Sound, Heuristic Type Annotation Inference for Ruby

Milod Kazerounian Brianna M. Ren Jeffrey S. Foster
University of Maryland University of Maryland Tufts University
College Park, Maryland, USA College Park, Maryland, USA Medford, MA, USA
milod@cs.umd.edu bren@cs.umd.edu jfoster@cs.tufts.edu
Abstract Keywords: type inference, dynamic languages, Ruby

Many researchers have explored retrofitting static type sys-
tems to dynamic languages. This raises the question of how
to add type annotations to code that was previously untyped.

ACM Reference Format:
Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster. 2020.
Sound, Heuristic Type Annotation Inference for Ruby. In Proceed-

One obvious soluti.on is t}lpe inference: However, in com- ings of the 16th ACM SIGPLAN International Symposium on Dynamic
plex type systems, in particular those with structural types, Languages (DLS °20), November 17, 2020, Virtual, USA. ACM, New
type inference typically produces most general types that York, NY, USA, 14 pages. https://doi.org/10.1145/3426422.3426985

are large, hard to understand, and unnatural for program-
mers. To solve this problem, we introduce InferDL, a novel

Ruby type inference system that infers sound and useful type 1 Introduction

annotations by incorporating heuristics that guess types. Many researchers have explored ways to add static types to
For example, we might heuristically guess that a parame- dynamic languages [3, 4, 15, 19, 29, 31, 36, 37], to help pro-
ter whose name ends in count is an integer. InferDL works grammers find and prevent type errors. One key challenge
by first running standard type inference and then applying in using such retrofitted type systems is finding type anno-
heuristics to any positions for which standard type infer- tations for code that was previously untyped. Type inference,
ence produces overly-general types. Heuristic guesses are which aims to type check programs with few or no type
added as constraints to the type inference problem to ensure annotations, is an obvious solution, and indeed there are sev-
they are consistent with the rest of the program and other eral type inference systems for dynamic languages [2-4, 15].
heuristic guesses; inconsistent guesses are discarded. We for- Beyond type checking, type inference can also be extended
malized InferDL in a core type and constraint language. We to generate type annotations for program values. These an-
implemented InferDL on top of RDL, an existing Ruby type notations provide a useful form of documentation, and can
checker. To evaluate InferDL, we applied it to four Ruby on be used in other forms of program analysis such as code
Rails apps that had been previously type checked with RDL, completion for IDEs.

and hence had type annotations. We found that, when using However, type inference systems typically aim to find the
heuristics, InferDL inferred 22% more types that were as or most general type for every position, i.e., the least restrictive
more precise than the previous annotations, compared to possible type. If the type language is rich—particularly if
standard type inference without heuristics. We also found it includes structural types—the most general possible an-
one new type error. We further evaluated InferDL by ap- notations might be large, hard to read, and unnatural for
plying it to six additional apps, finding five additional type programmers. For example, An et al. [2] describe a type in-
errors. Thus, we believe InferDL represents a promising ap- ference system for Ruby that infers that a certain position
proach for inferring type annotations in dynamic languages. accepts any object with >, <<, >>, &, and ~ methods. In

contrast, a programmer would mostly likely, and much more
concisely, say that position takes an Integer. Moreover, even
if we are not interested in producing annotations, large, com-
plex types can lead to difficult-to-understand error messages.
Permission to make digital or hard copies of all or part of this work for In this paper, we present InferDL, a novel Ruby type in-
personal or classroom use is granted without fee provided that copies ference system that aims to infer sound and useful type anno-

are not made or distributed for profit or commercial advantage and that . .
copies bear this notice and the full citation on the first page. Copyrights tations. More spec1ﬁcally, InferDL allows the programmer

CCS Concepts: « Software and its engineering — Data
types and structures.

for components of this work owned by others than the author(s) must to specify heuristics for guessing type annotations. For ex-
be honored. Abstracting with credit is permitted. To copy otherwise, or ample, one simple but effective heuristic is to guess the type
republish, to post on servers or to redistribute to lists, requires prior specific Integer for any variables whose names end with id, num, or

permission and/or a fee. Request permissions from permissions@acm.org.
DLS °20, November 17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

count. InferDL runs such heuristics for positions for which
standard type inference is overly-general (meaning, among
others, positions with inferred structural types). Heuristic

to ACM.
ACM ISBN 978-1-4503-8175-8/20/11. .. $15.00 guesses are added as additional type constraints and checked
https://doi.org/10.1145/3426422.3426985 for consistency with the rest of the program. Only consistent

112

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3426422.3426985
https://doi.org/10.1145/3426422.3426985

DLS ’20, November 17, 2020, Virtual, USA

solutions are kept. In this way, InferDL maintains sound-
ness while producing a less general, but potentially more
useful, solution than standard type inference. (§ 2 gives an
overview of InferDL.)

We describe InferDL more formally on a core type and
constraint language. We present standard constraint reso-
lution rules, which rewrite a set of constraints into solved
form from which most general solutions can be extracted.
We describe that solution extraction procedure in detail and
then show how to incorporate heuristics. (See § 3 for our
formal description.)

We implemented InferDL as an extension to RDL, an ex-
isting Ruby type checker [13, 19, 31]. We modified RDL to
generate and resolve type constraints, run heuristics, and
extract solutions to produce annotations. InferDL currently
includes eight heuristics: one that replaces structural types
with nominal types that match the structure; six that look at
variable names, such as the one mentioned above for names
ending in id, num, or count; and one that produces precise
hash types. We also extended RDL with choice types, an idea
inspired by variational typing [7] that helps type inference
work in the presence of overloaded methods. (§ 4 describes
the implementation of InferDL.)

We evaluated InferDL by applying it to four Ruby on Rails
apps for which RDL type annotations already existed [19, 31].
We note that our results are preliminary, and further work
is needed to affirm they generalize beyond our benchmarks.
For these apps, InferDL inferred 496 type annotations. Of
these, 399 exactly matched or were more precise than the
programmer-supplied annotations, compared to only 290
such annotations when not using heuristics. InferDL also
found one previously unknown type error. We also applied
InferDL to six additional Ruby programs for which we did
not have annotations, and InferDL found five previously
unknown type errors. (§ 5 discusses our evaluation.)

We believe that InferDL is an effective type inference
system and represents a promising approach to generating
useful, sound type annotations.

2 Overview

We begin by discussing standard type inference, which gen-
erates and solves type constraints to yield type annotations.
We then discuss why this approach alone can be inadequate
and give a high-level overview of how InferDL uses heuris-
tics to infer more precise, useful types.

2.1 Standard Type Inference

Figure 1a shows a code snippet taken from Discourse, a Ruby
on Rails web app used in our evaluation (§ 5). The code de-
fines two methods, normalize_username and find_by_name,
in the class User. Because User is a subclass of ActiveRe-
cord::Base, it is a Rails model, meaning instances of the class
represent rows of a database table.

113

Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster

1 | class User < ActiveRecord::Base

2 #a—p

3 def self.normalize_username (name)

4 name.unicode_normalize.downcase if name.present?
5 end

6 #y—20

7 def self.find_by_name (name)

8 find_by(name_lower: normalize_username(name))

9 end

10 |end

(a) Source code from Discourse app.

Constraints Generated

(1) a < [unicode_normalize : L — €]
(2) @ < [present? : L — (]

(3) € < [downcase : L — 7]
@n<p

Gy<a

(6) User < 6

Resolved Constraints
(7) y < [unicode_normalize : L — €]
(8) y < [present?: L — (]

(b) Constraints generated on type variables.

Figure 1. Inferring method types in Discourse.

Suppose we wish to infer types for these two methods
using the standard, constraint-based approach. We first gen-
erate a type variable for the method argument and return
types, as shown in the comments on lines 2 and 6, e.g., nor-
malize_username takes a value of type « and returns type
B. Then we analyze the method body, generating constraints
of the form x < y, indicating that x must be a subtype of y.
In this case we also say x is a lower bound on y and y is an
upper bound on x.

The top portion of Figure 1b shows the constraints gener-
ated from this example. Constraint (1) arises from the call
name.unicode_normalize®. In this constraint, the structural
type [unicode_normalize : L — €] represents an object with
a unicode_normalize method that takes no argument (here
written 1) and returns €, a fresh type variable generated
at the call. Hence, by standard subtyping rules, « must be
a type that contains at least this method with appropriate
argument and return types. Constraint (2) is similar.

Constraint (3) arises from calling downcase on the re-
sult of unicode_normalize. Constraint (4) arises because the
result of the call to downcase is returned. Note that normal-
ize_username may also return nil (if the conditional guard is
false), but nil is a subtype of all other types in InferDL, so we
omit this constraint here. Finally, constraint (5) arises from
the call to normalize_username on line 8, and constraint

In Ruby, the parentheses in a method call are optional.

