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Optical trapping of molecules with long coherence times is crucial for many protocols in quantum
information and metrology. However, the factors that limit the lifetimes of the trapped molecules remain
elusive and require improved understanding of the underlying molecular structure. Here we show that
measurements of vibronic line strengths in weakly and deeply bound 88Sr2 molecules, combined with
ab initio calculations, allow for unambiguous identification of vibrational quantum numbers. This, in turn,
enables the construction of refined excited potential energy curves, informing the selection of magic
wavelengths that facilitate long vibrational coherence. We demonstrate Rabi oscillations between far-
separated vibrational states that persist for nearly 100 ms.
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The interplay of light and matter has enabled major
strides in creating and controlling ultracold atoms and
molecules. Exquisite control over the dense internal struc-
ture of molecules, in particular, offers promising avenues
for tests of fundamental physics [1–6], cold controlled
chemistry and collisions [7–12], quantum simulation
[13–15], quantum computation [16–19], and compact
terahertz frequency references [20]. Addressing the internal
states with high fidelity necessitates the manipulation of
spatial and motional degrees of freedom. For cold neutral
gases, one common approach is the use of optical traps.
Given two molecular states, the differential trap-induced
light shifts and motional decoherence can be eliminated by
tuning the frequency of the trap light close to a narrow
rovibronic transition such that the dynamic polarizabilities
are equal. Such magic wavelength traps were recently
demonstrated to extend the vibrational [21] and rotational
[22,23] coherence times of an ensemble of ultracold
molecules. As with atomic lattice clocks [24,25], scattering
of lattice laser light is expected to play a central role in
limiting achievable interrogation times. Accurate knowl-
edge of the molecular structure is thus a primary step in the
identification of specific loss channels involved in the
interaction of the molecules and the trap light. Additionally,
this knowledge will help determine feasible pathways for
quantum state preparation of the molecules [26–29].
In this Letter, we employ Lamb-Dicke spectroscopy in

an optical lattice and state-of-the-art ab initio calculations
to measure and predict vibronic line strengths (or transition
strengths) in 88Sr2 molecules spanning over 3 orders of
magnitude. This is achieved by measuring light shifts
induced by a coupling laser as it is swept across a transition
of interest, resulting in avoided crossing curves from which
the line strengths are extracted with minimal modeling.

Taken together with lattice sideband spectroscopy, these
curves additionally furnish an accurate frequency-only
measurement of molecular polarizability ratios. We focus
on transitions between the electronic ground potentialX1Σþ

g
(henceforth referred to as X) and singly excited Hund’s case
(c) potentials ð1Þ0þu and ð1Þ1u corresponding to the 1S0-3P1

dissociation limit. By addressing both weakly and deeply
bound states, the molecular potential energy curves are
probed over a wide range of internuclear distances. We
combine our measurements with spectroscopic data to
construct refined potential curves for 0þu and 1u in the
Morse/Long-range form and apply the results to judiciously
select magic wavelengths that alleviate the impact of both
frequency instability and scattering of the lattice laser on
coherent molecule-light interactions. We demonstrate a
superposition of far-separated vibrational states that
remains coherent for a record time of nearly 100 ms.
In the Born-Oppenheimer approximation, the wave

function of a diatomic molecule is a product of its
electronic and rovibrational parts. The rovibrational part
jχv;Jn;ΩðRÞi is a function of the internuclear distance R and is
labeled by the following quantum numbers: the electronic
channel n, the vibrational number v, the total angular
momentum J, and its projection onto the internuclear axis
in the molecule-fixed frameΩ. Following Ref. [30], the line
strength for an electric-dipole transition between the
rovibrational states described by the wave functions
jχv;Jn;ΩðRÞi and jχv0;J0n0;Ω0 ðRÞi is given by

S≡ jHJMΩ
J0M0Ω0 hχv0;J0n0;Ω0 ðRÞjdΩ0−ΩðRÞjχv;Jn;ΩðRÞij2; ð1Þ

where dΩ0−ΩðRÞ is the electronic transition dipole moment,
M is the projection of the total angular momentum onto the

PHYSICAL REVIEW LETTERS 125, 153001 (2020)

0031-9007=20=125(15)=153001(7) 153001-1 © 2020 American Physical Society

https://orcid.org/0000-0002-6535-696X
https://orcid.org/0000-0003-3682-4901
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.153001&domain=pdf&date_stamp=2020-10-09
https://doi.org/10.1103/PhysRevLett.125.153001
https://doi.org/10.1103/PhysRevLett.125.153001
https://doi.org/10.1103/PhysRevLett.125.153001
https://doi.org/10.1103/PhysRevLett.125.153001


lab-frame Z axis, andHJMΩ
J0M0Ω0 is the rotational factor defined

in the Supplemental Material [31]. In the case of transitions
driven by linearly polarized light along the quantization
axis, the selection rules force M0 ¼ M. Equation (1) can
easily be generalized to the multichannel case by intro-
ducing a sum over n, n0, Ω, and Ω0 before taking the
absolute square. The quantity of interest that is readily
accessible is the Rabi frequency

fR ¼ 1

h

ffiffiffiffiffiffiffiffi
2IS
ϵ0c

s
; ð2Þ

which quantifies the strength of coupling between two
states when driven by a laser with intensity I, leading to
observable light shifts in the molecular spectra. In this
study, we measure the light shifts induced either by the
optical lattice, which also acts as the trap as in Fig. 1(a), or
by an anti-Stokes laser as in Fig. 1(b).
In the scheme shown in Fig. 1(a), we explore the

