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Abstract

In their classical work, Sammartino and Caflisch (Commun Math Phys

192(2):433–461, 1998a; Commun Math Phys 192(2):463–491, 1998b) proved the

inviscid limit of the incompressible Navier–Stokes equations for well-prepared

data with analytic regularity in the half-space. Their proof is based on the detailed

construction of Prandtl’s boundary layer asymptotic expansions. In this paper, we

give a direct proof of the inviscid limit for general analytic data without having

to construct Prandtl’s boundary layer correctors. Our analysis makes use of the

boundary vorticity formulation and the abstract Cauchy–Kovalevskaya theorem on

analytic boundary layer function spaces that capture unbounded vorticity.

1. Introduction

In this paper, we are interested in the inviscid limit of the Navier–Stokes equa-

tions for incompressible fluids

∂t u + u · ∇u + ∇ p = ν�u

∇ · u = 0
(1.1)

posed on the half space T × R+, with the classical no-slip boundary condition

u|z=0 = 0. (1.2)

In the inviscid limit: ν → 0, one would expect that solutions uν converge to

solutions of the corresponding Euler equations for incompressible fluids, however,

the inviscid limit problem for the no-slip boundary condition (1.2) is open due to

the appearance of boundary layers and the creation of unbounded vorticity near the

boundary. On the one hand, the friction causes the fluid to stick to the boundary,

the no-slip condition (1.2). On the other hand, the inviscid flow allows the fluid
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to slip along the boundary. The rapid change of the tangential velocity on the

boundary gives rise to transition or boundary layers in the small viscosity limit. As

a consequence, the vorticity is of order δ−1
ν on the boundary, in which δν denotes

the thickness of boundary layers, within which the velocity changes rapidly. This

leads to possible large energy production, due to the large convection u · ∇u within

the boundary layers.

In his seminal paper, Prandtl [33] postulated a boundary layer ansatz that

balances the inertial and viscous forces in the dynamics of (1.1), leading to the

well-known Prandtl’s boundary layer equation, a simplification of complicated

Navier–Stokes equations in a thin layer of thickness δν =
√

ν. In the half space,

the Prandtl’s ansatz reads

u(t, x, z) = uE (t, x, z) + u P

(
t, x,

z
√

ν

)
+ o(1)L∞ , (1.3)

where uE solves the corresponding Euler equations, and u P is introduced to correct

the no-slip boundary condition of the Navier–Stokes equations which does not

satisfy by Euler solutions uE . Here, the velocity field uE (t, x, 0) + u P (t, x, Z)

solves the well-known Prandtl’s boundary layer equation, and the remainder o(1)L∞

is expected to converge to zero in L∞ as ν → 0. Formally, it is even possible to write

a higher order asymptotic expansion for uν in terms of powers of
√

ν. Since then, the

Prandtl boundary layers have been intensively studied in the mathematical literature.

Notably, solutions to the Prandtl equations have been constructed for monotonic

data [1,29,31,32] or data with Gevrey or analytic regularity ([11,22,35], among

others). In the case of non-monotonic data with Sobolev regularity, the Prandtl

boundary layer equations are ill-posed [8,12,20].

The validity of Prandtl’s Ansatz (1.3), and hence the inviscid limit, were estab-

lished in [35,36] for well-prepared data with analytic regularity (precisely, analytic

data that initially satisfy the boundary layer expansion (1.3) with remainder of

order
√

ν). A similar result is also obtained in [26,37]. The Ansatz (1.3), with

a specific boundary layer shear profile, has been recently justified for data with

Gevrey regularity [10]. When only data with Sobolev regularity are assumed, ex-

cept for data with special symmetry data with special symmetry ([13,30] and the

references therein), the asymptotic expansions (1.3) are false due to the strong in-

stability of boundary layers [14–17,19], including those boundary layers that are

spectrally stable to the Euler equations. Finally, we mention that the inviscid limit

holds for other types of boundary conditions other than the no-slip one (1.2); see,

for instance, [9,21,28], and also the review papers [3,27]. In particular, [28] proves

the inviscid limit for Navier-type boundary conditions via energy estimates without

dealing directly with the boundary layer asymptotic expansions.

On the other hand, turning back to the no-slip case (1.2), Kato [23] constructed

a much thinner boundary layer of thickness δν = ν, as compared to the Prandtl’s

thickness δν =
√

ν, aiming precisely to control the large convection near the

boundary. This leads to his well-known criteriom, which asserts that the inviscid

limit holds in the energy norm if and only if the energy dissipation near the boundary

vanishes in the inviscid limit: precisely,
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ν

∫ T

0

∫∫

{z�ν}
|∇u|2 dxdzdt −→ 0, as ν → 0. (1.4)

(See also its many variants, for instance, [3,5–7,24], among others.)

In this paper, we give a direct proof of the inviscid limit for data with analytic

regularity without having to construct Prandtl’s boundary layer correctors. The

proof relies on the boundary vorticity formulation, the pointwise bounds on the

Green function, and the abstract Cauchy–Kovalevskaya theorem on boundary layer

function spaces.

1.1. Boundary Vorticity Formulation

We shall work with the boundary vorticity formulation and the solution repre-

sentation as in the recent work by Maekawa [25,26]; see also [2]. Precisely, let

ω = ∂zu1 − ∂x u2 be the corresponding vorticity in T × R+. Then, the vorticity

equation reads

∂tω − ν�ω = −u · ∇ω (1.5)

with u = ∇⊥�−1ω. Here and throughout the paper, �−1 denotes the inverse of the

Laplacian operator with the Dirichlet boundary condition: precisely, φ = �−1ω

solves �φ = ω on the half-space T × R+, with φ|z=0 = 0.

To ensure the no-slip boundary condition, we impose ∂t u1 = 0 on the boundary.

This leads to

0 = ∂t u1 = ∂z�
−1∂tω = ∂z�

−1(ν�ω − u · ∇ω)

on the boundary. Introduce ω∗ so that �ω∗ = 0 with ω∗ = ω on the boundary.

This yields ∂z�
−1�ω = ∂z(ω − ω∗) = (∂z + |∂x |)ω, in which |∂x | denotes the

Dirichlet-to-Neumann operator on the half space. Thus, the boundary condition on

vorticity reads

ν(∂z + |∂x |)ω|z=0 = [∂z�
−1(u · ∇ω)]|z=0 . (1.6)

Throughout this paper, we shall deal with the Navier–Stokes solutions that solve

(1.5)-(1.6), together with the Biot–Savart law u = ∇⊥�−1ω. Such a solution will

be constructed via the Duhamel’s integral representation, treating the nonlinearity

as a source term.

1.2. Analytic Boundary Layer Function Spaces

In this paper, we shall deal with analytic boundary layer spaces introduced in

[17,18]. Precisely, we consider holomorphic functions on the pencil-like complex

domain

�σ =
{

z ∈ C : |	z| < min{σ
z, σ }
}

(1.7)

for σ > 0. Let δ =
√

ν be the classical boundary layer thickness. We introduce the

analytic boundary layer function spaces B
σ,δ that consists of holomorphic functions

on �σ with a finite norm

‖ f ‖σ,δ = sup
z∈�σ

| f (z)|eβ
z
(

1 + δ−1φP (δ−1z)
)−1

(1.8)
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for some small β > 0, and for boundary layer weight function

φP (z) =
1

1 + |
z|P

for some fixed constant P > 1. Here, we suppress the dependence on β, P as they

are fixed throughout the paper. We expect that the vorticity function ω(t, x, z), for

each fixed t, x , will be in Bσ,δ , precisely describing the behavior near the boundary

and near infinity. In fact, there is an additional initial layer of thickness δt =
√

νt
that appears near the boundary. To capture this, we introduce the time-dependent

boundary layer norm

‖ f ‖σ,δ(t) = sup
z∈�σ

|ω(z)|eβ
z
(

1 + δ−1
t φP (δ−1

t z) + δ−1φP (δ−1z)
)−1

, (1.9)

with δt =
√

νt , δ =
√

ν, and with the same boundary layer weight function φP (·).
By convention, the norm ‖·‖σ,δ(0) at time t = 0 is replaced by ‖·‖σ,δ , the boundary

layer norm with precisely one boundary layer behavior of thickness δ, and ‖ · ‖σ,0

denotes the norm without the boundary layer behavior.