Sound, Heuristic Type Annotation Inference for Ruby

(6) arises because User’s find_by method returns a User (as
indicated by find_by’s type annotation, omitted here).

After generating constraints, InferDL performs constraint
resolution, which applies a series of rewriting rules to the
constraints. For example, one resolution rule is transitive
closure: If a < b and b < ¢ then we add constraint a < ¢
(see § 3 for a complete list of constraint resolution rules). In
our example, constraint resolution generates the two new
constraints (7) and (8).

During constraint resolution, if InferDL generates any
invalid constraints, the program is untypable, and Infer-
DL signals a type error. Otherwise, if constraint resolution
terminates without finding any inconsistencies, then the
program is typable.

Solution Extraction. Many traditional type inference ap-
proaches have the singular goal of uncovering type errors,
and hence they stop after propagating constraints. Since our
goal is to also infer type annotations, we must go a step fur-
ther by extracting a solution for all type variables from the
constraints. The standard approach is to compute a most gen-
eral solution. For a method type, this means computing the
least solution for its return and the greatest solution for its ar-
guments, which are the solutions that are least constraining
on the method’s callers.

Fortunately, after constraint resolution, the constraints are
in solved form [27], which means that to extract a variable’s
solution we need only look at its lower and upper bounds.
More specifically, for a return, we compute the union of
its lower bounds, ignoring variables (since any transitive
constraints from them have been propagated by resolution),
and for an argument, we compute the intersection of its
upper bounds. Thus, in our example, the solution for & and y
is [unicode_normalize : L — ¢, present? : L — (], i.e, an
object that has those methods, and the solution for § is User.

However, notice there are some problems with produc-
ing type annotations using this approach. First, the solution
for a and y is in fact not fully expanded. Using the same
approach, we could recursively compute a solution to € to
get the following solution for « and y: [unicode_normalize :
1 — [downcase : L — p],present? : L — {]. However,
such nested structural types are difficult to read and compre-
hend, and worse, in the presence of recursion, the type may
not be expressible in finite form without additional syntax.

Second, notice that 7 is the most general solution for f,
and there is no most general solution for 7 and { that we
can write down as ground terms (i.e., terms with no type
variables). That is, in fact we cannot always ignore type
variables in solutions, because they are needed to express
relationships among different parts of the solution (here,
1 is the return type of downcase and { is the return type
of present?). This makes understanding the most general
solution even more complex and difficult.

DLS ’20, November 17, 2020, Virtual, USA

2.2 Type Inference with Heuristics

InferDL aims to infer more useful, readable, and understand-
able type annotations by extending standard inference with
heuristics that guess nominal types, or small unions of nom-
inal types, as solutions. For example, so far § has a nominal
type as a solution, and we would like the same thing for
other type variables. To ensure type annotations are consis-
tent, InferDL adds any solutions found by heuristics to the
constraints and runs constraint resolution afterward; if the
result is a type error, the heuristic choice is rejected.

Using Heuristics. We illustrate the use of heuristics on
our example with one particular rule, STRUCT-TO-NOMINAL,
defined (in English) as follows:

When an argument type variable’s upper bounds
include structural types, search all classes to see
which have the methods in those types. If there
are ten or fewer such classes, guess the union of
these classes as the type variable’s solution.

Note that this rule matches by method name only and not by
method type. We chose ten as a cutoff because in our experi-
ence, larger unions are less useful than the original structural
type. In our running example, STRUCT-TO-NOMINAL can be
applied to a and y. It turns out that String is the only class
that defines both unicode_normalize and present?, so the
nominal type String would be our heuristic guess.

To ensure this guess is sound, we add String as a solution
for variables a and y to our constraints. More specifically,
we add the solution constraint & = String (and similarly
for y) to the constraints, where a = b is shorthand for the
pair of constraints a < b and b < a. We then resolve these
new constraints, which in this case does not lead to any
inconsistency, so we accept String as the solution.

Moreover, the additional constraints on « and y in turn
yield better solutions elsewhere because:

= String < « is added as a constraint. Transitively prop-
agating to a’s upper bounds yields...

= String < [unicode_normalize : L — ¢€]. To check
this constraint, we look up String’s unicode_normalize
method type and generate the constraint...

= 1 — String < 1L — €. Propagating to the methods’

return types yields...

String < e. Transitively propagating through e yields...

String < [downcase : L — p]. Looking up String’s

type for downcase, we get the constraint...

= 1 — String < 1 — p, and propagating to return
types yields...

= String < 7. Finally, propagating to n’s upper bound
yields...

= String < f

I}

Thus, now § has nominal type String as a solution. Putting
this together with the (most general) solution for § and the

DLS ’20, November 17, 2020, Virtual, USA

(heuristic) solutions for & and y, InferDL has now inferred
fully nominal type annotations for our example:
normalize_username: String — String
find_by_name: String — User

Implementing Heuristics. in InferDL, heuristics are not
baked-in. Rather, they can be created by the programmer,
allowing heuristics to be adapted if needed to the target pro-
gram. As an example, consider the following method, taken
from the Rails app Journey and slightly simplified:
def self.find_answer (response, question)

where(response: response.id, question: question.id) .first
end

We wish to infer the type of find_answer. However, notice
that only id is called on each argument. In Rails, the method
id is typically defined for all model classes, e.g., in Journey, 48
different classes include an id method. This means sTRUCT-
To-NoMINAL will fail to infer a precise annotation for the
arguments in this case.

Instead, we develop another heuristic that takes advantage
of a common practice: Ruby programmers often name a vari-
able after the class of the value it will hold, especially for Rails
models. Indeed, the arguments response and question are
intended to take instances of the model classes Response and
Question, respectively. We define a new heuristic 1s_MODEL
that guesses types based on this convention:
RDL:Heuristic.add :is_model { |var|

if (varbase_name.camelize.is_rails_model?)
then var.base_name.to_type end }

To define this heuristic, we call RDL::Heuristic.add, pass-
ing the name of the heuristic, in this case :is_model, and a
code block. Code blocks are Ruby’s version of anonymous
functions or lambdas. The RDL::Heuristic.add method ex-
pects a code block that takes a single argument, which is
the type variable whose solution the heuristic should guess.
Note that in InferDL, which is built on RDL, types are actual
values we can compute with; we discuss this in greater detail
in § 4. The code block returns either nil, if there is no guess,
or the guessed type.

The 1s_MODEL heuristic consists of a single if statement.
The guard calls, in order, var.base_name, to return the name
of the variable as a String; the Rails method camelize to
camel-case this string; and finally is_rails_model?, a method
we defined (code omitted) to determine if there exists a Rails
model with the same name as the receiver. If this last condi-
tion is true, the code block calls to_type (code omitted) to
return the nominal type for the model class. Otherwise, by
standard Ruby semantics the conditional will return nil.

During type inference, InferDL runs all heuristics for each
type variable, accepting the solution from the first heuris-
tic that produces a consistent type. For find_answer, the
IS_MODEL heuristic produces appropriate nominal types for
the arguments, which then become the final type annotations
for those positions.

115

Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster

Types T = a|A| [m:tm] |
tUr | tNnc | L | T

Method Types ©,, = 7—>7T

Constraints C <t | CuUC

A € class IDs, m € meth IDs

Figure 2. Core types and constraints.

3

In this section, we describe InferDL more formally. For
brevity, we do not define a core language, nor do we de-
scribe constraint generation in detail. Rather, we focus on
the language of types and constraints, constraint resolution,
solution extraction, and heuristics.

Constraints, Solutions, and Heuristics

3.1 Types and Constraints

Figure 2 formally defines a core subset of the types and con-
straints in InferDL. Types 7 include type variables & and
nominal types A, which is the set of class IDs. Structural
types [m : 7,,] name a method m and its corresponding
method type 7,,. For brevity, structural types can only com-
prise a single method, and method types may only take a
single argument. Types also include union types ¢ U 7, in-
tersection types 7 N 7, the bottom type L, and the top type
T. Constraints C consist of subtyping constraints 71 < 7o
and unions of constraints C; U Ca, which allow us to build
up sets of constraints.

