedness of the iterative norm B(y ), and hence the propagation
of the boundary layer behaviors. Theorem 1.1 follows.
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4.3. The Inviscid Limit

Let us now prove Theorem 1.2. Since w; € BP0:90:3 the velocity ug and its
conormal derivatives afjuf) (W(z)az)juf), fork, j,Z 0and ¢ = ]7?, are all uni-
formly bounded on T x R, thanks to the elliptic estimates; see Proposition 2.3.
In particular, the limit of ug exists in the classical sense: #°(0) = lim,_ ug. From

Theorem 1.1, we check the validity of Kato’s condition:

T
v/ // |Vu(r, x, 2)|* dxdzdr
0 TxRy
T
= uf f/ lo(t, x, z)|* dxdzdt
0 TxRy

T 2
Cv/ // e*zﬁZ(l + 8 pp (87 2) + 5*‘¢P(5*‘z)) dxdzdr
0 TxRy

A

T
< c‘)/ (1 +57! +5*1)dt N
0

which tends to zero as v — 0. This proves that SUP,¢[0.7] [ (2) — uo(t)||Lz — 0.
The L” convergence follows from the interpolation between L? and L norms and
the fact that u" is bounded in L° thanks to the elliptic estimate (2.5).
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