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An improved seismic data completion algorithm using low-rank tensor
optimization: Cost reduction and optimal data orientation
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ABSTRACT

Seismic data are often incomplete due to equipment mal-
function, limited source and receiver placement at near and
far offsets, and missing crossline data. Seismic data contain re-
dundancies because they are repeatedly recorded over the same
or adjacent subsurface regions, causing the data to have a low-
rank structure. To recover missing data, one can organize the
data into a multidimensional array or tensor and apply a tensor
completion method. We can increase the effectiveness and effi-
ciency of low-rank data reconstruction based on tensor singular
value decomposition (tSVD) by analyzing the effect of tensor
orientation and exploiting the conjugate symmetry of the mul-
tidimensional Fourier transform. In fact, these results can be
generalized to any order tensor. Relating the singular values
of the tSVD to those of a matrix leads to a simplified analysis,
revealing that the most square orientation gives the best data

structure for low-rank reconstruction. After the first step of the
tSVD, a multidimensional Fourier transform, frontal slices of
the tensor form conjugate pairs. For each pair, a singular value
decomposition can be replaced with a much cheaper conjugate
calculation, allowing for faster computation of the tSVD. Using
conjugate symmetry in our improved tSVD algorithm reduces
the runtime of the inner loop by 35%-50%. We consider syn-
thetic and real seismic data sets from the Viking Graben Region
and the Northwest Shelf of Australia arranged as high-dimen-
sional tensors. We compare the tSVD-based reconstruction with
traditional methods, projection onto convex sets and multichan-
nel singular spectrum analysis, and we see that the tSVD-based
method gives similar or better accuracy and is more efficient,
converging with runtimes that are an order of magnitude faster
than the traditional methods. In addition, we verify that the most
square orientation improves recovery for these examples by
10%—-20% compared with the other orientations.

INTRODUCTION

Seismic data collection is limited by acquisition obstacles and
financial constraints that can prevent complete source/receiver
coverage. These limitations restrict the placement of receivers at
extreme offsets and constrain our ability to acquire complete cross-
line data in marine environments. In addition, receiver malfunction
can result in data with gaps between traces. Missing data nega-
tively affect seismic processing methods, such as migration, full-
waveform inversion, and amplitude variation with offset analysis
(Sacchi and Liu, 2005; Hunt et al., 2010; Chi et al., 2015). The data
completion problem refers to recovering the underlying true data
given only partial observations. Seismic data often contain redun-
dancies. Mathematically, redundant traces can be described as a set

of linearly dependent vectors. By treating traces as columns of a
matrix, data containing redundancies can be regarded as a low-rank
matrix because the rank of a matrix is equal to the number of lin-
early independent rows or columns.

Candes and Recht (2009) demonstrate that signals, images, and
other data represented as a matrix can be recovered by optimizing
a low-rank model. They observe that directly minimizing rank is
NP-hard and therefore infeasible. To circumvent this issue, they pro-
pose a model that minimizes the sum of singular values, also known
as the nuclear norm, as an approximation or relaxation of rank. This
approximation stems from the fact that the rank of a matrix also cor-
responds to the number of nonzero singular values given by its sin-
gular-value decomposition (SVD). Since the work of Candes and
Recht (2009), many researchers have generalized low-rank models
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and methods for the reconstruction of high-dimensional data sets. We
consider seismic data organized into a high-dimensional array or ten-
sor. For instance, prestack seismic data with x, y midpoints, x, y off-
sets, and time samples can be arranged into an order-5 tensor with a
dimension for each of the five variables. Arranging data as a higher
order tensor allows for efficient and more accurate recovery (Kilmer
and Martin, 2011; Ng et al., 2017). Studies show that tensor com-
pletion can succeed at reconstructing seismic data, recovering hyper-
spectral images, completing videos, and denoising computerized
tomography images (Semerci et al., 2014; Zhang et al., 2014; Kumar
et al., 2015; Mohd Sagheer and George, 2019; Liu et al., 2020a).

Low-rank reconstruction techniques for tensors include trans-
form-based and rank reduction methods. Examples of transform-
based methods include projection onto convex sets (POCS) and
minimum weighted norm interpolation (Abma and Kabir, 2006;
Stanton et al., 2012; Sacchi et al., 2017). Additional transform-
based methods have been developed to better analyze and interpo-
late irregularly spaced data such as least-squares wavelet analysis
and interpolation by matching pursuit (@zbek et al., 2009; Ghader-
pour and Pagiatakis, 2017). Other methods such as the antileakage
Fourier transform and antileakage least-squares spectral analysis
were designed to mitigate spectral leakage caused by irregular sam-
pling (Xu et al., 2005; Ghaderpour et al., 2018).

We focus on investigating rank reduction methods. For higher or-
der tensors, there are several definitions of rank that stem from the
choice of decomposition, such as the canonical decomposition/par-
allel factor rank, Tucker rank, tubal rank, tensor train rank, tensor ring
rank, and tensor tree rank (Kolda and Bader, 2009; Ely et al., 2015;
Long et al., 2019). These types of rank can be difficult to compute, let
alone minimize. Two popular generalizations of matrix SVD are
higher order SVD (HOSVD) and tensor SVD (tSVD), both of which
have associated norms that generalize the nuclear norm and can be
used as a relaxation for the notion of rank (Kilmer and Martin, 2011;
Kreimer and Sacchi, 2012). There are alternative methods and algo-
rithms that seek to reduce rank while avoiding SVD computations
such as parallel matrix factorization, randomized QR decomposition,
and tubal altmin (Cheng and Sacchi, 2015; Gao et al., 2015; Carozzi
and Sacchi, 2017; Sacchi and Cheng, 2017; Liu et al., 2020b). Multi-
channel singular spectrum analysis (MSSA), also known as Cadzow
reconstruction, aims to reduce the rank of block Hankel matrices
formed from frequency slices (Trickett et al., 2010; Oropeza and Sac-
chi, 2011). A variant, multidimensional dealiased Cadzow
reconstruction, has been shown to reduce the effects of aliasing (Na-
ghizadeh and Sacchi, 2013). Kumar et al. (2015) discuss how singu-
lar values decay at different rates for different data domains,
indicating that rank reduction techniques can be made more effective
when combined with appropriate transforms.