Generating Constraints. Constraint generation is a stra-
ightforward modification of standard type checking in which,
instead of type rules checking constraints, we view them as
generating constraints. For example, the rule for typing a
method call is

I'ker: Tre
Trec < [m ‘Targ — Tret]

I'keo:tang
Tret 18 fresh

T+ ep.m(es): Tret

This rule types a method call e;.m(e3) (where each e is an ex-
pression) in type environment I' (a map from local variables
to types), yielding type 7,.;. To apply this rule, we recur-
sively type the receiver and the argument, yielding types
Trec and 7.4, respectively. We then generate a constraint
Tree < [M : Targ = Tret], Where 7, is a fresh type variable.
Then, the return type of the method call has type 7,;. By
convention, we assume any constraint in the premise of a
rule is automatically added to a global set of constraints C.
Full details of type checking rules for a core Ruby language
can be found in Ren and Foster [31] or Kazerounian et al.
[19], both of which formalize Ruby in a core language and
provide type checking rules. As with the above example,
those rules can be turned into inference rules by viewing
them as generating constraints and adjusting them as needed
to make all constraints explicit, e.g., in the rule above, we

Sound, Heuristic Type Annotation Inference for Ruby

1) CUn<aVUa<n=>CUrn<aUa<s<mn Ur <1n
(2) CUA<A' =C ifA=A"orAisasubclass of A’
(3) CUAZ<A = error ifA# A’ and Ais not a subclass of A’
4 CUA<S[m:nn—>n]=>CUn <7 U<

if A has method m with type 7] — 7]
(5) CUA<[m:1 — 2] = error if Ahasno method m
6) CU(nMUmn<n)=>CUT<1m3Urn=<rTs
7) CU(Mm<mNE)=CUrr<13U71<13
B CuUuL<r=C
9 Cur<T=C

Figure 3. Standard constraint resolution rules.

specify the type of e; as 7,.. and write an explicit constraint
On Tyec, rather than implicitly constraining e;’s type to have
a particular shape in the rule.

Resolving Constraints. Figure 3 gives standard constraint
resolution rules. Each rule has the form C = C’, meaning
a set of constraints matching C can be rewritten to C’. The
rules are applied exhaustively until they either yield error
or no additional constraints can be generated.

Rule (1) adds transitive constraints, as discussed earlier.
Rule (2) eliminates a constraint among two nominal types
as long as the subtyping is valid. On the other hand, Rule (3)
produces error if there is an inconsistent constraint among
nominal types. Rule (4) handles constraints of the form
A < [m: 1 — 12]. In this case, if A has a method m of some
type 7, — 7, we erase the constraint and add two new con-
straints on the argument and return types. If A does not have
a method m, Rule (5) yields error. Finally, Rules (6) and (7)
simplify unions on the left and intersections on the right
of a constraint, respectively, and Rules (8) and (9) eliminate
constraints with L on the left and T of the right, respectively.

3.2 Solution Extraction

Recall from § 2.1 that after generating and resolving con-
straints, the next step in standard type inference is to extract
solutions for type variables. More precisely, standard type
inference produces solutions using the following procedure:

procedure STANDARD_SOLUTION(C, @)
if (o represents arg) then
sol=T
for each constraint « < 7 € C do
sol =solNt
else
sol = L
for each constraint 7 < « € C do
sol =sol U 1
return sol

> o represents return

As discussed earlier, to derive the most general solution,
for each return position we compute the union of its lower
bounds, and for each argument position we compute the
intersection of its upper bounds.

116

DLS ’20, November 17, 2020, Virtual, USA

InferDL uses the same procedure as a subroutine to its
heuristic inference algorithm, described next.

Heuristics. Formally, we can model InferDL’s heuristics
as a set of additional constraint resolution rules beyond those
in Figure 3. For example, we can express STRUCT-TO-NOMINAL
as the following constraint rewriting rule:

STRUCT-TO-NOMINAL(C, @) =
CUa<[m:...]Ju...Ua<[m,:..] =
C’'U(x=(A1U...UAy))

if k < 10 and A4, ..., Ay are all classes with my...m,,.

This rule applies to a type variable o that has one or more
structural type upper bounds. If there are at most 10 classes
Aj ... Ay matching those structural types, then we replace
the structural constraints with a solution A1 U . ..U Ay for «.
Recall from § 2 that a solution constraint of the form r; = 1o
is shorthand for the two constraints 7; < 79 and 75 < 7.

Given a set H of heuristic rules, InferDL uses the follow-
ing procedure to try each rule until some rule succeeds or
all rules fail:

procedure HEURISTIC_SOLUTION(H, C, «)
for h € H do
C’, sol = h(C,a)
C’ = RESoLVE(C”)
if C’ # error and sol # nil then
return C’, sol
return C, nil

Here we abuse notation slightly and assume that heuristic
rules return a pair C’, sol, where C’ is the new set of con-
straints after running the rule, and sol is the solution found
for . If h does not match C, then h returns the pair nil, nil.
When h does return a set of constraints C’ and a solution,
we perform constraint resolution on C’ to propagate the
new solution and detect any inconsistencies in the set of
constraints. This is done by calling the RESOLVE procedure,
which simply invokes the constraint resolution rules of Fig-
ure 3. If the resulting resolved constraint set C’ is valid, then
we return C’ and sol. If all heuristics run without finding a
valid solution, we return the original constraints C and nil.

Notice that an important consequence of this formulation
is that the order in which heuristics are run matters, since
only the first guessed solution will be returned. Future work
could examine how to overcome this reliance on ordering
and handle the case that heuristics return differing solutions.

Extracting Solutions. The next step is to combine stan-
dard and heuristic solution extraction, doing the latter when
a standard solution is overly-general. Thus, we need to define
what overly-general means. Based on our prior experience,
we believe that, in most cases, nominal types are far easier
for programmers to understand and use than structural types
because they are smaller and simpler. The developers of Sor-
bet [35], another Ruby type checker, feel the same way—they

DLS ’20, November 17, 2020, Virtual, USA

have found that structural types can be less intuitive and
more difficult to read when used in error messages [26].

Generalizing this insight, we define an overly-general so-
lution as any non-nominal type, that is, any type of the form
a, T U t,7N7,[m: 1], L, and T. Our motivation for
treating union and intersection types as overly-general is
the same as for structural types: they make types bigger and
more complex. We treat the top and bottom types as overly-
general since they are only ever used as solutions when a
type variable has no constraints, and we consider type vari-
ables overly-general since they represent unknown types.
We do note that, in general, there is no single correct defi-
nition of overly-general, and we leave exploring alternative
definitions to future work.

Next, we can provide the pseudocode for solution extrac-
tion of a type variable:

procedure EXTRACT_SOLUTION(H, C, @)
sol = STANDARD_SOLUTION(C, a)
if overly_general(sol) then
C’, soly, = HEURISTIC_SOLUTION(H, C,)
if sol, # nil then
sol = soly,
else
C’ = RESOLVE(C U (a = sol))
return C’, sol

This procedure first extracts a standard solution for the
given « and C. If the resulting solution is overly-general, it
calls HEURISTIC_SOLUTION to possibly yield a better solution
for a. We only use the new solution if it is non-nil (note
that, with the definition of HEURISTIC_SOLUTION, the set of
constraints will be unchanged in the event that the heuristic
solution is nil). Otherwise, if the standard solution was not
too general, we add the new solution to the set of constraints
and perform constraint resolution. We perform constraint
resolution again because, just like heuristic solutions can
lead to other solutions, so too can standard solutions.

Finally, as shown in § 2.2, one extracted solution may lead
to the discovery of other solutions. Thus, we continue to
extract solutions for type variables until no new constraints
are generated. More precisely, the following procedure takes
H, C, and a set of all type variables V as input, and extracts
solutions until no new constraints are generated.

procedure EXTRACT_ALL_SOLUTIONS(H, C, V)
solutions_map = {}
repeat
for each o € V do
C, sol = EXTRACT_SOLUTION(H, C, a)
solutions_map[a] = sol
until no new constraints are added to C
return solutions_map

117

Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster

4 Implementation

InferDL is built on top of RDL [13], an existing Ruby type
checker. In this section, we briefly describe some of the im-
plementation challenges in InferDL.

Type Checking with RDL.. RDL uses an expressive type
language, including nominal, singleton, generic, union, vari-
able, and structural types; tuple types for fixed-size arrays
and finite hash types for fixed-size hashes? [32]; and type-
level computations [19].

One key feature of RDL is that it performs type checking at
runtime. That is, method bodies are statically type checked,
but this checking takes place dynamically at a time specified
by the user. For example, say a programmer wanted to type
check the body of normalize_username from Figure 1a. To
do so, they could write the following RDL type annotation
above the method:

RDL.type "() — String", typecheck: :later

This annotation is actually a call to the method RDL.type,
which stores the given type annotation in a global table. The
argument typecheck: :later associates this type annotation
with the symbol :later. After this method call, the program-
mer can choose when to call:

RDL.do_typecheck :later

to actually perform type checking of all methods associated
with the symbol :later, including normalize_username.

This approach to type checking allows RDL to handle
metaprogramming, which is ubiquitous in Ruby [31]. More-
over, this design streamlines the implementation of heuristics
in InferDL, because RDL types are runtime values that can
be computed with, as in the 1S_MODEL heuristic in § 2.2.