coupling of Xðv ¼ 6; J ¼ 0Þ to a set of J0 ¼ 1 resonances
near the bottom of the 1u potential well by the optical
lattice. For a given lattice detuning Δ from the 1u state and
the corresponding Rabi frequency fR, the additional light
shift on Xð6; 0Þ is f2R=4Δ in the limitΔ ≫ fR. To probe this
shift, we perform two-photon Raman spectroscopy on
Xð6; 0Þ, shown in Fig. 2(a). We initialize our molecules
in either Xð−1; 0Þ or Xð−2; 0Þ via photoassociation [31]
and use 0þu ð−4; 1Þ or 0þu ð−5; 1Þ as the intermediate state to
maximize the two-photon transition rate. The choice of
initial and intermediate states does not strongly affect the
measured S since the lattice is far detuned from any
resonances that would shift the binding energies of these

states. The Raman lasers are detuned from the intermediate
state by 20MHz, and the frequency of the first Raman leg is
swept, while the second is kept fixed. Measurement of the
two-photon resonance frequency at various Δ gives the
expected dispersive behavior, as shown in Fig. 2(b).
Transition strengths are inextricably linked to polarizabil-
ity, and in the Supplemental Material [31] we show that the
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FIG. 1. Line strength measurement schemes for a pair of
molecular vibrational states (v, v0). (a) For deeply bound states
of 1u, Raman spectroscopy was performed on X1Σþ

g molecules
initialized in near-threshold vibrational states. (b) For weakly
bound states of 1u and 0þu , spectroscopic probing was performed
on 1S0 atoms.
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FIG. 2. (a) A two-photon Raman depletion line shape. For this
trace, the differential light shift of the X states is nearly nulled,
resulting in a narrow power-broadened linewidth of 3.8(3) kHz
inferred from a Lorentzian fit. (b) The Raman peak locations
(open circles) exhibit dispersive behavior as the lattice frequency
is swept across the 1u state (shown here for v0 ¼ 5). The solid red
line is the fit to the avoided crossing of the form f2R=4Δ.
Residuals have units of Hz=ðW=cm2Þ. Error bars denote 1σ
uncertainties. (c) Line strengths of Xð6; 0Þ → 1uðv0; 1Þ (green
squares, measured and calibrated to 1S0 Sr polarizability; purple
circles, measured with intensity estimated from direct imaging of
beam waist; yellow diamonds, calculated using the Morse
potential). Also shown are the magic lattice detunings relative
to the nearest 1u state for a given pair of X states [green circles,
Xð−1; 0Þ → Xð6; 0Þ; red triangle, Xð−1; 0Þ → Xð4; 0Þ].
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ratio of fR to the axial trap frequency of Xð−1; 0Þ
molecules implies that, away from any resonances, the
baseline polarizability ratio of Xð6; 0Þ and Xð−1; 0Þ is
1.392(15) at 907.59 nm. This is then converted to absolute
values of S for Xð6; 0Þ → 1uðv0; 1Þ by calibrating to the
known polarizability of 1S0 atomic strontium.
Using this technique, we measure seven line strengths,

where all the 1u states are below the minimum of the
0þu potential. As illustrated in Fig. 2(c), experimentally S
demonstrate decreasing trends in two ranges. Prior to this
Letter, we used the binding energies calculated using the
ab initio model of Ref. [32] to assign the vibrational
quantum numbers v0 in the ranges 1–3 and 19–22, where
we find good agreement within 0.5% of the experimental
binding energies (see Table SIII in the Supplemental
Material [31]). To calculate the line strengths, we model
X with a set of precise empirical potential parameters
obtained from the hot pipe Fourier-transform spectroscopy
[48] and use the ab initio electronic transition dipole
moment. To our surprise, the calculated ab initio line
strengths follow the opposite trends compared to the
observations, and this persisted even when the electronic
transition dipole moment was modified. This suggests that
the v0 assignment based on the ab initio 1u potential is
erroneous. To overcome this, we take an alternative
approach and model the short-range behavior of 1u with
the simple Morse potential

VðRÞ ¼ De½1 − e−βðR−ReÞ�2 −De; ð3Þ

where De is the potential depth, Re is the equilibrium bond
length, β≡ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μωexec=h

p
, and μ is the reduced mass of

the dimer. In the presence of vibrational-rotational inter-
action, the energy levels are

Eðv0; J0Þ ¼ −De þ ωe

�
v0 þ 1

2

�
− ωexe

�
v0 þ 1

2

�
2

þ
�
Be − αe

�
v0 þ 1

2

��
J0ðJ0 þ 1Þ; ð4Þ

where ωe, xe, Be, and αe are the vibrational, anharmonicity,
rotational, and vibration-rotation coupling spectroscopic
constants, respectively. As shown in the Supplemental
Material [31], the best fit of the seven observed
J0 ¼ 1 levels to Eq. (4) indicates 15 vibrational states
between the two groups and ωexe ¼ 0.21150ð28Þ cm−1.
Rotational spectroscopy of J0 ¼ 3 states yields αe ¼
7.068ð11Þ × 10−5 cm−1. The Morse eigenfunctions were
obtained by numerically solving the nuclear Schrödinger
equation on an adaptive grid [49]. As the classical turning
points of the deeply bound X states are much further apart
than those of 1u, the Frank-Condon factors for these
transitions largely depend on the spatial variation of the
ground-state nuclear wave function. Consequently, the