Returning to the previously mentioned SVD generalization, the
term HOSVD was introduced by De Lathauwer et al. (2000),
who show that the Tucker (1966) model generalizes the matrix
SVD to tensors of any dimension. Kreimer and Sacchi (2012) de-
velop a reconstruction technique to recover missing data using
low-rank approximations of an observation by truncating its
HOSVD. They verify their model by reconstructing 4D patches of
prestack data (x, y midpoints and x, y offsets). Several works have
continued to build upon and improve the HOSVD model (Ng et al.,
2017; Gao and Sacchi, 2018).

Distinct from HOSVD, Kilmer and Martin (2011) develop a
framework for multiplying order-3 tensors via the tensor product
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(tProduct), leading to a generalization of the matrix SVD known
as tSVD. A tensor’s representation by tSVD depends on its orienta-
tion, that is, the ordering of its dimensions. This dependence is a dis-
tinction from HOSVD, which is orientation-independent (Ely et al.,
2015). Martin et al. (2013) further generalize the tSVD to tensors of
any dimension. Ely et al. (2013) generalize the nuclear norm, defin-
ing the tensor nuclear norm (TNN) as the sum of singular values
given by the tSVD. Furthermore, they formulate a low-rank tensor
model that minimizes TNN and solve the model via the alternating
direction method of multipliers (ADMM) algorithm, successfully re-
constructing 4D and 5D prestack seismic data. Ely et al. (2015) im-
prove the TNN model to reconstruct and denoise, showing
improvement on 5D prestack seismic data. Various studies have de-
fined variations of the TNN, still using the tSVD framework, and
have applied these norm variations for low-rank reconstruction.
Mu et al. (2020) propose a low-rank model using a weighted
TNN and apply their model to image and video completion. Liu et al.
(2020a) replace the nuclear norm by the L, norm (for p < 1) referred
to as the p-shrinkage nuclear norm, and they demonstrate recovery of
color and hyperspectral images. Lu et al. (2020) develop a tensor
robust principal component analysis model to recover low-rank ten-
sors corrupted by sparse errors. Su et al. (2019) examine summing the
TNN over each orientation of a 3D tensor, defining the sum of TNN
to avoid the issue of tensor orientation.

Because the tSVD is orientation-dependent, Popa et al. (2020)
study how orientation of order-3 tensors impacts the error in recov-
ery. The orientation affects the shape of the frontal slices, subma-
trices within a tensor formed by fixing all but the first and second
dimensions. The closer the ratio of the first and second dimensions
is to one, the closer the frontal slices are to square matrices. They
empirically find that the most square orientation produced the ten-
sor of lowest rank based on the normalized cumulative sum of sin-
gular values. Popa et al. (2020) apply the low-rank TNN model to
reconstruct 3D seismic data and find that this orientation produced
the smallest error in recovery. Apart from tSVD, Mu et al. (2014)
use a model based on reshaping a tensor into a matrix and find that
square matrices improved low-rank recovery. Gao et al. (2017) use
this idea of reshaping tensors into approximately square matrices to
improve parallel matrix factorization, developing parallel square
matrix factorization.

Popa et al. (2019) examine the effect of an order-3 tensor’s ori-
entation on the runtime of the tSVD algorithm. They find that the
most square orientation results in an optimal runtime. Lu et al.
(2020) and Popa et al. (2020) demonstrate that, for order-3 tensors,
the tSVD runtime can be further reduced, independent of orienta-
tion, by using the conjugate symmetry produced by the Fourier
transform in the first step of the tSVD algorithm.

In this work, we improve the TNN-ADMM model for seismic
data reconstruction based on low-rank tSVD. We focus on the
reconstruction problem without denoising. We demonstrate the ad-
vantages of TNN-ADMM over other reconstruction methods, ana-
lyze the impact of orientation on recovery for tensors of arbitrary
order, and improve the runtime of tSVD by using conjugate sym-
metry. Specifically, our contributions include the following:

1) Compared with two conventional reconstruction methods,
POCS and MSSA, for synthetic and real data, we find that
TNN-ADMM provides comparable or improved accuracy
and is the most efficient among these methods.
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2) We discover that, for tensors of any order, the most square ori-
entation provides the best data structure for the low-rank model,
which allows for improved recovery by permuting the dimen-
sions of input data.

3) We speed up tSVD-based reconstruction algorithms for any or-
der of tensor by using the conjugate symmetry of the multidi-
mensional Fourier transform. This conjugate symmetry can be
applied to other tensor operations computed in the Fourier do-
main such as the tensor product.

THEORY AND METHOD
Tensor algebra background

When seismic data are recorded, acquisition limitations may re-
strict where they may be acquired. For example, the placement of
near- and far-offset receivers or constraints on the spacing between
receivers will lead to recorded data gaps. Seismic streamer surveys
for marine acquisition may have missing crossline data. Additional
measuring device issues such as receiver malfunction can also con-
tribute to missing data. Figure 1a and 1b displays a gather from the
Northwest Shelf (NWS) of Australia and the decimated observation
after 60% of the data have been manually removed, respectively.
Given such partial observations, we seek to recover the missing data
samples and traces.

Mathematically, matrices provide a natural means of representing
data in two dimensions. Seismic data can also be organized into
higher dimensional structures (e.g., time-lapse data or data acquired
using multiple sources and receivers can be considered to have more
than two dimensions). Such high-dimensional data can naturally be
arranged into a multidimensional array or tensor. We use script let-
ters to denote tensors, such as &, and capital letters for matrices,
such as X. The order of a tensor refers to its dimension. For exam-
ple, we can consider a sail line of seismic streamer data as an order-
4 tensor, with dimensions corresponding to time, offset, streamer
position, and shot position. Figure 2 illustrates an order-4 tensor
corresponding to the NWS data, in which each colored cube rep-
resents the data collected at a different shot position. Submatrices
within a cube contain the gathers from each streamer.

