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Microscale vacuum distillation apparatus for high-boiling, air- and 
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A B S T R A C T   

We describe a simple apparatus that enables the vacuum distillation of ~0.2 mL of air- and water-sensitive, high- 
boiling liquids. The apparatus should be useful in teaching laboratories, and also to practicing chemists.   

1. Introduction 

The purification of high boiling liquids on the microscale (<0.5 g) 
can be challenging, especially if they are sensitive to air and moisture 
and decompose easily when overheated. For such reactive substances, 
common purification methods such as thin layer or column chroma
tography often cannot be used. Methods such as sublimation in vacuum 
or recrystallization under an inert atmosphere can sometimes be 
adapted for the purification of liquids, specifically by carrying them out 
below room temperature, but are experimentally challenging and not 
always applicable. Distillation is an attractive separation method, but 
conventional microscale techniques such as Kugelrohr distillation [1–3], 
steam distillation [4], Hickman stills [5–11], Babcock stills [12,13], 
microfluid distillation [14], and other versions of semi-microscale mo
lecular distillation apparatus [10,15–18] are usually not designed for 
handling air-sensitive compounds, and the few small-scale distillation 
methods that can be easily adapted for air-sensitive compounds typically 
require much more than 0.2 mL of material [19–22]. 

For organometallic complexes of transition metals, which usually 
have high densities compared with purely organic liquids, ~0.5 g of 
distillate corresponds to 0.2–0.4 mL of liquid. We have encountered the 
need to distill such small quantities of air- and moisture-sensitive 
organotransition metal compounds in our laboratory-scale research to 
discover new chemical vapor deposition (CVD) [23–27] and atomic 
layer deposition (ALD) [28,29] precursors for possible use in the mi
croelectronic industry; the development of volatile precursors has been 
an important driving force for the advancement of CVD and ALD pro
cesses [26,30]. Compared to solid precursors, liquid precursors have one 

significant advantage in these applications: liquids tend to volatilize at 
near-constant rates over time, whereas solids often show variable 
volatilization rates owing to changes in particle size. As a result, the 
delivery rate of liquid precursors can be more easily controlled and 
reproduced [25,30,31]. 

2. Methods and results 

We wish to report a simple device that enables the vacuum distilla
tion of ~0.2 mL of air- and water-sensitive, high-boiling liquids (Fig. 1). 
This apparatus consists of an X-shaped arrangement of 17 mm o.d. glass 
tubing, equipped with standard 14/20 ground glass joints at the two 
openings. The two bottom wells serve as source and receiving pots, 
respectively. The stopcock and the ground glass joints allow the appa
ratus to be connected to a Schlenk line and maintained at all times either 
under vacuum or an inert gas. Although we have found that contami
nation from grease is typically not an issue due to the low volatility of 
the distillate, the ground glass components may be replaced with 
greaseless stopcocks and joints (or J. Young valves) if desired. The 
stopcock is placed on a cross-tube that connects the upper halves of the 
two legs, so as to provide a good blanketing flow of inert gas when either 
or both of the two legs is unstoppered. The leg of the X-tube that serves 
as the receiving pot is fitted with a water-cooled cold finger that extends 
ca. 100 mm length below the joint; a drip tip at the end of the cold finger 
is desirable (a convenient commercially available cold finger is Chem
glass CG-1222-14). 

The dimensions we have used enable heating the neck of the source 
pot as close to the X-junction as possible so as to minimize the amount of 
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condensate that simply returns to the source pot. Although the receiving 
pot may warm slightly above room temperature, this effect does not 
impede the distillation. The neck of the source pot is long enough to 
prevent liquid from easily spattering or bumping into the receiving pot 
when vacuum is applied. 

When carrying out a distillation, the crude product is first dissolved 
in a minimum amount of a low boiling solvent (such as pentane) to 
reduce the viscosity and minimize losses during transfer. The resulting 
solution is delivered under inert gas to the source pot by syringe or 
cannula through a rubber septum in the upper part of leg that contains 
the source pot. The septum is replaced with a glass stopper, and the low- 
boiling solvent is carefully removed by evaporation under vacuum. 
Then, the leg of the X-tube that serves as the source pot is heated in an oil 
bath, and the residue is distilled under dynamic vacuum. Any remaining 
traces of the solvent will be pumped away into the vacuum line, and only 
high-boiling components will condense onto the cold finger and drip 
into the receiving pot. When the distillation is complete, the material in 
the receiving pot can be transferred, either on a Schlenk line or in a glove 
box, directly to a storage flask by syringe, cannula, or micropipet. With 
careful control of the pressure and temperature, fractional distillations 
can in principle be carried out. 

The design of this apparatus is similar to but much simpler than the 
Gould-Holzman-Niemann apparatus [33], in which a well-to-well design 
is employed to minimize the total volume and inner surface area of the 
apparatus, and a cold finger is used to condense and direct the flow of 
the small amount of liquid. A design similar to the present one has been 
mentioned briefly by King et al. [34]. 

We have found that this apparatus provides a useful and convenient 
way to distill a number of high-boiling, air- and moisture-sensitive liq
uids on scales as small as ca. 100 μL or even smaller (Fig. 1). [32]. 
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Fig. 1. Top: Drawing of the micro-scale distillation apparatus; Bottom: a pic
ture showing the distillation of ~0.15 g (~0.1 mL) of the organometallic 
compound CpPtEt3 [32] using the micro-scale distillation apparatus. The iso
lated yield of this product after distillation was 51% [32]. As judged from 
comparisons with similar compounds [31], the normal boiling point of CpPtEt3 
is estimated to be ~350 ◦C. The distillation was conducted under ~5 mTorr 
vacuum and the source pot was heated in an oil bath to ~45 ◦C. The isolated 
yield of this product after distillation was 51%. Anal. Calcd for C11H20Pt: C, 
38.0; H, 5.80. Found: C, 38.2; H, 5.74 [32]. The 1H NMR spectrum of the 
distillate shows no impurities above background levels. 
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