calculated S versus v0 exhibit a characteristic interference-
like pattern with vþ 1 maxima (this rule of thumb was
observed to hold up to v ≈ 12). The measured experimental
trends in S are well captured by the calculations only for v0
assignments of 5–7 and 23–26 for the two ranges, as
shown in Fig. 2(c) and Table SI (Supplemental Material
[31]). The corresponding potential parameters are De ¼
6387.89ð11Þ cm−1 and Re ¼ 7.9027ð5Þa0.
Hence, while the ab initio calculation has good accuracy

in the long range, it underestimates De by approximately
300 cm−1 (5% relative difference). On the other hand,
Eq. (3) allows for De to be empirically determined, but the
simple potential cannot be extrapolated to the long range.
To combine these complementary descriptions, we recast
the ab initio 1u and 0þu potentials in the Morse/Long-range
(MLR) form [33,50] and fit to spectroscopic data, while
fixing De and Re to their empirical values found in this
Letter. In the Supplemental Material [31], we provide
details of the fitting process and the MLR parameters
and recalculate the energy levels of 0þu and 1u to benchmark
against experimental values.
Turning to weakly bound states, an anti-Stokes laser

selectively dresses Xðv; J ¼ 0Þ with a rovibrational state
0þu ðv0; J0 ¼ 1Þ or 1uðv0; J0 ¼ 1Þ, as shown in Fig. 1(b).
Here, we perform spectroscopy on a trapped sample of
ultracold atoms. Depletion occurs when a weak probe laser
is on resonance with the dressed states

f� ¼ Δ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2R þ Δ2

p
2

; ð5Þ

where fþðf−Þ is the resonance frequency of the blue-side
(red-side) peak relative to the bare resonance (fR ¼ 0), and
Δ is the coupling laser detuning. Figure 3(a) shows a
sample trace when the anti-Stokes laser is slightly red-
detuned from the Xð−2; 0Þ → 0þu ð−4; 1Þ transition,
revealing an Autler-Townes doublet. Although the atoms
are tightly confined along the axial direction of the 1D
lattice, the radial confinement is much weaker. At a finite
temperature of a few microkelvin, the atoms occupy several
motional states above the 1S0 þ 1S0 continuum leading to
an asymmetric line shape. We determined the location of
the resonances by fitting to a doublet line shape function
that accounts for these thermal effects [34].
Keeping the anti-Stokes laser intensity constant, the

square of the doublet separation ðfþ − f−Þ2 versus Δ is
a parabola whose minimum is f2R, as shown in Fig. 3(b).
This presents an attractive method of determining line
strengths, as opposed to measurements involving power
broadening and transition rates, since frequency differences
are robust against a wide variety of effects such as reference
cavity drift, the overall trap-induced light shift, shot-to-shot
signal fluctuations, and the fit line shape for the doublet.
Moreover, by working strictly with transitions between
J ¼ 0 and J0 ¼ 1 and in the regime where the anti-Stokes
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detunings are larger than the Zeeman structure, the mea-
sured S are insensitive to laser polarization and are
effectively between M ¼ M0 ¼ 0 states. The measured S
and corresponding predictions from the ab initio [32] and
MLR models are listed in Table I. For the weakly Coriolis-
mixed states, both models perform similarly well. However,
for the strongly Coriolis-mixed states, only the MLR model
gives the correct 0þu or 1u assignments and thus is more
accurate in its predictions for S.

Our findings directly inform the engineering of favorable
magic wavelength optical traps for a molecular clock, by
means of elucidating the quantum chemistry of the stron-
tium dimer. Just as in atomic lattice clocks, for a given
baseline polarizability mismatch between the clock states,
the required magic detuning Δm (relative to a resonance
between one of the clock states and an excited state)
monotonically increases with the line strength [see Fig. 2(c)
and Table SI [31] ]. The sensitivity of the clock transition to
lattice frequency inaccuracies is simply the slope of the
lattice-induced light shift at the magic detuning, −f2R=4Δ2

m,
and would decrease monotonically for larger S (and hence
larger Δm). Therefore, magic wavelengths based on
stronger transitions place less stringent constraints on the
required frequency stability of the lattice laser and on the
bandwidth of the spectral filter that suppresses the lattice
laser noise away from the carrier (such as amplified
spontaneous emission). To this end, we compute S between
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FIG. 3. (a) For a given detuning of the anti-Stokes laser from
the bound-to-bound molecular transition, the probe is scanned to
obtain an Autler-Townes doublet. (b) The locations of the blue-
side peak (blue circles) and the red-side peak (red circles) form an
avoided crossing. The square of the peak separations fit to a
parabola (solid red) when plotted against the anti-Stokes detun-
ing, the minimum of which is f2R. Error bars are propagated from
1σ uncertainties in the peak locations from the line shape fit.
Residuals are in units of MHz2.

TABLE I. Measured (Expt.) line strengths for weakly bound 0þu
and 1u states from X for various vibrational pairs. Also shown for
comparison are predictions from the ab initio (AI) and adjusted
MLR potential constructed in this Letter. Starred values are
strongly Coriolis-mixed states. Statistical uncertainties account
for the 1σ errors in the extracted Rabi frequencies as well as for
laser power fluctuations. The units are 10−3ðea0Þ2.

Xðv; J ¼ 0Þ State ðv0; J0 ¼ 1Þ AI MLR Expt.