A partial observation is modeled mathematically using a sam-
pling operator. A sampling operator can be represented as a matrix
or tensor with dimensions matching the data’s dimensions. The
sampling operator contains ones (zeros) where
data are recorded (missing). Letting X represent

where /1 denotes a complexity measure. The complexity measure
serves as a constraint on & because the inverse problem to find
X given Y, e.g., Y = A(X), is ill-posed. If we wish to recover
the data X' of lowest rank that satisfy the data-matching constraint
Y = A(X), the complexity measure /4 should be chosen as rank.
However, minimizing rank is NP-hard; hence, an approximation
of rank is needed (Candes and Recht, 2009). To approximate rank,
one often makes use of the SVD. The singular values are significant
in that the largest singular values contain the most important infor-
mation about the matrix (Strang, 1980). Low-rank matrices are

h
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Offset (m)

b) 0 Observation

0 500 1000 1500 2000
Offset (m)

Figure 1. (a) A gather of the NWS interpolated to have a single
zero-feather streamer and (b) the decimated observation with
60% of the columns removed at random.

the underlying true seismic data, we consider the

Shot 2 streamer 2

partial observation ) as the result of sampling
operator A acting on X’; that is,

y=A(X). (1)

A sampling operator acts by Hadamard or entry-
wise product, where we multiply each entry of X’
by the corresponding entry of A (Kreimer and

Shots

D
Offset. ¢

S
< 0.

Sacchi, 2012). r

Seismic data contain many redundancies,

500 1000 1500 2000 2500 3000 3500

which results in a low-rank array in 2D. To re-

cover the true data X, we solve the optimization
problem

min (X)) st Y= A(X), (2)

Offset (m)

X

Figure 2. Illustration of the NWS data arranged as an order-4 tensor with dimensions for
time, offset (receiver position), streamer position, and shot position.
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characterized by a small percentage of the singular values contain-
ing most of the matrices’ information. Thus, the sum of the singular
values, also known as the nuclear norm, denoted || - ||, is com-
monly used to approximate rank (Candes and Recht, 2009).

We next discuss the theory for arbitrary order-p tensors for
p >3, which allows us to explain the generalizations of SVD
and the nuclear norm for tensors of any order. For an order-p tensor
X € Ry the elements are indexed by X, , .. ¢ » With
k; e {1, ...,n;} forall dimensions j = 1,2, ..., p. A frontal slice
is a submatrix formed by fixing all but the first two dimensions. We
denote a frontal slice as &; for i=1,2,...,N, where
N = n3ny...n, is the total number of frontal slices.

The tSVD generalizes the matrix SVD and decomposes a tensor
into a product of three tensors (Martin et al., 2013),

X =USy-. 3

The tensors Y € R™M>XMX1XX1p gpd ) € R™X72XmX X gre yni-
tary. The term S is a diagonal tensor, where each frontal slice is a
diagonal matrix. The multidimensional Fourier transform of S over
dimensions 3 to p is denoted as S. The diagonal of each frontal slice
of S is positive and descending. Due to the similarity to matrix
SVD, we will refer to the diagonal values in S as the singular values
of X (for more details, see Appendix A).

TNN generalizes the matrix nuclear norm and is defined by sum-
ming the nuclear norms of each frontal slice of the tensor in the
Fourier domain,

N
[l rnn = Z”XiHnUC' “)
pa

Because the nuclear norm provides a relaxation of rank for matrices,
the TNN analogously provides a relaxation of rank for tensors and
produces a convex objective function (Candes and Recht, 2009; Ely
et al., 2015). Hence, using TNN as our choice of complexity mea-
sure in equation 2, we consider the optimization problem

We solve equation 5 using ADMM because it converges quickly
and can be implemented relatively easily (Boyd et al., 2010; Ely
et al.,, 2015). We show that ADMM performs favorably relative
to two traditional data completion methods in the “Numerical

Offset

Vo

—_—>
Offset S

—
Shots

Figure 3. Illustration of two orientations of an order-3 tensor with
dimensions for time, offset, and shot position. The green line high-
lights the same gather in each orientation.
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results” section, providing accurate results at a reduced computa-
tional expense.

ADMM alternates between satisfying the low-rank requirement
imposed by the TNN penalty term and satisfying the data-matching
constraint by splitting the variable X into two. Applying this
method to solve equation 5 results in the following iterative updates
(Ely et al., 2015):

Kkl argm)én{lyA(X) +g||2c'— (Zk _Bk)||l2:}, ©6)

.1 1
21 = angmin 2|2l + 5112 - (2 + B

)

Bk+1 — Bk + (Xk+1 _ ZkJrl)’ (8)

where k denotes the iteration, p > 0 is a step-length parameter, and
|| - || is the Frobenius norm. The indicator function is denoted by
ly_ AX)> which takes the value zero if the relation in the subscript is
satisfied and oo otherwise. The variable X is required to satisfy the
data-matching constraint )V = A(X) by the indicator function. The
variable Z captures the TNN penalty, and B is the dual variable. In
the next section, we seek to improve TNN-ADMM by understand-
ing the impact of orientation on arbitrary order-p tensors.

Relating tSVD to SVD and the best orientation for
low-rank recovery

We examine how the accuracy of low-rank data recovery is af-
fected by tensor orientation. Permuting the dimensions of a tensor,
similar to a matrix transpose, results in different orientations. Fig-
ure 3 illustrates two orientations of an order-3 tensor with dimen-
sions for time, offset, and shot position. We relate tensor X" to a
matrix sharing the same singular values and analyze how the ori-
entation affects this matrix. In doing so, we determine the optimal
orientation for the low-rank TNN model.

For a tensor X € Rmxmxxm, et X € RuN*1N be a block
diagonal matrix, with the diagonal elements corresponding to the
frontal slices of X indexed from i =1, ..., N, e.g.,

X= , . )

For a tensor with tSVD X = U/SV*, it has been shown in the
construction of the tSVD by Martin et al. (2013) and Lu et al.
(2020) that

X=US8V~ (10)
This equation gives the SVD of X. Thus, tensor X and its cor-

responding block diagonal matrix X share the same singular values.
Hence, minimizing the TNN of X is equivalent to minimizing the
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nuclear norm of X. This connection simplifies the tensor analysis to
analyze a matrix.

The dimensions of the block diagonal matrix are dependent on
the orientation of the tensor, as X € RN Hence, if n, > n, or
n, > ny, then X has very rectangular or skinny frontal slices and X
is a skinny matrix. Likewise, if X has approximately square frontal
slices, then X is approximately square. The most square orientation
occurs when the ratio n; /n, is the closest to one among all possible
pairs of dimensions. Skinny matrices are often of low rank; hence,
applying a low-rank model does not improve data reconstruction.
Consequently, square matrices provide the best data structure for
low-rank models. In addition, this orientation coincides with the
most cost efficient orientation when n; and n, are the two smallest
dimensions and their ratio is the closest to one (Popa et al., 2019).