For functions depending on two variables f (x, z), we introduce the partial

Fourier transform in variable x :

f (x, z) =
∑

α∈Z

fα(z)eiαx

and introduce the following analytic norm:

|| f ||ρ,σ,δ(t) =
∑

α∈Z

eρ|α||| fα||σ,δ(t),

for ρ, σ > 0. We denote by Bρ,σ,δ(t) the corresponding spaces. In Section 2, we

shall recall some basic properties of such analytic function spaces.

1.3. Main Results

Our main results are

Theorem 1.1. Let M0 > 0 and let ω0 be in Bρ0,σ0,δ for ρ, σ > 0 and for δ =
√

ν,
with ‖ω0‖ρ0,σ0,δ � M0. Then, there is a positive time T so that the solution ω(t)
to the Navier–Stokes equations (1.5)–(1.6), with the initial data ω(0) = ω0, exists
in C1([0, T ];Bρ,σ,δ(t)) for 0 < ρ < ρ0 and 0 < σ < σ0. In particular, there is a
C0 so that the vorticity ω(t) satisfies

|ω(t, x, z)| � C0e−βz
(

1 + δ−1
t φP (δ−1

t z) + δ−1φP (δ−1z)
)

(1.10)

for (t, x, z) ∈ [0, T ] × T × R+, with δt =
√

νt and δ =
√

ν.
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Theorem 1.2. Let M0 > 0 and let uν
0 be divergence-free analytic initial data so

that uν
0 = 0 on the boundary and ων

0 = ∇ × uν
0 is in Bρ0,σ0,δ for ρ, σ > 0 and for

δ =
√

ν, with ‖ων
0‖ρ0,σ0,δ � M0. Then, the inviscid limit holds for Navier–Stokes

solutions with the initial data u0. Precisely, there are unique local solutions uν(t)
to the Navier–Stokes equations (1.1)–(1.2), for small ν > 0, and a unique solution
u0(t) to the corresponding Euler equations, with initial data u0(0) = limν→0 uν

0,
so that

sup
t∈[0,T ]

‖uν(t) − u0(t)‖L p → 0

for 2 � p < ∞, as ν → 0.

As mentioned, the proof of the main theorems is direct, using the vorticity

formulation (1.5)–(1.6). In fact, the existence of analytic solutions is proved, without

having to derive the pointwise bounds on the Green function for the Stokes problem;

see Sections 3.4 and 4.1. However, in order to prove the propagation of boundary

layer behaviors as described in (1.10), the detailed estimates on the Green function

are crucial. The main results apply in particular for well-prepared analytic data that

satisfy the Prandtl’s ansatz (1.3). For general analytic data, beside the Prandtl’s

layers, the initial layers whose thickness is of order
√

νt appear as captured in

(1.10).

Finally, we mention that the analysis avoids dealing directly with the Prandtl’s

layers and Prandtl’s asymptotic expansions, and hence appears robust to resolve

the inviscid limit problem (for analytic data) in domains with curved boundaries.

The paper proceeds with some basic properties of the analytic boundary layer

norms and elliptic estimates in Section 2. The main analysis of the paper is presented

in Section 3 where we study in details the Stokes problem with boundary data and

sources in the boundary layer function spaces. The nonlinear iteration and the proof

of the main theorems are given in Section 4.

2. Analytic Function Spaces

In this section, we shall prove some basic properties of the analytic norms as

well as the elliptic estimates that yield bounds on velocity in term of vorticity. These

norms and estimates can be found in [18]. See also [35,36].

2.1. Analytic Spaces

Let f (x, z) be holomorphic functions on T×�σ , with �σ being the pencil-like

complex domain defined as in (1.7). For ρ, σ > 0 and p � 1, we introduce the

analytic function spaces denoted by L
p
ρ,σ with the finite norm

‖ f ‖
L

p
ρ,σ

:=
∑

α∈Z

eρ|α|‖ fα‖L p
σ
, ‖ fα‖L p

σ
:= sup

0�θ<σ

(∫

∂�θ

| fα(z)|p |dz|
)1/p

,

(2.1)
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in which fα = fα(z) denotes the Fourier transform of f (x, z). In the case when

p = ∞, we replace the L p norm by the sup norm over �σ . Recalling the analytic

boundary layer space Bρ,σ,δ(t) introduced in Section 1.2, we have

Lemma 2.1. There holds the embedding Bρ,σ,δ(t) ⊂ L1
ρ,σ .

Proof. For the holomorphic functions fα(z) satisfying

| fα(z)| � ‖ fα‖σ,δ(t)e
−β
z

(
1 + δ−1

t φP (δ−1
t z) + δ−1φP (δ−1z)

)
,

it is clear that ‖ fα‖L1
σ

� ‖ fα‖σ,δ(t). By taking the summation over α ∈ Z, the

lemma follows. 
�

Lemma 2.2. For any 0 < σ ′ < σ , 0 < ρ′ < ρ, and ψ(z) = z
1+z , there hold

‖ f g‖L1
ρ,σ

� ‖ f ‖L∞
ρ,σ

‖g‖L1
ρ,σ

and (2.2)

‖∂x f ‖
L1

ρ′,σ
�

C

ρ − ρ′ ‖ f ‖L1
ρ,σ

, ‖ψ(z)∂z f ‖
L1

ρ,σ ′
�

C

σ − σ ′ ‖ f ‖L1
ρ,σ

.

(2.3)

The same estimates hold for boundary layer norms ‖ · ‖ρ,σ,δ replacing ‖ · ‖L1
ρ,σ

in
the above three inequalities.

Proof. By definition, we write

f g(x, z) =
∑

α∈Z

eiαx
∑

β∈Z

fα−β(z)gβ(z),

and hence, we estimate

‖ f g‖L1
ρ,σ

=
∑

α∈Z

eρ|α|‖
∑

β∈Z

fα−β(·)gβ(·)‖L1
σ

�
∑

α∈Z

∑

β∈Z

eρ|α−β|eρ|β|‖ fα−β‖L∞
σ

‖gβ‖L1
σ
,

which proves the first inequality. As for the second, we compute

‖∂x f ‖
L1

ρ′,σ
�

∑

α

‖ fα‖L1
σ
|α|eρ′|α|.

Using the fact that (ρ − ρ′)|α|e(ρ′−ρ)|α| is bounded, the second inequality follows.

Finally, we check the third inequality. By the Cauchy integral formula, we have

∂z fα(z) =
1

2π i

∫

C(z,Rz)

fα(y)

(y − z)2
dy,

where C(z, Rz) is the circle, centered at z and of radius Rz so that C(z, Rz) ∈ �σ .

Let us take

Rz = c0(σ − σ ′)

{

(z) if 
(z) < 1

1 if 
(z) � 1
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for some small and positive c0. Thus, using the parametrization y = z + eiw Rz

with 0 � w � 2π , we get

∂z fα(z) =
1

2π i

∫ 2π

0

fα(z + Rzeiw)

R2
z e2iw

(Rzieiw)dw

=
1

2π Rz

∫ 2π

0

fα(z + Rzeiw)e−iwdw.

Now, for any 0 � θ ′ < σ ′, we compute

∫

∂�θ ′
|ψ(
z)∂z fα(z)||dz| �

∫

∂�θ ′

∫ 2π

0

ψ(
z)

2π Rz
| fα(z + Rzeiw)||dw||dz|

�
C0

σ − σ ′

∫

∂�θ ′

∫ 2π

0

| fα(z + Rzeiw)||dw||dz|

�
2πC0

σ − σ ′ sup
0�w�2π

∫

∂�θ ′
| fα(z + Rzeiw)||dz|.