−1 0þu −4 3.09 2.77 2.57(4)
−2 0þu −4 0.81 0.74 0.70(2)
−2 0þu −5 5.86 5.06 4.30(6)
−3 0þu −6 0.07� 8.89� 8.7ð4Þ�
−1 1u −1 5.44 4.56 5.53(8)
−1 1u −2 0.36 0.33 0.40(1)
−2 1u −1 1.71 1.68 1.74(3)
−2 1u −2 6.95 5.82 8.0(1)
−3 1u −3 13.2� 2.46� 2.10ð5Þ�
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FIG. 4. (a) Line strengths of deeply bound states of 1u to X.
Solid rectangle: the transition used for the magic wavelength in
this Letter. Dashed rectangle: our previous work [21]. (b) Two-
photon Rabi oscillations between Xð−1; 0Þ and Xð4; 0Þ
(black circles). Here, favorable magic trapping is achieved by
tuning the lattice near the Xð4; 0Þ → 1uð25; 1Þ transition.
Also shown are the normalized population decay of Xð4; 0Þ
(red squares) and Xð−1; 0Þ (blue triangles). Black line: fit to
A expð−t=T1Þ½1þ expð−t=TRabi

2 Þ cosðωt − ϕÞ�. Red and blue
lines are fits to the rate equation _N ¼ −kγNγ for the molecular
number N with γ ¼ 1 and 2, respectively, and kγ as a free
parameter. Error bars are 1σ uncertainties.
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the lower-lying J0 ¼ 1 states of 1u and several deeply
bound J ¼ 0 states of X, as shown in Fig. 4(a). For Xð4; 0Þ,
the state 1uð25; 1Þ has one of the largest predicted line
strengths among several v0 in the vicinity. The measured
magic frequency at 330.302 750 449(104) THz corre-
sponds to a detuning Δm ¼ 2.298ð41Þ GHz from the
Xð4; 0Þ → 1uð25; 1Þ resonance and is the largest studied
in this Letter. Operating the molecular clock at this magic
wavelength, we demonstrate long-lived two-photon Rabi
oscillations [TRabi

2 ¼ 77ð6Þ ms, T1 ¼ 127ð8Þ ms] between
the clock states Xð−1; 0Þ and Xð4; 0Þ, as shown in Fig. 4(b)
and described in the caption. This represents a significant
improvement in coherent light-molecule interactions over
our previous experiment [21]. The oscillations are pre-
dominately damped by the loss of Xð4; 0Þmolecules, which
has a 1=e lifetime of 60(2) ms at a trap depth of
kB × 12ð1Þ μK. The single-body losses are faster for deeper
traps, which indicates scattering of the lattice light. Here,
analysis may be confounded by the linewidth of the lattice
trap laser, since the deeply bound 1u states are expected to
be much narrower (Γe ≲ 2π × 6 kHz), and the situation is
that of broadband scattering. Further investigations using
the MLR potential curves can also help lend credence to
specific loss mechanisms, such as multiphoton scattering,
or to rule them out quantitatively.
In summary, we have measured the line strengths of

several 0þu and 1u states connecting to the ground-state X
potential in two different regimes—weakly bound near-
threshold states and deeply bound states—of ultracold
lattice-trapped Sr2 molecules used in a molecular clock.
The measurements were used to obtain analytic MLR
potential curves for 0þu and 1u that are in good agreement
with previously published binding energies and those found
in this Letter. In particular, we demonstrate the reliability of
the constructed 1u potential by predicting and verifying
states that have large transition strengths to X, which is an
important criterion for the construction of magic optical
traps. We presented an improved choice of a magic trap that
led to a coherent control of the clock states for a record
duration of nearly 100 ms. Furthermore, our accurate model
will help elucidate the processes that contribute to the
quenched molecular lifetimes and inform stimulated adia-
batic pathways for ground-state preparation in future work,
raising the prospects for a comprehensive vibrational
spectroscopy of the ground potential as a high-precision
test of molecular quantum electrodynamics and possible
new physics.
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This supplement describes the experimental setup and
expounds on the procedure in determining the spectro-
scopic constants of (1)1u, and the Morse/Long-range po-
tential parameters for (1)0+

u and (1)1u. We also present
additional data on the magic detunings, and binding en-
ergies of the deeply bound 1u states discovered in this
work.

DEFINITION OF THE ROTATIONAL FACTOR

The rotational factor in the expression for line strength
in the main text is defined as

HJMΩ
J′M ′Ω′ ≡(−1)M−Ω

√
(2J + 1)(2J ′ + 1) (S1)

×
√

1 + δΩ0 + δΩ′0 − 2δΩ0δΩ′0

×
(
J 1 J ′

M 0 −M ′
)(

J 1 J ′

Ω Ω′ − Ω Ω′

)
.

EXPERIMENTAL SETUP

A detailed account of our experimental setup has been
given elsewhere [S1]. Briefly, 88Sr atoms are laser-cooled
in a two-stage magneto-optical trap (MOT) operating
on the strong 1S0-1P1 transition at 461 nm and the spin-
forbidden intercombination transition 1S0-3P1 at 689 nm,
producing over 104 atoms in the 1S0 electronic ground
state at a final temperature of approximately 4(1)µK
as measured from a ballistic expansion of the gas. The
atoms are transferred to a horizontal one-dimensional op-
tical lattice with a typical trap depth of 50µK and axial
confinement frequency of 70 kHz such that spectroscopy
near the intercombination line is in the Lamb-Dicke and
resolved sideband regimes. Note that for the data demon-
strating Rabi oscillations, we used a lower trap depth of
12µK to prolong the lifetime of the deeply bound X state.