Adding Standard Inference. InferDL extends RDL so
that inferred methods are specified with a call to RDL.infer:

RDL.infer User, 'self.normalize_username', time: :later

Then, when RDL.do_infer :later is called, InferDL runs type
inference to produce type annotations for any method asso-
ciated with :later.

RDL already included type variables to support paramet-
ric polymorphism. InferDL extends type variables to store
constraints as a list of upper and lower bounds on each type
variable. Then, to perform constraint generation, InferDL
modifies RDL’s type checker so that, whenever two types
are checked for subtyping, and at least one of the types is a
type variable, we store the subtyping constraint. After con-
straint generation, InferDL performs constraint resolution
and solution extraction, as explained in § 3.

Heuristics. Though heuristics are not baked-in to Infer-
DL and are thus configurable, we have written eight heuristics
that we found useful in practice, listed below. Recall from
§ 3.2 that heuristics are applied in a specified order. We list
heuristics in the order in which they are applied.

?Hashes are Ruby’s implementation of heterogeneous dictionaries.

Sound, Heuristic Type Annotation Inference for Ruby

e 1S_MODEL: See § 2.2 for a description. This rule is only
used for Rails apps.

® IS_PLURALIZED_MODEL: If a variable name is the plural-
ized version of the name of model X, then guess solu-
tion Array<X> U ActiveRecord_Relation<X>. Note that
ActiveRecord_Relation is a data structure provided by
Rails that extends common array operations with some
database queries. This rule is only used for Rails apps.

® STRUCT-TO-NOMINAL: See § 2.2 and § 3.2.

e INT_NAMES: If a variable name ends with id, count, or
num, guess solution Integer.

e INT_ARRAY NAME: If a variable name ends with ids,
counts, or nums, guess solution Array<Integer>.

e PREDICATE_METHOD: If a method name ends with ?,
guess solution %bool (RDL’s boolean type) for the method
return type.

e STRING_NAME: If a variable name ends with name,
guess solution String.

e HASH_ACCESS: Like all other values, hashes are objects
in Ruby, not built-in constructs. As such, they are ac-
cessed using the method [], and written to using the
method []=. This rule states that, if all of an argument
type variable’s upper bounds are structural types con-
sisting of the methods [] and []=, and all of the keys
given to these methods are symbols, then guess the
solution that is the finite hash type consisting of the
keys and the unions of corresponding assigned values
for these methods. For example, if an argument type
variable a had constraints a < [:[]=: :id — Integer],
a < [:[]= : :id — String], and a < [:[]= : :name —
String], then the solution for ¢ would be the finite
hash type { id: String U Integer, name: String }. This
type says that « is a hash mapping the symbol :id to a
String or Integer, and :name to a String.

As discussed in § 3.2, InferDL treats type variables, union,
intersection, structural, and bottom and top types as overly-
general. In our implementation, we also treat Object and nil
(which were omitted from the formalism for brevity but are
almost the same as the top and bottom types, respectively)
as overly-general. In addition to nominal types, RDL also
includes several additional kinds of types that we treat as
sufficiently precise: generic types (which are parameterized
nominal types), finite hash and tuple types (which are more
precise versions of Hash and Array types), and singleton
types (such a type has only one value as an inhabitant).

Choice Types. Ruby methods often have intersection types,
which pose a challenge for type inference. Consider the Ar-
ray indexing method [], which has the following type in
RDL:

(Integer) >t N (Range<Integer>) — Array<t>

Here, t is the type parameter for the Array class. When given
an Integer index, [] returns a single element, and when given

118

DLS ’20, November 17, 2020, Virtual, USA

a Range<Integer> corresponding to multiple indexes, [] re-
turns the subarray of elements at those indexes. Now con-
sider the following contrived code snippet:

def foo(x) arr = [1,2,3] ; return arr[x] + 1; end

Suppose that InferDL assigns x the type variable a. Then,
when analyzing the call arr[x], we encounter a problem:
During constraint generation, we do not know «’s solution.
One choice would be to assume both arms of the intersection
are possible. However, then the result of the method call
would have type Integer U Array<Integer>, which leads to
a type error when analyzing the larger expression arr[x] + 1,
since we cannot add an Array to an Integer.

To address this issue, we introduce choice types, a type
system feature loosely inspired by variational type check-
ing [7]. A choice type, written Choice;(zy, ...,), repre-
sents a choice among the types 7;. Each choice type also has
a label i. During inference, if one 7; of a choice type would
result in a type error, then arm j is eliminated from all choice
types with the same index i.

In the example above, the call to arr[x] would result in the
constraint
(1) a < Choicey(Integer, Range<Integer>)
because InferDL reasons that it has a choice between the
two input types of Array’s [] method. Additionally, the re-
turn type of arr[x] would be
(2) Choiceq(Integer, Array<Integer>)
representing both possible returns. Both choice types have
the label 1, indicating that they are decided together. Then,
when type checking the call arr[x] + 1, InferDL would rec-
ognize that the Array<Integer> arm of type (2) results in a
type error, and it would eliminate that arm from both (2) and
(1). Effectively, this would retroactively make the return type
of arr[x] be the sole type Integer, and it would allow us to
infer @’s solution as the sole type Integer. If InferDL ever
eliminates all arms of a choice type, it raises a type error.

Library Types. RDL comes with type annotations for Ruby’s
core and standard libraries, as well as for common Rails
methods and methods from Sequel, a popular framework for
database queries. However, it is common for Ruby programs
to make extensive use of other third-party libraries as well.
Typically, a type checker would require type annotations for
any such methods used in the subject program. But writing
these type annotations is burdensome and often requires
knowledge of the library’s implementation. This task is all
the more tedious in the context of type inference, where the
programmer aims to infer type annotations, not write them.

InferDL’s approach to library types avoids this issue. Dur-
ing constraint generation, if InferDL encounters a call to a
method that both lacks a type annotation and is not itself the
target of inference, InferDL finds the method definition to
determine the method’s arity. InferDL then creates a type
signature for the method with fresh type variables for the

DLS ’20, November 17, 2020, Virtual, USA

return and each argument. If no method definition is found,
InferDL raises a type error.

This approach is similar to type inference for a method,
except we do not generate constraints from the method body.
Thus, type inference might be unsound, producing a solution
that would be impossible if we knew the library method’s im-
plementation. However, in practice, we found this approach
was essential for allowing us to apply inference to each new
benchmark, and it also helped us discover a previously un-
known bug in one of our benchmarks (§ 5.1).

Variable Types. In addition to method types, InferDL
can infer type annotations for the three non-local kinds of
Ruby variables: global, class, and instance variables. Recall
that STANDARD_SOLUTION (§ 3.2), used as a subroutine in
InferDL, aims to infer most general types for methods. How-
ever, observe that variables are both read from and written
to, i.e., for a field @x, there is conceptually a getter of type
1 — a and a setter of type « — L. Notice that the @ appears
both co- and contravariantly. Hence, unlike method argu-
ments and returns, it is not the case that a least or greatest
solution will always be most general.

Instead, to extend STANDARD_ SOLUTION to variables, we
take an ad-hoc approach: we take the intersection of the
upper bounds on a variable’s type when it has upper bounds
and, if not, we take the union of its lower bounds. We found
this approach works reasonably well in practice, and we
apply the same heuristic rules, with the same definition of
overly-general, as for method types.

5 Evaluation
We evaluated InferDL on four Ruby on Rails web apps:

e Journey [5] is a web app that provides a graphical
interface to create surveys and collect responses from
participants.

e Discourse [18] is an open-source discussion platform
built on Rails.

e Code.org [8] is a Rails app that powers code.org, a
programming education website.

o Talks [14] is a Rails app written by one of the authors
for sharing talk announcements.

We chose these apps because they have all been used as
type checking benchmarks in prior work [19, 31]. Thus, we
could use the previously written type annotations for these
apps as "gold standards" to compare against. We inferred type
annotations for all methods and global, class, and instance
variables for which type annotations existed in prior work.
This includes both methods (and the variables they used)
that were type checked in prior work and those that were not
checked, but were annotated to assist in the type checking
of other methods.

The only additional type annotations used were for the
special Rails params hash, which contains values that come

119

Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster

from a user’s browser. The params hash always maps sym-
bols to various types of objects. Without annotations, Infer-
DL typically infers that params has type Hash<K, V>, where
V was the union of all observed value types for the hash.
This effectively treats all values from the hash as belonging
to the same type, which causes false positive type errors
during inference. Rather than add type casts for these cases,
we instead used the type annotations for params from the
prior type checking work [19, 31]. In the future, we plan
to incorporate special handling of the Rails params hash to
avoid this issue.