We also consider the physical meaning of this orientation. For
seismic data, time is often the largest dimension by a significant
margin resulting in the most square orientation having frontal slices
formed over spatial dimensions such as the receiver position and
shot location. If data are collected from an area with lateral continu-
ity, we can expect the data to be of lower rank along the spatial
dimensions than with respect to time. In such cases, we would ex-
pect the most square orientation to have the lowest rank frontal sli-
ces among all the orientations. We provide empirical evidence to
support the advantages of the most square orientation and compare
the recovery under different orientations in the “Numerical results”
section.

Improving runtime

We now discuss a means of speeding up the runtime of the tSVD
algorithm independent of orientation. Lu et al. (2020) and Popa et al.
(2019) demonstrate for order-3 tensors that operations in the Fourier
domain acting on all frontal slices, such as tSVD and tProduct, can
be implemented more efficiently by taking conjugates of the appro-
priate slices to avoid redundant calculations. Here, we show how
this conjugate symmetry extends to the general case for tensors
of any order.

The tSVD algorithm can be implemented in three steps as shown
in Algorithm 1. In the first loop of the algorithm, one computes the
multidimensional Fourier transform of X over dimensions 3 to p,
resulting in X. We use “fft(/'AV , J)” to denote the Fourier transform of
X along dimension j and “ifft” for the inverse Fourier transform. In
the second loop, one computes the SVD for each frontal slice of X
and stores the results in 2/, S and V. In the last loop, we compute
the multidimensional inverse Fourier transform of ¢4, S, and V to
obtain the three tensors that comprise the tSVD of X.

To speed up this algorithm, we can make use of the conjugate
symmetry property of the multidimensional Fourier transform
(for the 2D definition of conjugate symmetry, see Briggs and Hen-
son, 1995). If X is real-valued, then values of X form conjugate
pairs by the relation

= Xlt],kz.m3 ..... m, v kl’st (11)
where m; = [—-(k; — 1)modn;] + 1 for j = 3,4, ..., p. This con-
jugate symmetry results in most frontal slices having an entry-
wise conjugate pair; that is, for frontal slice X x there ex1sts a frontal
slice X' w such that X y = con](X k), where “conj” denotes the
entry-wise conjugate. A slice does not have a conjugate pair if
m; = k; for all j=3,4, ..., p. Figure 4 illustrates the conjugate
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symmetry for a 4D n; X n, X 3 X 3 tensor using three cubes, each
with three frontal slices. Slices of the same color are entry-wise
conjugate pairs. For conjugate pairs of slices, we can avoid redun-
dant calculations in the tSVD and tProduct algorithms, replacing
an SVD and matrix product, respectively, with cheaper conjugate
computations.

For computing the tSVD, we consider a conjugate pair of frontal
slices X x and X > K < M. For the first frontal slice of the pair, X K>
we calculate the matrix SVD as X kK = =U xS Kf/}} For the second
slice of the pair, X > We can take the entry-wise conjugate of each
term of the decomposition, X'y, = conj(/ K)S Kcon](VK) (because
the singular values are real, taking the conjugate of S x 1S unnec-
essary).

To implement tSVD efficiently, we first compute a mapping be-
tween conjugate slices. We store this mapping in a vector v € R".
Each element of v contains an index of a frontal slice. For the first
slice of a conjugate pair X'k, we set v(K) = K. For the second slice
in a pair X, we set v(M) = K to signify that we can take the con-
jugate of the SVD of slice /’AYK. For a slice i’,— without a conjugate
pair, we set v(i) = i. We note that the mapping vector v needs to be
computed only once for a set of dimensions ks, ky, ..... k o
allowing for efficient implementation when computing the tSVD
for multiple tensors of the same size.

Applying conjugate symmetry and the mapping vector, we
present our improved tSVD in Algorithm 2. In the second loop
of the algorithm, we check if a slice is the first in a pair (or if it

Algorithm 1. Original tSVD algorithm.

: Input: X' € Rm>mxxn,

N =mn3ny4...n,

1

2

X=X

4: for j =3 to p do
5. X =ffi(X,))
6: end for
7:fori=1to N do

8 [Z:{iv:sivf}i} = SVd(/’AVi)
9: end for

10: for j = 3 to p do

1: U = iffud, j)
12: 8 =ifft(S. j)
13: D =ifft(V, )
14: end for
A P P
|~ |~ |~

Figure 4. We illustrate an order-4 tensor with dimensions n; X n, X
3 % 3 using three cubes, each with three frontal slices. Slices of the
same color are entry-wise conjugate.
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has no pair) using the mapping vector v, in which case we compute
and store its SVD. Otherwise, we store the conjugate of the previ-
ously computed SVD of the appropriate slice, thus replacing an
SVD computation with a much cheaper conjugate computation.
The tProduct can be implemented similarly, using the same map-
ping vector v to replace matrix product computations with conju-
gates of appropriate slices.

To estimate the cost savings of replacing SVD calculations with
conjugates, we examine the cost of each operation and how many
slices have a conjugate pair. As previously stated, a slice does not
have a conjugate pair if m; = k; forall j = 3,4, ..., p. This equal-
ity occurs for k; = 1 and k; = n;/2 + 1 when n; is even. Taking all
combinations gives the number of slices that do not have a conju-
gate pair as 2%, where « is the number of dimensions with an even
value among n3,ny, ...,n,. Hence, the number of slices with a
conjugate pair is N — 2%. For half of these, (N — 2%) /2 many slices,
we can perform an inexpensive conjugate computation in place of
an expensive SVD calculation in the second loop of the tSVD al-
gorithm. Thus, the cost of the inner loop of the tSVD algorithm can
be reduced by approximately 50%. We demonstrate the improve-
ment of our algorithm on synthetic and real data in the “Numerical
results” section.

NUMERICAL RESULTS

We illustrate our theoretical results numerically using synthetic
and field data sets. The synthetic data contain three linear events
and consist of 100 gathers, each with 60 traces and 700 time steps,
and they are shown in Figure 5a. For the field data experiments, we
use data sets from the Viking Graben (VG) Region and NWS of

Algorithm 2. Improved tSVD algorithm using conjugate
symmetry.