We can efficiently produce weakly bound vibrational
states belonging to the ground potential, X, by pho-
toassociating to a weakly bound 0+

u state where a rea-
sonably strong spontaneous decay pathway to X exists
owing to favorable Franck-Condon overlap. Depending
on the molecular transition of interest, we perform spec-
troscopy on a sample of either ultracold strontium atoms

or molecules. We count the number of atoms remaining
in 1S0 after a spectroscopy sequence by absorption imag-
ing on the 1S0-1P1 transition (a molecular sample is first
photodissociated into atoms).

The photoassociation, photodissociation, and probe
laser beams are phase-locked to a sub-kHz linewidth mas-
ter laser that is itself stabilized to a high-finesse reference
cavity (F ∼ 30,000). The Raman lasers are co-stabilized
with an erbium-doped fiber-based optical frequency comb
using the transfer-oscillator technique [S2, S3]. The rep-
etition rate of the frequency comb is phase-locked to the
master laser, while its carrier offset is referenced to a
GPS guided Rb frequency standard. For the coherent
Rabi oscillations, the lattice is phase-locked to the fre-
quency comb. All laser beams are coaligned with the
lattice and focused onto the atoms or molecules.

OPTICAL BEAM MODELING

To determine the spatial profile of the light shift induc-
ing laser beam (either the anti-Stokes or the optical lat-
tice), we deflect the beams just before the viewport of the
vacuum chamber onto a camera (Thorlabs DCC1545M)
positioned at the focal plane of the forward-pass lat-
tice beam. Typically, the waist of the lattice beam is
< 50µm, and that of the anti-Stokes is much larger at
100µm. The pixel size of the camera is 5.2µm ≡ h.

In the measurements involving weakly bound states, to
account for any possible misalignment of the anti-Stokes
and any non-idealities in its spatial profile, the local in-
tensity experienced by the molecules is estimated as the
intensity in one square pixel at the position of the lat-
tice on the camera. This was achieved by obtaining a
conversion ratio between the total count read by all cam-
era pixels (Ctot) to the total optical power received on
a power meter (P ) in the same optical path. The local
intensity is thus

P

Ctot

Clocal

h2
, (S2)

where Clocal is the pixel count at the lattice position.
For an ideal Gaussian beam with waist w0, this method
systematically underestimates the intensity near the peak



2

due to the finite pixel size by a factor

π

2

[
w0

h
erf

(
h√
2w0

)]2

. (S3)

For our parameters, this error propagates into the line
strength at the 0.01% level and is negligible compared to
the statistical error arising from the measurement of the
Rabi frequency and the optical power.

In the measurements involving deeply bound states,
the lattice laser itself induces the light shift. In one
method, we estimate the intensity of the lattice by di-
rectly imaging and fitting a Gaussian spatial profile to
the focused forward-pass lattice beam to extract its beam
waist, wlatt. This sets an upper limit for the lattice in-
tensity, as experimental imperfections tend to degrade
the quality of the optical standing wave. These include
imperfect wavefront matching of the retroreflected beam
with the forward beam, losses and aberration due to op-
tical elements in the beam path, and the overlap location
of the MOT and the lattice. Over a time scale of approx-
imately a year, during which the data in this work was
collected, we noticed a variance by a factor of approxi-
mately

√
2 in the axial sideband frequency determined by

optically probing the blue and red axial sidebands of the
narrow subradiant transition from X(v = −1, J = 0) to
1g(v

′ = −1, J ′ = 1) [S4, S5]. We attribute this to long-
term thermal or mechanical instability of elements in the
beam path and ambient magnetic field drifts which would
shift the MOT-lattice overlap position. We thus define
an effective waist, weff , such that wlatt

<∼ weff
<∼
√

2wlatt,
and take the average and range as the value and uncer-
tainty for weff respectively. The local intensity, in this
method, is estimated as

8Pf
πw2

eff

, (S4)

where Pf is the optical power of the forward beam. For
the deeply bound X → 1u transition strengths reported
using this method (purple circles in Fig. 2 (c)), we used
weff = 42(7) µm.

CALIBRATION OF TRANSITION STRENGTHS
TO KNOWN ATOMIC POLARIZABILITY

In this section, we present an alternative, frequency-
based method of extracting the deeply bound X → 1u
transition strengths based on calibrating the intensity
experienced by the molecules to a known polarizability
value.

In the vicinity of a narrow resonance to an electron-
ically excited molecular state such as 1u(v′, 1), the dy-
namic polarizability of the deeply bound ground vibra-
tional state X(v, 0) can be written as the sum of a reso-
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Figure S1. (a) Sample spectrum of the narrow single-photon
subradiant transition X(−1, 0) → 1g(−1, 1) which has an in-
trinsic linewidth of < 100 Hz, showing the axial red side-
band, carrier, and blue sideband as a function of increasing
probe frequency. (b) Square of the raw spectroscopic side-
band separation, SB, defined as half the frequency difference
of the blue and red sidebands, plotted against the power of
the forward lattice beam, Pf . (c) As the spectroscopy was not
performed at the magic wavelength of the subradiant transi-
tion, the carrier exhibits a differential light shift. The slope
of the linear fit, L0, is used to correct SB2/Pf to obtain
the true axial sideband frequency of the X(−1, 0) molecules:
f2
ax/Pf = SB2/Pf + 2hL0/(Mλ2). (d) f2

R obtained from the
dispersive avoided crossings at various Pf , shown here for
X(4, 0) → 1u(25, 1). The ratio of the slopes of f2

R/Pf and
f2
ax/Pf provides an accurate method to determine the polar-

izability ratio for the clock states, independent of the local
trap intensity experienced by the molecules. This, in turn, is
converted to a X → 1u transition strength using the known
atomic polarizability of Sr.