Below, we discuss the results of our evaluation. We note
that our results are preliminary, and further work is needed
to affirm they generalize beyond our benchmarks, in partic-
ular for detecting type errors in real-world programs.

5.1 Results

Table 1 summarizes our type inference results. The first col-
umn gives the number of methods we inferred types for,
totalling 250 methods across the four apps. The subsequent
group of three columns counts the number of types we in-
ferred. The first of these columns, Meth Typs, counts the
number of method argument and return types inferred. We
count each argument and return type separately so that we
can more precisely evaluate InferDL’s performance. The sec-
ond of these columns, Var Typs, shows the number of global,
class, and instance variable types inferred. Finally, the Total
Typs column counts the total number of types inferred, i.e.,
Meth Typs + Var Typs.

The next column shows the number of type casts we had
to write to run InferDL on each app, without which InferDL
would raise false positive type errors. Almost all of these type
casts were needed when handling heterogeneous data struc-
tures like arrays and hashes, because there are cases where
InferDL cannot determine the type of a value accessed from
one of these data structures.

The subsequent column reports InferDL’s running time
on a 2014 MacBook Pro with a 3GHz i7 processor and 16GB
RAM. We give the time as the median and semi-interquartile
range (SIQR) of 11 runs. For comparison, we provide Infer-
DL’s runtime when using the heuristics presented in § 4
(shown under “heur”), and when not using any heuristics
(shown under “std”). In total, InferDL took 31.91s to run
on all benchmarks when using heuristics, with an SIQR of
just 0.95s, indicating little variance across runs. By compari-
son, when not using any heuristics, InferDL took 8.68s to
run on all benchmarks. Upon closer examination, we found
that approximately 75% of InferDL’s runtime when using
heuristics was spent on just one rule, STRUCT-TO-NOMINAL.
The rule involves searching through the space of all existing
classes, and for each one, searching through the names of all
its methods. This can be quite expensive for larger programs.
We found we could achieve speedups by caching search re-
sults, and by building a mapping from method names to the

code.org

Sound, Heuristic Type Annotation Inference for Ruby

Table 1. Type inference results.

DLS ’20, November 17, 2020, Virtual, USA

Program Num | Meth Var Total | Type Time (s) Correct Correct Correct Heuristic Uses
Meths | Typs Typs Typs | Casts Median = SIQR Meths Vars Total
heur | std heur/std heur/std heur/std | STN/Name/Hash

Journey 23 33 26 59 1| 1.68 £005/1.01 009 | 33 /30 19 /13 52 /43 0/ 13/ 0
Discourse 43 77 0 77 0| 7.70 +064/0.59 004 | 61 /47 0/0 61 /47 3/ 42/ 1
code.org 74 152 12 164 4 | 20.1+022/5.01 +010 | 111/60 10 /10 121/70 0/ 8 / 5
Talks 110 149 47 196 8 | 243 +004/2.08 x015 | 127/102 38 /28 165/130 7/ 58/ 3
Total 250 | 411 85 496 13 | 31.91 £095/8.68 039 | 332/239 67 /51 399/290 | 10/ 193 / 9

classes that implement them in advanced of running the rule.
Nevertheless, this remains an expensive operation.

The next three columns report how many types Infer-
DL inferred correctly—the same as or more precise than the
original type annotation—both with and without the use of
heuristics. To determine whether inference results were cor-
rect, we automatically counted those cases where an inferred
type matched the original annotation exactly, and we used
manual inspection when they differed. For example, if the
annotation for a type was %any (RDL’s top type), and Infer-
DL inferred Integer, we would count this as a more specific
type. In our experience, we didn’t find any case where Infer-
DL predicted a more specific type that was not an accurate
reflection of programmer intent.

The first of these columns gives the number of method ar-
gument and return types correctly inferred for heuristic and
standard inference. For example, InferDL correctly inferred
332 out of 411 total argument and return types for all apps
when using heuristics, compared to just 239 correct types
when performing standard inference. The next column gives
the number of variable types correctly inferred, and finally,
the Correct Total column gives the number of total types
inferred correctly. As shown, the use of heuristics enables
InferDL to infer about 22% more correct type annotations,
a significant improvement. We found this percentage was
fairly consistent across the benchmarks, indicating that the
heuristics we used were not specific to one app, but rather
captured some more common, general properties. We also
found this improvement was approximately the same for
types of global, class, and instance variables, and types of
method inputs/outputs, indicating our approach to variables
(discussed in § 4) is effective.

Note that inferred types which do not fall under the “Cor-
rect Types” column are not necessarily “incorrect”—typically,
these types are simply more general than the original, pro-
grammer-written annotation. For example, across the apps
there were a number of cases where InferDL inferred the
type Array<a> for some type variable a, when the program-

mer’s annotation was a variable-free type (e.g., Array<String>).

In our subjective experience, many types InferDL failed to
infer (with or without heuristics) were for arrays and hashes.
This is largely because RDL treats Array and Hash types
as invariant in their type parameters. This means, e.g., the

120

constraint Hash<String, Integer> < Hash<String, Object>
is invalid, since the type parameters are not equivalent. This
leads to many potentially correct types being rejected due
to the conservatism of type invariance. We are interested in
exploring better approaches to type inference for heteroge-
neous data structures as future work.

Finally, the last column shows the number of times a
heuristic successfully found a type for each app, that is,
the heuristic’s guess was actually used as a solution. For
brevity, we present the counts for all of the six name-based
heuristics (IS_MODEL, IS_PLURALIZED_MODEL, INT_NAMES,
INT_ARRAY_NAME, PREDICATE_METHOD, and STRING_NAME)
under a single column Name, while the STN column gives
the count for STRUCT-TO-NOMINAL, and the Hash column for
HASH_ACCESS. It is clear that the name-based rules were by
far the most useful heuristics for inferring types, compris-
ing a total of 193 of the successful heuristic applications. Of
those 193 applications, 103 were of the PREDICATE_ METHOD
rule. Overall, this suggests that variable and method names
are a strong indicator of intended types.

Error Caught. In the process of inferring types, we dis-
covered a previously unknown bug in the Journey app. This
was particularly surprising because the method it was found
in was already type checked in prior work [19]. The bug ex-
isted in the following code, which creates and saves a new
person:

begin
invitee = lllyanClient::Person.new (:person={:email=email})
invitee.save

rescue

"

logger.error "Error during invite.

end

The bug arises because there is no save method for the
lllyanClient::Person class, so the call invitee.save always
raises an error. Moreover, because this error exists within a
begin...rescue clause, the bug will never be directly seen at
runtime since control will always pass to the rescue clause.
The bug could potentially have been detected via manual
programmer inspection of the error log, though it never
was. We confirmed this bug with the Journey developer. This

DLS ’20, November 17, 2020, Virtual, USA

bug was not caught by type checking in prior work because
the programmer who wrote type annotations in that work
wrongly assumed that the IllyanClient::Person#save method
did exist. Thanks to InferDL’s handling of library types (§ 4),
the same mistake was not made here.

5.2 Case Studies

To further evaluate InferDL, we applied it to five additional
Ruby libraries and one additional Ruby app:

e Active Merchant [34], a payment abstraction library.

e Diff-LCS [40] a library for generating difference sets
between Ruby sequences.

e MiniMagick [24], an image processing library.

e Optcarrot [11], aNintendo Entertainment System (NES)

emulator implemented in Ruby and intended as a bench-

mark for runtime performance evaluation.
e Sidekiq [25], a background job handler library.
e TZInfo [33], a time management library.

Because we do not have gold standard type annotations for
these programs, we refer to these experiments as case studies.
With the exception of Optcarrot, we picked these programs
because they are all highly popular, well-maintained, and
well-tested. We chose Optcarrot because of its intended use
as a Ruby benchmark and because, as an emulator, it relies
heavily on binary arithmetic, which distinguishes it from
other Ruby programs we looked at.

We ran inference for all methods defined in these pro-
grams, excluding methods that use features not supported
by RDL; the most common unsupported feature was mixin
methods. We also excluded methods defined in the Active
Merchant payment gateways, a set of 215 distinct payment
gateways comprising over 60,000 lines of code. Running
InferDL for this many lines of code would have required
a significant manual effort to add type casts to circumvent
false positive errors, so we decided to leave them out of our
case study. We discuss the issue of type casts further below.

Using InferDL.. It would be tedious and time-consuming
to call InferDL’s infer method (§ 4) on every method in our
subject programs. Instead, we used InferDL’s infer_file and
infer_path methods, which take a file or path, respectively,
as an argument and then call infer on every method statically
defined in that file or path. We called these methods for all
code in a program’s 1ib/ directory, which by convention
holds the program’s implementation (and excludes testing
code, code for handling dependencies, etc.).