: Inputs: X' € R#XmXXm g e RV

N =n3ny...n

X=X

:for j =3 topdo

X = fft(X, j)

: end for

:fori=1toNdo

if v(i) == 1 then
[Z:lis:sis 91] = SVd(/i/i)

10:  else

S =8

72{1' = Conj(lzlv(i))

V; = conj(Vy i)

14:  end if

15: end for

16: for j = 3 to p do

17: ifft(U, j)

18: ifft(S, j)

19: ifft(V, j)

20: end for

p

© 0 N QLR W =

—_
W N =

& <O U S
I
<> Oy g
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Australia. We show a schematic of the acquisition geometry of the
VG seismic streamer data in Figure 6. From the VG data set, we use
a subset of 100 common-midpoint gathers with a bin size of 12.5 m.
Each gather has 60 traces covering offsets from 262 to 3212 m with
a 6 s time window (4 ms sampling).

The NWS data that we use contain gathers from 20 shot locations
along one sail line with 25 m spacing. Gathers were recorded with
12 streamers per shot and 288 traces per streamer. Traces contain
1732 samples with a 2 ms time sampling. Figure 7 illustrates the
acquisition geometry of the NWS data. For our 4D tensor experi-
ments, we use gathers from five shot locations and refer to these
data as NWS4D. In addition, we examine a subset of the NWS,
interpolated from the full data set to have a single zero-feather
streamer for each shot. We refer to this zero-feather data as NWS3D
and use it for additional 3D tensor experiments. For our experi-
ments, we operate on each of these data sets arranged into a single
high-dimensional tensor. In general, splitting the data allows for ef-
ficient parallel computing but increases the error in reconstruction.

In the remainder of this section, we compare TNN-ADMM with
two other standard methods used for seismic data reconstruction,
POCS and MSSA (Abma and Kabir, 2006; Chen et al., 2016).
We find that these three methods are comparable when applied
to synthetic data, whereas TNN-ADMM performs better on real
field data. In addition, we find that TNN-ADMM has the fastest

a) 0 Synthetic shot #14 b) 0 Observation
0.2} J‘ 0.2 I
0.4 iy 0.4 I 1
e 1 il
06 il = 06 o
ML 2
=08 =~ 0.8
1 1
1.2 1.2
0 500 1000 1500 0 500 1000 1500
Distance (m) Distance (m)

Figure 5. (a) A synthetic gather and (b) the decimated observation
with 60% of the columns removed at random.
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Figure 6. Acquisition map of the VG data (D. Lumley, personal
communication, 2018). The horizontal and vertical axes correspond
with the receiver and shot positions, respectively. A red point is
placed at each location where data are recorded. The section of
the plot marked with a dashed box in the upper left corner is shown
enlarged in the upper right. We see a few horizontal bands for which
no data are recorded at specific shot locations.
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runtime to convergence among these methods. Then, we compare
TNN-ADMM for each orientation of the order-3 and order-4 ten-
sors. For the synthetic and real data examples, the most square ori-
entation produces the least error. Finally, we compare the runtime of
the original tSVD algorithm and our improved algorithm using con-
jugate symmetry. We observe significant runtime reduction by using
conjugate symmetry.

Comparison of methods

In this paper, our focus is on improving the data reconstruction
via TNN-ADMM. However, because this method is less well-
known in the seismic community, we start by comparing TNN-
ADMM with two other, more standard methods for seismic data
reconstruction, namely, POCS and MSSA. For POCS, we imple-
ment the iterative algorithm described in Abma and Kabir (2006).
The POCS method performs a Fourier transform over each dimen-
sion of a data tensor and removes the smallest amplitude frequen-
cies in the f~k domain via thresholding. Although TNN-ADMM is
dependent on data orientation, POCS is orientation independent.

The MSSA method transforms the data from the time to the fre-
quency domain and then creates a block Hankel matrix from each
frequency slice. In the noise-free case, these block Hankel matrices
have rank equal to the number of linear events. Noise increases the
rank of these matrices, hence by applying rank reduction the data
can be reconstructed. Given the physical motivation behind MSSA
to operate on frequency slices, we consider this method to be ori-
entation-independent. For MSSA, we use the existing code made
available by Chen et al. (2016).

First, we compare these three methods on the synthetic data set
shown in Figure 5a. Using the sampled observation, Figure 5b, we
attempt to reconstruct the original data. Each method has parame-
ters tuned independently to optimize performance and is run until
convergence. For TNN-ADMM, the parameter p affects the conver-
gence speed (see equations 6 and 7). Smaller values of p can cause
the algorithm to blow up or diverge, whereas, for larger values of p,
the algorithm converges more slowly. Testing p
values over the set {107°,107*,1073, 1072,

107!, 1}, we determine the optimal p value to a),
be 1072 based on the least error after 50 initial 0.2
iterations. For MSSA, the parameter N corre- 04
sponds with the number of singular values in _06
the block Hankel matrix kept at each iteration. Zos
Varying N over the set {2, 3, 5, 10}, we deter- 1
mine an optimal value of three based on the rel- 12

TNN-ADMM

0.2
0.4
0.6
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=08
1

ative error after the first iteration. We define
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. 4
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Figure 7. Acquisition map of the NWS (W. Zhou and D. Lumley,
personal communication, 2020). The horizontal and vertical axes
are labeled for the inline and crossline numbers, respectively.
The diagonal lines represent streamers with each color correspond-
ing to a shot location. The boat pulling the streamers is represented
by a dot traveling in the negative crossline direction along a fixed
inline number.
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square orientation. In Figure 8, we plot the recov- 2%

%
ered results and relative errors for each method. To8
In Figure 8a—8c, the methods appear to have re-
constructed the data. We amplify the relative er-
ror plots by a factor of 50 to better observe the 0 500
error (Figure 8d—8f). TNN-ADMM and MSSA
perform well with error of 0.3% or less. POCS
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does not perform as well, reconstructing with er-
ror of approximately 4%. In Figure 9, we show

Figure 8. Comparison of recovery methods applied to synthetic data. (a—c) The recov-
ered results. (d—f) The relative error. The relative error plots have been magnified by a
factor of 50.
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a) —250 ! the f-k spectra of the generated data and the recovered result for

0.8 TNN-ADMM. We observe that the f~k domain is successfully re-

—150 0.8 constructed in this case. The recovered result for ADMM, POCS,

N -100 0.7 and MSSA gives nearly identical f-k spectra. Therefore, we only
= —50 0.6 show the f-k spectrum for recovery using ADMM.