nant contribution and a background, or baseline, term:

αv = − 1

h

S

∆
+ αbgv , (S5)

where S is the transition strength between the deeply
bound ground state and the excited state, and ∆ is the
corresponding frequency detuning from resonance [S6].
In this work, v = 4 or 6. Since we deal exclusively
with J = 0 ground state molecules, the polarizability
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is a scalar quantity. The polarizability, α−1, of the ini-
tial state X(−1, 0) from which we perform Raman spec-
troscopy, and the baseline term αbgv , are largely unper-
turbed as the lattice is swept across the 1u resonance.
The clock-state differential polarizability, αv − α−1, is
nulled at the magic detuning ∆m, and it follows from
Eq. (S5) that

αbgv − α−1 =
1

h

S

∆m
. (S6)

Experimentally, we have access to the Rabi frequency
f2
R = (2S/h2)(I/ε0c) from the avoided crossings as de-

scribed in the main text. Additionally, by optically prob-
ing the blue and red axial sidebands of the narrow subra-
diant transition X(−1, 0)→ 1g(−1, 1), we can obtain the
axial trap frequency for X(−1, 0) molecules, fax, which
is related to α−1 by

f2
ax = α−1

1

Mλ2

I

ε0c
, (S7)

where λ is the lattice wavelength at which the sideband
measurement was performed and M is the molecular
mass [S4, S5]. Thus, the following frequency ratio is in-
dependent of beam intensity:

f2
R

f2
ax

=
1

ER

S

α−1
=

∆m

ER/h

(
αbgv
α−1

− 1

)
, (S8)

where ER = h2

2Mλ2 is the recoil energy and in the last
step we substituted Eq. (S6). This provides a method
to accurately and precisely determine the polarizability
ratio using only frequency measurements.

It is important that the lattice is tuned near the wave-
length of the X(v, 0) → 1u(v′, 1) resonance when per-
forming the X(−1, 0)→ 1g(−1, 1) single-photon sideband
measurement so that α−1 is kept the same as in the ex-
periment to determine f2

R. The spectroscopic separation
of the sidebands is corrected to take into account the dif-
ferential light shift of the subradiant transition using the
carrier peak, thereby allowing for an accurate measure-
ment of the axial trap frequency for X(−1, 0) molecules
even though the subradiant transition itself is non-magic.
This is illustrated in Fig. S1. To reject common-mode
systematic errors and ensure the same experimental con-
ditions, we measure f2

ax immediately after f2
R.

We apply this technique of measuring baseline polariz-
ability ratios to find αbg4 /α−1 = 1.366(10) and αbg6 /α−1 =
1.392(15) at λ = 907.64 nm and 907.59 nm, respec-
tively. From Eq. (S6), we see that together with the
measured magic detunings, these accurate polarizability
ratios can be converted into transition strengths using
the well known polarizability of the 1S0 atomic state αSr

as a reference:

S ' 2αSr

(
αbgv
α−1

− 1

)
h∆m. (S9)

Here we used α−1 ' 2αSr which is a valid approximation
since X(-1,0) is bound by less than 137 MHz. Put another
way, this method calibrates the lattice intensity using the
known atomic polarizability.

In Table SI, we list the transition strengths of the
X(v, 0) → 1u(v′, 1) resonances obtained in three ways:
(1) using the experimental polarizability ratios, (2) using
the estimated beam waist weff as described in the pre-
ceding section, and (3) via a theoretical calculation us-
ing the Morse/Long-range potential. For X(v = 4− 6, 0)
→ 1u(v′ = 23 − 26, 1) in the 907-925 nm wavelength
range, we use αSr = 261.2 a.u. at 914 nm [S7]. Owing
to practical reasons, for X(v = 6, 0) → 1u(v′ = 5 − 7, 1)
we partially turn to a molecular polarizability calculation
for the X states using the sum-over-states method with
ab initio transition moments. We estimate that the po-
larizability of X(−1, 0) is α−1 ' 2αSr = 2 × 236 a.u. at
1045–1063 nm, and in the same range the experimental
value for αbg6 /α−1 should be scaled by a factor of 0.89(9),
to obtain 1.239(25). Here we quote an uncertainty of 10%
on this scale factor based on the expected accuracy of the
ab initio transition moment of the deeply bound X state
to the higher-lying potentials asymptoting to 3P 1 + 3P 1.
As a benchmark, our polarizability calculations predict
α−1 = 2×256 a.u. and 2×282 a.u. at 914 nm and 813.4
nm, respectively, matching to within a few atomic units
the values calculated [S7] and experimentally measured
[S8] for αSr.

SPECTROSCOPIC CONSTANTS OF THE 1u

POTENTIAL

The energy spectrum of the simple Morse potential
with vibration-rotation coupling is

E(v′, J ′) =−De + ωe

(
v′ +

1

2

)
− ωexe

(
v′ +

1

2

)2

+

[
Be − αe

(
v′ +

1

2

)]
J ′(J ′ + 1), (S10)

where ωe, xe, Be and αe are the vibrational, anharmonic-
ity, rotational and vibration-rotation coupling spectro-
scopic constants respectively.