The first time InferDL runs on a new subject program,
it often reports type errors. We manually inspected and ad-
dressed each type error, iterating until none remained. Over-
all, the errors found by InferDL fell into three categories:

e True errors resulting from bugs in the program. We
discuss these below.

121

Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster

e False positives due to InferDL’s conservatism. We in-
serted appropriate type casts to suppress these type
errors. We discuss type casts below.

e Errors resulting from features unsupported by Infer-
DL. As mentioned earlier, we exclude such methods
from future rounds of inference.

As an aside, we note that currently, it can sometimes be
difficult to find the underlying cause of a type error reported
by InferDL. If an invalid constraint is generated during res-
olution, InferDL reports the invalid constraint and the line
number origins of the left- and right-hand sides of the con-
straint. But often these constraints were generated through
a series of propagations resulting from many different places
in the code, so their origins do not always reveal the under-
lying cause. In the future, we hope to incorporate ideas from
prior work on diagnosing type inference errors [20, 21, 39].

Results. Table 2 contains the results of running Infer-
DL on the case study apps. This table includes the same
columns as Table 1, excluding the “Correct” columns. In
total, we inferred types for 1,332 methods constituting 2,525
individual arguments and returns, and 635 global, class, or
instance variables, for a total of 3,160 individual types.

We wrote 104 total type casts to run inference for these
programs, or approximately one type cast for every 30 types
we inferred. In addition to the need for type casts when ac-
cessing values from heterogeneous data structures (discussed
in § 5.1), we encountered many cases where type casts were
necessary for path-sensitive typing. For example, consider
the code snippet below, simplified from the TZInfo library:

index = @transitions.length
index.downto(0) do |i|
start_transition =i > 0 ? @transitions[i — 1] :
end_transition = @transitions][i]
offset = start_transition ? start_transition.offset
end_transition.previous_offset

nil

GRS W N~

NN

end

This snippet refers to the instance variable @transitions,
which has type Array<TimezoneTransition>. On line 2, we
enter a loop for values of i=index down to i=0. On line 3,
we use Ruby’s ternary operator to conditionally assign the
variable start_transition to either a TimezoneTransition or
to nil. Then, on line 5, we use the ternary operator again, this
time with the variable start_transition as our condition. In
Ruby, the value nil is falsey. Thus, on line 5, we only evaluate
the expression start_transition.offset if start_transition is
non-nil. This call is safe, because TimezoneTransition has a
method offset defined.

However, InferDL does not know that start_transition
is non-nil because it has limited support for path-sensitive
typing. It will conservatively reason that start_transition
may be nil on line 5 and thus raise a type error. To avoid this
issue, we insert the following type cast for the call to offset:

Sound, Heuristic Type Annotation Inference for Ruby

DLS ’20, November 17, 2020, Virtual, USA

Table 2. Case Study Inference Results.

Num | Meth Var Total | Type Time (s ...

Program Meths | Typs Typs Typs CZEts Median i S)IQR Heuristic Uses
heur /| std STN/Name/Hash

Active Merchant 148 275 62 337 5| 1.71 +0.06 /0.80 +0.07 29/103/ 0

Diff-LCS 80 187 40 227 23 | 2.65 +0.02/2.38 +0.06 20/ 14 / 0

MiniMagick 79 166 13 179 7 | 0.57 £015/0.26 +0.01 4/ 10 / 0

Optcarrot 430 763 367 1130 48 | 38.9 +264/78.6 x174 | 204/ 22 / 1

Sidekiq 344 623 96 719 12 | 3.28 £056/2.12 + 013 37/ 63 / 3

TZInfo 251 511 57 568 9 | 3.15+025/5.06 007 | 118/ 42 / 0

Total | 1332 | 2525 635 3160 104 | 50.22 +367/89.2 +178 | 412/ 254 / 4

RDL.type_cast(start_transition, TimezoneTransition).offset

This notifies InferDL that start_transition is a Timezone-
Transition when offset is called. Such path-sensitive logic
enables libraries to be maximally flexible for clients. We leave
handling these cases without type casts to future work.

The next column of Table 2 reports the median time and
SIQR taken across 11 runs of InferDL, when using vs. not
using heuristics. Interestingly, on these apps InferDL actu-
ally took less total time when using heuristics compared to
not using them. This was attributable to two apps in partic-
ular, Optcarrot and TZInfo, that took 2x and 1.6X as long,
respectively, when not using heuristics. This can occur due
to the way that InferDL performs type inference. As shown
in § 3.2, InferDL will repeatedly perform constraint reso-
lution and solution extraction until no new constraints are
generated. In some cases, heuristics may lead to solutions for
type variables earlier on in this process, thereby helping to
reach a constraint set fixpoint sooner. For instance, Optcarrot
performed just 6 rounds of solution extraction when using
heuristics, compared with 15 rounds of solution extraction
when not using heuristics; for TZInfo, the numbers were 3
and 9, respectively.

Finally, we report the number of successful applications
of heuristics for inferring types. Notably, the sTRUCT-TO-
NOMINAL heuristic is far more useful for our case study pro-
grams than for the Rails apps in Table 1. It was used 412 times
when running inference for 3,160 total types in our case stud-
ies, versus just 10 times for 496 total types for the Rails apps.
This disparity is at least partly attributable to the order in
which heuristics are run (§ 4). STRUCT-TO-NOMINAL is ap-
plied after the rules 1s_MODEL and IS_PLURALIZED_MODEL.
But the latter two rules are only used for Rails apps, meaning
STRUCT-TO-NOMINAL is applied third for Rails apps, and first
for non-Rails apps. We tried re-running InferDL on the Rails
apps with STRUCT-TO-NOMINAL ordered first, and found it
was applied 28 times for the Rails apps, which at least partly
closes the gap with non-Rails apps.

We also more closely examined the uses of sTRUCT-TO-
NOMINAL across all 10 programs in § 5.1 and § 5.2, and we

122

found that approximately 14% of the time the heuristic pro-
duced a union type, while the remainder of the time it pro-
duced just a single, nominal type. The usefulness of the pro-
duced union types varied. Sometimes, the unions were quite
sensible. For example, in the TZInfo program, STRUCT-TO-
NoMINAL produced the type TZInfo:Timestamp U Time as
the solution for a number of variables. Both the TZInfo::Time-
stamp and Time classes represent time values, and many of
TZInfo’s methods are implemented to handle objects from
both of these classes, so this is a sensible solution. In other
cases, we found that STRUCT-TO-NOMINAL produced unions
of unrelated classes that happened to have some same-named
methods, thereby producing a solution that is less useful.

Name-based heuristics were also useful for our case stud-
ies, having been applied 254 times to infer types. However,
this clearly comprises a far smaller proportion of uses than
for the Rails apps. This may be because Rails emphasizes
the principle convention over configuration, making names
more important than in regular Ruby programs. Moreover, li-
braries are very domain-specific, and the names used in these
programs reflect their domain. For example, TZInfo features
many variables with names like time, datetime, timezone,
etc. It is challenging to write general-purpose heuristics that
can capture such domain-specific naming.

Finally, note that the HASH_ACCESs rule was used only
four times across the programs in Table 2, and only nine
total times across the programs in Table 1. This is partly at-
tributable to the invariance of hashes (as discussed in § 5.1).
Though the rule was applied few times in practice, we still
believe it was useful in the cases it was used for converting
structural type solutions to a more readable finite hash type.
For example, for one type variable in the code.org app, Infer-
DL used the HASH_AccEss rule to infer the finite hash type
solution { id: Integer, email: String, gender: a } (some key/-
value pairs omitted for brevity), rather than a much larger
and more difficult to read intersection of structural types.

Errors Found. InferDL found five previously unknown
bugs in the case study programs, all of which were confirmed
with the developers:

e In Active Merchant, InferDL caught a reference to an
undefined constant Billing::Integrations.

DLS ’20, November 17, 2020, Virtual, USA

Table 3. Testing Implementation Choices.

Program Choice Type | Unknown
Uses Types
Journey 0 30
Discourse 1 33
code.org 3 20
Talks 2 56
Active Merchant 1 69
Diff-LCS 124 14
MiniMagick 1 33
Optcarrot 154 73
Sidekiq 7 82
TZInfo 14 41
Total 307 451

o In Sidekiq, InferDL caught a reference to an undefined
identifier e inside a rescue clause that was as follows:

rescue Exception = ex

raise e
end

The notation rescue Exception => ex catches excep-
tions of type Exception and binds the specific Ruby
exception object to ex. This rescue clause was meant to
perform some error handling (elided with the ... above)
and then raise the original error, but it erroneously
referred to an undefined e rather than ex.

o In Sidekiq, InferDL caught a reference to an undefined
constant UNKNOWN.

o In Diff-LCS, InferDL caught two different calls to an
undefined method Diff::LCS.YieldingCallbacks.

e In Diff-LCS, InferDL caught a reference to an unde-
fined constant Text:Format.