It remains to show that the above integral is bounded by 2‖ f ‖L1
ρ,σ

. To this end,

it suffices to show that for each fixed w ∈ [0, 2π ], there is a positive constant θ < σ

so that

z + Rzeiw ∈ ∂�θ , ∀ z ∈ ∂�θ ′ . (2.4)

Case 1: 
(z) � 1. Recalling Rz = c0(σ − σ ′)
(z) and 	(z) = θ ′
(z) on ∂�θ ′ ,

we compute


(z + Rzeiw) = 
(z) + Rz cos(w) = 
(z)(1 + c0(σ − σ ′) cos w)

	(z + Rzeiw) = 	(z) + Rz sin(w) = 
(z)(θ ′ + c0(σ − σ ′) sin w).

Hence, z + Rzeiw ∈ ∂�θ for θ = θ ′+c0(σ−σ ′) sin w
1+c0(σ−σ ′) cos w

. We now check θ < σ . Indeed,

we need

θ ′ + c0(σ − σ ′) sin w < σ(1 + c0(σ − σ ′) cos w),

which is equivalent to

σ − θ ′ > c0(σ − σ ′)(sin w − σ cos w).

Since θ ′ < σ ′ and c0 can be taken arbitrarily small (independent of σ, σ ′), the

above inequality follows.

Case 2: 
(z) � 1. Similarly, using Rz = c0(σ − σ ′) and 	(z) = θ ′ on ∂�θ ′ , we

compute

	(z + Rzeiw) = 	(z) + Rz sin w = θ ′ + c0(σ − σ ′) sin w = θ̃ ,

where θ̃ < σ for sufficiently small c0 and for θ ′ < σ ′ < σ . This proves (2.4). 
�
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2.2. Elliptic Estimates

Next, we recall the elliptic estimates, which are adapted from [17,18].

Proposition 2.3. Let φ be the solution of −�φ = ω with the zero Dirichlet bound-
ary condition, and set u = ∇⊥φ. Then, there holds

‖u1‖L∞
ρ,σ

+ ‖u2‖L∞
ρ,σ

� C‖ω‖L1
ρ,σ

, (2.5)

‖∂x u1‖L∞
ρ,σ

+ ‖∇u2‖L∞
ρ,σ

+ ‖ψ−1u2‖L∞
ρ,σ

� C‖ω‖L1
ρ,σ

+ C‖∂xω‖L1
ρ,σ

,

(2.6)

‖∇u1‖L1
ρ,σ

+ ‖∇u2‖L1
ρ,σ

� C‖ω‖L1
ρ,σ

, (2.7)

with ψ(z) = z/(1 + z), for some constant C.

Proof. Taking the Fourier transform, it suffices to study the classical one-dimensional

Laplace equation

∂2
z φα − α2φα = ωα (2.8)

on �σ , with the Dirichlet boundary condition φα(0) = 0, and α > 0. For real

values z, the solution φα of (2.8) is explicitly given by

φα(z) =
∫ z

0

G−(y, z)ωα(y)dy +
∫ ∞

z
G+(y, z)ωα(y)dy

with

G±(y, z) = −
1

2α

(
e±α(z−y) − e−α(y+z)

)
.

This expression may be extended to complex values of z. Indeed, for z ∈ �σ , there

is a positive θ so that z ∈ ∂�θ . We then write ∂�θ = γ−(z) ∪ γ+(z), consisting

of complex numbers y ∈ ∂�θ so that 
y < 
z and 
y > 
z, respectively. Then,

we write

φα(z) =
∫

γ−(z)
G−(y, z)ωα(y)dy +

∫

γ+(z)
G+(y, z)ωα(y)dy. (2.9)

We note in particular that for y ∈ γ±(z), there holds

|G±(y, z)| � α−1e−α|y−z|.

This proves that

|φα(z)| �

∫

∂�θ

α−1e−α|y−z||ωα(y)| |dy| � α−1

∫

∂�θ

|ωα(y)| |dy|, (2.10)

which by definition yields sup�σ
|αφα(z)| � ‖ωα‖L1

σ
. The same proof holds for

∂zφα(z). This completes the proof of (2.5). The estimate (2.6) follows by treating

∂x as multiplication by α in the Fourier space.

Finally, taking L1 norm of the estimate (2.10) and upon noting that the kernel

αe−α|y−z| is bounded in L1 norm, we obtain the estimate (2.7) for α2φα . The

second derivative in z, we use ∂2
z φα = α2φα + ωα . This completes the proof of the

lemma. 
�
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2.3. Bilinear Estimates

Lemma 2.4. For any ω and ω̃, denoting by v the velocity related to ω, we have

‖v · ∇ω̃‖L1
ρ,σ

� C‖ω‖L1
ρ,σ

‖ω̃x‖L1
ρ,σ

+ C(‖ω‖L1
ρ,σ

+ ‖ωx‖L1
ρ,σ

)‖ψ(z)∂zω̃‖L1
ρ,σ

‖v · ∇ω̃‖ρ,σ,δ � C‖ω‖ρ,σ,δ‖ω̃x‖ρ,σ,δ + C(‖ω‖ρ,σ,δ + ‖ωx‖ρ,σ,δ)‖ψ(z)∂zω̃‖ρ,σ,δ

Proof. We write

(v · ∇)ω̃ = v1∂x ω̃ + v2∂zω̃.

Using (2.2) and (2.5), the first term is clear. On the other hand, the second term is

due to (2.2) and (2.6). Finally, for the boundary layer norms, we note that

‖ f g‖ρ,σ,δ � ‖ f ‖L∞
ρ,σ

‖g‖ρ,σ,δ.

The lemma thus follows, upon using Proposition 2.3 and noting that ‖ f ‖L1
ρ,σ

�

‖ f ‖ρ,σ,δ . 
�

3. The Stokes Problem

In this section, we study the inhomogenous Stokes problem

ωt − ν�ω = f (t, x, z), in T × �σ ,

ν(∂z + |∂x |)ω = g(t, x), on z = 0,
(3.1)

together with the initial data ω|t=0 = ω0. Let eνt B denote the semigroup of the

corresponding Stokes problem: namely, the heat equation ∂tω−ν�ω = 0 on T×�σ

with the homogenous boundary condition ν(∂z + |∂x |)ω|z=0 = 0. Solutions to the

linear Stokes problem are then constructed via Duhamel’s integral representation,

which will be proved in the next subsection, and we have

ω(t) = eνt Bω0 +
∫ t

0

eν(t−s)B f (s) ds +
∫ t

0

�(ν(t − s))g(s) ds (3.2)

in which �(νt) = eνt B(gH1
T×{y=0}), where H1

T×{y=0} is the one-dimensional Haus-

dorff measure restricted on the boundary; precisely, see (3.22)-(3.23) for the explicit

construction of eνt B and �(νt) in term of the Green function for the Stokes problem.

In this section, we shall derive uniform bounds for the Stokes semigroup in

analytic spaces, with the analytic norm

‖ω‖ρ,σ,δ(t) =
∑

α∈Z

eρ|α|‖ωα‖σ,δ(t),

with the boundary layer norm defined by

‖ωα‖σ,δ(t) = sup
z∈�σ

|ωα(z)|eβ
z
(

1 + δ−1
t φP (δ−1

t z) + δ−1φP (δ−1z)
)−1

, (3.3)
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in which the boundary thicknesses are δt =
√

νt and δ =
√

ν. As for the initial

data, the norm is measured by ‖ωα‖σ,δ(0), which consists of precisely one boundary

layer behavior whose thickness is δ =
√

ν. We introduce

|||ω(t)|||ρ,σ,δ(t),k =
∑

j+��k

‖∂ j
x (ψ(z)∂z)

�ω(t)‖ρ,σ,δ(t)

and

|||ω|||
W

k,1
ρ,σ

=
∑

j+��k

‖∂ j
x (ψ(z)∂z)

�ω(t)‖L1
ρ,σ

.