To find αe, we measure the rotational splitting of J ′ =
3 and 1 for various v′. Using Eq. (S10), we see that

E(v′, 3)− E(v′, 1) = 10Be − 10αe

(
v′ +

1

2

)
, (S11)

so that plotted against v′ + 1
2 the slope of the linear fit

is −10αe and insensitive to an overall offset in the v′ la-
bels. In order to address both J ′ = 3 and 1, we populate
X(v = 6, J = 2) with a long stimulated Raman pulse
from X(v = −1, J = 0) in a non-magic lattice. Then, a
short probe pulse (∼ 100µs) resonant with either J ′ state
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Table SI. List of measured deeply bound transition strengths of X(v, 0)→ 1u(v′, 1), the respective magic detunings and resonant
wavelengths. For precise values of the binding energies of the 1u states, see Table SIII. Except for X(6, 0) → 1u(25, 1), the
initial state of the Raman transition is always X(−1, 0).

Raman transition 1u(v′, 1) λ (nm) ∆m (GHz) S (10−5 (ea0)2)
X(vinitial, 0)→ X(v, 0) Calibrated to αSr Direct beam waist Theory

−1→ 6 26 907.587 0.195(2) 0.601(65) 0.32(13) 0.336
−2→ 6 25 913.597 0.670(18) 2.08(23) 1.25(49) 1.32
−1→ 6 24 919.725 1.316(1) 4.09(44) 2.27(89) 2.16
−1→ 6 23 925.973 1.380(2) 4.29(46) 2.6(1.0) 2.10
−1→ 6 7 1045.233 0.135(14) 0.231(41) 0.29(12) 0.0375
−1→ 6 6 1054.101 0.46(10) 0.79(21) 0.81(32) 0.779
−1→ 6 5 1063.185 1.743(13) 2.98(43) 2.8(1.1) 2.09
−1→ 4 25 907.636 2.298(41) 6.68(70) 9.4(3.2) 3.88

Table SII. Rotational splitting (in units of GHz) between J ′ =
3 and J ′ = 1 for a given v′ state of 1u.

v′ E(v′, 3)− E(v′, 1)
23 6.07728(9)
24 6.05616(9)
26 6.01375(6)

depletes the population. Finally, we perform another Ra-
man pulse to transfer the population back to X(−1, 0)
where it is dissociated and detected. The Raman transfer
is inefficient owing to the polarizability mismatch, but we
nevertheless obtain sufficient signal to perform the spec-
troscopy. We vary the optical lattice power between two
extremes and linearly extrapolate to zero power to ob-
tain the resonance frequency. The absolute frequency of
a resonant probe pulse was determined using an optical
frequency comb. Table SII lists the measured rotational
splittings for three states, and Fig. S2(a) shows the linear
fit from which we extract αe = 7.068(11)× 10−5 cm−1.

To determine ωexe, we take differences of adjacent vi-
brational energy levels for J ′ = 1. Eq. (S10) suggests
that

E(v′+1, 1)−E(v′, 1) = (ωe−2αe)−2ωexe(v
′+1). (S12)

Therefore, plotting this difference against v′ + 1 should
yield a straight line with a slope equal to −2ωexe that
is similarly insensitive to an overall offset in the v′ labels
(Fig. S2(b)). The best fits, judged on the basis of the
reduced χ2, are obtained if there are 15 intermediate vi-
brational states in the region where data is absent. We
thus obtain ωexe = 0.21150(28) cm−1.

Note that for the linear fits in Fig. S2 (a) and (b),
the vertical intercepts are 10Be and (ωe − 2αe), respec-
tively, only if accurate knowledge of the v′ labels are
available. In this work, we rely on finding potential pa-
rameters that reproduce the trends in the line strengths
to unambiguously assign the levels as v′ = 5–7, 23–26,
as described in the main text. With this at hand, we ex-
tract Be = 0.021933(3) cm−1 and ωe = 83.528(13) cm−1.

(a) (b)

23 24 25 26 27

6.02

6.08

(c)

0 10 20 30

-6000

-4500

0 10 20 30

70

84

Figure S2. (a) Rotational splittings between J ′ = 3 and 1.
(b) Adjacent vibrational splittings of J ′ = 1. (c) Binding
energies of J ′ = 1. All states belong to the 1u potential. The
red lines are fits to the data: a linear function in (a) and
(b), and a quadratic function in (c). The intercepts with the
vertical axis are 10Be, ωe − 2αe, and 2Be −De respectively.
Error bars are 1σ uncertainties in (b), and are much smaller
than the symbol size in (a) and (c).

The equilibrium bond length is then calculated using

Re = 1
2π

√
h

2µcBe
= 7.9027(5) a0.

The actual potential depth, De, relative to 1S0-3P1

will be overestimated by the standard formula ω2
e/4ωexe

as the simple Morse model does not extrapolate well to
the long-range. Instead, we determine De by fitting the
binding energies versus v′+ 1

2 to Eq. (S10), with αe, ωexe,
and ωe held fixed to the values above (see Fig. S2(c)).
The vertical intercept of the quadratic fit will therefore be
2Be−De. Knowing Be, we find De = 6387.89(11) cm−1.
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CONSTRUCTION OF MORSE/LONG-RANGE
POTENTIALS

The Morse/Long-range (MLR) potential as a function
of internuclear separation R has the form

VMLR(R) = De

[
1− uLR(R)

uLR(Re)
e−φ(R)γp(R)

]2

, (S13)

where

uLR(R) = −C3

R3
− C6

R6
− C8

R8
− C10

R10
, (S14)

φ(R) = [1− γref
p (R)]

N∑
i=0

(γref
q (R))iφi + γref

p (R)φ∞,

φ∞ = ln

(
2De

uLR(Re)

)
,

γp(R) =
Rp −Rpe
Rp +Rpe

,

γref
p (R) =

Rp −Rpref

Rp +Rpref

.