We do note that given the nature of the above bugs (unde-
fined methods, variables, and constants), it is possible that
they could be found through alternative analyses. Neverthe-
less, InferDL’s ability to catch these errors in popular and
well-tested libraries indicates it is useful not only for gener-
ating type annotations, but also for catching type errors.

5.3 Testing Implementation Choices

Finally, in § 4 we discussed two novel design features of
InferDL: the use of choice types for resolving calls to over-
loaded methods and InferDL’s handling of calls to library
methods for which we do not have types. To evaluate these
choices, we provide some relevant data in Table 3 collected
from all 10 of the programs discussed in § 5.1 and § 5.2.

For each program, the first column gives the number of
choice types used while running InferDL on the program.
As discussed in § 4, a choice type is used when type checking
a call to an overloaded method, when InferDL is not able to
determine which type of the method to use. They can help
avoid false positive type errors (and thus reduce the need for

123

Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster

type casts), and to infer more precise types. In total, we used
307 choice types across all benchmarks. The vast majority of
these uses were in just two programs, Diff-LCS and Optcarrot.
This is likely because these programs rely heavily on array
manipulation, and therefore make frequent use of the Array
accessing method [], which requires choice types to resolve
its overloaded method type (see § 4 for an example). Thus,
we found that the need for choice types commonly arises in
programs, but they are especially useful for programs that
make frequent use of overloaded methods.

The next column gives the number of uses of “Unknown
Types”—this is the name we give to the method types com-
posed entirely of type variables that we generate for library
methods and other methods for which we do not have a
type. In total, we used 451 unknown types across all pro-
grams. Without our approach of generating unknown types,
we would have had to write a type annotation in every one
of these cases so that InferDL could type check the pro-
grams. Thus, we believe InferDL’s approach to handling
calls to methods without a type is effective for reducing the
programmer’s annotation burden.

6 Related Work

Researchers have been studying type inference for many
decades. Traditionally, the problem is posed as follows: given
a program without type annotations, can we determine the
most general type for each expression in the program, and
rule out any type errors? The problem was first formulated
and solved by Curry and Feys [9] for the simply typed lambda
calculus. Perhaps most famously, Hindley [17], Milner [23],
and Damas and Milner [10] developed an approach known
today as Hindley-Milner-Damas type inference. Its central
algorithm, Algorithm W, works by generating constraints
on type variables, then resolving those constraints through
a process known as unification.

Later efforts by Cartwright and Fagan [6], Aiken et al. [1],
and Flanagan and Felleisen [12], among others, sought to
extend static type inference to programs written in dynamic
languages. The goal is to develop a system with the flex-
ibility of dynamic languages, but some of the correctness
guarantees of static languages. Pottier [27] more specifically
focused on type inferencce in the face of subtyping, making
use of type constraint graphs and constraint resolution rules
to put the constraints in solved form. Many of the aforemen-
tioned ideas have been incorporated into type inference sys-
tems for popular dynamic languages like JavaScript [3] and
Python [4]. To the best of our knowledge, unlike InferDL,
these systems focus exclusively on uncovering type errors
and do not generate type annotations.

Furr et al. [15] present DRuby, a static type inference sys-
tem for Ruby, which features an expressive type language
including intersection, union, optional, and structural types.
While DRuby also focuses exclusively on finding type errors

Sound, Heuristic Type Annotation Inference for Ruby

in programs, many of the type system features it includes are
part of RDL [13], on which InferDL is built. Beyond infer-
ence alone, numerous static type systems have been explored
for Ruby and other dynamic languages. Ren and Foster [31]
explore type checking Ruby programs that use metapro-
gramming. Their central idea, to defer static type checking
until runtime, has been incorporated into RDL. Kazerounian
et al. [19] make use of type-level computations to more pre-
cisely type check Ruby programs, another idea that is now
included in RDL. More broadly, static type systems have been
explored for many dynamic languages including Racket [36],
JavaScript [29], and Python [37].

Beyond formal static analyses, a number of probabilistic
approaches to type inference have been proposed in recent
years. JSNice [30] uses probabilistic graph modeling methods,
such as conditional random fields, to predict JavaScript pro-
gram properties including type annotations. It is restricted
to predicting a limited set of types seen in training data.
In a similar vein, Xu et al. [38] infer types for Python pro-
grams by building probabilistic graph models that incorpo-
rate multiple sources of information such as variable names,
attribute accesses, and dataflow information. Unlike JSNice,
they train on individual programs, allowing them to predict
program-specific types. DeepTyper [16] uses bidirectional
RNNs trained on JavaScript source code to infer types from
over 11,000 types in its training dataset, while NL2Type [22]
trains an RNN exclusively on JavaScript programs’ natu-
ral language information, such as comments and identifier
names, to predict from a set of 1,000 types. TypeWriter [28]
uses a neural model to predict Python types based on natural
language and code context information, and uses a gradual
type checker to rule out incorrect types. They are limited to
predicting from a finite, configurable type vocabulary.

Similar to the above approaches, InferDL also incorpo-
rates identifier names when performing type inference. Of
course, unlike the probabilistic approaches, InferDL relies
on formal rules and thus may miss out on the complexity and
expressiveness found in natural language. However, Infer-
DL’s rule-based approach also has its advantages. For one,
this approach avoids the need for a large dataset of type
annotations, which is not readily available in Ruby. More-
over, Ruby on Rails programs emphasize convention over
configuration, which includes rigid variable/method naming
conventions—it is extremely straightforward to write heuris-
tics in InferDL that take direct advantage of such naming
conventions (e.g., the 1s_MODEL heuristic). Beyond being easy
to express, InferDL’s heuristic rules are highly configurable
and not baked-in to the inference system, allowing program-
mers to remove rules that do not apply, or add new rules that
capture their own conventions. Additionally, unlike most
of the existing probabilistic approaches, InferDL is able to
predict rare and user-defined types since it is not limited to
the data in a training set. Finally, InferDL can also fall back

124

DLS ’20, November 17, 2020, Virtual, USA

on inferring types based on constraint solving, which the
above approaches are unable to do.

7 Conclusion

We presented InferDL, a novel type inference system for
Ruby. In addition to uncovering type errors, InferDL aims to
produce useful type annotations for methods and variables.
Because the constraint-based approach to type inference
often results in types that are overly-general, InferDL in-
corporates heuristics that guess a solution for type variables
that better matches what a programmer would write. Infer-
DL enforces the correctness of heuristic guesses by checking
them against existing constraints. Moreover, heuristics are
not baked-in to InferDL but rather provided as code blocks,
making InferDL highly configurable.

We formalized the type and constraint language of Infer-
DL and provided the rules and procedures for resolving type
constraints, producing standard type solutions, and using
heuristics to produce more useful, sound type annotations.
We implemented InferDL on top of RDL, an existing Ruby
type checker which we extended with support for constraint
generation, heuristics, and choice types to handle overloaded
methods. We also discussed the eight heuristics we found
useful in applying InferDL to programs.

Finally, we evaluated InferDL by applying it to four Rails
apps for which we already had type annotations. We found
that, without using heuristics, we were able to correctly infer
about 58% of all type annotations for these apps, and when
using heuristics we were able to infer 80% of annotations.
We also applied InferDL to six additional case study Ruby
programs. Across the Rails apps and the case study apps,
InferDL discovered six previously unknown bugs. Thus, we
believe that InferDL is an effective type inference system
and represents a promising approach to generating useful,
correct type annotations.

Acknowledgments

We thank Sankha Narayan Guria and the anonymous review-
ers for their helpful comments. This research was supported
in part by NSF CCF-1918233 and DGE-1840340.

References

[1] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994.
Soft Typing with Conditional Types. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’94). ACM, New York, NY, USA, 163-173. https://doi.org/10.
1145/174675.177847

[2] Jong-hoon An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks.

2011. Dynamic Inference of Static Types for Ruby. In ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL).

Austin, TX, USA, 459-472. https://doi.org/10.1145/1926385.1926437

Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. 2005.

Towards Type Inference for Javascript. In ECOOP 2005 - Object-Oriented

Programming (ECOOP). Springer, Berlin, Heidelberg, 428-452. https:

//doi.org/10.1007/11531142_19

E

—

https://doi.org/10.1145/174675.177847
https://doi.org/10.1145/174675.177847
https://doi.org/10.1145/1926385.1926437
https://doi.org/10.1007/11531142_19
https://doi.org/10.1007/11531142_19

DLS ’20, November 17, 2020, Virtual, USA

(4]
(5]

(6]

(13]

[14]
[15

—

(16]

(17]

[18

[t

[19]

[20]

[21]

[22]

John Aycock. 2000. Aggressive Type Inference.