We also denote |||g|||ρ,k the corresponding analytic norm for g = g(x). We obtain

the following key proposition:

Proposition 3.1. Let eνt B be the semigroup for the linear Stokes problem, and
�(νt) be the operator eνt B(gH1

T×{y=0}), where H1
T×{y=0} is the one-dimensional

Hausdorff measure restricted on the boundary. Then, ∂x commutes with both eνt B

and �(νt). In addition, for any k � 0, and for any 0 � s < t � T , there hold

|||eνt B f |||ρ,σ,δ(t),k � ||| f |||ρ,σ,δ(0),k,

|||eν(t−s)B f |||ρ,σ,δ(t),k �

√
t

s
||| f |||ρ,σ,δ(s),k, and

|||�(ν(t − s))g|||ρ,σ,δ(t),k �

√
t

t − s
|||g|||ρ,k

uniformly in the inviscid limit. Similarly, we also obtain

|||eνt B f |||
W

k,1
ρ,σ

� ||| f |||
W

k,1
ρ,σ

, |||�(νt)g|||
W

k,1
ρ,σ

� |||g|||ρ,k

uniformly in the inviscid limit.

3.1. Duhamel Principle

We first treat the Stokes problem on T × R+. By taking the Fourier transform

in x , the problem is reduced to

∂tωα − ν�αωα = fα(t, x, z), in R+

ν(∂z + |α|)ωα = gα(t), on z = 0,
(3.4)

in which ωα denotes the Fourier transform of ω with respect to x , and �α = ∂2
z −α2.

Let Gα(t, z; y) be the corresponding Green function of the linear Stokes problem

(3.4). That is, for each fixed y � 0, the function Gα(t, z; y) solves

(∂t − ν�α)Gα(t, z; y) = 0, in R+

ν(∂z + |α|)Gα(t, z; y) = 0, on z = 0,
(3.5)

together with the initial data Gα(0, z; y) = δy(z). The Green function will be

constructed so that Gα(t, ·; y) ∈ L1 for each t, y. we then have
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Lemma 3.2. (Duhamel’s principle). For any T > 0, and for any fα ∈ L∞(0, T ;
L1(R+)) and gα ∈ L∞(0, T ), the unique solution to the linear Stokes problem
(3.4), with the initial data ωα(0, z) = ω0,α(z) in L1(R+), satisfies

ωα(t, z) =
∫ ∞

0

Gα(t, y; z)ω0,α(y) dy +
∫ t

0

Gα(t − s, 0; z)gα(s) ds

+
∫ t

0

∫ ∞

0

Gα(t − s, y; z) fα(s, y) dyds.

(3.6)

Proof. Using (3.4), we compute

∫ t

0

∫ ∞

0

Gα(t − s, y; z) fα(s, y) dyds

=
∫ t

0

∫ ∞

0

Gα(t − s, y; z)(∂s + να2 − ν∂2
y )ωα(s, y) dyds

=
∫ t

0

∫ ∞

0

(∂s + να2 − ν∂2
y )Gα(t − s, y; z)ωα(s, y) dyds

+
∫ ∞

0

Gα(0, y; z)ωα(t, y) dy

−
∫ ∞

0

Gα(t, y; z)ω0,α(y) dy

+ ν

∫ t

0

(
Gα(t − s, y; z)∂yωα − ∂yGα(t − s, y; z)ωα

)
|y=0

ds.

The lemma follows, upon using the initial data and boundary conditions on

Gα(t, y; z). 
�

3.2. The Green Function for the Stokes Problem

In this section, we derive sufficient pointwise bounds on the temporal Green

function for the linear Stokes problem (3.4). Precisely, we prove the following:

Proposition 3.3. Let Gα(t, y; z) be the Green function of the Stokes problem (3.4).
There holds

Gα(t, y; z) = Hα(t, y; z) + Rα(t, y; z), (3.7)

in which Hα(t, y; z) is exactly the one-dimensional heat kernel with the homogenous
Neumann boundary condition and Rα(t, y; z) is the residual kernel due to the
boundary condition. Precisely, There hold

Hα(t, y; z) =
1

√
νt

(
e− |y−z|2

4νt + e− |y+z|2
4νt

)
e−α2νt and

|∂k
z Rα(t, y; z)| � μk+1

f e−θ0μ f |y+z| + (νt)−
k+1

2 e−θ0
|y+z|2

νt e− 1
8 α2νt

for y, z � 0, k � 0, and for some θ0 > 0 and for μ f = |α| + 1√
ν

.
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Remark 3.4. We note that the residual term Rα(t, y; z) contains a term without

viscous dissipation e−α2νt , and this is precisely due to the |α| term in the boundary

condition in the linear Stokes problem (3.5). Observe that ωα = αe−αz is an exact

stationary solution to the linear homogenous Stokes problem (3.4).

Remark 3.5. By the reflection method (e.g., [26]), the residual Green kernel can

be explicitly defined by

Rα(t, y; z) = 2e−α2νt (α2 + α∂z)(−�−1
α )G(νt, y + z), (3.8)

with G(t, z) = 1√
4π t

e−z2/4t . The pointwise bounds as derived in Proposition 3.3

are in particular useful in propagating unbounded vorticity with boundary layer

behaviors.

We proceed the construction of the Green function via the resolvent equation.

Namely, for each fixed y � 0, let Gλ,α(y, z) be the L1 solution to the resolvent

problem

(λ − ν�α)Gλ,α(y, z) = δy(z)

ν(∂z + |α|)Gλ,α(y, 0) = 0.
(3.9)

We then obtain

Lemma 3.6. Let μ = ν−1/2
√

λ + α2ν, having positive real part. There holds

Gλ,α(y, z) = Hλ,α(y, z) + Rλ,α(y, z), (3.10)

in which Hλ,α(y, z) denotes the resolvent kernel of the heat problem with homoge-
nous Neumann boundary condition; namely,

Hλ,α(y, z) =
1

2νμ

(
e−μ|y−z| + e−μ|y+z|

)
, Rλ,α(y, z) =

α(α + μ)

λμ
e−μ|y+z|.

In particular, Gλ,α(y, z) is meromorphic with respect to λ in C \ {−α2ν − R+}
with a pole at λ = 0.

Proof. The construction is standard, upon noting that Gλ,α(y, z) is a linear com-

bination of e±μz and satisfies the following jump conditions across z = y:

[Gλ,α(y, z)]|z=y = 0, [ν∂zGλ,α(y, z)]|z=y = 1.

The lemma follows. 
�

Proof of Proposition 3.3. The temporal Green function Gα(t, z; y) can then be

constructed via the inverse Laplace transform

Gα(t, y; z) =
1

2π i

∫

�

eλt Gλ,α(y, z)dλ, (3.11)

in which the contour of integration � is taken such that it remains on the right of

the (say, L2) spectrum of the linear operator λ − ν�α , which is −α2ν − R+.
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In view of (3.10), we set Hα(t, y; z) and Rα(t, y; z) to be the corresponding

temporal Green function of Hλ,α(y, z) and Rλ,α(y, z), respectively. It follows that

Hα(t, y; z) is the temporal Green function of the one-dimensional heat problem

with the homogenous Neumann boundary condition, yielding

Hα(t, y; z) =
1

√
4πνt

(
e− |y−z|2

4νt + e− |y+z|2
4νt

)
e−να2t .

It remains to compute the residual Green function Rα(t, y; z):

Rα(t, y; z) =
1

2π i

∫

�

eλt e−μ|y+z| α(α + μ)

λμ
dλ. (3.12)

Note that the z-derivative of Rα(t, y; z) gains an extra μ in the above integral.

Case 1: α2ν � 1. By the Cauchy’s theory, we may decompose the contour of

integration as � = �± ∪ �c, having

�± : =
{
λ = −

1

2
να2 + ν(a2 − b2) + 2νiab ± i M, ±b ∈ R+

}
,

�c : =
{
λ = −

1

2
να2 + νa2 + Meiθ , θ ∈ [−π/2, π/2]

} (3.13)

for some positive number M and for a = |y+z|
2νt . Since α2ν � 1, we take M large

enough so that the pole λ = 0 remains on the left of the contour �. It is clear that

|λ| � 1 on �.