% 0.5 Then, we compare these three methods on field data using the

> 0.4 NWS3D data shown in Figure 1. For this data set, we tune

E 0.3 TNN-ADMM'’s p parameter over the set {107>,1074,2 x 1074,

0.2 5% 1074,1073} in the same manner as described above for the syn-

04 thetic data set and determine 5 x 10~ as the optimal value. We vary

0 MSSA’s parameter (N) over the set {2, 3, 5, 10, 15, 20} and de-

-0.02-0.015-0.01 -0.005 0  0.005 0.01 0.015 termine an optimal value of 10 based on the relative error after

Wavenumber (c/k) two initial iterations. We present the recovered and relative error

b) —250 plots in Figure 10. We observe that POCS yields a noisy recovery
—200 : and has the largest error among the methods, of approximately 37%.
—150 MSSA recovers the data with error of approximately 32%, whereas

TNN-ADMM performs the best with error of approximately 27%.

i % Figure 11 shows the relative error in reconstruction of the f-k spec-
§ tra. We observe that TNN-ADMM has the least residual in this
g domain.

§ In Table 1, we compare the number of iterations and runtime until

convergence for each method when applied to the synthetic and
NWS3D data sets. We observe that TNN-ADMM is faster by at
least an order of magnitude compared with POCS and MSSA.

—0.02 -0.015 —0.01 —0.005 0 0.005 0.01 0.015 When factoring together algorithm efficiency and accuracy, TNN-
Wavenumber (c/k) ADMM has considerable advantages over other standard data

reconstruction techniques. Having shown that TNN-ADMM is a

Figure 9. The f-k spectra of (a) the generated synthetic gather and suitable method for seismic data completion, we now turn to dis-

(b) the recovered result for TNN-ADMM. The recovered result for
ADMM, POCS, and MSSA give nearly identical f-k spectra; there-
fore, we only show the f-k spectrum for recovery using ADMM.

cussing how to best apply this method for recovery by taking ori-
entation into account.

Figure 10. Comparison of recovery methods ap- ) o TNN-ADMM 0 D)o

plied to the NWS3D field data: (a and b) TNN-
ADMM, (c and d) POCS, and (e and f) MSSA.
(a, ¢, and e) The recovered results. (b, d, and
f) The relative error plots amplified by a factor
of four.
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Orientation results

As discussed previously, we expect the most square orientation of
a data tensor to result in the best recovery. First, we present numeri-
cal experiments using the synthetic data shown in
Figure 5. In Figure 12, we compare the normal-
ized cumulative sum of singular values for each
orientation. The cumulative sum is a partial sum
calculated by adding the largest singular values

V227

to the decimated data and compare the recovered results for each
orientation. In Figure 13, we compare the recovered gathers and
relative error after convergence of ADMM for each orientation

Table 1. The number of iterations and total runtime until convergence for each
method applied to the synthetic data set shown in Figure 5 and the NWS3D
data shown in Figure 1.

of the tensor. From this plot, we can determine
the percentage of data contained in the first

few (largest) singular values. We also note the

rate of decay in the singular values from this plot. Method

The faster the singular values decay, the faster the TNN-ADMM
sum approaches one. Because tensors with the POCS

first two dimensions transposed contain the same MSSA

singular values, we only need to compare three

Synthetic NWS3D
Iterations Runtime (s) Iterations Runtime (s)
115 1.146 x 102 98 1.7448 x 10?
400 5.2639 x 10° 400 2.3026 x 10°
18 2.5654 x 10* 253 1.828 x 10°

orientations with distinct singular values out of
the six possible choices. The most square orien-
tation (the magenta curve) requires only a small percent of its sin-
gular values to describe 100% of its data, indicating that it has low
rank. The other orientations do not exhibit this behavior, so we ex-
pect low-rank reconstruction to not perform as well in these cases.

To further support our hypothesis about how best to orient the
tensor to recover data, we calculate the coherence for each orienta-
tion of the synthetic data. The coherence of a tensor measures the
spread of its singular vectors with respect to the standard basis. Ten-
sors with singular vectors that contain combinations of standard ba-
sis vectors are likely to have more entries observed by the sampling
operator. Having more observed entries increases the probability of
successful recovery (Candes and Recht, 2009; Zhang and Aeron,
2017). The more spread out that the singular vectors are, the lower
the coherence value is (see Appendix B for details on computing
tensor coherence as well as examples illustrating the correlation be-
tween coherence and the probability of recovery). In Table 2, we
compare the coherence for each orientation. We observe that the
most square orientation has the lowest coherence value, indicating
that this orientation is the most likely to be successfully recovered
given an observation with a limited number of entries.

Then, we apply a sampling operator that decimates 60% of the
columns of data chosen at random in each gather. We apply ADDM

a) f-k Spectrum of shot 5 b) f-k Spectrum of observation

1
—200
08
0.6
0.4
0.2
200
0

—0.04 —0.02 0 0.02
Wavenumber (c/k)

—200

—100

L
o
S

=)
=]

Frequency (Hz,
o
Frequency (Hz)

o o

200

—0.04 -0.02 0 0.02
Wavenumber (c/k)

TNN-ADMM d) POCS e)

o
~

L
=)
S

100

=)
S

100

Frequency (Hz)
)
Frequency (Hz)
o
Frequency (Hz)
o

200

200

—0.04 —0.02 0 0.02
Wavenumber (c/k)

—0.04 —0.02 0 0.02
Wavenumber (c/k)

—0.04 —0.02

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

—700 x 100 x 60

—700 x 60 x 100
—60 x 100 x 700"

Normalized sum

0 0.2 0.4 0.6 0.8 1
Percent of singular values

Figure 12. Normalized cumulative sum of singular values for three
orientations of the synthetic data set shown in Figure 5. The most
square orientation is denoted with an asterisk. Transposing the
first two dimensions results in the same singular values; hence,
we only compare three distinct orientations out of all six possible
orientations.