Nat Budin. 2020. Journey: An online questionnaire application. https:
//github.com/nbudin/journey/.

Robert Cartwright and Mike Fagan. 1991. Soft Typing. In Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design
and Implementation (PLDI 91). Association for Computing Machinery,
New York, NY, USA, 278-292. https://doi.org/10.1145/113445.113469
Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2014. Extending
Type Inference to Variational Programs. ACM Trans. Program. Lang.
Syst. 36,1 (2014). https://doi.org/10.1145/2518190

Code.org. 2020. The code powering code.org and studio.code.org.
https://github.com/code-dot-org/code-dot-org.

H. B. Curry and R. Feys. 1958. Combinatory Logic, Volume I. North-
Holland. Second printing 1968.

Luis Damas and Robin Milner. 1982. Principal Type-Schemes for
Functional Programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL '82). As-
sociation for Computing Machinery, New York, NY, USA, 207-212.
https://doi.org/10.1145/582153.582176

Yusuke Endoh. 2020. Optcarrot. https://github.com/mame/optcarrot.
Cormac Flanagan and Matthias Felleisen. 1997. Componential Set-
Based Analysis. In Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation (PLDI °97). As-
sociation for Computing Machinery, New York, NY, USA, 235-248.
https://doi.org/10.1145/258916.258937

Jeffrey Foster, Brianna Ren, Stephen Strickland, Alexander Yu, Milod
Kazerounian, and Sankha Narayan Guria. 2018. RDL: Types, type
checking, and contracts for Ruby. https://github.com/tupl-tufts/rdl.
Jeffrey S. Foster. 2020. Talks. https://github.com/jeffrey-s-foster/talks.
Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael
Hicks. 2009. Static Type Inference for Ruby. In Proceedings of the 2009
ACM Symposium on Applied Computing (SAC °09). ACM, New York,
NY, USA, 1859-1866. https://doi.org/10.1145/1529282.1529700
Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis
Allamanis. 2018. Deep Learning Type Inference. In Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018). Association for Computing Machinery, New York,
NY, USA, 152§A§162. https://doi.org/10.1145/3236024.3236051

R. Hindley. 1969. The Principal Type-Scheme of an Object in Com-
binatory Logic. Trans. Amer. Math. Soc. 146 (1969), 29-60. https:
//doi.org/10.1090/50002-9947-1969-0253905-6

Civilized Discourse Construction Kit Inc. 2020. Discourse: A platform
for community discussion. https://github.com/discourse/discourse.
Milod Kazerounian, Sankha Narayan Guria, Niki Vazou, Jeffrey S. Fos-
ter, and David Van Horn. 2019. Type-level Computations for Ruby
Libraries. In Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2019). ACM,
New York, NY, USA, 966-979. https://doi.org/10.1145/3314221.3314630
Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Cham-
bers. 2007. Searching for Type-Error Messages. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI "07). Association for Computing Machinery, New
York, NY, USA, 425-434. https://doi.org/10.1145/1250734.1250783
Calvin Loncaric, Satish Chandra, Cole Schlesinger, and Manu Sridha-
ran. 2016. A Practical Framework for Type Inference Error Explanation.
In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’16). Association for Computing Machinery, New York, NY,
USA, 781-799. https://doi.org/10.1145/2983990.2983994

Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type:
Inferring JavaScript Function Types from Natural Language Informa-
tion. In Proceedings of the 41st International Conference on Software
Engineering (ICSE 4AZ19). IEEE Press, 3044A$315. https://doi.org/10.

125

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

(33]
[34]

[35]
[36]

[37]

[38]

[39]

[40]

Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster

1109/1CSE.2019.00045

Robin Milner. 1978. A theory of type polymorphism in programming.
J. Comput. System Sci. 17 (1978), 348-375. https://doi.org/10.1016/0022-
0000(78)90014-4

MiniMagick. 2020. MiniMagick.
minimagick.

Mike Perham. 2020. Sidekiq. https://github.com/mperham/sidekiq.
Dmitry Petrashko. 2020. Personal communication.

Frangois Pottier. 1998. A Framework for Type Inference with Subtyp-
ing. In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming (ICFP ’98). Association for Computing Ma-
chinery, New York, NY, USA, 228-238. https://doi.org/10.1145/291251.
289448

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2019.
TypeWriter: Neural Type Prediction with Search-based Validation.
arXiv:cs.SE/1912.03768

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and
Panagiotis Vekris. 2015. Safe and Efficient Gradual Typing for Type-
Script. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’15). As-
sociation for Computing Machinery, New York, NY, USA, 167-180.
https://doi.org/10.1145/2775051.2676971

Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting
Program Properties from 4AIJBig CodeAAL In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 4AZ15). Association for Computing Machinery,
New York, NY, USA, 1114AS124. https://doi.org/10.1145/2775051.
2677009

Brianna M. Ren and Jeffrey S. Foster. 2016. Just-in-time Static Type
Checking for Dynamic Languages. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). ACM, New York, NY, USA, 462-476. https://doi.org/10.
1145/2908080.2908127

Brianna M. Ren, John Toman, T. Stephen Strickland, and Jeffrey S.
Foster. 2013. The Ruby Type Checker. In Object-Oriented Program
Languages and Systems (OOPS) Track at ACM Symposium on Applied
Computing. ACM, Coimbra, Portugal, 1565-1572. https://doi.org/10.
1145/2480362.2480655

Phil Ross. 2020. TZInfo. https://github.com/tzinfo/tzinfo.

Shopify and Spreedly. 2020. Active Merchant. https://github.com/
activemerchant/active_merchant.

Stripe. 2020. Sorbet: A static type checker for Ruby. https://sorbet.org/.
Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and
Implementation of Typed Scheme. In Proceedings of the 35th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL). ACM, New York, NY, USA, 395-406. https:
//doi.org/10.1145/1328438.1328486

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker.
2014. Design and Evaluation of Gradual Typing for Python. In Pro-
ceedings of the 10th ACM Symposium on Dynamic Languages (DLS ’14).
Association for Computing Machinery, New York, NY, USA, 45-56.
https://doi.org/10.1145/2775052.2661101

Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu.
2016. Python Probabilistic Type Inference with Natural Language
Support. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). Asso-
ciation for Computing Machinery, New York, NY, USA, 6074A$618.
https://doi.org/10.1145/2950290.2950343

Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon
Peyton-Jones. 2015. Diagnosing Type Errors with Class. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). Association for Computing Machinery,
New York, NY, USA, 12-21. https://doi.org/10.1145/2813885.2738009
Austin Ziegler. 2020. Diff-LCS. https://github.com/halostatue/diff-lcs/.

https://github.com/minimagick/

https://github.com/nbudin/journey/
https://github.com/nbudin/journey/
https://doi.org/10.1145/113445.113469
https://doi.org/10.1145/2518190
code.org
studio.code.org
https://github.com/code-dot-org/code-dot-org
https://doi.org/10.1145/582153.582176
https://github.com/mame/optcarrot
https://doi.org/10.1145/258916.258937
https://github.com/tupl-tufts/rdl
https://github.com/jeffrey-s-foster/talks
https://doi.org/10.1145/1529282.1529700
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1090/S0002-9947-1969-0253905-6
https://doi.org/10.1090/S0002-9947-1969-0253905-6
https://github.com/discourse/discourse
https://doi.org/10.1145/3314221.3314630
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://github.com/minimagick/minimagick
https://github.com/minimagick/minimagick
https://github.com/mperham/sidekiq
https://doi.org/10.1145/291251.289448
https://doi.org/10.1145/291251.289448
https://arxiv.org/abs/cs.SE/1912.03768
https://doi.org/10.1145/2775051.2676971
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1145/2908080.2908127
https://doi.org/10.1145/2908080.2908127
https://doi.org/10.1145/2480362.2480655
https://doi.org/10.1145/2480362.2480655
https://github.com/tzinfo/tzinfo
https://github.com/activemerchant/active_merchant
https://github.com/activemerchant/active_merchant
https://sorbet.org/
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/2775052.2661101
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1145/2813885.2738009
https://github.com/halostatue/diff-lcs/

	Abstract
	1 Introduction
	2 Overview
	2.1 Standard Type Inference
	2.2 Type Inference with Heuristics

	3 Constraints, Solutions, and Heuristics
	3.1 Types and Constraints
	3.2 Solution Extraction

	4 Implementation
	5 Evaluation
	5.1 Results
	5.2 Case Studies
	5.3 Testing Implementation Choices

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