On �c, we note that


μ = ν−1/2

√

1

2
να2 + νa2 + Meiθ � ν−1/2

√
1

2
να2 + νa2 � a,


μ = ν−1/2

√

1

2
να2 + νa2 + Meiθ � ν−1/2

√
M .

This implies that 
μ � a
2

+ θ0μ f for some positive constant θ0, recalling μ f =
α + 1/

√
ν and α � ν−1/2. In particular, |μ| � μ f � α. This proves that

∣∣∣
∫

�c

eλt e−μ|y+z| α(α + μ)

λμ
dλ

∣∣∣ �

∫ π/2

−π/2

eMt ea2νt e− a
2 |y+z|e−θ0μ f |y+z|μ f dθ

� μ f e−θ0μ f |y+z|ea2νt e− a
2 |y+z|

� μ f e−θ0μ f |y+z|,

in which we used ea2νt e− a
2 |y+z| = 1 by definition of a. As for derivatives, we

estimate
∣∣∣
∫

�c

eλt e−μ|y+z| α(α + μ)

λ
dλ

∣∣∣ =
∣∣∣
∫

�c

eλt e−μ|y+z| α

ν(μ − α)
dλ

∣∣∣

� ν−1

∫ π/2

−π/2

eMt ea2νt e− a
2 |y+z|e−θ0μ f |y+z|dθ

� μ2
f e−θ0μ f |y+z|,
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upon recalling μ f = α + 1/
√

ν.

Meanwhile, on �±, we note that


μ = 

√

1

2
α2 + (a + ib)2 ± iν−1 M � 


√
(a + ib)2 = a,

upon noting that the sign of b and ±M is the same on �±. Similarly, we note that


μ � M/
√

ν. By the definition of a, we have

|eλt e−μ|y+z|| � e− 1
2 να2t e− |y+z|2

4νt e−νb2t ,

and together with the fact that λ = ν(μ2 − α2), we compute

α(α + μ)

λμ
dλ =

2iα(a + ib)

μ(μ − α)
db.

Since α2ν � 1, we have α � |μ|. In addition, we have (a + ib)2 ± iν−1/2 M =
μ2−α2 on �± with b having the same sign as does ±M . This implies that |a+ib|2 �
|μ2 − α2| � |μ|2. Putting the above computations together, we obtain
∣∣∣∣
∫

�±
eλt e−μ|y+z| α(α + μ)

λμ
dλ

∣∣∣∣ � C0e− 1
2 να2t e− |y+z|2

4νt

∫

R

e−νb2t α|a + ib|
|μ(μ − α)|

db

� C0e− 1
2 να2t e− |y+z|2

4νt

∫

R

e−νb2t db

� C0(νt)−1/2e− 1
2 να2t e− |y+z|2

4νt .

As for the derivatives, we estimate
∣∣∣∣
∫

�±
eλt e−μ|y+z| α(α + μ)

λ
dλ

∣∣∣∣ � C0e− 1
2 να2t e− |y+z|2

4νt

∫

R

e−νb2t (a + |b|)db

� C0(νt)−1

(
1 +

|x + y|
√

νt

)
e− 1

2 να2t e− |y+z|2
4νt

� C0(νt)−1e− 1
2 να2t e− |y+z|2

8νt .

Case 2: α2ν � 1. Take a = |y+z|
2νt as in the previous case. Consider first the case

when |a − α| � 1
2
α. In this case, we move the contour of integration to

�1 :=
{
λ = −να2 + ν(a2 − b2) + 2νiab, ±b ∈ R+

}
,

which may pass the pole at λ = 0 (precisely, it does when a = α). By Cauchy’s

theory, we have

Rα(t, y; z) =
1

2π i

∫

�1

eλt e−μ|y+z| α(α + μ)

λμ
dλ + Res0,

in which the residue at the pole λ = 0 is given by

Res0 = 2αe−α|y+z| (3.14)
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when a < α. We take Res0 = 0 when a > α. Note that the residue does not

decay in time. This accounts for the contribution of the inhomogenous Neumann

boundary condition. Since α2ν � 1, we have μ f = α + 1/
√

ν � 2α, and hence

Res0 � 2μ f e− 1
2 μ f |y+z|.

As for the integral term, we note that μ = a + ib, and hence

α(α + μ)

λμ
dλ =

2iνα(α + μ)

λ
db.

Note that �1 cuts the real axis at ν(a2 −α2) and the imaginary axis at 2νab0 (when

a > α), with b0 = ±
√

a2 − α2. This, in particular, yields |λ| � να(a + α) and

|μ| = ν−1/2|
√

λ + α2ν| � ν−1/2|λ|1/2. Moreover,

∣∣∣α(α + μ)

λμ
dλ

∣∣∣ � db.

We thus obtain
∣∣∣∣
∫

�1

eλt e−μ|y+z| α(α + μ)

λμ
dλ

∣∣∣∣ � C0e−να2t e− |y+z|2
4νt

∫

R

e−νb2t db

� C0(νt)−1/2e−να2t e− |y+z|2
4νt .

(3.15)

It remains to consider the case when |a − α| � 1
2
α and α2ν � 1. We note

in particular that 1
2
α � a � 3

2
α. In this case, we simply modify the contour of

integration by taking

�1 :=
{
λ = −

1

8
να2 + ν(a2 − b2) + 2νiab, ±b ∈ R+

}
.

Observe that the contour �1 leaves the origin on the left, with |λ| � να2. The

integral is thus estimated exactly as done in (3.15). The derivative estimates follow

as in the previous case.

The proof of Proposition 3.3 is complete. 
�

3.3. The Green Function on �σ

The Green function constructed in Proposition 3.3 can be easily extended to

the complex domain �σ defined by

�σ =
{

z ∈ C : |	z| < min{σ |
z|, σ }
}
,

for some smallσ > 0. Indeed, in view of (3.8), the Green function involves precisely

the heat kernel G(t, z) = 1√
4π t

e−z2/4t , which is extended to the complex domain.

In addition, we note that for z ∈ �σ , there holds 	z � σ
z, which implies that

|e−z2/4t | � e−|
z|2/4t+|	z|2/4t � e−(1−σ 2)|
z|2/4t .
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Similar estimates hold for the other terms in the Green function Gα(t, y; z) =
Hα(t, y; z) + Rα(t, y; z), yielding

Hα(t, y; z) �
1

√
νt

(
e−(1−σ 2)

|
y−
z|2
4νt + e−(1−σ 2)

|
y+
z|2
4νt

)
e− 1

8 α2νt ,

Rα(t, y; z) � μ f e−θ0(1−σ)μ f |
y+
z|,

(3.16)

for y, z ∈ �σ , and for some θ0 > 0 and for μ f = |α| + 1√
ν

.

The solution ωα(t, z) to the Stokes problem can now be constructed on �σ in a

manner similar to that which was done for (2.9). Precisely, for any z ∈ �σ , let θ be

the positive constant so that z ∈ ∂�θ . The Duhamel principle (3.6) then becomes

ωα(t, z) =
∫

∂�θ

Gα(t, y; z)ω0,α(y) dy +
∫ t

0

Gα(t − s, 0; z)gα(s) ds

+
∫ t

0

∫

∂�θ

Gα(t − s, y; z) fα(s, y) dyds,

(3.17)

which is well-defined for z ∈ �σ ; having the Green function Gα(t, y; z) satisfies

the pointwise estimates (3.16), similar to those on the real line. For this reason, it

suffices to derive convolution estimates for real values y, z.

3.4. Convolution Estimates

We now derive convolution estimates. We start with the analytic L1 norms. For

k � 0, we introduce

‖ωα‖
W

k,1
σ

=
k∑

j=0

‖(ψ(z)∂z)
jωα‖L1

σ
.