Figure 11. The f-k spectra of (a) a gather from the
NWS3D data set and (b) the decimated observa-
tion. The relative error in the f~k spectra of the re-
covered result versus true for (c) TNN-ADMM,
(d) POCS, and (e) MSSA. The relative error plots
have been amplified by a factor of 10.
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of synthetic data. The error is computed over the entire 3D volume
relative to the original data before decimation. We observe that the
most square orientation 60 X 100 X 700 does significantly better in
this example, with an error two orders of magnitude smaller than the
other orientations. Although the error for the most square orienta-
tion is negligible, the other orientations have noticeable artifacts
in their relative error plots. In particular, the second orientation
700 % 100 X 60 does poorly near the right edge of the gather.

We next perform a similar experiment using the NWS3D and
NWS4D data sets. For a 4D tensor, there are 24 different possible
orientations. However, any orientations for which the first two di-
mensions are either the same or transposed, such as 12 X 5 x 288 x
1732 and 12 X 5 X 1732 x 288, give tensors that have the same sin-
gular values. Thus, we only need to consider six orientations with
distinct singular values out of the 24 possible orientations for the 4D
data. We plot the normalized cumulative sum of singular values for
each distinct orientation of NWS3D and NWS4D in Figure 14. For
the NWS3D data, we observe for the most square orientation that
10% of the largest singular values contains more than 70% of the
information in the data, a greater percentage than the other two ori-
entations. For the NWS4D data, we observe that the most square
orientation exhibits a similar behavior. These observations indicate
that the most square orientation has the lowest rank structure among
all possible orientations because a small percent of singular values
contains most of the information in the data. Furthermore, we com-
pare the coherence of each orientation of NWS4D in the second

Table 2. The coherence for each orientation of the synthetic
data set. We have marked the most square orientation with
an asterisk.

Popa et al.

column of Table 3. We observe that the most square orientation
has the lowest coherence value, providing additional evidence that
this orientation should result in the best recovery.

[—1732x 182 x 20 |
—1732 x 20 x 182
—182x 20 x 1732

Normalized sum
o
(&)

0.4 0.6
Percent of singular values

0 0.2

—1732x288x 12x5
—1732x12x 288 x 5
1732 x5 x 288 x 12

—288x12x 1732 x 5
—288x5x1732x 12
—12x 5 x 1732 x 288"

Normalized sum

0.4 0.6

Size u(X) 0 0.2 0.8 1
Percent of singular values
700 x 60 x 100 1.5819
700 x 100 x 60 1.2288 Figure 14. Normalized cumulative sum of singular values for
orientations with distinct singular values of (a) NWS3D and
60 x 100 x 700 1.0641 (b) NWS4D. The most square orientation of each data set is denoted
with an asterisk.
Figure 13. (a—c) Recovered and (d—f) relative er- @) ¢ 700 x 60 x 100 b) , 700 x 100 x 60 ©), 60 x 100 x 700*
ror plots resulting from applying TNN-ADMM to 02 02 ‘
each of the distinct orientations of the synthetic
data shown in Figure 5. The final relative error, 04 04
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We apply a sampling operator that decimates 60% of the columns
of data chosen at random in each gather, producing observations
like the gather shown in Figure 1b. Applying ADDM to the deci-
mated data for each orientation, we compare the relative error in
recovery after convergence of ADMM for NWS3D and NWS4D
in Figure 15 and the third column of Table 3, respectively. The error
is computed relative to the original data before decimation over the
entire 3D or 4D volume. For ADMM, we set the parameter p = 5 X
10~ for NWS3D and use p =2 x 10~ for NWS4D (see equa-

%20

2 2
A2t

2 AT
R

L20% 482 132 482 « \132.

32 %
AT 20 YA ‘\5‘2*20 20 $\82

Figure 15. Comparison of the final relative error in recovery for
each orientation of the NWS3D data. The most square orientation
(denoted by the asterisk) gives the smallest error.
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tions 6 and 7). In Figure 16, we present the recovered and relative
error plots of a single gather for the three distinct orientations of
NWS3D. For NWS4D, we present the recovered results in the left
column of Figure 17 for the orientations 1732 X 288 x 12 x 5 and
12 X 5 x 1732 x 288. In the right column, we show the relative er-
ror plots for these two orientations, respectively, contrasting the best
and worst recovered results. We observe that the most square ori-
entations once again allow for the best low-rank recovery, more than
10% and 20% improvement over the worst case for NWS3D and
NWS4D, respectively.

Table 3. The coherence and relative data completion error
for each orientation of the NWS4D data listed in order of
descending error. The most square orientation is denoted
with an asterisk.

Size u(X) Relative error
1732288 x 12X 5 2.6268 0.5162
1732 x5 x 288 x 12 17.8015 0.3846
1732 x 12 x 288 X 5 16.2087 0.3795
288 x 5% 1732x 12 18.6898 0.36424
288 x 12x 1732 %5 13.3627 0.32741

12 x5 % 1732 x 288* 1.3759 0.29232

Figure 16. Recovered plots of a single NWS3D
gather for the orientations (a) 1732 X 182 x 20,
(c) 1732 x20x% 182, and (e) 182 x 20 x 1732.
The relative error plots for each of these orienta-
tions are (b, d, and f), respectively. The final rel-
ative error, computed over the entire 3D volume, is
displayed above each relative error plot. Plots (e
and f) correspond to the most square orientation,
denoted by an asterisk.
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tSVD runtime results

We compare the runtime of the inner loop of
the original tSVD to our improved algorithm us-
ing conjugate symmetry. The runtime of our al-
gorithm includes the time to create the mapping
vector, which only needs to be performed once
per set of dimensions. In Figure 18, we see that,
for the synthetic data, we obtain an improvement
in the runtime of 46%. We also test the algo-
rithms using the VG, NWS3D, and NWS4D field
data sets. For the VG data, the runtime improves
by approximately 50% by using conjugate sym-
metry, close to the theoretical limit. We observe
improvements of 45% and 35% for the NWS3D
and NWS4D data sets, respectively. These results
indicate that the algorithm is robust with respect
to the dimension of the input data, increasing the
efficiency for the order-3 and order-4 cases.