As a starting point of the fitting procedure, we used the
ab initio results from Ref. [S9] with the long-range coeffi-
cients fixed to the best available values deduced from ex-
periments and ab initio calculations: C3 from Ref. [S10],
C6 and C8 from Ref. [S11], and C10 from Ref. [S12]. The
well depth De and the equilibrium distance Re of the 1u
potential were fixed at their empirical values found in
this work. The p, q and Rref parameters were chosen ac-
cording to suggestions from Ref. [S13]. In particular, p is
an integer greater than nmax−nmin, where nmin = 3 and
nmax = 10 are the lowest and the highest powers in the
long range expansion uLR(R). Parameter q is a smaller
integer, typically q = 2–4 while Rref is chosen such as
Rref/Re = 1.1 − 1.5. Introduction of additional param-
eters q and Rref instead of simply using p and Re leads
to a better potential fit achieved with smaller number of
terms in the expansion of φ(R) in Eq. (S14). Then the
parameters φi of the 1u potential were refitted to match
the shape of the Morse potential well near the minimum.
Finally, the parameters φ0, φ1, φ2 of the 1u potential as
well as the C6 and C8 long-range coefficients of both 0+

u

and 1u potentials were fitted to a range of experimental
J ′ = 1 binding energies given in Table SIII. A simulta-
neous fit of the long-range coefficients for both 0+

u and
1u potential curves was necessary to correctly describe
the heavily Coriolis-mixed states 0+

u (v′ = −6, J ′ = 1)
and 1u(v′ = −3, J ′ = 1). The resulting parameters are
given in the upper half of Table SIV. For convenience,
the spectroscopic constants found in the preceding sec-
tion are also listed in the lower half of Table SIV.
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Table SIII. Binding energies for the bound states of 0+
u and 1u, in units of MHz. Negative vibrational quantum numbers count

down from the dissociation limit. The v′ assignments for the deeply bound 1u states are explicitly described as belonging to
either the MLR or the ab initio (AI) potential. For the values obtained in this work, those of 1u(v′ = 23, 24, 26, J ′ = 1, 3)
were determined via an optical frequency comb referenced to a NIST-traceable Rb standard, while the others were deduced
with a commercial wavemeter. The uncertainty in the absolute binding energy of X(v = 6, J = 2) at 25.070,581,141(76) THz
dominates the uncertainty for the former, while the resolution of the wavemeter dominates for the latter. We use the 1S0-3P1

intercombination-transition frequency from Ref. [S14].

State v′ J ′ Ab initio (AI) MLR Experiment Ref.
0+
u -1 1 0.4438 0.4151 0.4653(45) [S15]

0+
u -2 1 23.8652 23.7511 23.9684(59) [S16]

0+
u -3 1 223.967 221.643 222.161(35) [S17]

0+
u -4 1 1,087.732 1,083.751 1,084.093(33) [S17]

0+
u -5 1 3,421.12 3,463.63 3,463.28(33) [S17]

0+
u -6 1 8,038.76 8,429.56 8,429.65(42) [S17]

1u -1 1 356.429 352.657 353.236(35) [S17]
1u -2 1 2,686.905 2,684.103 2,683.722(32) [S17]
1u -3 1 8,209.159 8,200.040 8,200.163(39) [S17]
1u 26 (MLR), 22 (AI) 1 129,004,636 129,586,955 129,584,289.647(761) This work
1u 25 (MLR), 21 (AI) 1 131,207,700 131,758,225 131,757,586(300) This work
1u 24 (MLR), 20 (AI) 1 133,424,436 133,942,696 133,943,814.291(763) This work
1u 23 (MLR), 19 (AI) 1 135,654,750 136,140,364 136,143,325.578(761) This work
1u 7 (MLR), 3 (AI) 1 173,112,867 173,081,203 173,083,976(300) This work
1u 6 (MLR), 2 (AI) 1 175,560,325 175,498,791 175,496,706(300) This work
1u 5 (MLR), 1 (AI) 1 178,019,781 177,928,703 177,926,824(300) This work
1u 26 (MLR), 22 (AI) 3 128,998,655 129,580,953 129,578,275.914(761) This work
1u 24 (MLR), 20 (AI) 3 133,418,411 133,936,648 133,937,758.133(762) This work
1u 23 (MLR), 19 (AI) 3 135,648,703 136,134,293 136,137,248.303(764) This work

Table SIV. Morse/Long-range parameters of the (1)0+
u and (1)1u potentials in specified units. Also listed are the spectroscopic

constants determined from the energies of deeply bound 1u states.

0+
u 1u

Re (a0) 7.5443 7.9027
De (cm−1) 2784 6388
C3 (Eha

3
0) 1.5235661× 10−2 7.6178307× 10−3

C6 (Eha
6
0) 3.8947894× 103 4.0390241× 103

C8 (Eha
8
0) 4.5157846× 105 7.7660490× 105

C10 (Eha
10
0 ) 3.296× 107 1.3253× 108

p 9 9
q 4 4
Rref (a0) 8.2987 8.6930
φ0 -0.63810976 -1.2454828
φ1 3.5917033 -0.19418436
φ2 7.7175691 -1.8890781
φ3 0.57800325 -3.1121912
φ4 -29.3700406 -6.0245946
φ5 -23.080778 -5.6268047
φ6 54.044018 -3.3425721
φ7 91.862114 -0.0028626398
φ8 35.061649 0
φ9 -2.9283029 0
ωexe (cm−1) - 0.21150(28)
ωe (cm−1) - 83.528(13)
Be (cm−1) - 0.021933(3)
αe (cm−1) - 7.068(11)×10−5
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