We prove the following:

Proposition 3.7. Let T > 0 and let Gα(t, y; z) be the Green function of the Stokes
problem (3.4), constructed in Proposition 3.3. Then, for any 0 � s < t � T and
k � 0, there is a universal constant CT so that

∥∥∥
∫ ∞

0

Gα(t, y; ·)ωα(y) dy
∥∥∥

W
k,1
σ

� CT ‖ωα‖
W

k,1
σ

,

∥∥∥
∫ ∞

0

Gα(t − s, y; ·)ωα(y) dy
∥∥∥

W
k,1
σ

� CT ‖ωα‖
W

k,1
σ

,

uniformly in the inviscid limit.

Proof. We shall prove the convolution for real values y, z. For the complex exten-

sion, see Section 3.3. Recall from Proposition 3.3 that Gα(t, y; z) = Hα(t, y; z)+
Rα(t, y; z), with

Hα(t, y; z) =
1

√
νt

(
e− |y−z|2

4νt + e− |y+z|2
4νt

)
e−α2νt ,

|∂k
z Rα(t, y; z)| � μk

f e−θ0μ f |y+z| + (νt)−
k+1

2 e−θ0
|y+z|2

νt e− 1
8 α2νt
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for k � 0. In particular, ‖Gα(t, y; ·)‖L1
σ

� 1, for each fixed y, t . The L1 convolution

estimate is thus straightforward. We now check the estimates for derivatives. We

estimate

ψ(z)∂z Rα(t, y; z) � |z|μ2
f e−θ0μ f |y+z| +

|z|
νt

e−θ0
|y+z|2

νt e− 1
8 α2νt

� μ f e− 1
2 θ0μ f |y+z| +

1
√

νt
e−θ0

|y+z|2
2νt e− 1

8 α2νt .

That is, ψ(z)∂z Rα(t, y; z) obeys essentially the same bound as does Rα(t, y; z).
The convolution estimates for derivatives of Rα(t, y; z) follow.

Next, we treat the integral involving Hα(t, y; z). Precisely, we set H(t, y; z) =
1√
νt

e− |y−z|2
4νt . Note that ∂z H(t, y; z) = −∂y H(t, y; z). Hence, we compute

∫ ∞

0

ψ(z)∂z H(t − s, y; ·)ωα(y) dy

=
∫ z/2

0

ψ(z)∂z H(t − s, y; ·)ωα(y) dy − ψ(z)H(t − s, z/2; z)ωα(z/2)

+
∫ ∞

z/2

ψ(z)H(t − s, y; ·)∂yωα(y) dy.

We now estimate each term on the right. Since ψ(z) � 2ψ(y) for y � z/2, the last

integral on the right is already estimated in the previous case with ωα(y) replaced

by ψ(y)∂yωα(y). As for the first integral, since y � z/2, we compute

ψ(z)∂z H(t − s, y; z) �
z

1 + z
(ν(t − s))−1e− |y−z|2

8ν(t−s)

� |y − z|(ν(t − s))−1e− |y−z|2
8ν(t−s)

� (ν(t − s))−1/2e− |y−z|2
16ν(t−s) .

Thus, the integral over [0, z/2] is again already estimated in the previous case.

Finally, we compute

|ψ(z)H(t − s, z/2; z)ωα(z/2)| � z(ν(t − s))−1/2e− |z|2
16ν(t−s) |ωα(z/2)|

� |ωα(z/2)|,

whose L1
σ norm is clearly bounded by ‖ωα‖L1

σ
. 
�

3.5. Convolution Estimates with Boundary Layer Behaviors

In this section, we provide the convolution estimates of the Green function

against functions in the boundary layer spaces, whose norm is defined by

‖ωα‖σ,δ(t) = sup
z∈�σ

|ωα(z)|eβ
z
(

1 + δ−1
t φP (δ−1

t z) + δ−1φP (δ−1z)
)−1

, (3.18)
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for t > 0 and β > 0, in which the boundary thicknesses are δt =
√

νt and δ =
√

ν

and for boundary layer weight φP (z) = 1
1+|
z|P , P > 1. We also introduce the

boundary norm for derivatives:

‖ωα‖σ,δ(t),k =
k∑

j=0

‖(ψ(z)∂z)
jωα‖σ,δ(t)

for k � 0. In the case t = 0, the norm ‖ · ‖σ,δ(0) is defined to consist of precisely

one boundary layer with thickness δ =
√

ν.

We prove the following:

Proposition 3.8. Let T > 0 and let Gα(t, y; z) be the Green function of the Stokes
problem (3.4), constructed in Proposition 3.3. Then, for any 0 � s < t � T and
k � 0, there is a universal constant CT so that

∥∥∥
∫ ∞

0

Gα(t, y; ·)ωα(y) dy
∥∥∥

σ,δ(t),k
� CT ‖ωα‖σ,δ(0),k,

∥∥∥
∫ ∞

0

Gα(t − s, y; ·)ωα(y) dy
∥∥∥

σ,δ(t),k
� CT

√
t

s
‖ωα‖σ,δ(s),k

uniformly in the inviscid limit.

We shall prove the convolution estimates for real values y, z. The complex

extension follows from the similar estimates on the Green function obtained in

(3.16). As a consequence, Proposition 3.8 is a direct combination of the following

two lemmas:

Lemma 3.9. Let R(t, y; z) := μ f e−μ f |y+z|, with μ f = α + 1√
ν

. Then, for any

s, t, and k � 0, there is a universal constant C0 so that

∥∥∥
∫ ∞

0

R(t − s, y; z)ωα(y) dy
∥∥∥

σ,δ(t),k
� C0‖ωα‖σ,δ(s).

Proof. The estimate for k = 0 follows directly from the fact that ωα belongs to

L1: ‖ωα‖L1 � C0‖ωα‖σ,δ(s). The convolution in fact belongs to the boundary layer

space with finite norm‖·‖σ,δ(0). As for derivatives, we note that |ψ(z)∂z R(t, y; z)| �

zμ2
f e−μ f |y+z| � C0μ f e− 1

2 μ f z . The derivative estimates thus follow identically.


�

Lemma 3.10. Let H(t, y; z) := (νt)−1/2e− |y±z|2
Mνt , for some positive M, and let

T > 0. Then, for any 0 � s < t � T , ε0 > 0, and k � 0, there is a universal
constant CT so that

∥∥∥
∫ ∞

0

H(t, y; ·)ωα(y) dy
∥∥∥

σ,δ(t),k
� CT ‖ωα‖σ,δ(0),k,

∥∥∥
∫ ∞

0

H(t − s, y; ·)ωα(y) dy
∥∥∥

σ,δ(t),k
� CT

√
t

s
‖ωα‖σ,δ(s),k

uniformly in the inviscid limit.
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Proof. It suffices to prove the convolution for H(t, y; z) = (νt)−1/2e− |y−z|2
Mνt . We

start with the case k = 0. Let 0 � s < t . For |y − z| � Mβν(t − s), it is clear that

e− |y−z|2
Mν(t−s) e−β|y| � e−β|z|e

−|y−z|
(

|y−z|
Mν(t−s) −β

)
� e−β|z|,

whereas, for |y − z| � Mβν(t − s), we note that

e−Mβ2ν(t−s)e−β|y| � e−β|y−z|e−β|y| � e−β|z|.

That is, the exponential decay e−βz is recovered at an expense of a slowly growing

term in time eMβ2ν(t−s) which is bounded in finite time. Precisely, this proves

e− |y−z|2
Mν(t−s) e−βy � eMβ2ν(t−s)e−β|z|, ∀y, z ∈ R. (3.19)

It remains to study the integral

∫ ∞

0

(ν(t − s))−1/2e− |y−z|2
Mν(t−s)

(
1 + δ−1

s φP (δ−1
s y) + δ−1φP (δ−1 y)

)
dy. (3.20)

First, without the boundary layer behavior, the integral is clearly bounded. We now

treat the boundary layer terms. Using the fact that φP (·) is decreasing, we have

∫ ∞

z/2

(ν(t − s))−1/2e− |y−z|2
Mν(t−s) δ−1φP (δ−1 y) dy

� C0δ
−1φP (δ−1z)

∫ ∞

z/2

(ν(t − s))−1/2e− |y−z|2
Mν(t−s) dy

� C0δ
−1φP (δ−1z),

and, upon noting that y/δs � z/2δt , we obtain

∫ ∞

z/2

(ν(t − s))−1/2e− |y−z|2
Mν(t−s) δ−1

s φP (δ−1
s y) dy

� C0δ
−1
s φP (δ−1

t z)

∫ ∞

z/2

(ν(t − s))−1/2e− |y−z|2
Mν(t−s) dy

� C0

√
t/sδ−1

t φP (δ−1
t z).