Figure 17. Recovered plots of a representative gather from the NWS for the orienta-
tions: (a) 1732 x 288 x 12 X 5 (worst case) and (c) 12 X 5 x 288 x 1732 (best case).

The relative error plots for these orientations are (b and d), respectively. The relative

CONCLUSION

error plots have been amplified by a factor of four. The final relative error, computed

over the entire 4D volume, is displayed above each relative error plot. Plots (c and d) cor-

respond to the most square orientation.

ntheti \'/
a)12 Sy o b) 25 8
1 2
0.8
w ®15
© ©
E 0.6 £
€ €
=1 > 1
(i o
0.4
02 0.5
0 0
tSVD Improved tSVD tSVD Improved tSVD
NWS3D NwWS4D
¢) 06 d) 14
05 12
10
0.4
@ L g
Q [
£ 03 £
5 5 6
o o
0.2
4
0.1 2
0 0
tSVD Improved tSVD tSVD Improved tSVD

Figure 18. Runtime comparison for the inner loop of the original
and improved tSVD given in Algorithm 2 applied to (a) the syn-
thetic data, (b) VG, (c) NWS3D, and (d) NWS4D. The runtime de-
creased by 46%, 50%, 45%, and 35%, respectively.

We find that TNN-ADMM is an accurate and
efficient method for data completion. In this
work, we give mathematical justification for
the most cost-efficient and accurate way to com-
plete seismic data for tensors of arbitrary order. We find that, for any
tensor X, the corresponding block diagonal matrix X shares the
same singular values. Furthermore, the orientation of the tensor
X affects the shape of the matrix X. In particular, the most square
orientation, for which the ratio of the first and second dimensions is
closest to one, gives the block diagonal matrix X with the best data
structure for the low-rank model. For the 3D and 4D examples, we
observe that the most square orientation provides the closest
approximation to a low-rank data structure and produces the best
recovered result. We show that the runtime of the tSVD and tPro-
duct algorithms can be improved, independent of tensor orientation,
by using the conjugate symmetry produced by the multidimensional
Fourier transform. This symmetry causes frontal slices to form en-
try-wise conjugate pairs. Taking advantage of this symmetry, costly
operations on frontal slices, such as matrix SVD in the tSVD algo-
rithm, can be replaced by cheaper conjugate calculations for the
appropriate slices.

Being able to accurately fill in missing data has implications for
more cost-efficient survey design. One could further investigate
whether the most square orientation provides the best recovery
for the additional denoising problem.
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APPENDIX A

MULTIDIMENSIONAL FOURIER TRANSFORM
AND TENSOR PRODUCT

For a tensor X, we denote the result of the multidimensional
Fourier transform as X. For the multidimensional Fourier trans-
form, we compute the Fourier transform for each dimension from
3 to p. To compute a Fourier transform over the third dimension, we
consider tubes, or vectors oriented along the third dimension. For
each tube, we compute its Fourier transform treating the tube as
a vector.

The tensor product (tProduct) is used to define multiplication
between two tensors (Martin et al., 2013). The tProduct of
A € Rmxmxnsxe X, gpnd B € RMXmXmX Xy pegults in a tensor
C = AB e R"wxmXnsx--xn, The tProduct can be computed in three
steps. First, take the multidimensional Fourier transform of A and
B, denoted A and B. Then, multiply the frontal slices of A and B
storing the result of each matrix product as a frontal slice in C.
Fianlly, we take the inverse multidimensional Fourier transform
of C to obtain C. For the tSVD, we need to define unitary tensors.
Unitary tensors have the property that their conjugate transpose is
their inverse, i.e., UU* = T and U*U = Z. The identity tensor Z €
Rmxmxnsx---Xn, hag the identity matrix as its first frontal slice and
zeros elsewhere. Transposing a tensor is computed recursively by
transposing each subtensor and reversing the order of all but the first
subtensor.

APPENDIX B
COHERENCE

Let e; € R™M>1XmX--Xm, denote the tensor column basis, with an
entry of 1 in the ith row of first frontal slice and zeros elsewhere.

Let X e RmuxmXmxxn, have tSVD  given by
U € Ruxmxnzx:xn S € Ruxmxnzx---xn, and
Y € Rmxnmxnsxoxny et r=max,—,  y(rank(X;)). The eco-

nomic tSVD is given by truncating S, keepmg only the first  non-
zero rows and columns in each slice and similarly truncating ¢/ and
V to keep only the first » columns in each slice.

For X € RmXmXnsX: - Xn, with economic tSVD,
I/{ e RHIXVXIUX‘“XH”, 8 e RVXI‘XH3X~“X7!I,’ and v e anXrXﬂ3X“~Xﬂ
the coherence of U/, V, and X is defined as (Zhang and Aeron
(2017))

m
9 r 9

Q} (B-1)

p(Ud) =" max U7+ e [} €

r 1<i<n

u(V) ="2 max |7 x e |3 €

r 1<j<n,

)

p(X) = max(u(U). p(V)).

The more concentrated the singular vectors of the underlying data
X are, the more likely it is that X will fall in the null space of the

sampling operator. For example, consider the rank 1 matrix with a
singular vector concentrated in a single standard basis element
u=e eR:

(B-2)

Any partial observation is likely to observe only zeros, making re-
covery unlikely. This matrix has coherence of u(X) = 5.

Now, consider another rank 1 matrix, with singular vector
u= (e, +e,+e;+e;)/2 €R and singular value o, = 4:

0

(B-3)

S

I

2

<

<

|
O = = = =
O = = = =
O = = =
O = = =
S O OO

In this example, the singular vector is spread across four standard
basis vectors and the matrix has coherence of u(X) = 1.25. Here,
recovery is possible with only a partial observation. The following
theorem by Zhang and Aeron (2017) supports the idea that tensors
of low coherence are more likely to be recovered.

Theorem: Let X' € R"*">": represent the underlying data with
economic tSVD X =USVT, U € R § e R™™, and
Y € R Tet p be the probability that an individual entry
of X is observed. Then, there exists constants ¢y, ¢y, c, > 0 such
that if

u(X)rlog(ns(n; + n,))
min(ny, ny)

P 2c ; (B-4)

then X is the unique minimizer of equation 5 with probabil-
ity 1—c;((ny + ny)nz) =

Because p is linearly dependent on y(X), smaller coherence al-
lows for data completion to be possible with more entries missing.
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