By contrast on y ∈ (0, z
2
), we have |y − z| � z

2
and φP � 1. Hence, we have

∫ z/2

0

(ν(t − s))−1/2e− |y−z|2
Mν(t−s) δ−1

s φP (δ−1
s y) dy

� e− |z|2
8Mν(t−s)

∫ z/2

0

(ν(t − s))−1/2e− |y−z|2
2Mν(t−s) δ−1

s φP (δ−1
s y) dy

� C0e− |z|2
8Mνt min

{
δ−1

s , δ−1
t−s

}
.
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Note that min{δ−1
s , δ−1

t−s} � 2δ−1
t . Hence, the above integral is bounded in ‖·‖σ,δ(t)

norm. Similarly, we estimate

∫ z/2

0

(ν(t − s))−1/2e− |y−z|2
Mν(t−s) δ−1φP

(
δ−1 y

)
dy � C0e− |z|2

8Mν(t−s) δ−1.

To estimate this, we will prove that

e− |z|2
8Mνt � C0eε0tφP

(
δ−1z

)
(3.21)

for arbitrarily small ε0 (and hence, C0 depends on ε0). Indeed, when |z| � ε0

√
νt ,

it is clear that e− |z|2
8Mνt � φP (δ−1z). On the other hand, when |z| ≤ ε0

√
νt , we

note that ez/δ � eε0t , which implies that 1 � eε0t e−z/δ � C0eε0tφP (δ−1z). The

estimate (3.21) follows, and hence the claimed estimate for k = 0.

Next, we consider the derivative estimate. Note that ∂z H(t, y; z) = −∂y H(t, y; z).
Hence, we compute

∫ ∞

0

ψ(z)∂z H(t − s, y; ·)ωα(y) dy

=
∫ z/2

0

ψ(z)∂z H(t − s, y; ·)ωα(y) dy − ψ(z)H(t − s, z/2; z)ωα(z/2)

+
∫ ∞

z/2

ψ(z)H(t − s, y; ·)∂yωα(y) dy.

We now estimate each term on the right. Since ψ(z) � 2ψ(y) for y � z/2, the last

integral on the right is already estimated in the previous case with ωα(y) replaced

by ψ(y)∂yωα(y). As for the first integral, since y � z/2, we compute

ψ(z)∂z H(t − s, y; z) �
z

1 + z
(ν(t − s))−1e− |y−z|2

2Mν(t−s)

� |y − z|(ν(t − s))−1e− |y−z|2
2Mν(t−s)

� (ν(t − s))−1/2e− |y−z|2
4Mν(t−s) .

Thus, the integral over [0, z/2] is again already estimated in the previous case.

Finally, we compute

|ψ(z)H(t − s, z/2; z)ωα(z/2)|

� z(ν(t − s))−1/2e− |z|2
4Mν(t−s)

(
1 + δ−1

s φP (δ−1
s z) + δ−1φP (δ−1z)

)

� 1 + δ−1
s φP (δ−1

s z) + δ−1φP (δ−1z)

� 1 +
√

t/sδ−1
t φP (δ−1

t z) + δ−1φP (δ−1z),

in which the last inequality is again due to the decreasing property of φP and the

fact that δs � δt . This completes the proof of the lemma. 
�
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3.6. Semigroup Bounds in Analytic Spaces

In this section, we shall prove Proposition 3.1 on deriving uniform bounds for

the Stokes semigroup in analytic spaces, with the analytic norm

‖ω‖ρ,σ,δ(t) =
∑

α∈Z

eρ|α|‖ωα‖σ,δ(t).

We first write the Stokes semigroup et B and the operator �(t) in the Fourier series:

eνt Bω =
∑

α∈Z

eiαx (eνt Bω)α, �(νt)g =
∑

α∈Z

eiαx (�(νt)g)α, (3.22)

in which

(eνt Bω)α =
∫ ∞

0

Gα(t, y; z)ωα(y) dy, (�(νt)g)α = Gα(t, 0; z)gα, (3.23)

with the Green kernel Gα(t, y; z) constructed in Proposition 3.3. The convolution

estimates obtained in Proposition 3.8 yield

‖(eν(t−s)Bω)α‖σ,δ(t),k � C0

√
t

s
‖ωα‖σ,δ(s),k .

These prove the claimed estimates on eνt B . As for the trace operator, using Propo-

sition 3.3, we have

Gα(t − s, 0; z) � (ν(t − s))−1/2e− z2

4ν(t−s) + μ f e−μ f z

� (ν(t − s))−1/2e− z2

4νt + μ f e−μ f z .

(3.24)

By definition of the boundary layer norm, ‖Gα(t − s, 0; z)‖σ,δ(t) �
√

t
t−s . The

proof of Proposition 3.1 is complete.

4. Proof of the Main Theorems

As mentioned in the introduction, we construct the solutions to the Navier–

Stokes equation via the vorticity formulation

∂tω − ν�ω = −u · ∇ω

ν(∂z + |∂x |)ω|z=0 = [∂z�
−1(u · ∇ω)]|z=0 ,

(4.1)

in which u = ∇⊥�−1ω, with �−1 being the inverse of Laplacian with the Dirichlet

boundary condition. For convenience, we set N = u · ∇ω. The solution to (4.1) is

then constructed via Duhamel’s principle as follows:

ω(t) = eνt Bω0 −
∫ t

0

eν(t−s)B N (s) ds +
∫ t

0

�(ν(t − s))(∂z�
−1 N (s))|z=0 ds,

(4.2)

with ω0 ∈ Bρ0,σ0,δ , for some ρ0, σ0 > 0.



1124 Toan T. Nguyen & Trinh T. Nguyen

4.1. Nonlinear Iteration

Let us fix positive numbers γ, ζ, and ρ0, and introduce the following nonlinear

iterative norm for vorticity:

A(γ ) = sup
0<γ t<ρ0

sup
ρ<ρ0−γ t

{
|||ω(t)|||

W
1,1
ρ,ρ

+ |||ω(t)|||
W

2,1
ρ,ρ

(ρ0 − ρ − γ t)ζ
}
,

(4.3)

recalling

|||ω(t)|||
W

k,1
ρ,ρ

=
∑

j+��k

‖∂ j
x (ψ(z)∂z)

�ω(t)‖L1
ρ,ρ

.

Here, for the sake of presentation, we take the same analyticity radius in x and z;

namely, σ = ρ < ρ0. Thanks to Lemma 2.1, ω0 ∈ Wk,1
ρ,ρ , for any k � 0.

We shall show that the vorticity norm remains finite for sufficiently large γ . The

weight (ρ0 − ρ − γ t)ζ , with a small ζ > 0, is standard to avoid time singularity

when recovering the loss of derivatives [4,34]. Let ρ < ρ0 −γ t . Thanks to Lemma

2.4, we have

|||N (t)|||
W

0,1
ρ,ρ

� |||ω(t)|||2
W

1,1
ρ,ρ

� A(γ )2

|||N (t)|||
W

1,1
ρ,ρ

� |||ω(t)|||
W

1,1
ρ,ρ

|||ω(t)|||
W

2,1
ρ,ρ

� A(γ )2(ρ0 − ρ − γ t)−ζ .
(4.4)

In addition, using the elliptic estimates, we have

|||(∂z�
−1 N (t))|z=0 |||ρ,k � |||N (t)|||

W
k,1
ρ,ρ

. (4.5)

Now, using the Duhamel integral formula (4.2), we estimate

|||ω(t)|||
W

k,1
ρ,ρ

� |||eνt Bω0|||Wk,1
ρ,ρ

+
∫ t

0

|||eν(t−s)B N (s)|||
W

k,1
ρ,ρ

ds

+
∫ t

0

|||�(ν(t − s))(∂z�
−1 N (s))|z=0 |||Wk,1

ρ,ρ
ds.

In view of Proposition 3.1, the term from the initial data is already estimated, giving

|||eνt Bω0|||Wk,1
ρ,ρ

� ‖ω0‖W
k,1
ρ,ρ

. As for the integral terms, we estimate

∫ t

0

|||eν(t−s)B N (s)|||
W

1,1
ρ,ρ

ds � C0

∫ t

0

|||N (s)|||
W

1,1
ρ,ρ

ds

� C0 A(γ )2

∫ t

0

(ρ0 − ρ − γ s)−ζ ds

� C0γ
−1 A(γ )2.

Similarly,

∫ t

0

|||�(ν(t − s))(∂z�
−1 N (s))|z=0 |||W1,1

ρ,ρ
ds � C0

∫ t

0

|||N (s)|||
W

1,1
ρ,ρ

ds,
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which is again bounded by C0γ
−1 A(γ )2. Next, we give estimates for k = 2. Noting

that ρ < ρ0 − γ t � ρ0 − γ s, we take ρ′ = ρ+ρ0−γ s
2

and compute

∫ t

0

|||eν(t−s)B N (s)|||
W

2,1
ρ,ρ

ds � C0

∫ t

0

|||N (s)|||
W

2,1
ρ,ρ

ds

� C0

∫ t

0

1

ρ′ − ρ
|||N (s)|||

W
1,1

ρ′,ρ′
ds

� C0 A(γ )2

∫ t

0

(ρ0 − ρ − γ s)−1−ζ ds

� C0γ
−1 A(γ )2(ρ0 − ρ − γ t)−ζ .

The same computation holds for the trace operator �(νt), yielding

A(γ ) � C0‖ω0‖W
2,1
ρ,ρ

+ C0γ
−1 A(γ )2.

By taking γ sufficiently large, the above yields the uniform bound on the iterative

norm in term of initial data. This yields the local solution in L1
ρ,ρ for t ∈ [0, T ],

with T = γ −1ρ0.

4.2. Propagation of Boundary Layers

It remains to prove that the constructed solution has the boundary layer behavior

as expected, having already constructed solutions in L1
ρ,ρ spaces. Indeed, we now

introduce the following nonlinear iterative norm for vorticity:

B(γ ) = sup
0<γ t<ρ0

sup
ρ<ρ0−γ t

{
|||ω(t)|||ρ,δ(t),1 + |||ω(t)|||ρ,δ(t),2(ρ0 − ρ − γ t)ζ

}
,

(4.6)

with the boundary layer norm

|||ω(t)|||ρ,δ(t),k =
∑

j+��k

‖∂ j
x (ψ(z)∂z)

�ω(t)‖ρ,ρ,δ(t).

Thanks to Lemma 2.4, we estimate

|||N (t)|||ρ,δ(t),0 � |||ω(t)|||2ρ,δ(t),1 � B(γ )2

|||N (t)|||ρ,δ(t),1 � |||ω(t)|||ρ,δ(t),1|||ω(t)|||ρ,δ(t),2 � B(γ )2(ρ0 − ρ − γ t)−ζ .

(4.7)

Now, using the Duhamel integral formula (4.2), we estimate

|||ω(t)|||ρ,δ(t),k � |||eνt Bω0|||ρ,δ(t),k +
∫ t

0

|||eν(t−s)B N (s)|||ρ,δ(t),k ds

+
∫ t

0

|||�(ν(t − s))(∂z�
−1 N (s))|z=0 |||ρ,δ(t),k ds.
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In view of Proposition 3.1, the term from the initial data is already estimated, giving

|||eνt Bω0|||ρ,δ(t),k � ‖ω0‖ρ,δ(0),k . In addition,

∫ t

0

|||�(ν(t − s))(∂z�
−1 N (s))|z=0 |||ρ,δ(t),kds

�

∫ t

0

√
t(t − s)−1/2‖(∂z�

−1 N (s))|z=0‖ρ,k ds

�

∫ t

0

√
t(t − s)−1/2|||N (s)|||

W
k,1
ρ,ρ

ds

� sup
0�s�t

|||N (s)|||
W

k,1
ρ,ρ

∫ t

0

√
t(t − s)−1/2 ds,

in which ‖N (s)‖
W

k,1
ρ,ρ

is bounded, thanks to the iteration obtained in the previous

subsection. It remains to estimate

∫ t

0

|||eν(t−s)B N (s)|||ρ,δ(t),1 ds

� C0

∫ t

0

√
t

s
|||N (s)|||ρ,δ(s),1 ds � C0 B(γ )2

∫ t

0

√
t

s
(ρ0 − ρ − γ s)−ζ ds

� C0 B(γ )2

(∫ t/2

0

+
∫ t

t/2

) √
t

s
(ρ0 − ρ − γ s)−ζ ds

� C0 B(γ )2

(
t (ρ0 − ρ −

1

2
γ t)−ζ +

1

γ
(ρ0 − ρ −

1

2
γ t)1−ζ

)

� C0γ
−1 B(γ )2(ρ0 − ρ)−ζ ,

in which we used γ t � ρ0 and γ t < ρ0 − ρ. Next, noting that ρ < ρ0 − γ t �
ρ0 − γ s, we take ρ′ = ρ+ρ0−γ s

2
and compute

∫ t

0

|||eν(t−s)B N (s)|||ρ,δ(t),2 ds

� C0

∫ t

0

√
t

s
|||N (s)|||ρ,δ(s),2 ds � C0

∫ t

0

√
t

s

1

ρ′ − ρ
|||N (s)|||ρ′,δ(s),1 ds

� C0 B(γ )2

∫ t

0

√
t

s
(ρ0 − ρ − γ s)−1−ζ ds

� C0 B(γ )2

(∫ t/2

0

+
∫ t

t/2

)√
t

s
(ρ0 − ρ − γ s)−1−ζ ds

� C0 B(γ )2

(
t (ρ0 − ρ −

1

2
γ t)−1−ζ +

1

γ
(ρ0 − ρ − γ t)−ζ

)

� C0γ
−1 B(γ )2(ρ0 − ρ − γ t)−ζ .

This proves the boundedness of the iterative norm B(γ ), and hence the propagation

of the boundary layer behaviors. Theorem 1.1 follows.
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4.3. The Inviscid Limit

Let us now prove Theorem 1.2. Since ων
0 ∈ Bρ0,σ0,δ , the velocity uν

0 and its

conormal derivatives ∂k
x uν

0, (ψ(z)∂z)
j uν

0, for k, j,� 0 and ψ = z
1+z , are all uni-

formly bounded on T × R+, thanks to the elliptic estimates; see Proposition 2.3.

In particular, the limit of uν
0 exists in the classical sense: u0(0) = limν→0 uν

0. From

Theorem 1.1, we check the validity of Kato’s condition:

ν

∫ T

0

∫∫

T×R+
|∇u(t, x, z)|2 dxdzdt

= ν

∫ T

0

∫∫

T×R+
|ω(t, x, z)|2 dxdzdt

� Cν

∫ T

0

∫∫

T×R+
e−2βz

(
1 + δ−1

t φP (δ−1
t z) + δ−1φP (δ−1z)

)2
dxdzdt

� Cν

∫ T

0

(
1 + δ−1

t + δ−1
)

dt � CT
√

ν,

which tends to zero as ν → 0. This proves that supt∈[0,T ] ‖uν(t) − u0(t)‖L2 → 0.

The L p convergence follows from the interpolation between L2 and L∞ norms and

the fact that uν is bounded in L∞ thanks to the elliptic estimate (2.5).
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